| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_arm64.h" |
| |
| #include "arch/arm64/asm_support_arm64.h" |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "base/bit_utils_iterator.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "intrinsics.h" |
| #include "intrinsics_arm64.h" |
| #include "linker/arm64/relative_patcher_arm64.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "lock_word.h" |
| #include "offsets.h" |
| #include "thread.h" |
| #include "utils/arm64/assembler_arm64.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| |
| using namespace vixl::aarch64; // NOLINT(build/namespaces) |
| using vixl::ExactAssemblyScope; |
| using vixl::CodeBufferCheckScope; |
| using vixl::EmissionCheckScope; |
| |
| #ifdef __ |
| #error "ARM64 Codegen VIXL macro-assembler macro already defined." |
| #endif |
| |
| namespace art { |
| |
| template<class MirrorType> |
| class GcRoot; |
| |
| namespace arm64 { |
| |
| using helpers::ARM64EncodableConstantOrRegister; |
| using helpers::ArtVixlRegCodeCoherentForRegSet; |
| using helpers::CPURegisterFrom; |
| using helpers::DRegisterFrom; |
| using helpers::FPRegisterFrom; |
| using helpers::HeapOperand; |
| using helpers::HeapOperandFrom; |
| using helpers::InputCPURegisterAt; |
| using helpers::InputCPURegisterOrZeroRegAt; |
| using helpers::InputFPRegisterAt; |
| using helpers::InputOperandAt; |
| using helpers::InputRegisterAt; |
| using helpers::Int64ConstantFrom; |
| using helpers::IsConstantZeroBitPattern; |
| using helpers::LocationFrom; |
| using helpers::OperandFromMemOperand; |
| using helpers::OutputCPURegister; |
| using helpers::OutputFPRegister; |
| using helpers::OutputRegister; |
| using helpers::QRegisterFrom; |
| using helpers::RegisterFrom; |
| using helpers::StackOperandFrom; |
| using helpers::VIXLRegCodeFromART; |
| using helpers::WRegisterFrom; |
| using helpers::XRegisterFrom; |
| |
| // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump |
| // table version generates 7 instructions and num_entries literals. Compare/jump sequence will |
| // generates less code/data with a small num_entries. |
| static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; |
| |
| // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle |
| // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions. |
| // For the Baker read barrier implementation using link-generated thunks we need to split |
| // the offset explicitly. |
| constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB; |
| |
| // Flags controlling the use of link-time generated thunks for Baker read barriers. |
| constexpr bool kBakerReadBarrierLinkTimeThunksEnableForFields = true; |
| constexpr bool kBakerReadBarrierLinkTimeThunksEnableForArrays = true; |
| constexpr bool kBakerReadBarrierLinkTimeThunksEnableForGcRoots = true; |
| |
| // Some instructions have special requirements for a temporary, for example |
| // LoadClass/kBssEntry and LoadString/kBssEntry for Baker read barrier require |
| // temp that's not an R0 (to avoid an extra move) and Baker read barrier field |
| // loads with large offsets need a fixed register to limit the number of link-time |
| // thunks we generate. For these and similar cases, we want to reserve a specific |
| // register that's neither callee-save nor an argument register. We choose x15. |
| inline Location FixedTempLocation() { |
| return Location::RegisterLocation(x15.GetCode()); |
| } |
| |
| inline Condition ARM64Condition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne; |
| case kCondLT: return lt; |
| case kCondLE: return le; |
| case kCondGT: return gt; |
| case kCondGE: return ge; |
| case kCondB: return lo; |
| case kCondBE: return ls; |
| case kCondA: return hi; |
| case kCondAE: return hs; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) { |
| // The ARM64 condition codes can express all the necessary branches, see the |
| // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual. |
| // There is no dex instruction or HIR that would need the missing conditions |
| // "equal or unordered" or "not equal". |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne /* unordered */; |
| case kCondLT: return gt_bias ? cc : lt /* unordered */; |
| case kCondLE: return gt_bias ? ls : le /* unordered */; |
| case kCondGT: return gt_bias ? hi /* unordered */ : gt; |
| case kCondGE: return gt_bias ? cs /* unordered */ : ge; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| Location ARM64ReturnLocation(Primitive::Type return_type) { |
| // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the |
| // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`, |
| // but we use the exact registers for clarity. |
| if (return_type == Primitive::kPrimFloat) { |
| return LocationFrom(s0); |
| } else if (return_type == Primitive::kPrimDouble) { |
| return LocationFrom(d0); |
| } else if (return_type == Primitive::kPrimLong) { |
| return LocationFrom(x0); |
| } else if (return_type == Primitive::kPrimVoid) { |
| return Location::NoLocation(); |
| } else { |
| return LocationFrom(w0); |
| } |
| } |
| |
| Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) { |
| return ARM64ReturnLocation(return_type); |
| } |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value() |
| |
| // Calculate memory accessing operand for save/restore live registers. |
| static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen, |
| LocationSummary* locations, |
| int64_t spill_offset, |
| bool is_save) { |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spills, |
| codegen->GetNumberOfCoreRegisters(), |
| fp_spills, |
| codegen->GetNumberOfFloatingPointRegisters())); |
| |
| CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize, core_spills); |
| unsigned v_reg_size = codegen->GetGraph()->HasSIMD() ? kQRegSize : kDRegSize; |
| CPURegList fp_list = CPURegList(CPURegister::kVRegister, v_reg_size, fp_spills); |
| |
| MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| |
| Register base = masm->StackPointer(); |
| int64_t core_spill_size = core_list.GetTotalSizeInBytes(); |
| int64_t fp_spill_size = fp_list.GetTotalSizeInBytes(); |
| int64_t reg_size = kXRegSizeInBytes; |
| int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size; |
| uint32_t ls_access_size = WhichPowerOf2(reg_size); |
| if (((core_list.GetCount() > 1) || (fp_list.GetCount() > 1)) && |
| !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) { |
| // If the offset does not fit in the instruction's immediate field, use an alternate register |
| // to compute the base address(float point registers spill base address). |
| Register new_base = temps.AcquireSameSizeAs(base); |
| __ Add(new_base, base, Operand(spill_offset + core_spill_size)); |
| base = new_base; |
| spill_offset = -core_spill_size; |
| int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size; |
| DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size)); |
| DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size)); |
| } |
| |
| if (is_save) { |
| __ StoreCPURegList(core_list, MemOperand(base, spill_offset)); |
| __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size)); |
| } else { |
| __ LoadCPURegList(core_list, MemOperand(base, spill_offset)); |
| __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size)); |
| } |
| } |
| |
| void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += kXRegSizeInBytes; |
| } |
| |
| const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += kDRegSizeInBytes; |
| } |
| |
| SaveRestoreLiveRegistersHelper(codegen, |
| locations, |
| codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */); |
| } |
| |
| void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| SaveRestoreLiveRegistersHelper(codegen, |
| locations, |
| codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */); |
| } |
| |
| class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves( |
| locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, |
| locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64); |
| }; |
| |
| class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64); |
| }; |
| |
| class LoadClassSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| LoadClassSlowPathARM64(HLoadClass* cls, |
| HInstruction* at, |
| uint32_t dex_pc, |
| bool do_clinit, |
| vixl::aarch64::Register bss_entry_temp = vixl::aarch64::Register(), |
| vixl::aarch64::Label* bss_entry_adrp_label = nullptr) |
| : SlowPathCodeARM64(at), |
| cls_(cls), |
| dex_pc_(dex_pc), |
| do_clinit_(do_clinit), |
| bss_entry_temp_(bss_entry_temp), |
| bss_entry_adrp_label_(bss_entry_adrp_label) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location out = locations->Out(); |
| constexpr bool call_saves_everything_except_r0_ip0 = (!kUseReadBarrier || kUseBakerReadBarrier); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| // For HLoadClass/kBssEntry/kSaveEverything, the page address of the entry is in a temp |
| // register, make sure it's not clobbered by the call or by saving/restoring registers. |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| bool is_load_class_bss_entry = |
| (cls_ == instruction_) && (cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry); |
| if (is_load_class_bss_entry) { |
| DCHECK(bss_entry_temp_.IsValid()); |
| DCHECK(!bss_entry_temp_.Is(calling_convention.GetRegisterAt(0))); |
| DCHECK( |
| !UseScratchRegisterScope(arm64_codegen->GetVIXLAssembler()).IsAvailable(bss_entry_temp_)); |
| } |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_); |
| QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage |
| : kQuickInitializeType; |
| arm64_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this); |
| if (do_clinit_) { |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); |
| } else { |
| CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); |
| } |
| |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| Primitive::Type type = instruction_->GetType(); |
| arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry. |
| if (is_load_class_bss_entry) { |
| DCHECK(out.IsValid()); |
| const DexFile& dex_file = cls_->GetDexFile(); |
| if (call_saves_everything_except_r0_ip0) { |
| // The class entry page address was preserved in bss_entry_temp_ thanks to kSaveEverything. |
| } else { |
| // For non-Baker read barrier, we need to re-calculate the address of the class entry page. |
| bss_entry_adrp_label_ = arm64_codegen->NewBssEntryTypePatch(dex_file, type_index); |
| arm64_codegen->EmitAdrpPlaceholder(bss_entry_adrp_label_, bss_entry_temp_); |
| } |
| vixl::aarch64::Label* strp_label = |
| arm64_codegen->NewBssEntryTypePatch(dex_file, type_index, bss_entry_adrp_label_); |
| { |
| SingleEmissionCheckScope guard(arm64_codegen->GetVIXLAssembler()); |
| __ Bind(strp_label); |
| __ str(RegisterFrom(locations->Out(), Primitive::kPrimNot), |
| MemOperand(bss_entry_temp_, /* offset placeholder */ 0)); |
| } |
| } |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| // The dex PC of `at_`. |
| const uint32_t dex_pc_; |
| |
| // Whether to initialize the class. |
| const bool do_clinit_; |
| |
| // For HLoadClass/kBssEntry, the temp register and the label of the ADRP where it was loaded. |
| vixl::aarch64::Register bss_entry_temp_; |
| vixl::aarch64::Label* bss_entry_adrp_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64); |
| }; |
| |
| class LoadStringSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| LoadStringSlowPathARM64(HLoadString* instruction, Register temp, vixl::aarch64::Label* adrp_label) |
| : SlowPathCodeARM64(instruction), |
| temp_(temp), |
| adrp_label_(adrp_label) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| // Make sure `temp_` is not clobbered by the call or by saving/restoring registers. |
| DCHECK(temp_.IsValid()); |
| DCHECK(!temp_.Is(calling_convention.GetRegisterAt(0))); |
| DCHECK(!UseScratchRegisterScope(arm64_codegen->GetVIXLAssembler()).IsAvailable(temp_)); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); |
| __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_); |
| arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| Primitive::Type type = instruction_->GetType(); |
| arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| |
| // Store the resolved String to the BSS entry. |
| const DexFile& dex_file = instruction_->AsLoadString()->GetDexFile(); |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // The string entry page address was preserved in temp_ thanks to kSaveEverything. |
| } else { |
| // For non-Baker read barrier, we need to re-calculate the address of the string entry page. |
| adrp_label_ = arm64_codegen->NewPcRelativeStringPatch(dex_file, string_index); |
| arm64_codegen->EmitAdrpPlaceholder(adrp_label_, temp_); |
| } |
| vixl::aarch64::Label* strp_label = |
| arm64_codegen->NewPcRelativeStringPatch(dex_file, string_index, adrp_label_); |
| { |
| SingleEmissionCheckScope guard(arm64_codegen->GetVIXLAssembler()); |
| __ Bind(strp_label); |
| __ str(RegisterFrom(locations->Out(), Primitive::kPrimNot), |
| MemOperand(temp_, /* offset placeholder */ 0)); |
| } |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; } |
| |
| private: |
| const Register temp_; |
| vixl::aarch64::Label* adrp_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64); |
| }; |
| |
| class NullCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| arm64_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64); |
| }; |
| |
| class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeARM64(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); // Only saves live 128-bit regs for SIMD. |
| arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, locations); // Only restores live 128-bit regs for SIMD. |
| if (successor_ == nullptr) { |
| __ B(GetReturnLabel()); |
| } else { |
| __ B(arm64_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| vixl::aarch64::Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| vixl::aarch64::Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64); |
| }; |
| |
| class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| uint32_t dex_pc = instruction_->GetDexPc(); |
| |
| __ Bind(GetEntryLabel()); |
| |
| if (!is_fatal_) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot); |
| if (instruction_->IsInstanceOf()) { |
| arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| Primitive::Type ret_type = instruction_->GetType(); |
| Location ret_loc = calling_convention.GetReturnLocation(ret_type); |
| arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; } |
| bool IsFatal() const OVERRIDE { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64); |
| }; |
| |
| class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction) |
| : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| SaveLiveRegisters(codegen, locations); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Mov(calling_convention.GetRegisterAt(0), |
| static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); |
| arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64); |
| }; |
| |
| class ArraySetSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimNot, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64); |
| }; |
| |
| void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) { |
| uint32_t num_entries = switch_instr_->GetNumEntries(); |
| DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); |
| |
| // We are about to use the assembler to place literals directly. Make sure we have enough |
| // underlying code buffer and we have generated the jump table with right size. |
| EmissionCheckScope scope(codegen->GetVIXLAssembler(), |
| num_entries * sizeof(int32_t), |
| CodeBufferCheckScope::kExactSize); |
| |
| __ Bind(&table_start_); |
| const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]); |
| DCHECK(target_label->IsBound()); |
| ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation(); |
| DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min()); |
| DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max()); |
| Literal<int32_t> literal(jump_offset); |
| __ place(&literal); |
| } |
| } |
| |
| // Abstract base class for read barrier slow paths marking a reference |
| // `ref`. |
| // |
| // Argument `entrypoint` must be a register location holding the read |
| // barrier marking runtime entry point to be invoked. |
| class ReadBarrierMarkSlowPathBaseARM64 : public SlowPathCodeARM64 { |
| protected: |
| ReadBarrierMarkSlowPathBaseARM64(HInstruction* instruction, Location ref, Location entrypoint) |
| : SlowPathCodeARM64(instruction), ref_(ref), entrypoint_(entrypoint) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathBaseARM64"; } |
| |
| // Generate assembly code calling the read barrier marking runtime |
| // entry point (ReadBarrierMarkRegX). |
| void GenerateReadBarrierMarkRuntimeCall(CodeGenerator* codegen) { |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| DCHECK_NE(ref_.reg(), LR); |
| DCHECK_NE(ref_.reg(), WSP); |
| DCHECK_NE(ref_.reg(), WZR); |
| // IP0 is used internally by the ReadBarrierMarkRegX entry point |
| // as a temporary, it cannot be the entry point's input/output. |
| DCHECK_NE(ref_.reg(), IP0); |
| DCHECK(0 <= ref_.reg() && ref_.reg() < kNumberOfWRegisters) << ref_.reg(); |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in W0): |
| // |
| // W0 <- ref |
| // W0 <- ReadBarrierMark(W0) |
| // ref <- W0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| if (entrypoint_.IsValid()) { |
| arm64_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); |
| __ Blr(XRegisterFrom(entrypoint_)); |
| } else { |
| // Entrypoint is not already loaded, load from the thread. |
| int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ref_.reg()); |
| // This runtime call does not require a stack map. |
| arm64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| } |
| } |
| |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| |
| // The location of the entrypoint if it is already loaded. |
| const Location entrypoint_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathBaseARM64); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read |
| // barrier. The field `obj.field` in the object `obj` holding this |
| // reference does not get updated by this slow path after marking. |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| // |
| // If `entrypoint` is a valid location it is assumed to already be |
| // holding the entrypoint. The case where the entrypoint is passed in |
| // is when the decision to mark is based on whether the GC is marking. |
| class ReadBarrierMarkSlowPathARM64 : public ReadBarrierMarkSlowPathBaseARM64 { |
| public: |
| ReadBarrierMarkSlowPathARM64(HInstruction* instruction, |
