| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_ |
| #define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_ |
| |
| #include "invoke_type.h" |
| #include "compiled_method.h" |
| #include "dex/compiler_enums.h" |
| #include "dex/compiler_ir.h" |
| #include "dex/reg_storage.h" |
| #include "dex/backend.h" |
| #include "driver/compiler_driver.h" |
| #include "leb128.h" |
| #include "safe_map.h" |
| #include "utils/arena_allocator.h" |
| #include "utils/growable_array.h" |
| |
| namespace art { |
| |
| /* |
| * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to |
| * add type safety (see runtime/offsets.h). |
| */ |
| typedef uint32_t DexOffset; // Dex offset in code units. |
| typedef uint16_t NarrowDexOffset; // For use in structs, Dex offsets range from 0 .. 0xffff. |
| typedef uint32_t CodeOffset; // Native code offset in bytes. |
| |
| // Set to 1 to measure cost of suspend check. |
| #define NO_SUSPEND 0 |
| |
| #define IS_BINARY_OP (1ULL << kIsBinaryOp) |
| #define IS_BRANCH (1ULL << kIsBranch) |
| #define IS_IT (1ULL << kIsIT) |
| #define IS_LOAD (1ULL << kMemLoad) |
| #define IS_QUAD_OP (1ULL << kIsQuadOp) |
| #define IS_QUIN_OP (1ULL << kIsQuinOp) |
| #define IS_SEXTUPLE_OP (1ULL << kIsSextupleOp) |
| #define IS_STORE (1ULL << kMemStore) |
| #define IS_TERTIARY_OP (1ULL << kIsTertiaryOp) |
| #define IS_UNARY_OP (1ULL << kIsUnaryOp) |
| #define NEEDS_FIXUP (1ULL << kPCRelFixup) |
| #define NO_OPERAND (1ULL << kNoOperand) |
| #define REG_DEF0 (1ULL << kRegDef0) |
| #define REG_DEF1 (1ULL << kRegDef1) |
| #define REG_DEF2 (1ULL << kRegDef2) |
| #define REG_DEFA (1ULL << kRegDefA) |
| #define REG_DEFD (1ULL << kRegDefD) |
| #define REG_DEF_FPCS_LIST0 (1ULL << kRegDefFPCSList0) |
| #define REG_DEF_FPCS_LIST2 (1ULL << kRegDefFPCSList2) |
| #define REG_DEF_LIST0 (1ULL << kRegDefList0) |
| #define REG_DEF_LIST1 (1ULL << kRegDefList1) |
| #define REG_DEF_LR (1ULL << kRegDefLR) |
| #define REG_DEF_SP (1ULL << kRegDefSP) |
| #define REG_USE0 (1ULL << kRegUse0) |
| #define REG_USE1 (1ULL << kRegUse1) |
| #define REG_USE2 (1ULL << kRegUse2) |
| #define REG_USE3 (1ULL << kRegUse3) |
| #define REG_USE4 (1ULL << kRegUse4) |
| #define REG_USEA (1ULL << kRegUseA) |
| #define REG_USEC (1ULL << kRegUseC) |
| #define REG_USED (1ULL << kRegUseD) |
| #define REG_USEB (1ULL << kRegUseB) |
| #define REG_USE_FPCS_LIST0 (1ULL << kRegUseFPCSList0) |
| #define REG_USE_FPCS_LIST2 (1ULL << kRegUseFPCSList2) |
| #define REG_USE_LIST0 (1ULL << kRegUseList0) |
| #define REG_USE_LIST1 (1ULL << kRegUseList1) |
| #define REG_USE_LR (1ULL << kRegUseLR) |
| #define REG_USE_PC (1ULL << kRegUsePC) |
| #define REG_USE_SP (1ULL << kRegUseSP) |
| #define SETS_CCODES (1ULL << kSetsCCodes) |
| #define USES_CCODES (1ULL << kUsesCCodes) |
| #define USE_FP_STACK (1ULL << kUseFpStack) |
| #define REG_USE_LO (1ULL << kUseLo) |
| #define REG_USE_HI (1ULL << kUseHi) |
| #define REG_DEF_LO (1ULL << kDefLo) |
| #define REG_DEF_HI (1ULL << kDefHi) |
| |
| // Common combo register usage patterns. |
| #define REG_DEF01 (REG_DEF0 | REG_DEF1) |
| #define REG_DEF012 (REG_DEF0 | REG_DEF1 | REG_DEF2) |
| #define REG_DEF01_USE2 (REG_DEF0 | REG_DEF1 | REG_USE2) |
| #define REG_DEF0_USE01 (REG_DEF0 | REG_USE01) |
| #define REG_DEF0_USE0 (REG_DEF0 | REG_USE0) |
| #define REG_DEF0_USE12 (REG_DEF0 | REG_USE12) |
| #define REG_DEF0_USE123 (REG_DEF0 | REG_USE123) |
| #define REG_DEF0_USE1 (REG_DEF0 | REG_USE1) |
| #define REG_DEF0_USE2 (REG_DEF0 | REG_USE2) |
| #define REG_DEFAD_USEAD (REG_DEFAD_USEA | REG_USED) |
| #define REG_DEFAD_USEA (REG_DEFA_USEA | REG_DEFD) |
| #define REG_DEFA_USEA (REG_DEFA | REG_USEA) |
| #define REG_USE012 (REG_USE01 | REG_USE2) |
| #define REG_USE014 (REG_USE01 | REG_USE4) |
| #define REG_USE01 (REG_USE0 | REG_USE1) |
| #define REG_USE02 (REG_USE0 | REG_USE2) |
| #define REG_USE12 (REG_USE1 | REG_USE2) |
| #define REG_USE23 (REG_USE2 | REG_USE3) |
| #define REG_USE123 (REG_USE1 | REG_USE2 | REG_USE3) |
| |
| // TODO: #includes need a cleanup |
| #ifndef INVALID_SREG |
| #define INVALID_SREG (-1) |
| #endif |
| |
| struct BasicBlock; |
| struct CallInfo; |
| struct CompilationUnit; |
| struct InlineMethod; |
| struct MIR; |
| struct LIR; |
| struct RegLocation; |
| struct RegisterInfo; |
| class DexFileMethodInliner; |
| class MIRGraph; |
| class Mir2Lir; |
| |
| typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int, |
| const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t direct_code, |
| uintptr_t direct_method, InvokeType type); |
| |
| typedef std::vector<uint8_t> CodeBuffer; |
| |
| struct UseDefMasks { |
| uint64_t use_mask; // Resource mask for use. |
| uint64_t def_mask; // Resource mask for def. |
| }; |
| |
| struct AssemblyInfo { |
| LIR* pcrel_next; // Chain of LIR nodes needing pc relative fixups. |
| }; |
| |
| struct LIR { |
| CodeOffset offset; // Offset of this instruction. |
| NarrowDexOffset dalvik_offset; // Offset of Dalvik opcode in code units (16-bit words). |
| int16_t opcode; |
| LIR* next; |
| LIR* prev; |
| LIR* target; |
| struct { |
| unsigned int alias_info:17; // For Dalvik register disambiguation. |
| bool is_nop:1; // LIR is optimized away. |
| unsigned int size:4; // Note: size of encoded instruction is in bytes. |
| bool use_def_invalid:1; // If true, masks should not be used. |
| unsigned int generation:1; // Used to track visitation state during fixup pass. |
| unsigned int fixup:8; // Fixup kind. |
| } flags; |
| union { |
| UseDefMasks m; // Use & Def masks used during optimization. |
| AssemblyInfo a; // Instruction info used during assembly phase. |
| } u; |
| int32_t operands[5]; // [0..4] = [dest, src1, src2, extra, extra2]. |
| }; |
| |
| // Target-specific initialization. |
| Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, |
| ArenaAllocator* const arena); |
| Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, |
| ArenaAllocator* const arena); |
| Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, |
| ArenaAllocator* const arena); |
| Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, |
| ArenaAllocator* const arena); |
| |
| // Utility macros to traverse the LIR list. |
| #define NEXT_LIR(lir) (lir->next) |
| #define PREV_LIR(lir) (lir->prev) |
| |
| // Defines for alias_info (tracks Dalvik register references). |
| #define DECODE_ALIAS_INFO_REG(X) (X & 0xffff) |
| #define DECODE_ALIAS_INFO_WIDE_FLAG (0x10000) |
| #define DECODE_ALIAS_INFO_WIDE(X) ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0) |
| #define ENCODE_ALIAS_INFO(REG, ISWIDE) (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0)) |
| |
| // Common resource macros. |
| #define ENCODE_CCODE (1ULL << kCCode) |
| #define ENCODE_FP_STATUS (1ULL << kFPStatus) |
| |
| // Abstract memory locations. |
| #define ENCODE_DALVIK_REG (1ULL << kDalvikReg) |
| #define ENCODE_LITERAL (1ULL << kLiteral) |
| #define ENCODE_HEAP_REF (1ULL << kHeapRef) |
| #define ENCODE_MUST_NOT_ALIAS (1ULL << kMustNotAlias) |
| |
| #define ENCODE_ALL (~0ULL) |
| #define ENCODE_MEM (ENCODE_DALVIK_REG | ENCODE_LITERAL | \ |
| ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS) |
| |
| #define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8)) |
| #define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \ |
| do { \ |
| low_reg = both_regs & 0xff; \ |
| high_reg = (both_regs >> 8) & 0xff; \ |
| } while (false) |
| |
| // Mask to denote sreg as the start of a double. Must not interfere with low 16 bits. |
| #define STARTING_DOUBLE_SREG 0x10000 |
| |
| // TODO: replace these macros |
| #define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath)) |
| #define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath)) |
| #define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath)) |
| #define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath)) |
