blob: 916ca29319605348372012cbf20ed86792ac87fe [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_
#define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_
#include "entrypoint_utils.h"
#include "art_method.h"
#include "class_linker-inl.h"
#include "common_throws.h"
#include "dex_file.h"
#include "entrypoints/quick/callee_save_frame.h"
#include "handle_scope-inl.h"
#include "indirect_reference_table.h"
#include "invoke_type.h"
#include "jni_internal.h"
#include "mirror/array.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/throwable.h"
#include "nth_caller_visitor.h"
#include "runtime.h"
#include "stack_map.h"
#include "thread.h"
namespace art {
template <bool kResolve = true>
inline ArtMethod* GetResolvedMethod(ArtMethod* outer_method,
const InlineInfo& inline_info,
const InlineInfoEncoding& encoding,
uint8_t inlining_depth)
SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t method_index = inline_info.GetMethodIndexAtDepth(encoding, inlining_depth);
InvokeType invoke_type = static_cast<InvokeType>(
inline_info.GetInvokeTypeAtDepth(encoding, inlining_depth));
ArtMethod* caller = outer_method->GetDexCacheResolvedMethod(method_index, sizeof(void*));
if (!caller->IsRuntimeMethod()) {
return caller;
}
if (!kResolve) {
return nullptr;
}
// The method in the dex cache can be the runtime method responsible for invoking
// the stub that will then update the dex cache. Therefore, we need to do the
// resolution ourselves.
// We first find the class loader of our caller. If it is the outer method, we can directly
// use its class loader. Otherwise, we also need to resolve our caller.
StackHandleScope<2> hs(Thread::Current());
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::ClassLoader> class_loader(hs.NewHandle<mirror::Class>(nullptr));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(outer_method->GetDexCache()));
if (inlining_depth == 0) {
class_loader.Assign(outer_method->GetClassLoader());
} else {
caller = GetResolvedMethod<kResolve>(outer_method,
inline_info,
encoding,
inlining_depth - 1);
class_loader.Assign(caller->GetClassLoader());
}
return class_linker->ResolveMethod<ClassLinker::kNoICCECheckForCache>(
*outer_method->GetDexFile(), method_index, dex_cache, class_loader, nullptr, invoke_type);
}
inline ArtMethod* GetCalleeSaveMethodCaller(Thread* self, Runtime::CalleeSaveType type)
SHARED_REQUIRES(Locks::mutator_lock_) {
return GetCalleeSaveMethodCaller(
self->GetManagedStack()->GetTopQuickFrame(), type, true /* do_caller_check */);
}
template <const bool kAccessCheck>
ALWAYS_INLINE
inline mirror::Class* CheckObjectAlloc(uint32_t type_idx,
ArtMethod* method,
Thread* self, bool* slow_path) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
size_t pointer_size = class_linker->GetImagePointerSize();
mirror::Class* klass = method->GetDexCacheResolvedType<false>(type_idx, pointer_size);
if (UNLIKELY(klass == nullptr)) {
klass = class_linker->ResolveType(type_idx, method);
*slow_path = true;
if (klass == nullptr) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
} else {
DCHECK(!self->IsExceptionPending());
}
}
if (kAccessCheck) {
if (UNLIKELY(!klass->IsInstantiable())) {
self->ThrowNewException("Ljava/lang/InstantiationError;", PrettyDescriptor(klass).c_str());
*slow_path = true;
return nullptr; // Failure
}
mirror::Class* referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
*slow_path = true;
return nullptr; // Failure
}
}
if (UNLIKELY(!klass->IsInitialized())) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_klass(hs.NewHandle(klass));
// EnsureInitialized (the class initializer) might cause a GC.
// may cause us to suspend meaning that another thread may try to
// change the allocator while we are stuck in the entrypoints of
// an old allocator. Also, the class initialization may fail. To
// handle these cases we mark the slow path boolean as true so
// that the caller knows to check the allocator type to see if it
// has changed and to null-check the return value in case the
// initialization fails.