| Location ref, |
| Location entrypoint = Location::NoLocation()) |
| : ReadBarrierMarkSlowPathBaseARM64(instruction, ref, entrypoint) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(ref_.IsRegister()) << ref_; |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg(); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| GenerateReadBarrierMarkRuntimeCall(codegen); |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64); |
| }; |
| |
| // Slow path loading `obj`'s lock word, loading a reference from |
| // object `*(obj + offset + (index << scale_factor))` into `ref`, and |
| // marking `ref` if `obj` is gray according to the lock word (Baker |
| // read barrier). The field `obj.field` in the object `obj` holding |
| // this reference does not get updated by this slow path after marking |
| // (see LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64 |
| // below for that). |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| // |
| // Argument `entrypoint` must be a register location holding the read |
| // barrier marking runtime entry point to be invoked. |
| class LoadReferenceWithBakerReadBarrierSlowPathARM64 : public ReadBarrierMarkSlowPathBaseARM64 { |
| public: |
| LoadReferenceWithBakerReadBarrierSlowPathARM64(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| size_t scale_factor, |
| bool needs_null_check, |
| bool use_load_acquire, |
| Register temp, |
| Location entrypoint) |
| : ReadBarrierMarkSlowPathBaseARM64(instruction, ref, entrypoint), |
| obj_(obj), |
| offset_(offset), |
| index_(index), |
| scale_factor_(scale_factor), |
| needs_null_check_(needs_null_check), |
| use_load_acquire_(use_load_acquire), |
| temp_(temp) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "LoadReferenceWithBakerReadBarrierSlowPathARM64"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(ref_.IsRegister()) << ref_; |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg(); |
| DCHECK(obj_.IsW()); |
| DCHECK_NE(ref_.reg(), LocationFrom(temp_).reg()); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || |
| (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); |
| |
| // Temporary register `temp_`, used to store the lock word, must |
| // not be IP0 nor IP1, as we may use them to emit the reference |
| // load (in the call to GenerateRawReferenceLoad below), and we |
| // need the lock word to still be in `temp_` after the reference |
| // load. |
| DCHECK_NE(LocationFrom(temp_).reg(), IP0); |
| DCHECK_NE(LocationFrom(temp_).reg(), IP1); |
| |
| __ Bind(GetEntryLabel()); |
| |
| // When using MaybeGenerateReadBarrierSlow, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<mirror::Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = entrypoint(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as it performs additional checks that we do |
| // not do here for performance reasons. |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| __ Ldr(temp_, HeapOperand(obj_, monitor_offset)); |
| if (needs_null_check_) { |
| codegen->MaybeRecordImplicitNullCheck(instruction_); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including rb_state, |
| // to prevent load-load reordering, and without using |
| // a memory barrier (which would be more expensive). |
| // `obj` is unchanged by this operation, but its value now depends |
| // on `temp`. |
| __ Add(obj_.X(), obj_.X(), Operand(temp_.X(), LSR, 32)); |
| |
| // The actual reference load. |
| // A possible implicit null check has already been handled above. |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| arm64_codegen->GenerateRawReferenceLoad(instruction_, |
| ref_, |
| obj_, |
| offset_, |
| index_, |
| scale_factor_, |
| /* needs_null_check */ false, |
| use_load_acquire_); |
| |
| // Mark the object `ref` when `obj` is gray. |
| // |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Tbz(temp_, LockWord::kReadBarrierStateShift, GetExitLabel()); |
| GenerateReadBarrierMarkRuntimeCall(codegen); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| // The register containing the object holding the marked object reference field. |
| Register obj_; |
| // The offset, index and scale factor to access the reference in `obj_`. |
| uint32_t offset_; |
| Location index_; |
| size_t scale_factor_; |
| // Is a null check required? |
| bool needs_null_check_; |
| // Should this reference load use Load-Acquire semantics? |
| bool use_load_acquire_; |
| // A temporary register used to hold the lock word of `obj_`. |
| Register temp_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierSlowPathARM64); |
| }; |
| |
| // Slow path loading `obj`'s lock word, loading a reference from |
| // object `*(obj + offset + (index << scale_factor))` into `ref`, and |
| // marking `ref` if `obj` is gray according to the lock word (Baker |
| // read barrier). If needed, this slow path also atomically updates |
| // the field `obj.field` in the object `obj` holding this reference |
| // after marking (contrary to |
| // LoadReferenceWithBakerReadBarrierSlowPathARM64 above, which never |
| // tries to update `obj.field`). |
| // |
| // This means that after the execution of this slow path, both `ref` |
| // and `obj.field` will be up-to-date; i.e., after the flip, both will |
| // hold the same to-space reference (unless another thread installed |
| // another object reference (different from `ref`) in `obj.field`). |
| // |
| // Argument `entrypoint` must be a register location holding the read |
| // barrier marking runtime entry point to be invoked. |
| class LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64 |
| : public ReadBarrierMarkSlowPathBaseARM64 { |
| public: |
| LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| size_t scale_factor, |
| bool needs_null_check, |
| bool use_load_acquire, |
| Register temp, |
| Location entrypoint) |
| : ReadBarrierMarkSlowPathBaseARM64(instruction, ref, entrypoint), |
| obj_(obj), |
| offset_(offset), |
| index_(index), |
| scale_factor_(scale_factor), |
| needs_null_check_(needs_null_check), |
| use_load_acquire_(use_load_acquire), |
| temp_(temp) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register ref_reg = WRegisterFrom(ref_); |
| DCHECK(locations->CanCall()); |
| DCHECK(ref_.IsRegister()) << ref_; |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg(); |
| DCHECK(obj_.IsW()); |
| DCHECK_NE(ref_.reg(), LocationFrom(temp_).reg()); |
| |
| // This slow path is only used by the UnsafeCASObject intrinsic at the moment. |
| DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking and field updating slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); |
| DCHECK_EQ(offset_, 0u); |
| DCHECK_EQ(scale_factor_, 0u); |
| DCHECK_EQ(use_load_acquire_, false); |
| // The location of the offset of the marked reference field within `obj_`. |
| Location field_offset = index_; |
| DCHECK(field_offset.IsRegister()) << field_offset; |
| |
| // Temporary register `temp_`, used to store the lock word, must |
| // not be IP0 nor IP1, as we may use them to emit the reference |
| // load (in the call to GenerateRawReferenceLoad below), and we |
| // need the lock word to still be in `temp_` after the reference |
| // load. |
| DCHECK_NE(LocationFrom(temp_).reg(), IP0); |
| DCHECK_NE(LocationFrom(temp_).reg(), IP1); |
| |
| __ Bind(GetEntryLabel()); |
| |
| // The implementation is similar to LoadReferenceWithBakerReadBarrierSlowPathARM64's: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<mirror::Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // old_ref = ref; |
| // ref = entrypoint(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call. |
| // compareAndSwapObject(obj, field_offset, old_ref, ref); |
| // } |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| __ Ldr(temp_, HeapOperand(obj_, monitor_offset)); |
| if (needs_null_check_) { |
| codegen->MaybeRecordImplicitNullCheck(instruction_); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including rb_state, |
| // to prevent load-load reordering, and without using |
| // a memory barrier (which would be more expensive). |
| // `obj` is unchanged by this operation, but its value now depends |
| // on `temp`. |
| __ Add(obj_.X(), obj_.X(), Operand(temp_.X(), LSR, 32)); |
| |
| // The actual reference load. |
| // A possible implicit null check has already been handled above. |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| arm64_codegen->GenerateRawReferenceLoad(instruction_, |
| ref_, |
| obj_, |
| offset_, |
| index_, |
| scale_factor_, |
| /* needs_null_check */ false, |
| use_load_acquire_); |
| |
| // Mark the object `ref` when `obj` is gray. |
| // |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Tbz(temp_, LockWord::kReadBarrierStateShift, GetExitLabel()); |
| |
| // Save the old value of the reference before marking it. |
| // Note that we cannot use IP to save the old reference, as IP is |
| // used internally by the ReadBarrierMarkRegX entry point, and we |
| // need the old reference after the call to that entry point. |
| DCHECK_NE(LocationFrom(temp_).reg(), IP0); |
| __ Mov(temp_.W(), ref_reg); |
| |
| GenerateReadBarrierMarkRuntimeCall(codegen); |
| |
| // If the new reference is different from the old reference, |
| // update the field in the holder (`*(obj_ + field_offset)`). |
| // |
| // Note that this field could also hold a different object, if |
| // another thread had concurrently changed it. In that case, the |
| // LDXR/CMP/BNE sequence of instructions in the compare-and-set |
| // (CAS) operation below would abort the CAS, leaving the field |
| // as-is. |
| __ Cmp(temp_.W(), ref_reg); |
| __ B(eq, GetExitLabel()); |
| |
| // Update the the holder's field atomically. This may fail if |
| // mutator updates before us, but it's OK. This is achieved |
| // using a strong compare-and-set (CAS) operation with relaxed |
| // memory synchronization ordering, where the expected value is |
| // the old reference and the desired value is the new reference. |
| |
| MacroAssembler* masm = arm64_codegen->GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| |
| // Convenience aliases. |
| Register base = obj_.W(); |
| Register offset = XRegisterFrom(field_offset); |
| Register expected = temp_.W(); |
| Register value = ref_reg; |
| Register tmp_ptr = temps.AcquireX(); // Pointer to actual memory. |
| Register tmp_value = temps.AcquireW(); // Value in memory. |
| |
| __ Add(tmp_ptr, base.X(), Operand(offset)); |
| |
| if (kPoisonHeapReferences) { |
| arm64_codegen->GetAssembler()->PoisonHeapReference(expected); |
| if (value.Is(expected)) { |
| // Do not poison `value`, as it is the same register as |
| // `expected`, which has just been poisoned. |
| } else { |
| arm64_codegen->GetAssembler()->PoisonHeapReference(value); |
| } |
| } |
| |
| // do { |
| // tmp_value = [tmp_ptr] - expected; |
| // } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value)); |
| |
| vixl::aarch64::Label loop_head, comparison_failed, exit_loop; |
| __ Bind(&loop_head); |
| __ Ldxr(tmp_value, MemOperand(tmp_ptr)); |
| __ Cmp(tmp_value, expected); |
| __ B(&comparison_failed, ne); |
| __ Stxr(tmp_value, value, MemOperand(tmp_ptr)); |
| __ Cbnz(tmp_value, &loop_head); |
| __ B(&exit_loop); |
| __ Bind(&comparison_failed); |
| __ Clrex(); |
| __ Bind(&exit_loop); |
| |
| if (kPoisonHeapReferences) { |
| arm64_codegen->GetAssembler()->UnpoisonHeapReference(expected); |
| if (value.Is(expected)) { |
| // Do not unpoison `value`, as it is the same register as |
| // `expected`, which has just been unpoisoned. |
| } else { |
| arm64_codegen->GetAssembler()->UnpoisonHeapReference(value); |
| } |
| } |
| |
| __ B(GetExitLabel()); |
| } |
| |
| private: |
| // The register containing the object holding the marked object reference field. |
| const Register obj_; |
| // The offset, index and scale factor to access the reference in `obj_`. |
| uint32_t offset_; |
| Location index_; |
| size_t scale_factor_; |
| // Is a null check required? |
| bool needs_null_check_; |
| // Should this reference load use Load-Acquire semantics? |
| bool use_load_acquire_; |
| // A temporary register used to hold the lock word of `obj_`; and |
| // also to hold the original reference value, when the reference is |
| // marked. |
| const Register temp_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCodeARM64(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ Ldr(out, HeapOperand(out, class_offset); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| Primitive::Type type = Primitive::kPrimNot; |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); |
| |
| __ Bind(GetEntryLabel()); |
| |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| Register index_reg = RegisterFrom(index_, Primitive::kPrimInt); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg())); |
| if (codegen->IsCoreCalleeSaveRegister(index_.reg())) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to vixl::MacroAssembler::Lsl and |
| // vixl::MacroAssembler::Mov below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ Mov(free_reg.W(), index_reg); |
| index_reg = free_reg; |
| index = LocationFrom(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ Lsl(index_reg, index_reg, Primitive::ComponentSizeShift(type)); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ Add(index_reg, index_reg, Operand(offset_)); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0u); |
| DCHECK(index_.IsRegister()); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove(ref_, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| type, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| type, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimInt, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_); |
| } |
| arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; } |
| |
| private: |
| Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode()); |
| size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return Register(VIXLRegCodeFromART(i), kXRegSize); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on ARM64 |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeARM64(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Primitive::Type type = Primitive::kPrimNot; |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| // The argument of the ReadBarrierForRootSlow is not a managed |
| // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`; |
| // thus we need a 64-bit move here, and we cannot use |
| // |
| // arm64_codegen->MoveLocation( |
| // LocationFrom(calling_convention.GetRegisterAt(0)), |
| // root_, |
| // type); |
| // |
| // which would emit a 32-bit move, as `type` is a (32-bit wide) |
| // reference type (`Primitive::kPrimNot`). |
| __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_)); |
| arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64); |
| }; |
| |
| #undef __ |
| |
| Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(Primitive::Type type) { |
| Location next_location; |
| if (type == Primitive::kPrimVoid) { |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| |
| if (Primitive::IsFloatingPointType(type) && |
| (float_index_ < calling_convention.GetNumberOfFpuRegisters())) { |
| next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); |
| } else if (!Primitive::IsFloatingPointType(type) && |
| (gp_index_ < calling_convention.GetNumberOfRegisters())) { |
| next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++)); |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) |
| : Location::StackSlot(stack_offset); |
| } |
| |
| // Space on the stack is reserved for all arguments. |
| stack_index_ += Primitive::Is64BitType(type) ? 2 : 1; |
| return next_location; |
| } |
| |
| Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const { |
| return LocationFrom(kArtMethodRegister); |
| } |
| |
| CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph, |
| const Arm64InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfAllocatableRegisters, |
| kNumberOfAllocatableFPRegisters, |
| kNumberOfAllocatableRegisterPairs, |
| callee_saved_core_registers.GetList(), |
| callee_saved_fp_registers.GetList(), |
| compiler_options, |
| stats), |
| block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetArena(), this), |
| assembler_(graph->GetArena()), |
| isa_features_(isa_features), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| uint64_literals_(std::less<uint64_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| method_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| baker_read_barrier_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(StringReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(TypeReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { |
| // Save the link register (containing the return address) to mimic Quick. |
| AddAllocatedRegister(LocationFrom(lr)); |
| } |
| |
| #define __ GetVIXLAssembler()-> |
| |
| void CodeGeneratorARM64::EmitJumpTables() { |
| for (auto&& jump_table : jump_tables_) { |
| jump_table->EmitTable(this); |
| } |
| } |
| |
| void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) { |
| EmitJumpTables(); |
| // Ensure we emit the literal pool. |
| __ FinalizeCode(); |
| |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| void ParallelMoveResolverARM64::PrepareForEmitNativeCode() { |
| // Note: There are 6 kinds of moves: |
| // 1. constant -> GPR/FPR (non-cycle) |
| // 2. constant -> stack (non-cycle) |
| // 3. GPR/FPR -> GPR/FPR |
| // 4. GPR/FPR -> stack |
| // 5. stack -> GPR/FPR |
| // 6. stack -> stack (non-cycle) |
| // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5 |
| // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting |
| // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the |
| // dependency. |
| vixl_temps_.Open(GetVIXLAssembler()); |
| } |
| |
| void ParallelMoveResolverARM64::FinishEmitNativeCode() { |
| vixl_temps_.Close(); |
| } |
| |
| Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) { |
| DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister |
| || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot |
| || kind == Location::kSIMDStackSlot); |
| kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot) |
| ? Location::kFpuRegister |
| : Location::kRegister; |
| Location scratch = GetScratchLocation(kind); |
| if (!scratch.Equals(Location::NoLocation())) { |
| return scratch; |
| } |
| // Allocate from VIXL temp registers. |
| if (kind == Location::kRegister) { |
| scratch = LocationFrom(vixl_temps_.AcquireX()); |
| } else { |
| DCHECK_EQ(kind, Location::kFpuRegister); |
| scratch = LocationFrom(codegen_->GetGraph()->HasSIMD() |
| ? vixl_temps_.AcquireVRegisterOfSize(kQRegSize) |
| : vixl_temps_.AcquireD()); |