| #define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath)) |
| |
| class Mir2Lir : public Backend { |
| public: |
| /* |
| * Auxiliary information describing the location of data embedded in the Dalvik |
| * byte code stream. |
| */ |
| struct EmbeddedData { |
| CodeOffset offset; // Code offset of data block. |
| const uint16_t* table; // Original dex data. |
| DexOffset vaddr; // Dalvik offset of parent opcode. |
| }; |
| |
| struct FillArrayData : EmbeddedData { |
| int32_t size; |
| }; |
| |
| struct SwitchTable : EmbeddedData { |
| LIR* anchor; // Reference instruction for relative offsets. |
| LIR** targets; // Array of case targets. |
| }; |
| |
| /* Static register use counts */ |
| struct RefCounts { |
| int count; |
| int s_reg; |
| }; |
| |
| /* |
| * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits) |
| * and native register storage. The primary purpose is to reuse previuosly |
| * loaded values, if possible, and otherwise to keep the value in register |
| * storage as long as possible. |
| * |
| * NOTE 1: wide_value refers to the width of the Dalvik value contained in |
| * this register (or pair). For example, a 64-bit register containing a 32-bit |
| * Dalvik value would have wide_value==false even though the storage container itself |
| * is wide. Similarly, a 32-bit register containing half of a 64-bit Dalvik value |
| * would have wide_value==true (and additionally would have its partner field set to the |
| * other half whose wide_value field would also be true. |
| * |
| * NOTE 2: In the case of a register pair, you can determine which of the partners |
| * is the low half by looking at the s_reg names. The high s_reg will equal low_sreg + 1. |
| * |
| * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value |
| * will be true and partner==self. s_reg refers to the low-order word of the Dalvik |
| * value, and the s_reg of the high word is implied (s_reg + 1). |
| * |
| * NOTE 4: The reg and is_temp fields should always be correct. If is_temp is false no |
| * other fields have meaning. [perhaps not true, wide should work for promoted regs?] |
| * If is_temp==true and live==false, no other fields have |
| * meaning. If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start |
| * and def_end describe the relationship between the temp register/register pair and |
| * the Dalvik value[s] described by s_reg/s_reg+1. |
| * |
| * The fields used_storage, master_storage and storage_mask are used to track allocation |
| * in light of potential aliasing. For example, consider Arm's d2, which overlaps s4 & s5. |
| * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of |
| * storage use. For s4, it would be 0x0000001; for s5 0x00000002. These values should not |
| * change once initialized. The "used_storage" field tracks current allocation status. |
| * Although each record contains this field, only the field from the largest member of |
| * an aliased group is used. In our case, it would be d2's. The master_storage pointer |
| * of d2, s4 and s5 would all point to d2's used_storage field. Each bit in a used_storage |
| * represents 32 bits of storage. d2's used_storage would be initialized to 0xfffffffc. |
| * Then, if we wanted to determine whether s4 could be allocated, we would "and" |
| * s4's storage_mask with s4's *master_storage. If the result is zero, s4 is free and |
| * to allocate: *master_storage |= storage_mask. To free, *master_storage &= ~storage_mask. |
| * |
| * For an X86 vector register example, storage_mask would be: |
| * 0x00000001 for 32-bit view of xmm1 |
| * 0x00000003 for 64-bit view of xmm1 |
| * 0x0000000f for 128-bit view of xmm1 |
| * 0x000000ff for 256-bit view of ymm1 // future expansion, if needed |
| * 0x0000ffff for 512-bit view of ymm1 // future expansion, if needed |
| * 0xffffffff for 1024-bit view of ymm1 // future expansion, if needed |
| * |
| * The "liveness" of a register is handled in a similar way. The liveness_ storage is |
| * held in the widest member of an aliased set. Note, though, that for a temp register to |
| * reused as live, it must both be marked live and the associated SReg() must match the |
| * desired s_reg. This gets a little complicated when dealing with aliased registers. All |
| * members of an aliased set will share the same liveness flags, but each will individually |
| * maintain s_reg_. In this way we can know that at least one member of an |
| * aliased set is live, but will only fully match on the appropriate alias view. For example, |
| * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9 |
| * because it is wide), its aliases s2 and s3 will show as live, but will have |
| * s_reg_ == INVALID_SREG. An attempt to later AllocLiveReg() of v9 with a single-precision |
| * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9. |
| * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will |
| * report that v9 is currently not live as a single (which is what we want). |
| * |
| * NOTE: the x86 usage is still somewhat in flux. There are competing notions of how |
| * to treat xmm registers: |
| * 1. Treat them all as 128-bits wide, but denote how much data used via bytes field. |
| * o This more closely matches reality, but means you'd need to be able to get |
| * to the associated RegisterInfo struct to figure out how it's being used. |
| * o This is how 64-bit core registers will be used - always 64 bits, but the |
| * "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage. |
| * 2. View the xmm registers based on contents. |
| * o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would |
| * be a k64BitVector. |
| * o Note that the two uses above would be considered distinct registers (but with |
| * the aliasing mechanism, we could detect interference). |
| * o This is how aliased double and single float registers will be handled on |
| * Arm and MIPS. |
| * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and |
| * mechanism 2 for aliased float registers and x86 vector registers. |
| */ |
| class RegisterInfo { |
| public: |
| RegisterInfo(RegStorage r, uint64_t mask = ENCODE_ALL); |
| ~RegisterInfo() {} |
| static void* operator new(size_t size, ArenaAllocator* arena) { |
| return arena->Alloc(size, kArenaAllocRegAlloc); |
| } |
| |
| bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; } |
| void MarkInUse() { master_->used_storage_ |= storage_mask_; } |
| void MarkFree() { master_->used_storage_ &= ~storage_mask_; } |
| // No part of the containing storage is live in this view. |
| bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; } |
| // Liveness of this view matches. Note: not equivalent to !IsDead(). |
| bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; } |
| void MarkLive() { master_->liveness_ |= storage_mask_; } |
| void MarkDead() { |
| master_->liveness_ &= ~storage_mask_; |
| SetSReg(INVALID_SREG); |
| } |
| RegStorage GetReg() { return reg_; } |
| void SetReg(RegStorage reg) { reg_ = reg; } |
| bool IsTemp() { return is_temp_; } |
| void SetIsTemp(bool val) { is_temp_ = val; } |
| bool IsWide() { return wide_value_; } |
| void SetIsWide(bool val) { wide_value_ = val; } |
| bool IsDirty() { return dirty_; } |
| void SetIsDirty(bool val) { dirty_ = val; } |
| RegStorage Partner() { return partner_; } |
| void SetPartner(RegStorage partner) { partner_ = partner; } |
| int SReg() { return s_reg_; } |
| void SetSReg(int s_reg) { s_reg_ = s_reg; } |
| uint64_t DefUseMask() { return def_use_mask_; } |
| void SetDefUseMask(uint64_t def_use_mask) { def_use_mask_ = def_use_mask; } |
| RegisterInfo* Master() { return master_; } |
| void SetMaster(RegisterInfo* master) { |
| master_ = master; |
| if (master != this) { |
| master_->aliased_ = true; |
| DCHECK(alias_chain_ == nullptr); |