*slow_path = true;
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_klass, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
} else {
DCHECK(!self->IsExceptionPending());
}
return h_klass.Get();
}
return klass;
}
ALWAYS_INLINE
inline mirror::Class* CheckClassInitializedForObjectAlloc(mirror::Class* klass,
Thread* self,
bool* slow_path) {
if (UNLIKELY(!klass->IsInitialized())) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
// EnsureInitialized (the class initializer) might cause a GC.
// may cause us to suspend meaning that another thread may try to
// change the allocator while we are stuck in the entrypoints of
// an old allocator. Also, the class initialization may fail. To
// handle these cases we mark the slow path boolean as true so
// that the caller knows to check the allocator type to see if it
// has changed and to null-check the return value in case the
// initialization fails.
*slow_path = true;
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
}
return h_class.Get();
}
return klass;
}
// Given the context of a calling Method, use its DexCache to resolve a type to a Class. If it
// cannot be resolved, throw an error. If it can, use it to create an instance.
// When verification/compiler hasn't been able to verify access, optionally perform an access
// check.
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE
inline mirror::Object* AllocObjectFromCode(uint32_t type_idx,
ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type) {
bool slow_path = false;
mirror::Class* klass = CheckObjectAlloc<kAccessCheck>(type_idx, method, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
// CheckObjectAlloc can cause thread suspension which means we may now be instrumented.
return klass->Alloc</*kInstrumented*/true>(
self,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
}
DCHECK(klass != nullptr);
return klass->Alloc<kInstrumented>(self, allocator_type);
}
// Given the context of a calling Method and a resolved class, create an instance.
template <bool kInstrumented>
ALWAYS_INLINE
inline mirror::Object* AllocObjectFromCodeResolved(mirror::Class* klass,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
bool slow_path = false;
klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
// Pass in false since the object cannot be finalizable.
// CheckClassInitializedForObjectAlloc can cause thread suspension which means we may now be
// instrumented.
return klass->Alloc</*kInstrumented*/true, false>(self, heap->GetCurrentAllocator());
}
// Pass in false since the object cannot be finalizable.
return klass->Alloc<kInstrumented, false>(self, allocator_type);
}
// Given the context of a calling Method and an initialized class, create an instance.
template <bool kInstrumented>
ALWAYS_INLINE
inline mirror::Object* AllocObjectFromCodeInitialized(mirror::Class* klass,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
// Pass in false since the object cannot be finalizable.
return klass->Alloc<kInstrumented, false>(self, allocator_type);
}
template <bool kAccessCheck>
ALWAYS_INLINE
inline mirror::Class* CheckArrayAlloc(uint32_t type_idx,
int32_t component_count,
ArtMethod* method,
bool* slow_path) {
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
*slow_path = true;
return nullptr; // Failure
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
size_t pointer_size = class_linker->GetImagePointerSize();
mirror::Class* klass = method->GetDexCacheResolvedType<false>(type_idx, pointer_size);
if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve
klass = class_linker->ResolveType(type_idx, method);
*slow_path = true;
if (klass == nullptr) { // Error
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr; // Failure
}
CHECK(klass->IsArrayClass()) << PrettyClass(klass);
}
if (kAccessCheck) {
mirror::Class* referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
*slow_path = true;
return nullptr; // Failure
}
}
return klass;
}
// Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If
// it cannot be resolved, throw an error. If it can, use it to create an array.
// When verification/compiler hasn't been able to verify access, optionally perform an access
// check.