| } |
| AddScratchLocation(scratch); |
| return scratch; |
| } |
| |
| void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) { |
| if (loc.IsRegister()) { |
| vixl_temps_.Release(XRegisterFrom(loc)); |
| } else { |
| DCHECK(loc.IsFpuRegister()); |
| vixl_temps_.Release(codegen_->GetGraph()->HasSIMD() ? QRegisterFrom(loc) : DRegisterFrom(loc)); |
| } |
| RemoveScratchLocation(loc); |
| } |
| |
| void ParallelMoveResolverARM64::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| codegen_->MoveLocation(move->GetDestination(), move->GetSource(), Primitive::kPrimVoid); |
| } |
| |
| void CodeGeneratorARM64::GenerateFrameEntry() { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Bind(&frame_entry_label_); |
| |
| bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod(); |
| if (do_overflow_check) { |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64))); |
| { |
| // Ensure that between load and RecordPcInfo there are no pools emitted. |
| ExactAssemblyScope eas(GetVIXLAssembler(), |
| kInstructionSize, |
| CodeBufferCheckScope::kExactSize); |
| __ ldr(wzr, MemOperand(temp, 0)); |
| RecordPcInfo(nullptr, 0); |
| } |
| } |
| |
| if (!HasEmptyFrame()) { |
| int frame_size = GetFrameSize(); |
| // Stack layout: |
| // sp[frame_size - 8] : lr. |
| // ... : other preserved core registers. |
| // ... : other preserved fp registers. |
| // ... : reserved frame space. |
| // sp[0] : current method. |
| |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex)); |
| } else { |
| __ Claim(frame_size); |
| } |
| GetAssembler()->cfi().AdjustCFAOffset(frame_size); |
| GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(), |
| frame_size - GetCoreSpillSize()); |
| GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(), |
| frame_size - FrameEntrySpillSize()); |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should_deoptimize flag to 0. |
| Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize); |
| __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag())); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateFrameExit() { |
| GetAssembler()->cfi().RememberState(); |
| if (!HasEmptyFrame()) { |
| int frame_size = GetFrameSize(); |
| GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(), |
| frame_size - FrameEntrySpillSize()); |
| GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(), |
| frame_size - GetCoreSpillSize()); |
| __ Drop(frame_size); |
| GetAssembler()->cfi().AdjustCFAOffset(-frame_size); |
| } |
| __ Ret(); |
| GetAssembler()->cfi().RestoreState(); |
| GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const { |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0)); |
| return CPURegList(CPURegister::kRegister, kXRegSize, |
| core_spill_mask_); |
| } |
| |
| CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const { |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_, |
| GetNumberOfFloatingPointRegisters())); |
| return CPURegList(CPURegister::kFPRegister, kDRegSize, |
| fpu_spill_mask_); |
| } |
| |
| void CodeGeneratorARM64::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ Mov(RegisterFrom(location, Primitive::kPrimInt), value); |
| } |
| |
| void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register card = temps.AcquireX(); |
| Register temp = temps.AcquireW(); // Index within the CardTable - 32bit. |
| vixl::aarch64::Label done; |
| if (value_can_be_null) { |
| __ Cbz(value, &done); |
| } |
| __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value())); |
| __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); |
| __ Strb(card, MemOperand(card, temp.X())); |
| if (value_can_be_null) { |
| __ Bind(&done); |
| } |
| } |
| |
| void CodeGeneratorARM64::SetupBlockedRegisters() const { |
| // Blocked core registers: |
| // lr : Runtime reserved. |
| // tr : Runtime reserved. |
| // xSuspend : Runtime reserved. TODO: Unblock this when the runtime stops using it. |
| // ip1 : VIXL core temp. |
| // ip0 : VIXL core temp. |
| // |
| // Blocked fp registers: |
| // d31 : VIXL fp temp. |
| CPURegList reserved_core_registers = vixl_reserved_core_registers; |
| reserved_core_registers.Combine(runtime_reserved_core_registers); |
| while (!reserved_core_registers.IsEmpty()) { |
| blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true; |
| } |
| |
| CPURegList reserved_fp_registers = vixl_reserved_fp_registers; |
| while (!reserved_fp_registers.IsEmpty()) { |
| blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true; |
| } |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers; |
| while (!reserved_fp_registers_debuggable.IsEmpty()) { |
| blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true; |
| } |
| } |
| } |
| |
| size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); |
| __ Str(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); |
| __ Ldr(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| FPRegister reg = FPRegister(reg_id, kDRegSize); |
| __ Str(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| FPRegister reg = FPRegister(reg_id, kDRegSize); |
| __ Ldr(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << XRegister(reg); |
| } |
| |
| void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << DRegister(reg); |
| } |
| |
| void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) { |
| if (constant->IsIntConstant()) { |
| __ Mov(Register(destination), constant->AsIntConstant()->GetValue()); |
| } else if (constant->IsLongConstant()) { |
| __ Mov(Register(destination), constant->AsLongConstant()->GetValue()); |
| } else if (constant->IsNullConstant()) { |
| __ Mov(Register(destination), 0); |
| } else if (constant->IsFloatConstant()) { |
| __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue()); |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue()); |
| } |
| } |
| |
| |
| static bool CoherentConstantAndType(Location constant, Primitive::Type type) { |
| DCHECK(constant.IsConstant()); |
| HConstant* cst = constant.GetConstant(); |
| return (cst->IsIntConstant() && type == Primitive::kPrimInt) || |
| // Null is mapped to a core W register, which we associate with kPrimInt. |
| (cst->IsNullConstant() && type == Primitive::kPrimInt) || |
| (cst->IsLongConstant() && type == Primitive::kPrimLong) || |
| (cst->IsFloatConstant() && type == Primitive::kPrimFloat) || |
| (cst->IsDoubleConstant() && type == Primitive::kPrimDouble); |
| } |
| |
| // Allocate a scratch register from the VIXL pool, querying first |
| // the floating-point register pool, and then the core register |
| // pool. This is essentially a reimplementation of |
| // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize |
| // using a different allocation strategy. |
| static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm, |
| vixl::aarch64::UseScratchRegisterScope* temps, |
| int size_in_bits) { |
| return masm->GetScratchFPRegisterList()->IsEmpty() |
| ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits)) |
| : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits)); |
| } |
| |
| void CodeGeneratorARM64::MoveLocation(Location destination, |
| Location source, |
| Primitive::Type dst_type) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| |
| // A valid move can always be inferred from the destination and source |
| // locations. When moving from and to a register, the argument type can be |
| // used to generate 32bit instead of 64bit moves. In debug mode we also |
| // checks the coherency of the locations and the type. |
| bool unspecified_type = (dst_type == Primitive::kPrimVoid); |
| |
| if (destination.IsRegister() || destination.IsFpuRegister()) { |
| if (unspecified_type) { |
| HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; |
| if (source.IsStackSlot() || |
| (src_cst != nullptr && (src_cst->IsIntConstant() |
| || src_cst->IsFloatConstant() |
| || src_cst->IsNullConstant()))) { |
| // For stack slots and 32bit constants, a 64bit type is appropriate. |
| dst_type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat; |
| } else { |
| // If the source is a double stack slot or a 64bit constant, a 64bit |
| // type is appropriate. Else the source is a register, and since the |
| // type has not been specified, we chose a 64bit type to force a 64bit |
| // move. |
| dst_type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble; |
| } |
| } |
| DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(dst_type)) || |
| (destination.IsRegister() && !Primitive::IsFloatingPointType(dst_type))); |
| CPURegister dst = CPURegisterFrom(destination, dst_type); |
| if (source.IsStackSlot() || source.IsDoubleStackSlot()) { |
| DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot()); |
| __ Ldr(dst, StackOperandFrom(source)); |
| } else if (source.IsSIMDStackSlot()) { |
| __ Ldr(QRegisterFrom(destination), StackOperandFrom(source)); |
| } else if (source.IsConstant()) { |
| DCHECK(CoherentConstantAndType(source, dst_type)); |
| MoveConstant(dst, source.GetConstant()); |
| } else if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ Mov(Register(dst), RegisterFrom(source, dst_type)); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| Primitive::Type source_type = Primitive::Is64BitType(dst_type) |
| ? Primitive::kPrimLong |
| : Primitive::kPrimInt; |
| __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type)); |
| } |
| } else { |
| DCHECK(source.IsFpuRegister()); |
| if (destination.IsRegister()) { |
| Primitive::Type source_type = Primitive::Is64BitType(dst_type) |
| ? Primitive::kPrimDouble |
| : Primitive::kPrimFloat; |
| __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type)); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| if (GetGraph()->HasSIMD()) { |
| __ Mov(QRegisterFrom(destination), QRegisterFrom(source)); |
| } else { |
| __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type)); |
| } |
| } |
| } |
| } else if (destination.IsSIMDStackSlot()) { |
| if (source.IsFpuRegister()) { |
| __ Str(QRegisterFrom(source), StackOperandFrom(destination)); |
| } else { |
| DCHECK(source.IsSIMDStackSlot()); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| if (GetVIXLAssembler()->GetScratchFPRegisterList()->IsEmpty()) { |
| Register temp = temps.AcquireX(); |
| __ Ldr(temp, MemOperand(sp, source.GetStackIndex())); |
| __ Str(temp, MemOperand(sp, destination.GetStackIndex())); |
| __ Ldr(temp, MemOperand(sp, source.GetStackIndex() + kArm64WordSize)); |
| __ Str(temp, MemOperand(sp, destination.GetStackIndex() + kArm64WordSize)); |
| } else { |
| FPRegister temp = temps.AcquireVRegisterOfSize(kQRegSize); |
| __ Ldr(temp, StackOperandFrom(source)); |
| __ Str(temp, StackOperandFrom(destination)); |
| } |
| } |
| } else { // The destination is not a register. It must be a stack slot. |
| DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); |
| if (source.IsRegister() || source.IsFpuRegister()) { |
| if (unspecified_type) { |
| if (source.IsRegister()) { |
| dst_type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong; |
| } else { |
| dst_type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble; |
| } |
| } |
| DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(dst_type)) && |
| (source.IsFpuRegister() == Primitive::IsFloatingPointType(dst_type))); |
| __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination)); |
| } else if (source.IsConstant()) { |
| DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type)) |
| << source << " " << dst_type; |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| HConstant* src_cst = source.GetConstant(); |
| CPURegister temp; |
| if (src_cst->IsZeroBitPattern()) { |
| temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant()) |
| ? Register(xzr) |
| : Register(wzr); |
| } else { |
| if (src_cst->IsIntConstant()) { |
| temp = temps.AcquireW(); |
| } else if (src_cst->IsLongConstant()) { |
| temp = temps.AcquireX(); |
| } else if (src_cst->IsFloatConstant()) { |
| temp = temps.AcquireS(); |
| } else { |
| DCHECK(src_cst->IsDoubleConstant()); |
| temp = temps.AcquireD(); |
| } |
| MoveConstant(temp, src_cst); |
| } |
| __ Str(temp, StackOperandFrom(destination)); |
| } else { |
| DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); |
| DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot()); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| // Use any scratch register (a core or a floating-point one) |
| // from VIXL scratch register pools as a temporary. |
| // |
| // We used to only use the FP scratch register pool, but in some |
| // rare cases the only register from this pool (D31) would |
| // already be used (e.g. within a ParallelMove instruction, when |
| // a move is blocked by a another move requiring a scratch FP |
| // register, which would reserve D31). To prevent this issue, we |
| // ask for a scratch register of any type (core or FP). |
| // |
| // Also, we start by asking for a FP scratch register first, as the |
| // demand of scratch core registers is higher. This is why we |
| // use AcquireFPOrCoreCPURegisterOfSize instead of |
| // UseScratchRegisterScope::AcquireCPURegisterOfSize, which |
| // allocates core scratch registers first. |
| CPURegister temp = AcquireFPOrCoreCPURegisterOfSize( |
| GetVIXLAssembler(), |
| &temps, |
| (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize)); |
| __ Ldr(temp, StackOperandFrom(source)); |
| __ Str(temp, StackOperandFrom(destination)); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::Load(Primitive::Type type, |
| CPURegister dst, |
| const MemOperand& src) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| __ Ldrb(Register(dst), src); |
| break; |
| case Primitive::kPrimByte: |
| __ Ldrsb(Register(dst), src); |
| break; |
| case Primitive::kPrimShort: |
| __ Ldrsh(Register(dst), src); |
| break; |
| case Primitive::kPrimChar: |
| __ Ldrh(Register(dst), src); |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type)); |
| __ Ldr(dst, src); |
| break; |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction, |
| CPURegister dst, |
| const MemOperand& src, |
| bool needs_null_check) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| Register temp_base = temps.AcquireX(); |
| Primitive::Type type = instruction->GetType(); |
| |
| DCHECK(!src.IsPreIndex()); |
| DCHECK(!src.IsPostIndex()); |
| |
| // TODO(vixl): Let the MacroAssembler handle MemOperand. |
| __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src)); |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| MemOperand base = MemOperand(temp_base); |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldarb(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case Primitive::kPrimByte: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldarb(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte); |
| break; |
| case Primitive::kPrimChar: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldarh(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case Primitive::kPrimShort: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldarh(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte); |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type)); |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldar(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| DCHECK(dst.IsFPRegister()); |
| DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type)); |
| |
| Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldar(temp, base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| __ Fmov(FPRegister(dst), temp); |
| break; |
| } |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::Store(Primitive::Type type, |
| CPURegister src, |
| const MemOperand& dst) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| __ Strb(Register(src), dst); |
| break; |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| __ Strh(Register(src), dst); |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type)); |
| __ Str(src, dst); |
| break; |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::StoreRelease(HInstruction* instruction, |
| Primitive::Type type, |
| CPURegister src, |
| const MemOperand& dst, |
| bool needs_null_check) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp_base = temps.AcquireX(); |
| |
| DCHECK(!dst.IsPreIndex()); |
| DCHECK(!dst.IsPostIndex()); |
| |
| // TODO(vixl): Let the MacroAssembler handle this. |
| Operand op = OperandFromMemOperand(dst); |
| __ Add(temp_base, dst.GetBaseRegister(), op); |
| MemOperand base = MemOperand(temp_base); |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlrb(Register(src), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlrh(Register(src), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type)); |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlr(Register(src), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type)); |
| Register temp_src; |
| if (src.IsZero()) { |
| // The zero register is used to avoid synthesizing zero constants. |
| temp_src = Register(src); |
| } else { |
| DCHECK(src.IsFPRegister()); |
| temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); |
| __ Fmov(temp_src, FPRegister(src)); |
| } |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlr(temp_src, base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| |
| __ Ldr(lr, MemOperand(tr, GetThreadOffset<kArm64PointerSize>(entrypoint).Int32Value())); |
| { |
| // Ensure the pc position is recorded immediately after the `blr` instruction. |
| ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ blr(lr); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| __ Ldr(lr, MemOperand(tr, entry_point_offset)); |
| __ Blr(lr); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path, |
| Register class_reg) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| size_t status_offset = mirror::Class::StatusOffset().SizeValue(); |
| |
| // Even if the initialized flag is set, we need to ensure consistent memory ordering. |
| // TODO(vixl): Let the MacroAssembler handle MemOperand. |
| __ Add(temp, class_reg, status_offset); |
| __ Ldar(temp, HeapOperand(temp)); |
| __ Cmp(temp, mirror::Class::kStatusInitialized); |
| __ B(lt, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) { |
| BarrierType type = BarrierAll; |
| |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: |
| case MemBarrierKind::kAnyStore: { |
| type = BarrierAll; |
| break; |
| } |
| case MemBarrierKind::kLoadAny: { |
| type = BarrierReads; |
| break; |
| } |
| case MemBarrierKind::kStoreStore: { |
| type = BarrierWrites; |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected memory barrier " << kind; |
| } |
| __ Dmb(InnerShareable, type); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathARM64* slow_path = |