| alias_chain_ = master_->alias_chain_; |
| master_->alias_chain_ = this; |
| } |
| } |
| bool IsAliased() { return aliased_; } |
| RegisterInfo* GetAliasChain() { return alias_chain_; } |
| uint32_t StorageMask() { return storage_mask_; } |
| void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; } |
| LIR* DefStart() { return def_start_; } |
| void SetDefStart(LIR* def_start) { def_start_ = def_start; } |
| LIR* DefEnd() { return def_end_; } |
| void SetDefEnd(LIR* def_end) { def_end_ = def_end; } |
| void ResetDefBody() { def_start_ = def_end_ = nullptr; } |
| |
| |
| private: |
| RegStorage reg_; |
| bool is_temp_; // Can allocate as temp? |
| bool wide_value_; // Holds a Dalvik wide value (either itself, or part of a pair). |
| bool dirty_; // If live, is it dirty? |
| bool aliased_; // Is this the master for other aliased RegisterInfo's? |
| RegStorage partner_; // If wide_value, other reg of pair or self if 64-bit register. |
| int s_reg_; // Name of live value. |
| uint64_t def_use_mask_; // Resources for this element. |
| uint32_t used_storage_; // 1 bit per 4 bytes of storage. Unused by aliases. |
| uint32_t liveness_; // 1 bit per 4 bytes of storage. Unused by aliases. |
| RegisterInfo* master_; // Pointer to controlling storage mask. |
| uint32_t storage_mask_; // Track allocation of sub-units. |
| LIR *def_start_; // Starting inst in last def sequence. |
| LIR *def_end_; // Ending inst in last def sequence. |
| RegisterInfo* alias_chain_; // Chain of aliased registers. |
| }; |
| |
| class RegisterPool { |
| public: |
| RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena, const std::vector<RegStorage>& core_regs, |
| const std::vector<RegStorage>& sp_regs, const std::vector<RegStorage>& dp_regs, |
| const std::vector<RegStorage>& reserved_regs, |
| const std::vector<RegStorage>& core_temps, |
| const std::vector<RegStorage>& sp_temps, |
| const std::vector<RegStorage>& dp_temps); |
| ~RegisterPool() {} |
| static void* operator new(size_t size, ArenaAllocator* arena) { |
| return arena->Alloc(size, kArenaAllocRegAlloc); |
| } |
| void ResetNextTemp() { |
| next_core_reg_ = 0; |
| next_sp_reg_ = 0; |
| next_dp_reg_ = 0; |
| } |
| GrowableArray<RegisterInfo*> core_regs_; |
| int next_core_reg_; |
| GrowableArray<RegisterInfo*> sp_regs_; // Single precision float. |
| int next_sp_reg_; |
| GrowableArray<RegisterInfo*> dp_regs_; // Double precision float. |
| int next_dp_reg_; |
| |
| private: |
| Mir2Lir* const m2l_; |
| }; |
| |
| struct PromotionMap { |
| RegLocationType core_location:3; |
| uint8_t core_reg; |
| RegLocationType fp_location:3; |
| uint8_t FpReg; |
| bool first_in_pair; |
| }; |
| |
| // |
| // Slow paths. This object is used generate a sequence of code that is executed in the |
| // slow path. For example, resolving a string or class is slow as it will only be executed |
| // once (after that it is resolved and doesn't need to be done again). We want slow paths |
| // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward |
| // branch over them. |
| // |
| // If you want to create a slow path, declare a class derived from LIRSlowPath and provide |
| // the Compile() function that will be called near the end of the code generated by the |
| // method. |
| // |
| // The basic flow for a slow path is: |
| // |
| // CMP reg, #value |
| // BEQ fromfast |
| // cont: |
| // ... |
| // fast path code |
| // ... |
| // more code |
| // ... |
| // RETURN |
| /// |
| // fromfast: |
| // ... |
| // slow path code |
| // ... |
| // B cont |
| // |
| // So you see we need two labels and two branches. The first branch (called fromfast) is |
| // the conditional branch to the slow path code. The second label (called cont) is used |
| // as an unconditional branch target for getting back to the code after the slow path |
| // has completed. |
| // |
| |
| class LIRSlowPath { |
| public: |
| LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast, |
| LIR* cont = nullptr) : |
| m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) { |
| } |
| virtual ~LIRSlowPath() {} |
| virtual void Compile() = 0; |
| |
| static void* operator new(size_t size, ArenaAllocator* arena) { |
| return arena->Alloc(size, kArenaAllocData); |
| } |
| |
| protected: |
| LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel); |
| |
| Mir2Lir* const m2l_; |
| CompilationUnit* const cu_; |
| const DexOffset current_dex_pc_; |
| LIR* const fromfast_; |
| LIR* const cont_; |
| }; |
| |
| virtual ~Mir2Lir() {} |
| |
| int32_t s4FromSwitchData(const void* switch_data) { |
| return *reinterpret_cast<const int32_t*>(switch_data); |
| } |
| |
| /* |
| * TODO: this is a trace JIT vestige, and its use should be reconsidered. At the time |
| * it was introduced, it was intended to be a quick best guess of type without having to |
| * take the time to do type analysis. Currently, though, we have a much better idea of |
| * the types of Dalvik virtual registers. Instead of using this for a best guess, why not |
| * just use our knowledge of type to select the most appropriate register class? |
| */ |
| RegisterClass RegClassBySize(OpSize size) { |
| return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte || |
| size == kSignedByte) ? kCoreReg : kAnyReg; |
| } |
| |
| size_t CodeBufferSizeInBytes() { |
| return code_buffer_.size() / sizeof(code_buffer_[0]); |
| } |
| |
| static bool IsPseudoLirOp(int opcode) { |
| return (opcode < 0); |
| } |
| |
| /* |
| * LIR operands are 32-bit integers. Sometimes, (especially for managing |
| * instructions which require PC-relative fixups), we need the operands to carry |
| * pointers. To do this, we assign these pointers an index in pointer_storage_, and |
| * hold that index in the operand array. |
| * TUNING: If use of these utilities becomes more common on 32-bit builds, it |
| * may be worth conditionally-compiling a set of identity functions here. |
| */ |
| uint32_t WrapPointer(void* pointer) { |
| uint32_t res = pointer_storage_.Size(); |
| pointer_storage_.Insert(pointer); |
| return res; |
| } |
| |
| void* UnwrapPointer(size_t index) { |
| return pointer_storage_.Get(index); |
| } |
| |
| // strdup(), but allocates from the arena. |
| char* ArenaStrdup(const char* str) { |
| size_t len = strlen(str) + 1; |
| char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc)); |
| if (res != NULL) { |
| strncpy(res, str, len); |
| } |
| return res; |
| } |
| |
| // Shared by all targets - implemented in codegen_util.cc |
| void AppendLIR(LIR* lir); |
| void InsertLIRBefore(LIR* current_lir, LIR* new_lir); |
| void InsertLIRAfter(LIR* current_lir, LIR* new_lir); |
| |
| /** |
| * @brief Provides the maximum number of compiler temporaries that the backend can/wants |
| * to place in a frame. |
| * @return Returns the maximum number of compiler temporaries. |
| */ |
| size_t GetMaxPossibleCompilerTemps() const; |
| |
| /** |
| * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries. |
| * @return Returns the size in bytes for space needed for compiler temporary spill region. |
| */ |
| size_t GetNumBytesForCompilerTempSpillRegion(); |
| |
| DexOffset GetCurrentDexPc() const { |
| return current_dalvik_offset_; |
| } |
| |
| int ComputeFrameSize(); |
| virtual void Materialize(); |
| virtual CompiledMethod* GetCompiledMethod(); |
| void MarkSafepointPC(LIR* inst); |
| void SetupResourceMasks(LIR* lir); |
| void SetMemRefType(LIR* lir, bool is_load, int mem_type); |
| void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit); |
| void SetupRegMask(uint64_t* mask, int reg); |
| void DumpLIRInsn(LIR* arg, unsigned char* base_addr); |
| void DumpPromotionMap(); |
| void CodegenDump(); |
| LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0, |
| int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL); |
