blob: 3e66ce20eb8dcd796269ef0dd20d1c33dbef8432 [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jit.h"
#include <dlfcn.h>
#include "art_method-inl.h"
#include "debugger.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "interpreter/interpreter.h"
#include "jit_code_cache.h"
#include "jit_instrumentation.h"
#include "oat_file_manager.h"
#include "oat_quick_method_header.h"
#include "offline_profiling_info.h"
#include "profile_saver.h"
#include "runtime.h"
#include "runtime_options.h"
#include "stack_map.h"
#include "utils.h"
namespace art {
namespace jit {
static constexpr bool kEnableOnStackReplacement = true;
JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) {
auto* jit_options = new JitOptions;
jit_options->use_jit_ = options.GetOrDefault(RuntimeArgumentMap::UseJIT);
jit_options->code_cache_initial_capacity_ =
options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity);
jit_options->code_cache_max_capacity_ =
options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity);
jit_options->compile_threshold_ =
options.GetOrDefault(RuntimeArgumentMap::JITCompileThreshold);
// TODO(ngeoffray): Make this a proper option.
jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2;
jit_options->warmup_threshold_ =
options.GetOrDefault(RuntimeArgumentMap::JITWarmupThreshold);
jit_options->dump_info_on_shutdown_ =
options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown);
jit_options->save_profiling_info_ =
options.GetOrDefault(RuntimeArgumentMap::JITSaveProfilingInfo);;
return jit_options;
}
void Jit::DumpInfo(std::ostream& os) {
os << "JIT code cache size=" << PrettySize(code_cache_->CodeCacheSize()) << "\n"
<< "JIT data cache size=" << PrettySize(code_cache_->DataCacheSize()) << "\n"
<< "JIT current capacity=" << PrettySize(code_cache_->GetCurrentCapacity()) << "\n"
<< "JIT number of compiled code=" << code_cache_->NumberOfCompiledCode() << "\n"
<< "JIT total number of compilations=" << code_cache_->NumberOfCompilations() << "\n"
<< "JIT total number of osr compilations=" << code_cache_->NumberOfOsrCompilations() << "\n";
cumulative_timings_.Dump(os);
}
void Jit::AddTimingLogger(const TimingLogger& logger) {
cumulative_timings_.AddLogger(logger);
}
Jit::Jit() : jit_library_handle_(nullptr),
jit_compiler_handle_(nullptr),
jit_load_(nullptr),
jit_compile_method_(nullptr),
dump_info_on_shutdown_(false),
cumulative_timings_("JIT timings"),
save_profiling_info_(false),
generate_debug_info_(false) {
}
Jit* Jit::Create(JitOptions* options, std::string* error_msg) {
std::unique_ptr<Jit> jit(new Jit);
jit->dump_info_on_shutdown_ = options->DumpJitInfoOnShutdown();
if (!jit->LoadCompiler(error_msg)) {
return nullptr;
}
jit->code_cache_.reset(JitCodeCache::Create(
options->GetCodeCacheInitialCapacity(),
options->GetCodeCacheMaxCapacity(),
jit->generate_debug_info_,
error_msg));
if (jit->GetCodeCache() == nullptr) {
return nullptr;
}
jit->save_profiling_info_ = options->GetSaveProfilingInfo();
LOG(INFO) << "JIT created with initial_capacity="
<< PrettySize(options->GetCodeCacheInitialCapacity())
<< ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity())
<< ", compile_threshold=" << options->GetCompileThreshold()
<< ", save_profiling_info=" << options->GetSaveProfilingInfo();
return jit.release();
}
bool Jit::LoadCompiler(std::string* error_msg) {
jit_library_handle_ = dlopen(
kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW);
if (jit_library_handle_ == nullptr) {
std::ostringstream oss;
oss << "JIT could not load libart-compiler.so: " << dlerror();
*error_msg = oss.str();
return false;
}
jit_load_ = reinterpret_cast<void* (*)(bool*)>(dlsym(jit_library_handle_, "jit_load"));
if (jit_load_ == nullptr) {
dlclose(jit_library_handle_);
*error_msg = "JIT couldn't find jit_load entry point";
return false;
}
jit_unload_ = reinterpret_cast<void (*)(void*)>(
dlsym(jit_library_handle_, "jit_unload"));
if (jit_unload_ == nullptr) {
dlclose(jit_library_handle_);
*error_msg = "JIT couldn't find jit_unload entry point";
return false;
}
jit_compile_method_ = reinterpret_cast<bool (*)(void*, ArtMethod*, Thread*, bool)>(
dlsym(jit_library_handle_, "jit_compile_method"));
if (jit_compile_method_ == nullptr) {
dlclose(jit_library_handle_);
*error_msg = "JIT couldn't find jit_compile_method entry point";
return false;
}
jit_types_loaded_ = reinterpret_cast<void (*)(void*, mirror::Class**, size_t)>(
dlsym(jit_library_handle_, "jit_types_loaded"));
if (jit_types_loaded_ == nullptr) {
dlclose(jit_library_handle_);
*error_msg = "JIT couldn't find jit_types_loaded entry point";
return false;
}
bool will_generate_debug_symbols = false;
VLOG(jit) << "Calling JitLoad interpreter_only="
<< Runtime::Current()->GetInstrumentation()->InterpretOnly();
jit_compiler_handle_ = (jit_load_)(&will_generate_debug_symbols);
if (jit_compiler_handle_ == nullptr) {
dlclose(jit_library_handle_);
*error_msg = "JIT couldn't load compiler";
return false;
}
generate_debug_info_ = will_generate_debug_symbols;
return true;
}
bool Jit::CompileMethod(ArtMethod* method, Thread* self, bool osr) {
DCHECK(!method->IsRuntimeMethod());
// Don't compile the method if it has breakpoints.