| down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| |
| __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue())); |
| if (successor == nullptr) { |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ Cbz(temp, codegen_->GetLabelOf(successor)); |
| __ B(slow_path->GetEntryLabel()); |
| // slow_path will return to GetLabelOf(successor). |
| } |
| } |
| |
| InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph, |
| CodeGeneratorARM64* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| #define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M) \ |
| /* No unimplemented IR. */ |
| |
| #define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode |
| |
| enum UnimplementedInstructionBreakCode { |
| // Using a base helps identify when we hit such breakpoints. |
| UnimplementedInstructionBreakCodeBaseCode = 0x900, |
| #define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name), |
| FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION) |
| #undef ENUM_UNIMPLEMENTED_INSTRUCTION |
| }; |
| |
| #define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name) \ |
| void InstructionCodeGeneratorARM64::Visit##name(H##name* instr ATTRIBUTE_UNUSED) { \ |
| __ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name)); \ |
| } \ |
| void LocationsBuilderARM64::Visit##name(H##name* instr) { \ |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \ |
| locations->SetOut(Location::Any()); \ |
| } |
| FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS) |
| #undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS |
| |
| #undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE |
| #undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION |
| |
| void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) { |
| DCHECK_EQ(instr->InputCount(), 2U); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); |
| Primitive::Type type = instr->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_field_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier. |
| if (kBakerReadBarrierLinkTimeThunksEnableForFields && |
| !Runtime::Current()->UseJitCompilation() && |
| !field_info.IsVolatile()) { |
| // If link-time thunks for the Baker read barrier are enabled, for AOT |
| // non-volatile loads we need a temporary only if the offset is too big. |
| if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) { |
| locations->AddTemp(FixedTempLocation()); |
| } |
| } else { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps for an object field get when read barriers |
| // are enabled: we do not want the load to overwrite the object's |
| // location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location base_loc = locations->InAt(0); |
| Location out = locations->Out(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset()); |
| |
| if (field_type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Object FieldGet with Baker's read barrier case. |
| // /* HeapReference<Object> */ out = *(base + offset) |
| Register base = RegisterFrom(base_loc, Primitive::kPrimNot); |
| Location maybe_temp = |
| (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); |
| // Note that potential implicit null checks are handled in this |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, |
| out, |
| base, |
| offset, |
| maybe_temp, |
| /* needs_null_check */ true, |
| field_info.IsVolatile()); |
| } else { |
| // General case. |
| if (field_info.IsVolatile()) { |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorARM64::LoadAcquire call. |
| // NB: LoadAcquire will record the pc info if needed. |
| codegen_->LoadAcquire( |
| instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true); |
| } else { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Load(field_type, OutputCPURegister(instruction), field); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| if (field_type == Primitive::kPrimNot) { |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (IsConstantZeroBitPattern(instruction->InputAt(1))) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| } else if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| Register obj = InputRegisterAt(instruction, 0); |
| CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1); |
| CPURegister source = value; |
| Offset offset = field_info.GetFieldOffset(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| |
| if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) { |
| DCHECK(value.IsW()); |
| Register temp = temps.AcquireW(); |
| __ Mov(temp, value.W()); |
| GetAssembler()->PoisonHeapReference(temp.W()); |
| source = temp; |
| } |
| |
| if (field_info.IsVolatile()) { |
| codegen_->StoreRelease( |
| instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check */ true); |
| } else { |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Store(field_type, source, HeapOperand(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| codegen_->MarkGCCard(obj, Register(value), value_can_be_null); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) { |
| Primitive::Type type = instr->GetType(); |
| |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Operand rhs = InputOperandAt(instr, 1); |
| if (instr->IsAdd()) { |
| __ Add(dst, lhs, rhs); |
| } else if (instr->IsAnd()) { |
| __ And(dst, lhs, rhs); |
| } else if (instr->IsOr()) { |
| __ Orr(dst, lhs, rhs); |
| } else if (instr->IsSub()) { |
| __ Sub(dst, lhs, rhs); |
| } else if (instr->IsRor()) { |
| if (rhs.IsImmediate()) { |
| uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1); |
| __ Ror(dst, lhs, shift); |
| } else { |
| // Ensure shift distance is in the same size register as the result. If |
| // we are rotating a long and the shift comes in a w register originally, |
| // we don't need to sxtw for use as an x since the shift distances are |
| // all & reg_bits - 1. |
| __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type)); |
| } |
| } else { |
| DCHECK(instr->IsXor()); |
| __ Eor(dst, lhs, rhs); |
| } |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| FPRegister dst = OutputFPRegister(instr); |
| FPRegister lhs = InputFPRegisterAt(instr, 0); |
| FPRegister rhs = InputFPRegisterAt(instr, 1); |
| if (instr->IsAdd()) { |
| __ Fadd(dst, lhs, rhs); |
| } else if (instr->IsSub()) { |
| __ Fsub(dst, lhs, rhs); |
| } else { |
| LOG(FATAL) << "Unexpected floating-point binary operation"; |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected binary operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); |
| Primitive::Type type = instr->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); |
| |
| Primitive::Type type = instr->GetType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Operand rhs = InputOperandAt(instr, 1); |
| if (rhs.IsImmediate()) { |
| uint32_t shift_value = rhs.GetImmediate() & |
| (type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance); |
| if (instr->IsShl()) { |
| __ Lsl(dst, lhs, shift_value); |
| } else if (instr->IsShr()) { |
| __ Asr(dst, lhs, shift_value); |
| } else { |
| __ Lsr(dst, lhs, shift_value); |
| } |
| } else { |
| Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W(); |
| |
| if (instr->IsShl()) { |
| __ Lsl(dst, lhs, rhs_reg); |
| } else if (instr->IsShr()) { |
| __ Asr(dst, lhs, rhs_reg); |
| } else { |
| __ Lsr(dst, lhs, rhs_reg); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { |
| DCHECK(Primitive::IsIntegralType(instr->GetType())) << instr->GetType(); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // There is no immediate variant of negated bitwise instructions in AArch64. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Register rhs = InputRegisterAt(instr, 1); |
| |
| switch (instr->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ Bic(dst, lhs, rhs); |
| break; |
| case HInstruction::kOr: |
| __ Orn(dst, lhs, rhs); |
| break; |
| case HInstruction::kXor: |
| __ Eon(dst, lhs, rhs); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDataProcWithShifterOp( |
| HDataProcWithShifterOp* instruction) { |
| DCHECK(instruction->GetType() == Primitive::kPrimInt || |
| instruction->GetType() == Primitive::kPrimLong); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| if (instruction->GetInstrKind() == HInstruction::kNeg) { |
| locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant())); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp( |
| HDataProcWithShifterOp* instruction) { |
| Primitive::Type type = instruction->GetType(); |
| HInstruction::InstructionKind kind = instruction->GetInstrKind(); |
| DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); |
| Register out = OutputRegister(instruction); |
| Register left; |
| if (kind != HInstruction::kNeg) { |
| left = InputRegisterAt(instruction, 0); |
| } |
| // If this `HDataProcWithShifterOp` was created by merging a type conversion as the |
| // shifter operand operation, the IR generating `right_reg` (input to the type |
| // conversion) can have a different type from the current instruction's type, |
| // so we manually indicate the type. |
| Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type); |
| Operand right_operand(0); |
| |
| HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); |
| if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { |
| right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind)); |
| } else { |
| right_operand = Operand(right_reg, |
| helpers::ShiftFromOpKind(op_kind), |
| instruction->GetShiftAmount()); |
| } |
| |
| // Logical binary operations do not support extension operations in the |
| // operand. Note that VIXL would still manage if it was passed by generating |
| // the extension as a separate instruction. |
| // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`. |
| DCHECK(!right_operand.IsExtendedRegister() || |
| (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor && |
| kind != HInstruction::kNeg)); |
| switch (kind) { |
| case HInstruction::kAdd: |
| __ Add(out, left, right_operand); |
| break; |
| case HInstruction::kAnd: |
| __ And(out, left, right_operand); |
| break; |
| case HInstruction::kNeg: |
| DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero()); |
| __ Neg(out, right_operand); |
| break; |
| case HInstruction::kOr: |
| __ Orr(out, left, right_operand); |
| break; |
| case HInstruction::kSub: |
| __ Sub(out, left, right_operand); |
| break; |
| case HInstruction::kXor: |
| __ Eor(out, left, right_operand); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected operation kind: " << kind; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| __ Add(OutputRegister(instruction), |
| InputRegisterAt(instruction, 0), |
| Operand(InputOperandAt(instruction, 1))); |
| } |
| |
| void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| |
| HIntConstant* shift = instruction->GetShift()->AsIntConstant(); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // For byte case we don't need to shift the index variable so we can encode the data offset into |
| // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist |
| // data offset constant generation out of the loop and reduce the critical path length in the |
| // loop. |
| locations->SetInAt(1, shift->GetValue() == 0 |
| ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant()) |
| : Location::RequiresRegister()); |
| locations->SetInAt(2, Location::ConstantLocation(shift)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex( |
| HIntermediateAddressIndex* instruction) { |
| Register index_reg = InputRegisterAt(instruction, 0); |
| uint32_t shift = Int64ConstantFrom(instruction->GetLocations()->InAt(2)); |
| uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue(); |
| |
| if (shift == 0) { |
| __ Add(OutputRegister(instruction), index_reg, offset); |
| } else { |
| Register offset_reg = InputRegisterAt(instruction, 1); |
| __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall); |
| HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); |
| if (instr->GetOpKind() == HInstruction::kSub && |
| accumulator->IsConstant() && |
| accumulator->AsConstant()->IsArithmeticZero()) { |
| // Don't allocate register for Mneg instruction. |
| } else { |
| locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, |
| Location::RequiresRegister()); |
| } |
| locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); |
| locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| Register res = OutputRegister(instr); |
| Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); |
| Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); |
| |
| // Avoid emitting code that could trigger Cortex A53's erratum 835769. |
| // This fixup should be carried out for all multiply-accumulate instructions: |
| // madd, msub, smaddl, smsubl, umaddl and umsubl. |
| if (instr->GetType() == Primitive::kPrimLong && |
| codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) { |
| MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler(); |
| vixl::aarch64::Instruction* prev = |
| masm->GetCursorAddress<vixl::aarch64::Instruction*>() - kInstructionSize; |
| if (prev->IsLoadOrStore()) { |
| // Make sure we emit only exactly one nop. |
| ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ nop(); |
| } |
| } |
| |
| if (instr->GetOpKind() == HInstruction::kAdd) { |
| Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); |
| __ Madd(res, mul_left, mul_right, accumulator); |
| } else { |
| DCHECK(instr->GetOpKind() == HInstruction::kSub); |
| HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); |
| if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) { |
| __ Mneg(res, mul_left, mul_right); |
| } else { |
| Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); |
| __ Msub(res, mul_left, mul_right, accumulator); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_array_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier. |
| if (kBakerReadBarrierLinkTimeThunksEnableForFields && |
| !Runtime::Current()->UseJitCompilation() && |
| instruction->GetIndex()->IsConstant()) { |
| // Array loads with constant index are treated as field loads. |
| // If link-time thunks for the Baker read barrier are enabled, for AOT |
| // constant index loads we need a temporary only if the offset is too big. |
| uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); |
| uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue(); |
| offset += index << Primitive::ComponentSizeShift(Primitive::kPrimNot); |
| if (offset >= kReferenceLoadMinFarOffset) { |
| locations->AddTemp(FixedTempLocation()); |
| } |
| } else { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) { |
| Primitive::Type type = instruction->GetType(); |
| Register obj = InputRegisterAt(instruction, 0); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index = locations->InAt(1); |
| Location out = locations->Out(); |
| uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); |
| const bool maybe_compressed_char_at = mirror::kUseStringCompression && |
| instruction->IsStringCharAt(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| |
| // The read barrier instrumentation of object ArrayGet instructions |
| // does not support the HIntermediateAddress instruction. |
| DCHECK(!((type == Primitive::kPrimNot) && |
| instruction->GetArray()->IsIntermediateAddress() && |
| kEmitCompilerReadBarrier)); |
| |
| if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Object ArrayGet with Baker's read barrier case. |
| // Note that a potential implicit null check is handled in the |
| // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call. |
| DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); |
| if (index.IsConstant()) { |
| // Array load with a constant index can be treated as a field load. |
| offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type); |
| Location maybe_temp = |
| (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj.W(), |
| offset, |
| maybe_temp, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| } else { |
| Register temp = WRegisterFrom(locations->GetTemp(0)); |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ false); |
| } |
| } else { |
| // General case. |
| MemOperand source = HeapOperand(obj); |
| Register length; |
| if (maybe_compressed_char_at) { |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| length = temps.AcquireW(); |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| |
| if (instruction->GetArray()->IsIntermediateAddress()) { |
| DCHECK_LT(count_offset, offset); |
| int64_t adjusted_offset = |
| static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset); |
| // Note that `adjusted_offset` is negative, so this will be a LDUR. |
| __ Ldr(length, MemOperand(obj.X(), adjusted_offset)); |
| } else { |
| __ Ldr(length, HeapOperand(obj, count_offset)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| if (index.IsConstant()) { |
| if (maybe_compressed_char_at) { |
| vixl::aarch64::Label uncompressed_load, done; |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Tbnz(length.W(), 0, &uncompressed_load); |
| __ Ldrb(Register(OutputCPURegister(instruction)), |
| HeapOperand(obj, offset + Int64ConstantFrom(index))); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| __ Ldrh(Register(OutputCPURegister(instruction)), |
| HeapOperand(obj, offset + (Int64ConstantFrom(index) << 1))); |
| __ Bind(&done); |
| } else { |
| offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type); |
| source = HeapOperand(obj, offset); |
| } |
| } else { |
| Register temp = temps.AcquireSameSizeAs(obj); |
| if (instruction->GetArray()->IsIntermediateAddress()) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = instruction->GetArray()->AsIntermediateAddress(); |
| DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset); |
| } |
| temp = obj; |
| } else { |
| __ Add(temp, obj, offset); |
| } |
| if (maybe_compressed_char_at) { |
| vixl::aarch64::Label uncompressed_load, done; |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Tbnz(length.W(), 0, &uncompressed_load); |
| __ Ldrb(Register(OutputCPURegister(instruction)), |
| HeapOperand(temp, XRegisterFrom(index), LSL, 0)); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| __ Ldrh(Register(OutputCPURegister(instruction)), |
| HeapOperand(temp, XRegisterFrom(index), LSL, 1)); |
| __ Bind(&done); |
| } else { |
| source = HeapOperand(temp, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type)); |
| } |
| } |
| if (!maybe_compressed_char_at) { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Load(type, OutputCPURegister(instruction), source); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (type == Primitive::kPrimNot) { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| Location obj_loc = locations->InAt(0); |