| LIR* NewLIR0(int opcode); |
| LIR* NewLIR1(int opcode, int dest); |
| LIR* NewLIR2(int opcode, int dest, int src1); |
| LIR* NewLIR2NoDest(int opcode, int src, int info); |
| LIR* NewLIR3(int opcode, int dest, int src1, int src2); |
| LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info); |
| LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2); |
| LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta); |
| LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi); |
| LIR* AddWordData(LIR* *constant_list_p, int value); |
| LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi); |
| void ProcessSwitchTables(); |
| void DumpSparseSwitchTable(const uint16_t* table); |
| void DumpPackedSwitchTable(const uint16_t* table); |
| void MarkBoundary(DexOffset offset, const char* inst_str); |
| void NopLIR(LIR* lir); |
| void UnlinkLIR(LIR* lir); |
| bool EvaluateBranch(Instruction::Code opcode, int src1, int src2); |
| bool IsInexpensiveConstant(RegLocation rl_src); |
| ConditionCode FlipComparisonOrder(ConditionCode before); |
| ConditionCode NegateComparison(ConditionCode before); |
| virtual void InstallLiteralPools(); |
| void InstallSwitchTables(); |
| void InstallFillArrayData(); |
| bool VerifyCatchEntries(); |
| void CreateMappingTables(); |
| void CreateNativeGcMap(); |
| int AssignLiteralOffset(CodeOffset offset); |
| int AssignSwitchTablesOffset(CodeOffset offset); |
| int AssignFillArrayDataOffset(CodeOffset offset); |
| LIR* InsertCaseLabel(DexOffset vaddr, int keyVal); |
| void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec); |
| void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec); |
| // Handle bookkeeping to convert a wide RegLocation to a narow RegLocation. No code generated. |
| RegLocation NarrowRegLoc(RegLocation loc); |
| |
| // Shared by all targets - implemented in local_optimizations.cc |
| void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src); |
| void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir); |
| void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir); |
| void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir); |
| |
| // Shared by all targets - implemented in ralloc_util.cc |
| int GetSRegHi(int lowSreg); |
| bool LiveOut(int s_reg); |
| void SimpleRegAlloc(); |
| void ResetRegPool(); |
| void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num); |
| void DumpRegPool(GrowableArray<RegisterInfo*>* regs); |
| void DumpCoreRegPool(); |
| void DumpFpRegPool(); |
| void DumpRegPools(); |
| /* Mark a temp register as dead. Does not affect allocation state. */ |
| void Clobber(RegStorage reg); |
| void ClobberSReg(int s_reg); |
| void ClobberAliases(RegisterInfo* info); |
| int SRegToPMap(int s_reg); |
| void RecordCorePromotion(RegStorage reg, int s_reg); |
| RegStorage AllocPreservedCoreReg(int s_reg); |
| void RecordSinglePromotion(RegStorage reg, int s_reg); |
| void RecordDoublePromotion(RegStorage reg, int s_reg); |
| RegStorage AllocPreservedSingle(int s_reg); |
| virtual RegStorage AllocPreservedDouble(int s_reg); |
| RegStorage AllocTempBody(GrowableArray<RegisterInfo*> ®s, int* next_temp, bool required); |
| RegStorage AllocFreeTemp(); |
| RegStorage AllocTemp(); |
| RegStorage AllocTempSingle(); |
| RegStorage AllocTempDouble(); |
| void FlushReg(RegStorage reg); |
| void FlushRegWide(RegStorage reg); |
| RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide); |
| RegStorage FindLiveReg(GrowableArray<RegisterInfo*> ®s, int s_reg); |
| void FreeTemp(RegStorage reg); |
| bool IsLive(RegStorage reg); |
| bool IsTemp(RegStorage reg); |
| bool IsPromoted(RegStorage reg); |
| bool IsDirty(RegStorage reg); |
| void LockTemp(RegStorage reg); |
| void ResetDef(RegStorage reg); |
| void NullifyRange(RegStorage reg, int s_reg); |
| void MarkDef(RegLocation rl, LIR *start, LIR *finish); |
| void MarkDefWide(RegLocation rl, LIR *start, LIR *finish); |
| RegLocation WideToNarrow(RegLocation rl); |
| void ResetDefLoc(RegLocation rl); |
| void ResetDefLocWide(RegLocation rl); |
| void ResetDefTracking(); |
| void ClobberAllTemps(); |
| void FlushSpecificReg(RegisterInfo* info); |
| void FlushAllRegs(); |
| bool RegClassMatches(int reg_class, RegStorage reg); |
| void MarkLive(RegLocation loc); |
| void MarkLiveReg(RegStorage reg, int s_reg); |
| void MarkTemp(RegStorage reg); |
| void UnmarkTemp(RegStorage reg); |
| void MarkWide(RegStorage reg); |
| void MarkClean(RegLocation loc); |
| void MarkDirty(RegLocation loc); |
| void MarkInUse(RegStorage reg); |
| bool CheckCorePoolSanity(); |
| RegLocation UpdateLoc(RegLocation loc); |
| RegLocation UpdateLocWide(RegLocation loc); |
| RegLocation UpdateRawLoc(RegLocation loc); |
| |
| /** |
| * @brief Used to prepare a register location to receive a wide value. |
| * @see EvalLoc |
| * @param loc the location where the value will be stored. |
| * @param reg_class Type of register needed. |
| * @param update Whether the liveness information should be updated. |
| * @return Returns the properly typed temporary in physical register pairs. |
| */ |
| RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update); |
| |
| /** |
| * @brief Used to prepare a register location to receive a value. |
| * @param loc the location where the value will be stored. |
| * @param reg_class Type of register needed. |
| * @param update Whether the liveness information should be updated. |
| * @return Returns the properly typed temporary in physical register. |
| */ |
| RegLocation EvalLoc(RegLocation loc, int reg_class, bool update); |
| |
| void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs); |
| void DumpCounts(const RefCounts* arr, int size, const char* msg); |
| void DoPromotion(); |
| int VRegOffset(int v_reg); |
| int SRegOffset(int s_reg); |
| RegLocation GetReturnWide(bool is_double); |
| RegLocation GetReturn(bool is_float); |
| RegisterInfo* GetRegInfo(RegStorage reg); |
| |
| // Shared by all targets - implemented in gen_common.cc. |
| void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr); |
| bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit); |
| bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit); |
| void HandleSlowPaths(); |
| void GenBarrier(); |
| void GenDivZeroException(); |
| // c_code holds condition code that's generated from testing divisor against 0. |
| void GenDivZeroCheck(ConditionCode c_code); |
| // reg holds divisor. |
| void GenDivZeroCheck(RegStorage reg); |
| void GenArrayBoundsCheck(RegStorage index, RegStorage length); |
| void GenArrayBoundsCheck(int32_t index, RegStorage length); |
| LIR* GenNullCheck(RegStorage reg); |
| void MarkPossibleNullPointerException(int opt_flags); |
| void MarkPossibleStackOverflowException(); |
| void ForceImplicitNullCheck(RegStorage reg, int opt_flags); |
| LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind); |
| LIR* GenNullCheck(RegStorage m_reg, int opt_flags); |
| LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags); |
| void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, |
| RegLocation rl_src2, LIR* taken, LIR* fall_through); |
| void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, |
| LIR* taken, LIR* fall_through); |
| void GenIntToLong(RegLocation rl_dest, RegLocation rl_src); |
| void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src); |
| void GenNewArray(uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src); |
| void GenFilledNewArray(CallInfo* info); |
| void GenSput(MIR* mir, RegLocation rl_src, |
| bool is_long_or_double, bool is_object); |
| void GenSget(MIR* mir, RegLocation rl_dest, |
| bool is_long_or_double, bool is_object); |
| void GenIGet(MIR* mir, int opt_flags, OpSize size, |
| RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object); |