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE
inline mirror::Array* AllocArrayFromCode(uint32_t type_idx,
int32_t component_count,
ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type) {
bool slow_path = false;
mirror::Class* klass = CheckArrayAlloc<kAccessCheck>(type_idx, component_count, method,
&slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
// CheckArrayAlloc can cause thread suspension which means we may now be instrumented.
return mirror::Array::Alloc</*kInstrumented*/true>(self,
klass,
component_count,
klass->GetComponentSizeShift(),
heap->GetCurrentAllocator());
}
return mirror::Array::Alloc<kInstrumented>(self, klass, component_count,
klass->GetComponentSizeShift(), allocator_type);
}
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE
inline mirror::Array* AllocArrayFromCodeResolved(mirror::Class* klass,
int32_t component_count,
ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
return nullptr; // Failure
}
if (kAccessCheck) {
mirror::Class* referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
return nullptr; // Failure
}
}
// No need to retry a slow-path allocation as the above code won't cause a GC or thread
// suspension.
return mirror::Array::Alloc<kInstrumented>(self, klass, component_count,
klass->GetComponentSizeShift(), allocator_type);
}
template<FindFieldType type, bool access_check>
inline ArtField* FindFieldFromCode(uint32_t field_idx,
ArtMethod* referrer,
Thread* self,
size_t expected_size) REQUIRES(!Roles::uninterruptible_) {
bool is_primitive;
bool is_set;
bool is_static;
switch (type) {
case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break;
case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break;
case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break;
case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break;
case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break;
case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break;
case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break;
case StaticPrimitiveWrite: // Keep GCC happy by having a default handler, fall-through.
default: is_primitive = true; is_set = true; is_static = true; break;
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ArtField* resolved_field;
if (access_check) {
// Slow path: According to JLS 13.4.8, a linkage error may occur if a compile-time
// qualifying type of a field and the resolved run-time qualifying type of a field differed
// in their static-ness.
//
// In particular, don't assume the dex instruction already correctly knows if the
// real field is static or not. The resolution must not be aware of this.
ArtMethod* method = referrer->GetInterfaceMethodIfProxy(sizeof(void*));
StackHandleScope<2> hs(self);
Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(method->GetDexCache()));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(method->GetClassLoader()));
resolved_field = class_linker->ResolveFieldJLS(*method->GetDexFile(),
field_idx,
h_dex_cache,
h_class_loader);
} else {
// Fast path: Verifier already would've called ResolveFieldJLS and we wouldn't
// be executing here if there was a static/non-static mismatch.
resolved_field = class_linker->ResolveField(field_idx, referrer, is_static);
}
if (UNLIKELY(resolved_field == nullptr)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
mirror::Class* fields_class = resolved_field->GetDeclaringClass();
if (access_check) {
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, referrer);
return nullptr;
}
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class, resolved_field,
field_idx))) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
if (UNLIKELY(is_set && resolved_field->IsFinal() && (fields_class != referring_class))) {
ThrowIllegalAccessErrorFinalField(referrer, resolved_field);
return nullptr; // Failure.
} else {
if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive ||
resolved_field->FieldSize() != expected_size)) {
self->ThrowNewExceptionF("Ljava/lang/NoSuchFieldError;",
"Attempted read of %zd-bit %s on field '%s'",
expected_size * (32 / sizeof(int32_t)),
is_primitive ? "primitive" : "non-primitive",
PrettyField(resolved_field, true).c_str());
return nullptr; // Failure.
}
}
}
if (!is_static) {
// instance fields must be being accessed on an initialized class
return resolved_field;
} else {
// If the class is initialized we're done.
if (LIKELY(fields_class->IsInitialized())) {
return resolved_field;
} else {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(fields_class));
if (LIKELY(class_linker->EnsureInitialized(self, h_class, true, true))) {
// Otherwise let's ensure the class is initialized before resolving the field.
return resolved_field;
}
DCHECK(self->IsExceptionPending()); // Throw exception and unwind
return nullptr; // Failure.
}
}
}
// Explicit template declarations of FindFieldFromCode for all field access types.