| if (index.IsConstant()) { |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset); |
| } else { |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index); |
| } |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) { |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| vixl::aarch64::Register out = OutputRegister(instruction); |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| // Mask out compression flag from String's array length. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ Lsr(out.W(), out.W(), 1u); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, |
| may_need_runtime_call_for_type_check ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (IsConstantZeroBitPattern(instruction->InputAt(2))) { |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| } else if (Primitive::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| |
| Register array = InputRegisterAt(instruction, 0); |
| CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2); |
| CPURegister source = value; |
| Location index = locations->InAt(1); |
| size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value(); |
| MemOperand destination = HeapOperand(array); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| |
| if (!needs_write_barrier) { |
| DCHECK(!may_need_runtime_call_for_type_check); |
| if (index.IsConstant()) { |
| offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type); |
| destination = HeapOperand(array, offset); |
| } else { |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireSameSizeAs(array); |
| if (instruction->GetArray()->IsIntermediateAddress()) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = instruction->GetArray()->AsIntermediateAddress(); |
| DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset); |
| } |
| temp = array; |
| } else { |
| __ Add(temp, array, offset); |
| } |
| destination = HeapOperand(temp, |
| XRegisterFrom(index), |
| LSL, |
| Primitive::ComponentSizeShift(value_type)); |
| } |
| { |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Store(value_type, value, destination); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } else { |
| DCHECK(!instruction->GetArray()->IsIntermediateAddress()); |
| vixl::aarch64::Label done; |
| SlowPathCodeARM64* slow_path = nullptr; |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireSameSizeAs(array); |
| if (index.IsConstant()) { |
| offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type); |
| destination = HeapOperand(array, offset); |
| } else { |
| destination = HeapOperand(temp, |
| XRegisterFrom(index), |
| LSL, |
| Primitive::ComponentSizeShift(value_type)); |
| } |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| vixl::aarch64::Label non_zero; |
| __ Cbnz(Register(value), &non_zero); |
| if (!index.IsConstant()) { |
| __ Add(temp, array, offset); |
| } |
| { |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools |
| // emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| __ Str(wzr, destination); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| __ B(&done); |
| __ Bind(&non_zero); |
| } |
| |
| // Note that when Baker read barriers are enabled, the type |
| // checks are performed without read barriers. This is fine, |
| // even in the case where a class object is in the from-space |
| // after the flip, as a comparison involving such a type would |
| // not produce a false positive; it may of course produce a |
| // false negative, in which case we would take the ArraySet |
| // slow path. |
| |
| Register temp2 = temps.AcquireSameSizeAs(array); |
| // /* HeapReference<Class> */ temp = array->klass_ |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| __ Ldr(temp, HeapOperand(array, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| __ Ldr(temp, HeapOperand(temp, component_offset)); |
| // /* HeapReference<Class> */ temp2 = value->klass_ |
| __ Ldr(temp2, HeapOperand(Register(value), class_offset)); |
| // If heap poisoning is enabled, no need to unpoison `temp` |
| // nor `temp2`, as we are comparing two poisoned references. |
| __ Cmp(temp, temp2); |
| temps.Release(temp2); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| vixl::aarch64::Label do_put; |
| __ B(eq, &do_put); |
| // If heap poisoning is enabled, the `temp` reference has |
| // not been unpoisoned yet; unpoison it now. |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| __ Ldr(temp, HeapOperand(temp, super_offset)); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp`, as we are comparing against null below. |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ B(ne, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| if (kPoisonHeapReferences) { |
| Register temp2 = temps.AcquireSameSizeAs(array); |
| DCHECK(value.IsW()); |
| __ Mov(temp2, value.W()); |
| GetAssembler()->PoisonHeapReference(temp2); |
| source = temp2; |
| } |
| |
| if (!index.IsConstant()) { |
| __ Add(temp, array, offset); |
| } else { |
| // We no longer need the `temp` here so release it as the store below may |
| // need a scratch register (if the constant index makes the offset too large) |
| // and the poisoned `source` could be using the other scratch register. |
| temps.Release(temp); |
| } |
| { |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| __ Str(source, destination); |
| |
| if (!may_need_runtime_call_for_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| } |
| |
| codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull()); |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode())); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| BoundsCheckSlowPathARM64* slow_path = |
| new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1)); |
| __ B(slow_path->GetEntryLabel(), hs); |
| } |
| |
| void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class is not null. |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64( |
| check->GetLoadClass(), check, check->GetDexPc(), true); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); |
| } |
| |
| static bool IsFloatingPointZeroConstant(HInstruction* inst) { |
| return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero())) |
| || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero())); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) { |
| FPRegister lhs_reg = InputFPRegisterAt(instruction, 0); |
| Location rhs_loc = instruction->GetLocations()->InAt(1); |
| if (rhs_loc.IsConstant()) { |
| // 0.0 is the only immediate that can be encoded directly in |
| // an FCMP instruction. |
| // |
| // Both the JLS (section 15.20.1) and the JVMS (section 6.5) |
| // specify that in a floating-point comparison, positive zero |
| // and negative zero are considered equal, so we can use the |
| // literal 0.0 for both cases here. |
| // |
| // Note however that some methods (Float.equal, Float.compare, |
| // Float.compareTo, Double.equal, Double.compare, |
| // Double.compareTo, Math.max, Math.min, StrictMath.max, |
| // StrictMath.min) consider 0.0 to be (strictly) greater than |
| // -0.0. So if we ever translate calls to these methods into a |
| // HCompare instruction, we must handle the -0.0 case with |
| // care here. |
| DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant())); |
| __ Fcmp(lhs_reg, 0.0); |
| } else { |
| __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); |
| Primitive::Type in_type = compare->InputAt(0)->GetType(); |
| switch (in_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, |
| IsFloatingPointZeroConstant(compare->InputAt(1)) |
| ? Location::ConstantLocation(compare->InputAt(1)->AsConstant()) |
| : Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << in_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) { |
| Primitive::Type in_type = compare->InputAt(0)->GetType(); |
| |
| // 0 if: left == right |
| // 1 if: left > right |
| // -1 if: left < right |
| switch (in_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| Register result = OutputRegister(compare); |
| Register left = InputRegisterAt(compare, 0); |
| Operand right = InputOperandAt(compare, 1); |
| __ Cmp(left, right); |
| __ Cset(result, ne); // result == +1 if NE or 0 otherwise |
| __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| Register result = OutputRegister(compare); |
| GenerateFcmp(compare); |
| __ Cset(result, ne); |
| __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias())); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unimplemented compare type " << in_type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleCondition(HCondition* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| |
| if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, |
| IsFloatingPointZeroConstant(instruction->InputAt(1)) |
| ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant()) |
| : Location::RequiresFpuRegister()); |
| } else { |
| // Integer cases. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); |
| } |
| |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register res = RegisterFrom(locations->Out(), instruction->GetType()); |
| IfCondition if_cond = instruction->GetCondition(); |
| |
| if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) { |
| GenerateFcmp(instruction); |
| __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias())); |
| } else { |
| // Integer cases. |
| Register lhs = InputRegisterAt(instruction, 0); |
| Operand rhs = InputOperandAt(instruction, 1); |
| __ Cmp(lhs, rhs); |
| __ Cset(res, ARM64Condition(if_cond)); |
| } |
| } |
| |
| #define FOR_EACH_CONDITION_INSTRUCTION(M) \ |
| M(Equal) \ |
| M(NotEqual) \ |
| M(LessThan) \ |
| M(LessThanOrEqual) \ |
| M(GreaterThan) \ |
| M(GreaterThanOrEqual) \ |
| M(Below) \ |
| M(BelowOrEqual) \ |
| M(Above) \ |
| M(AboveOrEqual) |
| #define DEFINE_CONDITION_VISITORS(Name) \ |
| void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \ |
| void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } |
| FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS) |
| #undef DEFINE_CONDITION_VISITORS |
| #undef FOR_EACH_CONDITION_INSTRUCTION |
| |
| void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ Mov(out, 0); |
| } else { |
| if (imm == 1) { |
| __ Mov(out, dividend); |
| } else { |
| __ Neg(out, dividend); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| if (instruction->IsDiv()) { |
| __ Add(temp, dividend, abs_imm - 1); |
| __ Cmp(dividend, 0); |
| __ Csel(out, temp, dividend, lt); |
| if (imm > 0) { |
| __ Asr(out, out, ctz_imm); |
| } else { |
| __ Neg(out, Operand(out, ASR, ctz_imm)); |
| } |
| } else { |
| int bits = instruction->GetResultType() == Primitive::kPrimInt ? 32 : 64; |
| __ Asr(temp, dividend, bits - 1); |
| __ Lsr(temp, temp, bits - ctz_imm); |
| __ Add(out, dividend, temp); |
| __ And(out, out, abs_imm - 1); |
| __ Sub(out, out, temp); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| Primitive::Type type = instruction->GetResultType(); |
| DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, type == Primitive::kPrimLong /* is_long */, &magic, &shift); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| // temp = get_high(dividend * magic) |
| __ Mov(temp, magic); |
| if (type == Primitive::kPrimLong) { |
| __ Smulh(temp, dividend, temp); |
| } else { |
| __ Smull(temp.X(), dividend, temp); |
| __ Lsr(temp.X(), temp.X(), 32); |
| } |
| |
| if (imm > 0 && magic < 0) { |
| __ Add(temp, temp, dividend); |
| } else if (imm < 0 && magic > 0) { |
| __ Sub(temp, temp, dividend); |
| } |
| |
| if (shift != 0) { |
| __ Asr(temp, temp, shift); |
| } |
| |
| if (instruction->IsDiv()) { |
| __ Sub(out, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31)); |
| } else { |
| __ Sub(temp, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31)); |
| // TODO: Strength reduction for msub. |
| Register temp_imm = temps.AcquireSameSizeAs(out); |
| __ Mov(temp_imm, imm); |
| __ Msub(out, temp, temp_imm, dividend); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| Primitive::Type type = instruction->GetResultType(); |
| DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register out = OutputRegister(instruction); |
| Location second = locations->InAt(1); |
| |
| if (second.IsConstant()) { |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| DivRemByPowerOfTwo(instruction); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| Register dividend = InputRegisterAt(instruction, 0); |
| Register divisor = InputRegisterAt(instruction, 1); |
| if (instruction->IsDiv()) { |
| __ Sdiv(out, dividend, divisor); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| __ Sdiv(temp, dividend, divisor); |
| __ Msub(out, temp, divisor, dividend); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDiv(HDiv* div) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall); |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) { |
| Primitive::Type type = div->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| GenerateDivRemIntegral(div); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| Location value = instruction->GetLocations()->InAt(0); |
| |
| Primitive::Type type = instruction->GetType(); |
| |
| if (!Primitive::IsIntegralType(type)) { |
| LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; |
| return; |
| } |
| |
| if (value.IsConstant()) { |
| int64_t divisor = Int64ConstantFrom(value); |
| if (divisor == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| // A division by a non-null constant is valid. We don't need to perform |
| // any check, so simply fall through. |
| } |
| } else { |
| __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDoubleConstant( |
| HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| DCHECK(!successor->IsExitBlock()); |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| HLoopInformation* info = block->GetLoopInformation(); |
| |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(block, successor)) { |
| __ B(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| vixl::aarch64::Label* true_target, |
| vixl::aarch64::Label* false_target) { |
| // FP branching requires both targets to be explicit. If either of the targets |
| // is nullptr (fallthrough) use and bind `fallthrough_target` instead. |
| vixl::aarch64::Label fallthrough_target; |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ B(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // The condition instruction has been materialized, compare the output to 0. |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| if (true_target == nullptr) { |
| __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target); |
| } else { |
| __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target); |
| } |
| } else { |
| // The condition instruction has not been materialized, use its inputs as |
| // the comparison and its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| if (Primitive::IsFloatingPointType(type)) { |
| GenerateFcmp(condition); |
| if (true_target == nullptr) { |
| IfCondition opposite_condition = condition->GetOppositeCondition(); |
| __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target); |
| } else { |
| __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target); |
| } |
| } else { |
| // Integer cases. |
| Register lhs = InputRegisterAt(condition, 0); |
| Operand rhs = InputOperandAt(condition, 1); |
| |
| Condition arm64_cond; |
| vixl::aarch64::Label* non_fallthrough_target; |
| if (true_target == nullptr) { |
| arm64_cond = ARM64Condition(condition->GetOppositeCondition()); |
| non_fallthrough_target = false_target; |
| } else { |
| arm64_cond = ARM64Condition(condition->GetCondition()); |
| non_fallthrough_target = true_target; |
| } |
| |
| if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) && |
| rhs.IsImmediate() && (rhs.GetImmediate() == 0)) { |
| switch (arm64_cond) { |
| case eq: |
| __ Cbz(lhs, non_fallthrough_target); |
| break; |
| case ne: |
| __ Cbnz(lhs, non_fallthrough_target); |
| break; |
| case lt: |
| // Test the sign bit and branch accordingly. |
| __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); |
| break; |
| case ge: |
| // Test the sign bit and branch accordingly. |
| __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); |
| break; |
| default: |
| // Without the `static_cast` the compiler throws an error for |
| // `-Werror=sign-promo`. |
| LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond); |
| } |
| } else { |
| __ Cmp(lhs, rhs); |
| __ B(arm64_cond, non_fallthrough_target); |
| } |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ B(false_target); |
| } |
| |
| if (fallthrough_target.IsLinked()) { |
| __ Bind(&fallthrough_target); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor); |
| if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) { |
| true_target = nullptr; |
| } |
| vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor); |
| if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) { |
| false_target = nullptr; |
| } |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeARM64* slow_path = |
| deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize); |
| GenerateTestAndBranch(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| __ Ldr(OutputRegister(flag), |
| MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); |
| } |
| |
| static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) { |
| return condition->IsCondition() && |
| Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()); |
| } |
| |
| static inline Condition GetConditionForSelect(HCondition* condition) { |
| IfCondition cond = condition->AsCondition()->GetCondition(); |
| return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias()) |
| : ARM64Condition(cond); |
| } |
| |
| void LocationsBuilderARM64::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); |
| HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); |
| bool is_true_value_constant = cst_true_value != nullptr; |
| bool is_false_value_constant = cst_false_value != nullptr; |
| // Ask VIXL whether we should synthesize constants in registers. |
| // We give an arbitrary register to VIXL when dealing with non-constant inputs. |
| Operand true_op = is_true_value_constant ? |
| Operand(Int64FromConstant(cst_true_value)) : Operand(x1); |
| Operand false_op = is_false_value_constant ? |
| Operand(Int64FromConstant(cst_false_value)) : Operand(x2); |
| bool true_value_in_register = false; |
| bool false_value_in_register = false; |
| MacroAssembler::GetCselSynthesisInformation( |
| x0, true_op, false_op, &true_value_in_register, &false_value_in_register); |
| true_value_in_register |= !is_true_value_constant; |
| false_value_in_register |= !is_false_value_constant; |
| |
| locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister() |