| void GenIPut(MIR* mir, int opt_flags, OpSize size, |
| RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object); |
| void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index, |
| RegLocation rl_src); |
| |
| void GenConstClass(uint32_t type_idx, RegLocation rl_dest); |
| void GenConstString(uint32_t string_idx, RegLocation rl_dest); |
| void GenNewInstance(uint32_t type_idx, RegLocation rl_dest); |
| void GenThrow(RegLocation rl_src); |
| void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src); |
| void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src); |
| void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2); |
| void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_shift); |
| void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src, int lit); |
| void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2); |
| template <size_t pointer_size> |
| void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest, |
| RegLocation rl_src); |
| void GenSuspendTest(int opt_flags); |
| void GenSuspendTestAndBranch(int opt_flags, LIR* target); |
| |
| // This will be overridden by x86 implementation. |
| virtual void GenConstWide(RegLocation rl_dest, int64_t value); |
| virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2); |
| |
| // Shared by all targets - implemented in gen_invoke.cc. |
| template <size_t pointer_size> |
| LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc, |
| bool use_link = true); |
| RegStorage CallHelperSetup(ThreadOffset<4> helper_offset); |
| RegStorage CallHelperSetup(ThreadOffset<8> helper_offset); |
| template <size_t pointer_size> |
| void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0, |
| RegLocation arg1, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0, |
| int arg1, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset, |
| RegStorage arg0, RegLocation arg2, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset, |
| RegLocation arg0, RegLocation arg1, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, |
| RegStorage arg1, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, |
| RegStorage arg1, int arg2, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0, |
| RegLocation arg2, bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset, |
| int arg0, RegLocation arg1, RegLocation arg2, |
| bool safepoint_pc); |
| template <size_t pointer_size> |
| void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset, |
| RegLocation arg0, RegLocation arg1, |
| RegLocation arg2, |
| bool safepoint_pc); |
| void GenInvoke(CallInfo* info); |
| void GenInvokeNoInline(CallInfo* info); |
| virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method); |
| int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel, |
| NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, |
| uintptr_t direct_code, uintptr_t direct_method, InvokeType type, |
| bool skip_this); |
| int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel, |
| NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, |
| uintptr_t direct_code, uintptr_t direct_method, InvokeType type, |
| bool skip_this); |
| |
| /** |
| * @brief Used to determine the register location of destination. |
| * @details This is needed during generation of inline intrinsics because it finds destination |
| * of return, |
| * either the physical register or the target of move-result. |
| * @param info Information about the invoke. |
| * @return Returns the destination location. |
| */ |
| RegLocation InlineTarget(CallInfo* info); |
| |
| /** |
| * @brief Used to determine the wide register location of destination. |
| * @see InlineTarget |
| * @param info Information about the invoke. |
| * @return Returns the destination location. |
| */ |
| RegLocation InlineTargetWide(CallInfo* info); |
| |
| bool GenInlinedCharAt(CallInfo* info); |
| bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty); |
| bool GenInlinedReverseBytes(CallInfo* info, OpSize size); |
| bool GenInlinedAbsInt(CallInfo* info); |
| bool GenInlinedAbsLong(CallInfo* info); |
| bool GenInlinedAbsFloat(CallInfo* info); |
| bool GenInlinedAbsDouble(CallInfo* info); |
| bool GenInlinedFloatCvt(CallInfo* info); |
| bool GenInlinedDoubleCvt(CallInfo* info); |
| virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based); |
| bool GenInlinedStringCompareTo(CallInfo* info); |
| bool GenInlinedCurrentThread(CallInfo* info); |
| bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile); |
| bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object, |
| bool is_volatile, bool is_ordered); |
| virtual int LoadArgRegs(CallInfo* info, int call_state, |
| NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, |
| uintptr_t direct_code, uintptr_t direct_method, InvokeType type, |
| bool skip_this); |
| |
| // Shared by all targets - implemented in gen_loadstore.cc. |
| RegLocation LoadCurrMethod(); |
| void LoadCurrMethodDirect(RegStorage r_tgt); |
| LIR* LoadConstant(RegStorage r_dest, int value); |
| // Natural word size. |
| LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) { |
| return LoadBaseDisp(r_base, displacement, r_dest, kWord); |
| } |
| // Load 32 bits, regardless of target. |
| LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest) { |
| return LoadBaseDisp(r_base, displacement, r_dest, k32); |
| } |
| // Load a reference at base + displacement and decompress into register. |
| LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) { |
| return LoadBaseDisp(r_base, displacement, r_dest, kReference); |
| } |
| // Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress. |
| RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind); |
| // Load Dalvik value with 64-bit memory storage. |
| RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind); |
| // Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress. |
| void LoadValueDirect(RegLocation rl_src, RegStorage r_dest); |
| // Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress. |
| void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest); |
| // Load Dalvik value with 64-bit memory storage. |
| void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest); |
| // Load Dalvik value with 64-bit memory storage. |
| void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest); |
| // Store an item of natural word size. |
| LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) { |
| return StoreBaseDisp(r_base, displacement, r_src, kWord); |
| } |
| // Store an uncompressed reference into a compressed 32-bit container. |
| LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) { |
| return StoreBaseDisp(r_base, displacement, r_src, kReference); |
| } |
| // Store 32 bits, regardless of target. |
| LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) { |
| return StoreBaseDisp(r_base, displacement, r_src, k32); |
| } |
| |
| /** |
| * @brief Used to do the final store in the destination as per bytecode semantics. |
| * @param rl_dest The destination dalvik register location. |
| * @param rl_src The source register location. Can be either physical register or dalvik register. |
| */ |
| void StoreValue(RegLocation rl_dest, RegLocation rl_src); |
| |
| /** |
| * @brief Used to do the final store in a wide destination as per bytecode semantics. |
| * @see StoreValue |
| * @param rl_dest The destination dalvik register location. |
| * @param rl_src The source register location. Can be either physical register or dalvik |
| * register. |
| */ |
| void StoreValueWide(RegLocation rl_dest, RegLocation rl_src); |
| |
| /** |
| * @brief Used to do the final store to a destination as per bytecode semantics. |
| * @see StoreValue |
| * @param rl_dest The destination dalvik register location. |
| * @param rl_src The source register location. It must be kLocPhysReg |
| * |