#define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \
template SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE \
ArtField* FindFieldFromCode<_type, _access_check>(uint32_t field_idx, \
ArtMethod* referrer, \
Thread* self, size_t expected_size) \
#define EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, false); \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, true)
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveWrite);
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL
template<InvokeType type, bool access_check>
inline ArtMethod* FindMethodFromCode(uint32_t method_idx, mirror::Object** this_object,
ArtMethod* referrer, Thread* self) {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
ArtMethod* resolved_method = class_linker->GetResolvedMethod(method_idx, referrer);
if (resolved_method == nullptr) {
StackHandleScope<1> hs(self);
mirror::Object* null_this = nullptr;
HandleWrapper<mirror::Object> h_this(
hs.NewHandleWrapper(type == kStatic ? &null_this : this_object));
constexpr ClassLinker::ResolveMode resolve_mode =
access_check ? ClassLinker::kForceICCECheck
: ClassLinker::kNoICCECheckForCache;
resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, referrer, type);
}
if (UNLIKELY(resolved_method == nullptr)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
} else if (UNLIKELY(*this_object == nullptr && type != kStatic)) {
if (UNLIKELY(resolved_method->GetDeclaringClass()->IsStringClass() &&
resolved_method->IsConstructor())) {
// Hack for String init:
//
// We assume that the input of String.<init> in verified code is always
// an unitialized reference. If it is a null constant, it must have been
// optimized out by the compiler. Do not throw NullPointerException.
} else {
// Maintain interpreter-like semantics where NullPointerException is thrown
// after potential NoSuchMethodError from class linker.
ThrowNullPointerExceptionForMethodAccess(method_idx, type);
return nullptr; // Failure.
}
} else if (access_check) {
mirror::Class* methods_class = resolved_method->GetDeclaringClass();
bool can_access_resolved_method =
referrer->GetDeclaringClass()->CheckResolvedMethodAccess<type>(methods_class,
resolved_method,
method_idx);
if (UNLIKELY(!can_access_resolved_method)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
// Incompatible class change should have been handled in resolve method.
if (UNLIKELY(resolved_method->CheckIncompatibleClassChange(type))) {
ThrowIncompatibleClassChangeError(type, resolved_method->GetInvokeType(), resolved_method,
referrer);
return nullptr; // Failure.
}
}
switch (type) {
case kStatic:
case kDirect:
return resolved_method;
case kVirtual: {
mirror::Class* klass = (*this_object)->GetClass();
uint16_t vtable_index = resolved_method->GetMethodIndex();
if (access_check &&
(!klass->HasVTable() ||
vtable_index >= static_cast<uint32_t>(klass->GetVTableLength()))) {
// Behavior to agree with that of the verifier.
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(),
resolved_method->GetName(), resolved_method->GetSignature());
return nullptr; // Failure.
}
DCHECK(klass->HasVTable()) << PrettyClass(klass);
return klass->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize());
}
case kSuper: {
// TODO This lookup is quite slow.
// NB This is actually quite tricky to do any other way. We cannot use GetDeclaringClass since
// that will actually not be what we want in some cases where there are miranda methods or
// defaults. What we actually need is a GetContainingClass that says which classes virtuals
// this method is coming from.
mirror::Class* referring_class = referrer->GetDeclaringClass();
uint16_t method_type_idx = referring_class->GetDexFile().GetMethodId(method_idx).class_idx_;
mirror::Class* method_reference_class = class_linker->ResolveType(method_type_idx, referrer);
if (UNLIKELY(method_reference_class == nullptr)) {
// Bad type idx.
CHECK(self->IsExceptionPending());
return nullptr;
} else if (!method_reference_class->IsInterface()) {
// It is not an interface. If the referring class is in the class hierarchy of the
// referenced class in the bytecode, we use its super class. Otherwise, we throw
// a NoSuchMethodError.
mirror::Class* super_class = nullptr;
if (method_reference_class->IsAssignableFrom(referring_class)) {
super_class = referring_class->GetSuperClass();
}
uint16_t vtable_index = resolved_method->GetMethodIndex();
if (access_check) {
// Check existence of super class.
if (super_class == nullptr ||
!super_class->HasVTable() ||
vtable_index >= static_cast<uint32_t>(super_class->GetVTableLength())) {
// Behavior to agree with that of the verifier.