| : Location::ConstantLocation(cst_true_value)); |
| locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister() |
| : Location::ConstantLocation(cst_false_value)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) { |
| HInstruction* cond = select->GetCondition(); |
| Condition csel_cond; |
| |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| if (cond->IsCondition() && cond->GetNext() == select) { |
| // Use the condition flags set by the previous instruction. |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } else { |
| __ Cmp(InputRegisterAt(select, 2), 0); |
| csel_cond = ne; |
| } |
| } else if (IsConditionOnFloatingPointValues(cond)) { |
| GenerateFcmp(cond); |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } else { |
| __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1)); |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } |
| |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| __ Fcsel(OutputFPRegister(select), |
| InputFPRegisterAt(select, 1), |
| InputFPRegisterAt(select, 0), |
| csel_cond); |
| } else { |
| __ Csel(OutputRegister(select), |
| InputOperandAt(select, 1), |
| InputOperandAt(select, 0), |
| csel_cond); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetArena()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorARM64::GenerateNop() { |
| __ Nop(); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { |
| if (kEmitCompilerReadBarrier && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Interface case has 3 temps, one for holding the number of interfaces, one for the current |
| // interface pointer, one for loading the current interface. |
| // The other checks have one temp for loading the object's class. |
| static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| return 3; |
| } |
| return 1 + NumberOfInstanceOfTemps(type_check_kind); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = |
| kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier; |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // The "out" register is used as a temporary, so it overlaps with the inputs. |
| // Note that TypeCheckSlowPathARM64 uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| // Add temps if necessary for read barriers. |
| locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = InputRegisterAt(instruction, 0); |
| Register cls = InputRegisterAt(instruction, 1); |
| Location out_loc = locations->Out(); |
| Register out = OutputRegister(instruction); |
| const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| |
| vixl::aarch64::Label done, zero; |
| SlowPathCodeARM64* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // Avoid null check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Cbz(obj, &zero); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| __ Cmp(out, cls); |
| __ Cset(out, eq); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl::aarch64::Label loop, success; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Cbz(out, &done); |
| __ Cmp(out, cls); |
| __ B(ne, &loop); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // Walk over the class hierarchy to find a match. |
| vixl::aarch64::Label loop, success; |
| __ Bind(&loop); |
| __ Cmp(out, cls); |
| __ B(eq, &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| __ Cbnz(out, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ B(&done); |
| __ Bind(&success); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // Do an exact check. |
| vixl::aarch64::Label exact_check; |
| __ Cmp(out, cls); |
| __ B(eq, &exact_check); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Cbz(out, &done); |
| __ Ldrh(out, HeapOperand(out, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(out, &zero); |
| __ Bind(&exact_check); |
| __ Mov(out, 1); |
| __ B(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| __ Cmp(out, cls); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(ne, slow_path->GetEntryLabel()); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| } |
| |
| if (zero.IsLinked()) { |
| __ Bind(&zero); |
| __ Mov(out, 0); |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); |
| |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path. |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64. |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = InputRegisterAt(instruction, 0); |
| Register cls = InputRegisterAt(instruction, 1); |
| const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); |
| DCHECK_GE(num_temps, 1u); |
| DCHECK_LE(num_temps, 3u); |
| Location temp_loc = locations->GetTemp(0); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); |
| Register temp = WRegisterFrom(temp_loc); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| |
| bool is_type_check_slow_path_fatal = false; |
| // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases |
| // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding |
| // read barriers is done for performance and code size reasons. |
| if (!kEmitCompilerReadBarrier) { |
| is_type_check_slow_path_fatal = |
| (type_check_kind == TypeCheckKind::kExactCheck || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck) && |
| !instruction->CanThrowIntoCatchBlock(); |
| } |
| SlowPathCodeARM64* type_check_slow_path = |
| new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction, |
| is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| vixl::aarch64::Label done; |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Cbz(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| __ Cmp(temp, cls); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ B(ne, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ Cbz(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise, compare classes. |
| __ Cmp(temp, cls); |
| __ B(ne, &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Walk over the class hierarchy to find a match. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| __ Cmp(temp, cls); |
| __ B(eq, &done); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // back at the beginning of the loop. |
| __ Cbnz(temp, &loop); |
| // Otherwise, jump to the slow path to throw the exception. |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Do an exact check. |
| __ Cmp(temp, cls); |
| __ B(eq, &done); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the component type is null, jump to the slow path to throw the exception. |
| __ Cbz(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise, the object is indeed an array. Further check that this component type is not a |
| // primitive type. |
| __ Ldrh(temp, HeapOperand(temp, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check cases. |
| // |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| case TypeCheckKind::kInterfaceCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset)); |
| // Loop through the iftable and check if any class matches. |
| vixl::aarch64::Label start_loop; |
| __ Bind(&start_loop); |
| __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel()); |
| __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc)); |
| // Go to next interface. |
| __ Add(temp, temp, 2 * kHeapReferenceSize); |
| __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2); |
| // Compare the classes and continue the loop if they do not match. |
| __ Cmp(cls, WRegisterFrom(maybe_temp3_loc)); |
| __ B(ne, &start_loop); |
| break; |
| } |
| } |
| __ Bind(&done); |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorARM64 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| Register temp = XRegisterFrom(locations->GetTemp(0)); |
| Location receiver = locations->InAt(0); |
| Offset class_offset = mirror::Object::ClassOffset(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); |
| |
| // The register ip1 is required to be used for the hidden argument in |
| // art_quick_imt_conflict_trampoline, so prevent VIXL from using it. |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope scratch_scope(masm); |
| scratch_scope.Exclude(ip1); |
| __ Mov(ip1, invoke->GetDexMethodIndex()); |
| |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| if (receiver.IsStackSlot()) { |
| __ Ldr(temp.W(), StackOperandFrom(receiver)); |
| { |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| // /* HeapReference<Class> */ temp = temp->klass_ |
| __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| } |
| } else { |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| } |
| |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); |
| __ Ldr(temp, |
| MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kArm64PointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ Ldr(temp, MemOperand(temp, method_offset)); |
| // lr = temp->GetEntryPoint(); |
| __ Ldr(lr, MemOperand(temp, entry_point.Int32Value())); |
| |
| { |
| // Ensure the pc position is recorded immediately after the `blr` instruction. |
| ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); |
| |
| // lr(); |
| __ blr(lr); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena(), codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena(), codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorARM64 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) { |
| // On ARM64 we support all dispatch types. |
| return desired_dispatch_info; |
| } |
| |
| void CodeGeneratorARM64::GenerateStaticOrDirectCall( |
| HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { |
| // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention. |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { |
| uint32_t offset = |
| GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| // temp = thread->string_init_entrypoint |
| __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset)); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(GetCompilerOptions().IsBootImage()); |
| // Add ADRP with its PC-relative method patch. |
| vixl::aarch64::Label* adrp_label = NewPcRelativeMethodPatch(invoke->GetTargetMethod()); |
| EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); |
| // Add ADD with its PC-relative method patch. |
| vixl::aarch64::Label* add_label = |
| NewPcRelativeMethodPatch(invoke->GetTargetMethod(), adrp_label); |
| EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp)); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| // Load method address from literal pool. |
| __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: { |
| // Add ADRP with its PC-relative DexCache access patch. |
| MethodReference target_method(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()); |
| vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(target_method); |
| EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); |
| // Add LDR with its PC-relative DexCache access patch. |
| vixl::aarch64::Label* ldr_label = |
| NewMethodBssEntryPatch(target_method, adrp_label); |
| EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp)); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: { |
| GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); |
| return; // No code pointer retrieval; the runtime performs the call directly. |
| } |
| } |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| { |
| // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. |
| ExactAssemblyScope eas(GetVIXLAssembler(), |
| kInstructionSize, |
| CodeBufferCheckScope::kExactSize); |
| __ bl(&frame_entry_label_); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // LR = callee_method->entry_point_from_quick_compiled_code_; |
| __ Ldr(lr, MemOperand( |
| XRegisterFrom(callee_method), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize).Int32Value())); |
| { |
| // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. |
| ExactAssemblyScope eas(GetVIXLAssembler(), |
| kInstructionSize, |
| CodeBufferCheckScope::kExactSize); |
| // lr() |
| __ blr(lr); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorARM64::GenerateVirtualCall( |
| HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) { |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| Register temp = XRegisterFrom(temp_in); |
| size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kArm64PointerSize).SizeValue(); |
| Offset class_offset = mirror::Object::ClassOffset(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); |
| |
| DCHECK(receiver.IsRegister()); |
| |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| } |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); |
| // temp = temp->GetMethodAt(method_offset); |
| __ Ldr(temp, MemOperand(temp, method_offset)); |
| // lr = temp->GetEntryPoint(); |
| __ Ldr(lr, MemOperand(temp, entry_point.SizeValue())); |
| { |
| // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. |
| ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); |
| // lr(); |
| __ blr(lr); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativeMethodPatch( |
| MethodReference target_method, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch(*target_method.dex_file, |
| target_method.dex_method_index, |
| adrp_label, |
| &pc_relative_method_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch( |
| MethodReference target_method, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch(*target_method.dex_file, |
| target_method.dex_method_index, |
| adrp_label, |
| &method_bss_entry_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativeTypePatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch(dex_file, type_index.index_, adrp_label, &pc_relative_type_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch(dex_file, type_index.index_, adrp_label, &type_bss_entry_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativeStringPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| vixl::aarch64::Label* adrp_label) { |
| return |
| NewPcRelativePatch(dex_file, string_index.index_, adrp_label, &pc_relative_string_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBakerReadBarrierPatch(uint32_t custom_data) { |
| baker_read_barrier_patches_.emplace_back(custom_data); |
| return &baker_read_barrier_patches_.back().label; |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch( |
| const DexFile& dex_file, |
| uint32_t offset_or_index, |
| vixl::aarch64::Label* adrp_label, |
| ArenaDeque<PcRelativePatchInfo>* patches) { |
| // Add a patch entry and return the label. |
| patches->emplace_back(dex_file, offset_or_index); |
| PcRelativePatchInfo* info = &patches->back(); |
| vixl::aarch64::Label* label = &info->label; |
| // If adrp_label is null, this is the ADRP patch and needs to point to its own label. |
| info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label; |
| return label; |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral( |
| uint64_t address) { |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address)); |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral( |
| const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) { |
| jit_string_roots_.Overwrite(StringReference(&dex_file, string_index), |
| reinterpret_cast64<uint64_t>(handle.GetReference())); |
| return jit_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral( |
| const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) { |
| jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index), |
| reinterpret_cast64<uint64_t>(handle.GetReference())); |
| return jit_class_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label, |
| vixl::aarch64::Register reg) { |
| DCHECK(reg.IsX()); |
| SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0)); |
| } |
| |
| void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label, |
| vixl::aarch64::Register out, |
| vixl::aarch64::Register base) { |
| DCHECK(out.IsX()); |
| DCHECK(base.IsX()); |
| SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ add(out, base, Operand(/* offset placeholder */ 0)); |
| } |
| |
| void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label, |
| vixl::aarch64::Register out, |
| vixl::aarch64::Register base) { |
| DCHECK(base.IsX()); |
| SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ ldr(out, MemOperand(base, /* offset placeholder */ 0)); |
| } |
| |
| template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PcRelativePatchInfo>& infos, |
| ArenaVector<LinkerPatch>* linker_patches) { |
| for (const PcRelativePatchInfo& info : infos) { |
| linker_patches->push_back(Factory(info.label.GetLocation(), |
| &info.target_dex_file, |
| info.pc_insn_label->GetLocation(), |
| info.offset_or_index)); |
| } |
| } |
| |
| void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| pc_relative_method_patches_.size() + |
| method_bss_entry_patches_.size() + |
| pc_relative_type_patches_.size() + |
| type_bss_entry_patches_.size() + |
| pc_relative_string_patches_.size() + |
| baker_read_barrier_patches_.size(); |
| linker_patches->reserve(size); |
| if (GetCompilerOptions().IsBootImage()) { |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeMethodPatch>(pc_relative_method_patches_, |
| linker_patches); |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_, |
| linker_patches); |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_, |
| linker_patches); |
| } else { |
| DCHECK(pc_relative_method_patches_.empty()); |
| DCHECK(pc_relative_type_patches_.empty()); |
| EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_, |
| linker_patches); |
| } |
| EmitPcRelativeLinkerPatches<LinkerPatch::MethodBssEntryPatch>(method_bss_entry_patches_, |
| linker_patches); |
| EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_, |
| linker_patches); |
| for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { |
| linker_patches->push_back(LinkerPatch::BakerReadBarrierBranchPatch(info.label.GetLocation(), |
| info.custom_data)); |
| } |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) { |
| return uint32_literals_.GetOrCreate( |
| value, |
| [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); }); |
| } |
| |
| vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) { |
| return uint64_literals_.GetOrCreate( |
| value, |
| [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); }); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| // Ensure that between the BLR (emitted by GenerateStaticOrDirectCall) and RecordPcInfo there |
| // are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there |
| // are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kBootImageAddress: |
| case HLoadClass::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( |
| cls, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| LocationFrom(vixl::aarch64::x0)); |
| DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0)); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the type resolution or initialization and marking to save everything we need. |