| * This is used for x86 two operand computations, where we have computed the correct |
| * register value that now needs to be properly registered. This is used to avoid an |
| * extra register copy that would result if StoreValue was called. |
| */ |
| void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src); |
| |
| /** |
| * @brief Used to do the final store in a wide destination as per bytecode semantics. |
| * @see StoreValueWide |
| * @param rl_dest The destination dalvik register location. |
| * @param rl_src The source register location. It must be kLocPhysReg |
| * |
| * This is used for x86 two operand computations, where we have computed the correct |
| * register values that now need to be properly registered. This is used to avoid an |
| * extra pair of register copies that would result if StoreValueWide was called. |
| */ |
| void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src); |
| |
| // Shared by all targets - implemented in mir_to_lir.cc. |
| void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list); |
| void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir); |
| bool MethodBlockCodeGen(BasicBlock* bb); |
| bool SpecialMIR2LIR(const InlineMethod& special); |
| void MethodMIR2LIR(); |
| // Update LIR for verbose listings. |
| void UpdateLIROffsets(); |
| |
| /* |
| * @brief Load the address of the dex method into the register. |
| * @param target_method The MethodReference of the method to be invoked. |
| * @param type How the method will be invoked. |
| * @param register that will contain the code address. |
| * @note register will be passed to TargetReg to get physical register. |
| */ |
| void LoadCodeAddress(const MethodReference& target_method, InvokeType type, |
| SpecialTargetRegister symbolic_reg); |
| |
| /* |
| * @brief Load the Method* of a dex method into the register. |
| * @param target_method The MethodReference of the method to be invoked. |
| * @param type How the method will be invoked. |
| * @param register that will contain the code address. |
| * @note register will be passed to TargetReg to get physical register. |
| */ |
| virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type, |
| SpecialTargetRegister symbolic_reg); |
| |
| /* |
| * @brief Load the Class* of a Dex Class type into the register. |
| * @param type How the method will be invoked. |
| * @param register that will contain the code address. |
| * @note register will be passed to TargetReg to get physical register. |
| */ |
| virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg); |
| |
| // Routines that work for the generic case, but may be overriden by target. |
| /* |
| * @brief Compare memory to immediate, and branch if condition true. |
| * @param cond The condition code that when true will branch to the target. |
| * @param temp_reg A temporary register that can be used if compare to memory is not |
| * supported by the architecture. |
| * @param base_reg The register holding the base address. |
| * @param offset The offset from the base. |
| * @param check_value The immediate to compare to. |
| * @returns The branch instruction that was generated. |
| */ |
| virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, |
| int offset, int check_value, LIR* target); |
| |
| // Required for target - codegen helpers. |
| virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) = 0; |
| virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0; |
| virtual LIR* CheckSuspendUsingLoad() = 0; |
| |
| virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0; |
| virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0; |
| |
| virtual LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest, |
| OpSize size) = 0; |
| virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, |
| OpSize size) = 0; |
| virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, |
| int scale, OpSize size) = 0; |
| virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, |
| int displacement, RegStorage r_dest, OpSize size) = 0; |
| virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0; |
| virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0; |
| virtual LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src, |
| OpSize size) = 0; |
| virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, |
| OpSize size) = 0; |
| virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, |
| int scale, OpSize size) = 0; |
| virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, |
| int displacement, RegStorage r_src, OpSize size) = 0; |
| virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0; |
| |
| // Required for target - register utilities. |
| virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class) = 0; |
| virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0; |
| virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0; |
| virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0; |
| virtual RegLocation GetReturnAlt() = 0; |
| virtual RegLocation GetReturnWideAlt() = 0; |
| virtual RegLocation LocCReturn() = 0; |
| virtual RegLocation LocCReturnDouble() = 0; |
| virtual RegLocation LocCReturnFloat() = 0; |
| virtual RegLocation LocCReturnWide() = 0; |
| virtual uint64_t GetRegMaskCommon(RegStorage reg) = 0; |
| virtual void AdjustSpillMask() = 0; |
| virtual void ClobberCallerSave() = 0; |
| virtual void FreeCallTemps() = 0; |
| virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0; |
| virtual void LockCallTemps() = 0; |
| virtual void MarkPreservedSingle(int v_reg, RegStorage reg) = 0; |
| virtual void MarkPreservedDouble(int v_reg, RegStorage reg) = 0; |
| virtual void CompilerInitializeRegAlloc() = 0; |
| |
| // Required for target - miscellaneous. |
| virtual void AssembleLIR() = 0; |
| virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0; |
| virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0; |
| virtual const char* GetTargetInstFmt(int opcode) = 0; |
| virtual const char* GetTargetInstName(int opcode) = 0; |
| virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0; |
| virtual uint64_t GetPCUseDefEncoding() = 0; |
| virtual uint64_t GetTargetInstFlags(int opcode) = 0; |
| virtual int GetInsnSize(LIR* lir) = 0; |
| virtual bool IsUnconditionalBranch(LIR* lir) = 0; |
| |
| // Check support for volatile load/store of a given size. |
| virtual bool SupportsVolatileLoadStore(OpSize size) = 0; |
| // Get the register class for load/store of a field. |
| virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0; |
| |
| // Required for target - Dalvik-level generators. |
| virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) = 0; |
| virtual void GenMulLong(Instruction::Code, |
| RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) = 0; |
| virtual void GenAddLong(Instruction::Code, |
| RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) = 0; |
| virtual void GenAndLong(Instruction::Code, |
| RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) = 0; |
| virtual void GenArithOpDouble(Instruction::Code opcode, |
| RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) = 0; |
| virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) = 0; |
| virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) = 0; |
| virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src) = 0; |
| virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0; |
| |
| /** |
| * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max. |
| * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm |
| * that applies on integers. The generated code will write the smallest or largest value |
| * directly into the destination register as specified by the invoke information. |
| * @param info Information about the invoke. |
| * @param is_min If true generates code that computes minimum. Otherwise computes maximum. |