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(),
resolved_method->GetName(), resolved_method->GetSignature());
return nullptr; // Failure.
}
}
DCHECK(super_class != nullptr);
DCHECK(super_class->HasVTable());
return super_class->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize());
} else {
// It is an interface.
if (access_check) {
if (!method_reference_class->IsAssignableFrom((*this_object)->GetClass())) {
ThrowIncompatibleClassChangeErrorClassForInterfaceSuper(resolved_method,
method_reference_class,
*this_object,
referrer);
return nullptr; // Failure.
}
}
// TODO We can do better than this for a (compiled) fastpath.
ArtMethod* result = method_reference_class->FindVirtualMethodForInterfaceSuper(
resolved_method, class_linker->GetImagePointerSize());
// Throw an NSME if nullptr;
if (result == nullptr) {
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(),
resolved_method->GetName(), resolved_method->GetSignature());
}
return result;
}
}
case kInterface: {
uint32_t imt_index = resolved_method->GetDexMethodIndex() % ImTable::kSize;
size_t pointer_size = class_linker->GetImagePointerSize();
ArtMethod* imt_method = (*this_object)->GetClass()->GetImt(pointer_size)->
Get(imt_index, pointer_size);
if (!imt_method->IsRuntimeMethod()) {
if (kIsDebugBuild) {
mirror::Class* klass = (*this_object)->GetClass();
ArtMethod* method = klass->FindVirtualMethodForInterface(
resolved_method, class_linker->GetImagePointerSize());
CHECK_EQ(imt_method, method) << PrettyMethod(resolved_method) << " / " <<
PrettyMethod(imt_method) << " / " << PrettyMethod(method) << " / " <<
PrettyClass(klass);
}
return imt_method;
} else {
ArtMethod* interface_method = (*this_object)->GetClass()->FindVirtualMethodForInterface(
resolved_method, class_linker->GetImagePointerSize());
if (UNLIKELY(interface_method == nullptr)) {
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(resolved_method,
*this_object, referrer);
return nullptr; // Failure.
}
return interface_method;
}
}
default:
LOG(FATAL) << "Unknown invoke type " << type;
return nullptr; // Failure.
}
}
// Explicit template declarations of FindMethodFromCode for all invoke types.
#define EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \
template SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE \
ArtMethod* FindMethodFromCode<_type, _access_check>(uint32_t method_idx, \
mirror::Object** this_object, \
ArtMethod* referrer, \
Thread* self)
#define EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \
EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, false); \
EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, true)
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kStatic);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kDirect);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kVirtual);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kSuper);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kInterface);
#undef EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL
#undef EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL
// Fast path field resolution that can't initialize classes or throw exceptions.
inline ArtField* FindFieldFast(uint32_t field_idx, ArtMethod* referrer, FindFieldType type,
size_t expected_size) {
ArtField* resolved_field =
referrer->GetDeclaringClass()->GetDexCache()->GetResolvedField(field_idx, sizeof(void*));
if (UNLIKELY(resolved_field == nullptr)) {
return nullptr;
}
// Check for incompatible class change.
bool is_primitive;
bool is_set;
bool is_static;
switch (type) {
case InstanceObjectRead: is_primitive = false; is_set = false; is_static = false; break;
case InstanceObjectWrite: is_primitive = false; is_set = true; is_static = false; break;
case InstancePrimitiveRead: is_primitive = true; is_set = false; is_static = false; break;
case InstancePrimitiveWrite: is_primitive = true; is_set = true; is_static = false; break;
case StaticObjectRead: is_primitive = false; is_set = false; is_static = true; break;
case StaticObjectWrite: is_primitive = false; is_set = true; is_static = true; break;
case StaticPrimitiveRead: is_primitive = true; is_set = false; is_static = true; break;
case StaticPrimitiveWrite: is_primitive = true; is_set = true; is_static = true; break;
default:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
// Incompatible class change.