| locations->AddTemp(FixedTempLocation()); |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), |
| RegisterFrom(calling_convention.GetReturnLocation(Primitive::kPrimNot), |
| Primitive::kPrimNot).GetCode()); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| Location out_loc = cls->GetLocations()->Out(); |
| Register out = OutputRegister(cls); |
| Register bss_entry_temp; |
| vixl::aarch64::Label* bss_entry_adrp_label = nullptr; |
| |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : kCompilerReadBarrierOption; |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| Register current_method = InputRegisterAt(cls, 0); |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| current_method, |
| ArtMethod::DeclaringClassOffset().Int32Value(), |
| /* fixup_label */ nullptr, |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| // Add ADRP with its PC-relative type patch. |
| const DexFile& dex_file = cls->GetDexFile(); |
| dex::TypeIndex type_index = cls->GetTypeIndex(); |
| vixl::aarch64::Label* adrp_label = codegen_->NewPcRelativeTypePatch(dex_file, type_index); |
| codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); |
| // Add ADD with its PC-relative type patch. |
| vixl::aarch64::Label* add_label = |
| codegen_->NewPcRelativeTypePatch(dex_file, type_index, adrp_label); |
| codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(cls->GetClass().Get())); |
| DCHECK_NE(address, 0u); |
| __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: { |
| // Add ADRP with its PC-relative Class .bss entry patch. |
| const DexFile& dex_file = cls->GetDexFile(); |
| dex::TypeIndex type_index = cls->GetTypeIndex(); |
| bss_entry_temp = XRegisterFrom(cls->GetLocations()->GetTemp(0)); |
| bss_entry_adrp_label = codegen_->NewBssEntryTypePatch(dex_file, type_index); |
| codegen_->EmitAdrpPlaceholder(bss_entry_adrp_label, bss_entry_temp); |
| // Add LDR with its PC-relative Class patch. |
| vixl::aarch64::Label* ldr_label = |
| codegen_->NewBssEntryTypePatch(dex_file, type_index, bss_entry_adrp_label); |
| // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */ |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| bss_entry_temp, |
| /* offset placeholder */ 0u, |
| ldr_label, |
| read_barrier_option); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: { |
| __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), |
| cls->GetTypeIndex(), |
| cls->GetClass())); |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| out.X(), |
| /* offset */ 0, |
| /* fixup_label */ nullptr, |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kRuntimeCall: |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| bool do_clinit = cls->MustGenerateClinitCheck(); |
| if (generate_null_check || do_clinit) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64( |
| cls, cls, cls->GetDexPc(), do_clinit, bss_entry_temp, bss_entry_adrp_label); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ Cbz(out, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| static MemOperand GetExceptionTlsAddress() { |
| return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value()); |
| } |
| |
| void LocationsBuilderARM64::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) { |
| __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress()); |
| } |
| |
| void LocationsBuilderARM64::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ Str(wzr, GetExceptionTlsAddress()); |
| } |
| |
| HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kBootImageAddress: |
| case HLoadString::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderARM64::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); |
| if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(calling_convention.GetReturnLocation(load->GetType())); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString and marking to save everything we need. |
| locations->AddTemp(FixedTempLocation()); |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), |
| RegisterFrom(calling_convention.GetReturnLocation(Primitive::kPrimNot), |
| Primitive::kPrimNot).GetCode()); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| Register out = OutputRegister(load); |
| Location out_loc = load->GetLocations()->Out(); |
| |
| switch (load->GetLoadKind()) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| // Add ADRP with its PC-relative String patch. |
| const DexFile& dex_file = load->GetDexFile(); |
| const dex::StringIndex string_index = load->GetStringIndex(); |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| vixl::aarch64::Label* adrp_label = codegen_->NewPcRelativeStringPatch(dex_file, string_index); |
| codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); |
| // Add ADD with its PC-relative String patch. |
| vixl::aarch64::Label* add_label = |
| codegen_->NewPcRelativeStringPatch(dex_file, string_index, adrp_label); |
| codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageAddress: { |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(load->GetString().Get())); |
| DCHECK_NE(address, 0u); |
| __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| // Add ADRP with its PC-relative String .bss entry patch. |
| const DexFile& dex_file = load->GetDexFile(); |
| const dex::StringIndex string_index = load->GetStringIndex(); |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| Register temp = XRegisterFrom(load->GetLocations()->GetTemp(0)); |
| vixl::aarch64::Label* adrp_label = codegen_->NewPcRelativeStringPatch(dex_file, string_index); |
| codegen_->EmitAdrpPlaceholder(adrp_label, temp); |
| // Add LDR with its PC-relative String patch. |
| vixl::aarch64::Label* ldr_label = |
| codegen_->NewPcRelativeStringPatch(dex_file, string_index, adrp_label); |
| // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */ |
| GenerateGcRootFieldLoad(load, |
| out_loc, |
| temp, |
| /* offset placeholder */ 0u, |
| ldr_label, |
| kCompilerReadBarrierOption); |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load, temp, adrp_label); |
| codegen_->AddSlowPath(slow_path); |
| __ Cbz(out.X(), slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: { |
| __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), |
| load->GetStringIndex(), |
| load->GetString())); |
| GenerateGcRootFieldLoad(load, |
| out_loc, |
| out.X(), |
| /* offset */ 0, |
| /* fixup_label */ nullptr, |
| kCompilerReadBarrierOption); |
| return; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Re-add the compiler code to do string dex cache lookup again. |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode()); |
| __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_); |
| codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) { |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) { |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| __ Neg(OutputRegister(neg), InputOperandAt(neg, 0)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(LocationFrom(x0)); |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| QuickEntrypointEnum entrypoint = |
| CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass()); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| } |
| |
| void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| if (instruction->IsStringAlloc()) { |
| locations->AddTemp(LocationFrom(kArtMethodRegister)); |
| } else { |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| if (instruction->IsStringAlloc()) { |
| // String is allocated through StringFactory. Call NewEmptyString entry point. |
| Location temp = instruction->GetLocations()->GetTemp(0); |
| MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); |
| __ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString))); |
| __ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value())); |
| |
| { |
| // Ensure the pc position is recorded immediately after the `blr` instruction. |
| ExactAssemblyScope eas(GetVIXLAssembler(), |
| kInstructionSize, |
| CodeBufferCheckScope::kExactSize); |
| __ blr(lr); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| } else { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNot(HNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) { |
| switch (instruction->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) { |
| __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1)); |
| } |
| |
| void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| Location obj = instruction->GetLocations()->InAt(0); |
| __ Ldr(wzr, HeapOperandFrom(obj, Offset(0))); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction); |
| AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) { |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(LocationFrom(kArtMethodRegister)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCurrentMethod( |
| HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderARM64::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderARM64::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| LocationSummary::CallKind call_kind = |
| Primitive::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(rem); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| QuickEntrypointEnum entrypoint = (type == Primitive::kPrimFloat) ? kQuickFmodf : kQuickFmod; |
| codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc()); |
| if (type == Primitive::kPrimFloat) { |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| } else { |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) { |
| constructor_fence->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitConstructorFence( |
| HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| |
| void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderARM64::VisitReturn(HReturn* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); |
| Primitive::Type return_type = instruction->InputAt(0)->GetType(); |
| locations->SetInAt(0, ARM64ReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM64::VisitRor(HRor* ror) { |
| HandleBinaryOp(ror); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) { |
| HandleBinaryOp(ror); |
| } |
| |
| void LocationsBuilderARM64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderARM64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderARM64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| // In suspend check slow path, usually there are no caller-save registers at all. |
| // If SIMD instructions are present, however, we force spilling all live SIMD |
| // registers in full width (since the runtime only saves/restores lower part). |
| locations->SetCustomSlowPathCallerSaves( |
| GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void LocationsBuilderARM64::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall); |
| Primitive::Type input_type = conversion->GetInputType(); |
| Primitive::Type result_type = conversion->GetResultType(); |
| DCHECK_NE(input_type, result_type); |
| if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) || |
| (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) { |
| LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; |
| } |
| |
| if (Primitive::IsFloatingPointType(input_type)) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| if (Primitive::IsFloatingPointType(result_type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) { |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| |
| DCHECK_NE(input_type, result_type); |
| |
| if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) { |
| int result_size = Primitive::ComponentSize(result_type); |
| int input_size = Primitive::ComponentSize(input_type); |
| int min_size = std::min(result_size, input_size); |
| Register output = OutputRegister(conversion); |
| Register source = InputRegisterAt(conversion, 0); |
| if (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimLong) { |
| // 'int' values are used directly as W registers, discarding the top |
| // bits, so we don't need to sign-extend and can just perform a move. |
| // We do not pass the `kDiscardForSameWReg` argument to force clearing the |
| // top 32 bits of the target register. We theoretically could leave those |
| // bits unchanged, but we would have to make sure that no code uses a |
| // 32bit input value as a 64bit value assuming that the top 32 bits are |
| // zero. |
| __ Mov(output.W(), source.W()); |
| } else if (result_type == Primitive::kPrimChar || |
| (input_type == Primitive::kPrimChar && input_size < result_size)) { |
| __ Ubfx(output, |
| output.IsX() ? source.X() : source.W(), |
| 0, Primitive::ComponentSize(Primitive::kPrimChar) * kBitsPerByte); |
| } else { |
| __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte); |
| } |
| } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) { |
| __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0)); |
| } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) { |
| CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong); |
| __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0)); |
| } else if (Primitive::IsFloatingPointType(result_type) && |
| Primitive::IsFloatingPointType(input_type)) { |
| __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0)); |
| } else { |
| LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderARM64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| Register value_reg = InputRegisterAt(switch_instr, 0); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| // Roughly set 16 as max average assemblies generated per HIR in a graph. |
| static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize; |
| // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to |
| // make sure we don't emit it if the target may run out of range. |
| // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR |
| // ranges and emit the tables only as required. |
| static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction; |
| |
| if (num_entries <= kPackedSwitchCompareJumpThreshold || |
| // Current instruction id is an upper bound of the number of HIRs in the graph. |
| GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) { |
| // Create a series of compare/jumps. |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| __ Subs(temp, value_reg, Operand(lower_bound)); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); |
| // Jump to successors[0] if value == lower_bound. |
| __ B(eq, codegen_->GetLabelOf(successors[0])); |
| int32_t last_index = 0; |
| for (; num_entries - last_index > 2; last_index += 2) { |
| __ Subs(temp, temp, Operand(2)); |
| // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. |
| __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); |
| // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); |
| } |
| if (num_entries - last_index == 2) { |
| // The last missing case_value. |
| __ Cmp(temp, Operand(1)); |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { |
| __ B(codegen_->GetLabelOf(default_block)); |
| } |
| } else { |
| JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr); |
| |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| |
| // Below instructions should use at most one blocked register. Since there are two blocked |
| // registers, we are free to block one. |
| Register temp_w = temps.AcquireW(); |
| Register index; |
| // Remove the bias. |
| if (lower_bound != 0) { |
| index = temp_w; |
| __ Sub(index, value_reg, Operand(lower_bound)); |
| } else { |
| index = value_reg; |
| } |
| |
| // Jump to default block if index is out of the range. |
| __ Cmp(index, Operand(num_entries)); |
| __ B(hs, codegen_->GetLabelOf(default_block)); |
| |
| // In current VIXL implementation, it won't require any blocked registers to encode the |
| // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the |
| // register pressure. |
| Register table_base = temps.AcquireX(); |
| // Load jump offset from the table. |
| __ Adr(table_base, jump_table->GetTableStartLabel()); |
| Register jump_offset = temp_w; |
| __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2)); |
| |
| // Jump to target block by branching to table_base(pc related) + offset. |
| Register target_address = table_base; |
| __ Add(target_address, table_base, Operand(jump_offset, SXTW)); |
| __ Br(target_address); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| Primitive::Type type = Primitive::kPrimNot; |
| Register out_reg = RegisterFrom(out, type); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| out_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| Register temp_reg = RegisterFrom(maybe_temp, type); |
| __ Mov(temp_reg, out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Ldr(out_reg, HeapOperand(out_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Ldr(out_reg, HeapOperand(out_reg, offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| Primitive::Type type = Primitive::kPrimNot; |
| Register out_reg = RegisterFrom(out, type); |
| Register obj_reg = RegisterFrom(obj, type); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Ldr(out_reg, HeapOperand(obj_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Ldr(out_reg, HeapOperand(obj_reg, offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad( |
| HInstruction* instruction, |
| Location root, |
| Register obj, |
| uint32_t offset, |
| vixl::aarch64::Label* fixup_label, |
| ReadBarrierOption read_barrier_option) { |
| DCHECK(fixup_label == nullptr || offset == 0u); |
| Register root_reg = RegisterFrom(root, Primitive::kPrimNot); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used. |
| if (kBakerReadBarrierLinkTimeThunksEnableForGcRoots && |
| !Runtime::Current()->UseJitCompilation()) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded GC root or not. Instead, we |
| // load into `temp` (actually IP1) the read barrier mark introspection |
| // entrypoint. If `temp` is null, it means that `GetIsGcMarking()` is |
| // false, and vice versa. |
| // |
| // We use link-time generated thunks for the slow path. That thunk |
| // checks the reference and jumps to the entrypoint if needed. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkIntrospection |
| // lr = &return_address; |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // if (temp != nullptr) { |
| // goto gc_root_thunk<root_reg>(lr) |
| // } |
| // return_address: |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| DCHECK(temps.IsAvailable(ip0)); |
| DCHECK(temps.IsAvailable(ip1)); |
| temps.Exclude(ip0, ip1); |
| uint32_t custom_data = |
| linker::Arm64RelativePatcher::EncodeBakerReadBarrierGcRootData(root_reg.GetCode()); |
| vixl::aarch64::Label* cbnz_label = codegen_->NewBakerReadBarrierPatch(custom_data); |
| |
| // ip1 = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. |