| * @return Returns true if successfully generated |
| */ |
| virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0; |
| |
| virtual bool GenInlinedSqrt(CallInfo* info) = 0; |
| virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0; |
| virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0; |
| virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0; |
| virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) = 0; |
| virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) = 0; |
| virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) = 0; |
| virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, |
| bool is_div) = 0; |
| virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, |
| bool is_div) = 0; |
| /* |
| * @brief Generate an integer div or rem operation by a literal. |
| * @param rl_dest Destination Location. |
| * @param rl_src1 Numerator Location. |
| * @param rl_src2 Divisor Location. |
| * @param is_div 'true' if this is a division, 'false' for a remainder. |
| * @param check_zero 'true' if an exception should be generated if the divisor is 0. |
| */ |
| virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2, bool is_div, bool check_zero) = 0; |
| /* |
| * @brief Generate an integer div or rem operation by a literal. |
| * @param rl_dest Destination Location. |
| * @param rl_src Numerator Location. |
| * @param lit Divisor. |
| * @param is_div 'true' if this is a division, 'false' for a remainder. |
| */ |
| virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, |
| bool is_div) = 0; |
| virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0; |
| |
| /** |
| * @brief Used for generating code that throws ArithmeticException if both registers are zero. |
| * @details This is used for generating DivideByZero checks when divisor is held in two |
| * separate registers. |
| * @param reg The register holding the pair of 32-bit values. |
| */ |
| virtual void GenDivZeroCheckWide(RegStorage reg) = 0; |
| |
| virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0; |
| virtual void GenExitSequence() = 0; |
| virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0; |
| virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0; |
| virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0; |
| |
| /** |
| * @brief Lowers the kMirOpSelect MIR into LIR. |
| * @param bb The basic block in which the MIR is from. |
| * @param mir The MIR whose opcode is kMirOpSelect. |
| */ |
| virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0; |
| |
| /** |
| * @brief Used to generate a memory barrier in an architecture specific way. |
| * @details The last generated LIR will be considered for use as barrier. Namely, |
| * if the last LIR can be updated in a way where it will serve the semantics of |
| * barrier, then it will be used as such. Otherwise, a new LIR will be generated |
| * that can keep the semantics. |
| * @param barrier_kind The kind of memory barrier to generate. |
| * @return whether a new instruction was generated. |
| */ |
| virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0; |
| |
| virtual void GenMoveException(RegLocation rl_dest) = 0; |
| virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit, |
| int first_bit, int second_bit) = 0; |
| virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0; |
| virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0; |
| virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0; |
| virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0; |
| virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_dest, int scale) = 0; |
| virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_src, int scale, |
| bool card_mark) = 0; |
| virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_shift) = 0; |
| |
| // Required for target - single operation generators. |
| virtual LIR* OpUnconditionalBranch(LIR* target) = 0; |
| virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0; |
| virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, |
| LIR* target) = 0; |
| virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0; |
| virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0; |
| virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0; |
| virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0; |
| virtual void OpEndIT(LIR* it) = 0; |
| virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0; |
| virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0; |
| virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0; |
| virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0; |
| virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0; |
| virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0; |
| virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0; |
| virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0; |
| |
| /** |
| * @brief Used to generate an LIR that does a load from mem to reg. |
| * @param r_dest The destination physical register. |
| * @param r_base The base physical register for memory operand. |
| * @param offset The displacement for memory operand. |
| * @param move_type Specification on the move desired (size, alignment, register kind). |
| * @return Returns the generate move LIR. |
| */ |
| virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, |
| MoveType move_type) = 0; |
| |
| /** |
| * @brief Used to generate an LIR that does a store from reg to mem. |
| * @param r_base The base physical register for memory operand. |
| * @param offset The displacement for memory operand. |
| * @param r_src The destination physical register. |
| * @param bytes_to_move The number of bytes to move. |
| * @param is_aligned Whether the memory location is known to be aligned. |
| * @return Returns the generate move LIR. |
| */ |
| virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, |
| MoveType move_type) = 0; |
| |
| /** |
| * @brief Used for generating a conditional register to register operation. |
| * @param op The opcode kind. |
| * @param cc The condition code that when true will perform the opcode. |
| * @param r_dest The destination physical register. |
| * @param r_src The source physical register. |
| * @return Returns the newly created LIR or null in case of creation failure. |
| */ |
| virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0; |
| |
| virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0; |
| virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, |
| RegStorage r_src2) = 0; |
| virtual LIR* OpTestSuspend(LIR* target) = 0; |
| virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0; |
| virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0; |
| virtual LIR* OpVldm(RegStorage r_base, int count) = 0; |
| virtual LIR* OpVstm(RegStorage r_base, int count) = 0; |
| virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, |
| int offset) = 0; |
| virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0; |
| virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0; |
| virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0; |
| virtual bool InexpensiveConstantInt(int32_t value) = 0; |
| virtual bool InexpensiveConstantFloat(int32_t value) = 0; |
| virtual bool InexpensiveConstantLong(int64_t value) = 0; |
| virtual bool InexpensiveConstantDouble(int64_t value) = 0; |
| |
| // May be optimized by targets. |
| virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src); |
| virtual void GenMonitorExit(int opt_flags, RegLocation rl_src); |
| |
| // Temp workaround |
| void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg); |
| |
| protected: |
| Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena); |
| |
| CompilationUnit* GetCompilationUnit() { |
| return cu_; |
| } |
| /* |
| * @brief Returns the index of the lowest set bit in 'x'. |