if (Dbg::IsDebuggerActive() && Dbg::MethodHasAnyBreakpoints(method)) {
VLOG(jit) << "JIT not compiling " << PrettyMethod(method) << " due to breakpoint";
return false;
}
// Don't compile the method if we are supposed to be deoptimized.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) {
VLOG(jit) << "JIT not compiling " << PrettyMethod(method) << " due to deoptimization";
return false;
}
// If we get a request to compile a proxy method, we pass the actual Java method
// of that proxy method, as the compiler does not expect a proxy method.
ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(sizeof(void*));
if (!code_cache_->NotifyCompilationOf(method_to_compile, self, osr)) {
VLOG(jit) << "JIT not compiling " << PrettyMethod(method) << " due to code cache";
return false;
}
bool success = jit_compile_method_(jit_compiler_handle_, method_to_compile, self, osr);
code_cache_->DoneCompiling(method_to_compile, self);
return success;
}
void Jit::CreateThreadPool() {
CHECK(instrumentation_cache_.get() != nullptr);
instrumentation_cache_->CreateThreadPool();
}
void Jit::DeleteThreadPool() {
if (instrumentation_cache_.get() != nullptr) {
instrumentation_cache_->DeleteThreadPool(Thread::Current());
}
}
void Jit::StartProfileSaver(const std::string& filename,
const std::vector<std::string>& code_paths) {
if (save_profiling_info_) {
ProfileSaver::Start(filename, code_cache_.get(), code_paths);
}
}
void Jit::StopProfileSaver() {
if (save_profiling_info_ && ProfileSaver::IsStarted()) {
ProfileSaver::Stop();
}
}
bool Jit::JitAtFirstUse() {
if (instrumentation_cache_ != nullptr) {
return instrumentation_cache_->HotMethodThreshold() == 0;
}
return false;
}
Jit::~Jit() {
DCHECK(!save_profiling_info_ || !ProfileSaver::IsStarted());
if (dump_info_on_shutdown_) {
DumpInfo(LOG(INFO));
}
DeleteThreadPool();
if (jit_compiler_handle_ != nullptr) {
jit_unload_(jit_compiler_handle_);
}
if (jit_library_handle_ != nullptr) {
dlclose(jit_library_handle_);
}
}
void Jit::CreateInstrumentationCache(size_t compile_threshold,
size_t warmup_threshold,
size_t osr_threshold) {
instrumentation_cache_.reset(
new jit::JitInstrumentationCache(compile_threshold, warmup_threshold, osr_threshold));
}
void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) {
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr && jit->generate_debug_info_) {
DCHECK(jit->jit_types_loaded_ != nullptr);
jit->jit_types_loaded_(jit->jit_compiler_handle_, &type, 1);
}
}
void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) {
struct CollectClasses : public ClassVisitor {
bool operator()(mirror::Class* klass) override {
classes_.push_back(klass);
return true;
}
std::vector<mirror::Class*> classes_;
};
if (generate_debug_info_) {
ScopedObjectAccess so(Thread::Current());
CollectClasses visitor;
linker->VisitClasses(&visitor);
jit_types_loaded_(jit_compiler_handle_, visitor.classes_.data(), visitor.classes_.size());
}
}
extern "C" void art_quick_osr_stub(void** stack,
uint32_t stack_size_in_bytes,
const uint8_t* native_pc,
JValue* result,
const char* shorty,
Thread* self);
bool Jit::MaybeDoOnStackReplacement(Thread* thread,
ArtMethod* method,
uint32_t dex_pc,
int32_t dex_pc_offset,
JValue* result) {
if (!kEnableOnStackReplacement) {
return false;
}
Jit* jit = Runtime::Current()->GetJit();
if (jit == nullptr) {
return false;
}
if (kRuntimeISA == kMips || kRuntimeISA == kMips64) {
VLOG(jit) << "OSR not supported on this platform: " << kRuntimeISA;
return false;
}
if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) {
// Don't attempt to do an OSR if we are close to the stack limit. Since
// the interpreter frames are still on stack, OSR has the potential
// to stack overflow even for a simple loop.