| DCHECK_EQ(ip0.GetCode(), 16u); |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode()); |
| __ Ldr(ip1, MemOperand(tr, entry_point_offset)); |
| EmissionCheckScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); |
| vixl::aarch64::Label return_address; |
| __ adr(lr, &return_address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, |
| "GC root LDR must be 2 instruction (8B) before the return address label."); |
| __ ldr(root_reg, MemOperand(obj.X(), offset)); |
| __ Bind(cbnz_label); |
| __ cbnz(ip1, static_cast<int64_t>(0)); // Placeholder, patched at link-time. |
| __ Bind(&return_address); |
| } else { |
| // Note that we do not actually check the value of |
| // `GetIsGcMarking()` to decide whether to mark the loaded GC |
| // root or not. Instead, we load into `temp` the read barrier |
| // mark entry point corresponding to register `root`. If `temp` |
| // is null, it means that `GetIsGcMarking()` is false, and vice |
| // versa. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // if (temp != nullptr) { // <=> Thread::Current()->GetIsGcMarking() |
| // // Slow path. |
| // root = temp(root); // root = ReadBarrier::Mark(root); // Runtime entry point call. |
| // } |
| |
| // Slow path marking the GC root `root`. The entrypoint will already be loaded in `temp`. |
| Register temp = lr; |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64( |
| instruction, root, /* entrypoint */ LocationFrom(temp)); |
| codegen_->AddSlowPath(slow_path); |
| |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(root.reg()); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ Ldr(temp, MemOperand(tr, entry_point_offset)); |
| |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| if (fixup_label == nullptr) { |
| __ Ldr(root_reg, MemOperand(obj, offset)); |
| } else { |
| codegen_->EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj); |
| } |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // The entrypoint is null when the GC is not marking, this prevents one load compared to |
| // checking GetIsGcMarking. |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| if (fixup_label == nullptr) { |
| __ Add(root_reg.X(), obj.X(), offset); |
| } else { |
| codegen_->EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X()); |
| } |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| if (fixup_label == nullptr) { |
| __ Ldr(root_reg, MemOperand(obj, offset)); |
| } else { |
| codegen_->EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X()); |
| } |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location maybe_temp, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| if (kBakerReadBarrierLinkTimeThunksEnableForFields && |
| !use_load_acquire && |
| !Runtime::Current()->UseJitCompilation()) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded reference or not. Instead, we |
| // load into `temp` (actually IP1) the read barrier mark introspection |
| // entrypoint. If `temp` is null, it means that `GetIsGcMarking()` is |
| // false, and vice versa. |
| // |
| // We use link-time generated thunks for the slow path. That thunk checks |
| // the holder and jumps to the entrypoint if needed. If the holder is not |
| // gray, it creates a fake dependency and returns to the LDR instruction. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkIntrospection |
| // lr = &gray_return_address; |
| // if (temp != nullptr) { |
| // goto field_thunk<holder_reg, base_reg>(lr) |
| // } |
| // not_gray_return_address: |
| // // Original reference load. If the offset is too large to fit |
| // // into LDR, we use an adjusted base register here. |
| // HeapReference<mirror::Object> reference = *(obj+offset); |
| // gray_return_address: |
| |
| DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>)); |
| Register base = obj; |
| if (offset >= kReferenceLoadMinFarOffset) { |
| DCHECK(maybe_temp.IsRegister()); |
| base = WRegisterFrom(maybe_temp); |
| static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2."); |
| __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u))); |
| offset &= (kReferenceLoadMinFarOffset - 1u); |
| } |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| DCHECK(temps.IsAvailable(ip0)); |
| DCHECK(temps.IsAvailable(ip1)); |
| temps.Exclude(ip0, ip1); |
| uint32_t custom_data = linker::Arm64RelativePatcher::EncodeBakerReadBarrierFieldData( |
| base.GetCode(), |
| obj.GetCode()); |
| vixl::aarch64::Label* cbnz_label = NewBakerReadBarrierPatch(custom_data); |
| |
| // ip1 = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. |
| DCHECK_EQ(ip0.GetCode(), 16u); |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode()); |
| __ Ldr(ip1, MemOperand(tr, entry_point_offset)); |
| EmissionCheckScope guard(GetVIXLAssembler(), |
| (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); |
| vixl::aarch64::Label return_address; |
| __ adr(lr, &return_address); |
| __ Bind(cbnz_label); |
| __ cbnz(ip1, static_cast<int64_t>(0)); // Placeholder, patched at link-time. |
| static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), |
| "Field LDR must be 1 instruction (4B) before the return address label; " |
| " 2 instructions (8B) for heap poisoning."); |
| Register ref_reg = RegisterFrom(ref, Primitive::kPrimNot); |
| __ ldr(ref_reg, MemOperand(base.X(), offset)); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| GetAssembler()->MaybeUnpoisonHeapReference(ref_reg); |
| __ Bind(&return_address); |
| return; |
| } |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Register temp = WRegisterFrom(maybe_temp); |
| Location no_index = Location::NoLocation(); |
| size_t no_scale_factor = 0u; |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, |
| ref, |
| obj, |
| offset, |
| no_index, |
| no_scale_factor, |
| temp, |
| needs_null_check, |
| use_load_acquire); |
| } |
| |
| void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t data_offset, |
| Location index, |
| Register temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| size_t scale_factor = Primitive::ComponentSizeShift(Primitive::kPrimNot); |
| |
| if (kBakerReadBarrierLinkTimeThunksEnableForArrays && |
| !Runtime::Current()->UseJitCompilation()) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded reference or not. Instead, we |
| // load into `temp` (actually IP1) the read barrier mark introspection |
| // entrypoint. If `temp` is null, it means that `GetIsGcMarking()` is |
| // false, and vice versa. |
| // |
| // We use link-time generated thunks for the slow path. That thunk checks |
| // the holder and jumps to the entrypoint if needed. If the holder is not |
| // gray, it creates a fake dependency and returns to the LDR instruction. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkIntrospection |
| // lr = &gray_return_address; |
| // if (temp != nullptr) { |
| // goto field_thunk<holder_reg, base_reg>(lr) |
| // } |
| // not_gray_return_address: |
| // // Original reference load. If the offset is too large to fit |
| // // into LDR, we use an adjusted base register here. |
| // HeapReference<mirror::Object> reference = data[index]; |
| // gray_return_address: |
| |
| DCHECK(index.IsValid()); |
| Register index_reg = RegisterFrom(index, Primitive::kPrimInt); |
| Register ref_reg = RegisterFrom(ref, Primitive::kPrimNot); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| DCHECK(temps.IsAvailable(ip0)); |
| DCHECK(temps.IsAvailable(ip1)); |
| temps.Exclude(ip0, ip1); |
| uint32_t custom_data = |
| linker::Arm64RelativePatcher::EncodeBakerReadBarrierArrayData(temp.GetCode()); |
| vixl::aarch64::Label* cbnz_label = NewBakerReadBarrierPatch(custom_data); |
| |
| // ip1 = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. |
| DCHECK_EQ(ip0.GetCode(), 16u); |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode()); |
| __ Ldr(ip1, MemOperand(tr, entry_point_offset)); |
| __ Add(temp.X(), obj.X(), Operand(data_offset)); |
| EmissionCheckScope guard(GetVIXLAssembler(), |
| (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); |
| vixl::aarch64::Label return_address; |
| __ adr(lr, &return_address); |
| __ Bind(cbnz_label); |
| __ cbnz(ip1, static_cast<int64_t>(0)); // Placeholder, patched at link-time. |
| static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), |
| "Array LDR must be 1 instruction (4B) before the return address label; " |
| " 2 instructions (8B) for heap poisoning."); |
| __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor)); |
| DCHECK(!needs_null_check); // The thunk cannot handle the null check. |
| GetAssembler()->MaybeUnpoisonHeapReference(ref_reg); |
| __ Bind(&return_address); |
| return; |
| } |
| |
| // Array cells are never volatile variables, therefore array loads |
| // never use Load-Acquire instructions on ARM64. |
| const bool use_load_acquire = false; |
| |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, |
| ref, |
| obj, |
| data_offset, |
| index, |
| scale_factor, |
| temp, |
| needs_null_check, |
| use_load_acquire); |
| } |
| |
| void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| size_t scale_factor, |
| Register temp, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| // If we are emitting an array load, we should not be using a |
| // Load Acquire instruction. In other words: |
| // `instruction->IsArrayGet()` => `!use_load_acquire`. |
| DCHECK(!instruction->IsArrayGet() || !use_load_acquire); |
| |
| // Query `art::Thread::Current()->GetIsGcMarking()` to decide |
| // whether we need to enter the slow path to mark the reference. |
| // Then, in the slow path, check the gray bit in the lock word of |
| // the reference's holder (`obj`) to decide whether to mark `ref` or |
| // not. |
| // |
| // Note that we do not actually check the value of `GetIsGcMarking()`; |
| // instead, we load into `temp2` the read barrier mark entry point |
| // corresponding to register `ref`. If `temp2` is null, it means |
| // that `GetIsGcMarking()` is false, and vice versa. |
| // |
| // temp2 = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp2 != nullptr) { // <=> Thread::Current()->GetIsGcMarking() |
| // // Slow path. |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<mirror::Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = temp2(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call. |
| // } |
| // } else { |
| // HeapReference<mirror::Object> ref = *src; // Original reference load. |
| // } |
| |
| // Slow path marking the object `ref` when the GC is marking. The |
| // entrypoint will already be loaded in `temp2`. |
| Register temp2 = lr; |
| Location temp2_loc = LocationFrom(temp2); |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierSlowPathARM64( |
| instruction, |
| ref, |
| obj, |
| offset, |
| index, |
| scale_factor, |
| needs_null_check, |
| use_load_acquire, |
| temp, |
| /* entrypoint */ temp2_loc); |
| AddSlowPath(slow_path); |
| |
| // temp2 = Thread::Current()->pReadBarrierMarkReg ## ref.reg() |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ref.reg()); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ Ldr(temp2, MemOperand(tr, entry_point_offset)); |
| // The entrypoint is null when the GC is not marking, this prevents one load compared to |
| // checking GetIsGcMarking. |
| __ Cbnz(temp2, slow_path->GetEntryLabel()); |
| // Fast path: the GC is not marking: just load the reference. |
| GenerateRawReferenceLoad( |
| instruction, ref, obj, offset, index, scale_factor, needs_null_check, use_load_acquire); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::UpdateReferenceFieldWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| Location field_offset, |
| Register temp, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| // If we are emitting an array load, we should not be using a |
| // Load Acquire instruction. In other words: |
| // `instruction->IsArrayGet()` => `!use_load_acquire`. |
| DCHECK(!instruction->IsArrayGet() || !use_load_acquire); |
| |
| // Query `art::Thread::Current()->GetIsGcMarking()` to decide |
| // whether we need to enter the slow path to update the reference |
| // field within `obj`. Then, in the slow path, check the gray bit |
| // in the lock word of the reference's holder (`obj`) to decide |
| // whether to mark `ref` and update the field or not. |
| // |
| // Note that we do not actually check the value of `GetIsGcMarking()`; |
| // instead, we load into `temp2` the read barrier mark entry point |
| // corresponding to register `ref`. If `temp2` is null, it means |
| // that `GetIsGcMarking()` is false, and vice versa. |
| // |
| // temp2 = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp2 != nullptr) { // <=> Thread::Current()->GetIsGcMarking() |
| // // Slow path. |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<mirror::Object> ref = *(obj + field_offset); // Reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // old_ref = ref; |
| // ref = temp2(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call. |
| // compareAndSwapObject(obj, field_offset, old_ref, ref); |
| // } |
| // } |
| |
| // Slow path updating the object reference at address `obj + field_offset` |
| // when the GC is marking. The entrypoint will already be loaded in `temp2`. |
| Register temp2 = lr; |
| Location temp2_loc = LocationFrom(temp2); |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64( |
| instruction, |
| ref, |
| obj, |
| /* offset */ 0u, |
| /* index */ field_offset, |
| /* scale_factor */ 0u /* "times 1" */, |
| needs_null_check, |
| use_load_acquire, |
| temp, |
| /* entrypoint */ temp2_loc); |
| AddSlowPath(slow_path); |
| |
| // temp2 = Thread::Current()->pReadBarrierMarkReg ## ref.reg() |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ref.reg()); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ Ldr(temp2, MemOperand(tr, entry_point_offset)); |
| // The entrypoint is null when the GC is not marking, this prevents one load compared to |
| // checking GetIsGcMarking. |
| __ Cbnz(temp2, slow_path->GetEntryLabel()); |
| // Fast path: the GC is not marking: nothing to do (the field is |
| // up-to-date, and we don't need to load the reference). |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::GenerateRawReferenceLoad(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| size_t scale_factor, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK(obj.IsW()); |
| Primitive::Type type = Primitive::kPrimNot; |
| Register ref_reg = RegisterFrom(ref, type); |
| |
| // If needed, vixl::EmissionCheckScope guards are used to ensure |
| // that no pools are emitted between the load (macro) instruction |
| // and MaybeRecordImplicitNullCheck. |
| |
| if (index.IsValid()) { |
| // Load types involving an "index": ArrayGet, |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics. |
| if (use_load_acquire) { |
| // UnsafeGetObjectVolatile intrinsic case. |
| // Register `index` is not an index in an object array, but an |
| // offset to an object reference field within object `obj`. |
| DCHECK(instruction->IsInvoke()) << instruction->DebugName(); |
| DCHECK(instruction->GetLocations()->Intrinsified()); |
| DCHECK(instruction->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile) |
| << instruction->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset, 0u); |
| DCHECK_EQ(scale_factor, 0u); |
| DCHECK_EQ(needs_null_check, false); |
| // /* HeapReference<mirror::Object> */ ref = *(obj + index) |
| MemOperand field = HeapOperand(obj, XRegisterFrom(index)); |
| LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false); |
| } else { |
| // ArrayGet and UnsafeGetObject and UnsafeCASObject intrinsics cases. |
| // /* HeapReference<mirror::Object> */ ref = *(obj + offset + (index << scale_factor)) |
| if (index.IsConstant()) { |
| uint32_t computed_offset = offset + (Int64ConstantFrom(index) << scale_factor); |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| Load(type, ref_reg, HeapOperand(obj, computed_offset)); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| __ Add(temp, obj, offset); |
| { |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| Load(type, ref_reg, HeapOperand(temp, XRegisterFrom(index), LSL, scale_factor)); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| } |
| } |
| } else { |
| // /* HeapReference<mirror::Object> */ ref = *(obj + offset) |
| MemOperand field = HeapOperand(obj, offset); |
| if (use_load_acquire) { |
| // Implicit null checks are handled by CodeGeneratorARM64::LoadAcquire. |
| LoadAcquire(instruction, ref_reg, field, needs_null_check); |
| } else { |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| Load(type, ref_reg, field); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| } |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| GetAssembler()->MaybeUnpoisonHeapReference(ref_reg); |
| } |
| |
| void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) |
| ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out)); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeARM64* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM64(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kArm64PointerSize).SizeValue(); |
| __ Ldr(XRegisterFrom(locations->Out()), |
| MemOperand(XRegisterFrom(locations->InAt(0)), method_offset)); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kArm64PointerSize)); |
| __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)), |
| mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); |
| __ Ldr(XRegisterFrom(locations->Out()), |
| MemOperand(XRegisterFrom(locations->Out()), method_offset)); |
| } |
| } |
| |
| static void PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| vixl::aarch64::Literal<uint32_t>* literal, |
| uint64_t index_in_table) { |
| uint32_t literal_offset = literal->GetOffset(); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| uint8_t* data = code + literal_offset; |
| reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const auto& entry : jit_string_patches_) { |
| const StringReference& string_reference = entry.first; |
| vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; |
| const auto it = jit_string_roots_.find(string_reference); |
| DCHECK(it != jit_string_roots_.end()); |
| uint64_t index_in_table = it->second; |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| for (const auto& entry : jit_class_patches_) { |
| const TypeReference& type_reference = entry.first; |
| vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; |
| const auto it = jit_class_roots_.find(type_reference); |
| DCHECK(it != jit_class_roots_.end()); |
| uint64_t index_in_table = it->second; |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| } |
| |
| #undef __ |
| #undef QUICK_ENTRY_POINT |
| |
| } // namespace arm64 |
| } // namespace art |