| * @param x Value to be examined. |
| * @returns The bit number of the lowest bit set in the value. |
| */ |
| int32_t LowestSetBit(uint64_t x); |
| /* |
| * @brief Is this value a power of two? |
| * @param x Value to be examined. |
| * @returns 'true' if only 1 bit is set in the value. |
| */ |
| bool IsPowerOfTwo(uint64_t x); |
| /* |
| * @brief Do these SRs overlap? |
| * @param rl_op1 One RegLocation |
| * @param rl_op2 The other RegLocation |
| * @return 'true' if the VR pairs overlap |
| * |
| * Check to see if a result pair has a misaligned overlap with an operand pair. This |
| * is not usual for dx to generate, but it is legal (for now). In a future rev of |
| * dex, we'll want to make this case illegal. |
| */ |
| bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2); |
| |
| /* |
| * @brief Force a location (in a register) into a temporary register |
| * @param loc location of result |
| * @returns update location |
| */ |
| RegLocation ForceTemp(RegLocation loc); |
| |
| /* |
| * @brief Force a wide location (in registers) into temporary registers |
| * @param loc location of result |
| * @returns update location |
| */ |
| RegLocation ForceTempWide(RegLocation loc); |
| |
| static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) { |
| return wide ? k64 : ref ? kReference : k32; |
| } |
| |
| virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, |
| RegLocation rl_dest, RegLocation rl_src); |
| |
| void AddSlowPath(LIRSlowPath* slowpath); |
| |
| virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, |
| bool type_known_abstract, bool use_declaring_class, |
| bool can_assume_type_is_in_dex_cache, |
| uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src); |
| /* |
| * @brief Generate the debug_frame FDE information if possible. |
| * @returns pointer to vector containg CFE information, or NULL. |
| */ |
| virtual std::vector<uint8_t>* ReturnCallFrameInformation(); |
| |
| /** |
| * @brief Used to insert marker that can be used to associate MIR with LIR. |
| * @details Only inserts marker if verbosity is enabled. |
| * @param mir The mir that is currently being generated. |
| */ |
| void GenPrintLabel(MIR* mir); |
| |
| /** |
| * @brief Used to generate return sequence when there is no frame. |
| * @details Assumes that the return registers have already been populated. |
| */ |
| virtual void GenSpecialExitSequence() = 0; |
| |
| /** |
| * @brief Used to generate code for special methods that are known to be |
| * small enough to work in frameless mode. |
| * @param bb The basic block of the first MIR. |
| * @param mir The first MIR of the special method. |
| * @param special Information about the special method. |
| * @return Returns whether or not this was handled successfully. Returns false |
| * if caller should punt to normal MIR2LIR conversion. |
| */ |
| virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special); |
| |
| private: |
| void ClobberBody(RegisterInfo* p); |
| void SetCurrentDexPc(DexOffset dexpc) { |
| current_dalvik_offset_ = dexpc; |
| } |
| |
| /** |
| * @brief Used to lock register if argument at in_position was passed that way. |
| * @details Does nothing if the argument is passed via stack. |
| * @param in_position The argument number whose register to lock. |
| * @param wide Whether the argument is wide. |
| */ |
| void LockArg(int in_position, bool wide = false); |
| |
| /** |
| * @brief Used to load VR argument to a physical register. |
| * @details The load is only done if the argument is not already in physical register. |
| * LockArg must have been previously called. |
| * @param in_position The argument number to load. |
| * @param wide Whether the argument is 64-bit or not. |
| * @return Returns the register (or register pair) for the loaded argument. |
| */ |
| RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false); |
| |
| /** |
| * @brief Used to load a VR argument directly to a specified register location. |
| * @param in_position The argument number to place in register. |
| * @param rl_dest The register location where to place argument. |
| */ |
| void LoadArgDirect(int in_position, RegLocation rl_dest); |
| |
| /** |
| * @brief Used to generate LIR for special getter method. |
| * @param mir The mir that represents the iget. |
| * @param special Information about the special getter method. |
| * @return Returns whether LIR was successfully generated. |
| */ |
| bool GenSpecialIGet(MIR* mir, const InlineMethod& special); |
| |
| /** |
| * @brief Used to generate LIR for special setter method. |
| * @param mir The mir that represents the iput. |
| * @param special Information about the special setter method. |
| * @return Returns whether LIR was successfully generated. |
| */ |
| bool GenSpecialIPut(MIR* mir, const InlineMethod& special); |
| |
| /** |
| * @brief Used to generate LIR for special return-args method. |
| * @param mir The mir that represents the return of argument. |
| * @param special Information about the special return-args method. |
| * @return Returns whether LIR was successfully generated. |
| */ |
| bool GenSpecialIdentity(MIR* mir, const InlineMethod& special); |
| |
| void AddDivZeroCheckSlowPath(LIR* branch); |
| |
| // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using |
| // kArg2 as temp. |
| void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1); |
| |
| public: |
| // TODO: add accessors for these. |
| LIR* literal_list_; // Constants. |
| LIR* method_literal_list_; // Method literals requiring patching. |
| LIR* class_literal_list_; // Class literals requiring patching. |
| LIR* code_literal_list_; // Code literals requiring patching. |
| LIR* first_fixup_; // Doubly-linked list of LIR nodes requiring fixups. |
| |
| protected: |
| CompilationUnit* const cu_; |
| MIRGraph* const mir_graph_; |
| GrowableArray<SwitchTable*> switch_tables_; |
| GrowableArray<FillArrayData*> fill_array_data_; |
| GrowableArray<RegisterInfo*> tempreg_info_; |
| GrowableArray<RegisterInfo*> reginfo_map_; |
| GrowableArray<void*> pointer_storage_; |
| CodeOffset current_code_offset_; // Working byte offset of machine instructons. |
| CodeOffset data_offset_; // starting offset of literal pool. |
| size_t total_size_; // header + code size. |
| LIR* block_label_list_; |
| PromotionMap* promotion_map_; |
| /* |
| * TODO: The code generation utilities don't have a built-in |
| * mechanism to propagate the original Dalvik opcode address to the |
| * associated generated instructions. For the trace compiler, this wasn't |
| * necessary because the interpreter handled all throws and debugging |
| * requests. For now we'll handle this by placing the Dalvik offset |
| * in the CompilationUnit struct before codegen for each instruction. |
| * The low-level LIR creation utilites will pull it from here. Rework this. |
| */ |
| DexOffset current_dalvik_offset_; |
| size_t estimated_native_code_size_; // Just an estimate; used to reserve code_buffer_ size. |
| RegisterPool* reg_pool_; |
| /* |
| * Sanity checking for the register temp tracking. The same ssa |
| * name should never be associated with one temp register per |
| * instruction compilation. |
| */ |
| int live_sreg_; |
| CodeBuffer code_buffer_; |
| // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix. |
| std::vector<uint8_t> encoded_mapping_table_; |
| std::vector<uint32_t> core_vmap_table_; |
| std::vector<uint32_t> fp_vmap_table_; |
| std::vector<uint8_t> native_gc_map_; |
| int num_core_spills_; |
| int num_fp_spills_; |
| int frame_size_; |
| unsigned int core_spill_mask_; |
| unsigned int fp_spill_mask_; |
| LIR* first_lir_insn_; |
| LIR* last_lir_insn_; |
| |
| GrowableArray<LIRSlowPath*> slow_paths_; |
| }; // Class Mir2Lir |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_ |