// b/27094810.
return false;
}
// Get the actual Java method if this method is from a proxy class. The compiler
// and the JIT code cache do not expect methods from proxy classes.
method = method->GetInterfaceMethodIfProxy(sizeof(void*));
// Cheap check if the method has been compiled already. That's an indicator that we should
// osr into it.
if (!jit->GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
return false;
}
// Fetch some data before looking up for an OSR method. We don't want thread
// suspension once we hold an OSR method, as the JIT code cache could delete the OSR
// method while we are being suspended.
const size_t number_of_vregs = method->GetCodeItem()->registers_size_;
const char* shorty = method->GetShorty();
std::string method_name(VLOG_IS_ON(jit) ? PrettyMethod(method) : "");
void** memory = nullptr;
size_t frame_size = 0;
ShadowFrame* shadow_frame = nullptr;
const uint8_t* native_pc = nullptr;
{
ScopedAssertNoThreadSuspension sts(thread, "Holding OSR method");
const OatQuickMethodHeader* osr_method = jit->GetCodeCache()->LookupOsrMethodHeader(method);
if (osr_method == nullptr) {
// No osr method yet, just return to the interpreter.
return false;
}
CodeInfo code_info = osr_method->GetOptimizedCodeInfo();
StackMapEncoding encoding = code_info.ExtractEncoding();
// Find stack map starting at the target dex_pc.
StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc + dex_pc_offset, encoding);
if (!stack_map.IsValid()) {
// There is no OSR stack map for this dex pc offset. Just return to the interpreter in the
// hope that the next branch has one.
return false;
}
// We found a stack map, now fill the frame with dex register values from the interpreter's
// shadow frame.
DexRegisterMap vreg_map =
code_info.GetDexRegisterMapOf(stack_map, encoding, number_of_vregs);
frame_size = osr_method->GetFrameSizeInBytes();
// Allocate memory to put shadow frame values. The osr stub will copy that memory to
// stack.
// Note that we could pass the shadow frame to the stub, and let it copy the values there,
// but that is engineering complexity not worth the effort for something like OSR.
memory = reinterpret_cast<void**>(malloc(frame_size));
CHECK(memory != nullptr);
memset(memory, 0, frame_size);
// Art ABI: ArtMethod is at the bottom of the stack.
memory[0] = method;
shadow_frame = thread->PopShadowFrame();
if (!vreg_map.IsValid()) {
// If we don't have a dex register map, then there are no live dex registers at
// this dex pc.
} else {
for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) {
DexRegisterLocation::Kind location =
vreg_map.GetLocationKind(vreg, number_of_vregs, code_info, encoding);
if (location == DexRegisterLocation::Kind::kNone) {
// Dex register is dead or uninitialized.
continue;
}
if (location == DexRegisterLocation::Kind::kConstant) {
// We skip constants because the compiled code knows how to handle them.
continue;
}
DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack);
int32_t vreg_value = shadow_frame->GetVReg(vreg);
int32_t slot_offset = vreg_map.GetStackOffsetInBytes(vreg,
number_of_vregs,
code_info,
encoding);
DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size));
DCHECK_GT(slot_offset, 0);
(reinterpret_cast<int32_t*>(memory))[slot_offset / sizeof(int32_t)] = vreg_value;
}
}
native_pc = stack_map.GetNativePcOffset(encoding) + osr_method->GetEntryPoint();
VLOG(jit) << "Jumping to "
<< method_name
<< "@"
<< std::hex << reinterpret_cast<uintptr_t>(native_pc);
}
{
ManagedStack fragment;
thread->PushManagedStackFragment(&fragment);
(*art_quick_osr_stub)(memory,
frame_size,
native_pc,
result,
shorty,
thread);
if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) {
thread->DeoptimizeWithDeoptimizationException(result);
}
thread->PopManagedStackFragment(fragment);
}
free(memory);
thread->PushShadowFrame(shadow_frame);
VLOG(jit) << "Done running OSR code for " << method_name;
return true;
}
} // namespace jit
} // namespace art