return nullptr;
}
mirror::Class* fields_class = resolved_field->GetDeclaringClass();
if (is_static) {
// Check class is initialized else fail so that we can contend to initialize the class with
// other threads that may be racing to do this.
if (UNLIKELY(!fields_class->IsInitialized())) {
return nullptr;
}
}
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CanAccess(fields_class) ||
!referring_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()) ||
(is_set && resolved_field->IsFinal() && (fields_class != referring_class)))) {
// Illegal access.
return nullptr;
}
if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive ||
resolved_field->FieldSize() != expected_size)) {
return nullptr;
}
return resolved_field;
}
// Fast path method resolution that can't throw exceptions.
inline ArtMethod* FindMethodFast(uint32_t method_idx, mirror::Object* this_object,
ArtMethod* referrer, bool access_check, InvokeType type) {
if (UNLIKELY(this_object == nullptr && type != kStatic)) {
return nullptr;
}
mirror::Class* referring_class = referrer->GetDeclaringClass();
ArtMethod* resolved_method =
referring_class->GetDexCache()->GetResolvedMethod(method_idx, sizeof(void*));
if (UNLIKELY(resolved_method == nullptr)) {
return nullptr;
}
if (access_check) {
// Check for incompatible class change errors and access.
bool icce = resolved_method->CheckIncompatibleClassChange(type);
if (UNLIKELY(icce)) {
return nullptr;
}
mirror::Class* methods_class = resolved_method->GetDeclaringClass();
if (UNLIKELY(!referring_class->CanAccess(methods_class) ||
!referring_class->CanAccessMember(methods_class,
resolved_method->GetAccessFlags()))) {
// Potential illegal access, may need to refine the method's class.
return nullptr;
}
}
if (type == kInterface) { // Most common form of slow path dispatch.
return this_object->GetClass()->FindVirtualMethodForInterface(resolved_method, sizeof(void*));
} else if (type == kStatic || type == kDirect) {
return resolved_method;
} else if (type == kSuper) {
// TODO This lookup is rather slow.
uint16_t method_type_idx = referring_class->GetDexFile().GetMethodId(method_idx).class_idx_;
mirror::Class* method_reference_class =
referring_class->GetDexCache()->GetResolvedType(method_type_idx);
if (method_reference_class == nullptr) {
// Need to do full type resolution...
return nullptr;
} else if (!method_reference_class->IsInterface()) {
// It is not an interface. If the referring class is in the class hierarchy of the
// referenced class in the bytecode, we use its super class. Otherwise, we cannot
// resolve the method.
if (!method_reference_class->IsAssignableFrom(referring_class)) {
return nullptr;
}
mirror::Class* super_class = referring_class->GetSuperClass();
if (resolved_method->GetMethodIndex() >= super_class->GetVTableLength()) {
// The super class does not have the method.
return nullptr;
}
return super_class->GetVTableEntry(resolved_method->GetMethodIndex(), sizeof(void*));
} else {
return method_reference_class->FindVirtualMethodForInterfaceSuper(
resolved_method, sizeof(void*));
}
} else {
DCHECK(type == kVirtual);
return this_object->GetClass()->GetVTableEntry(
resolved_method->GetMethodIndex(), sizeof(void*));
}
}
inline mirror::Class* ResolveVerifyAndClinit(uint32_t type_idx, ArtMethod* referrer, Thread* self,
bool can_run_clinit, bool verify_access) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
mirror::Class* klass = class_linker->ResolveType(type_idx, referrer);
if (UNLIKELY(klass == nullptr)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
// Perform access check if necessary.
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referring_class, klass);
return nullptr; // Failure - Indicate to caller to deliver exception
}
// If we're just implementing const-class, we shouldn't call <clinit>.
if (!can_run_clinit) {
return klass;
}
// If we are the <clinit> of this class, just return our storage.
//
// Do not set the DexCache InitializedStaticStorage, since that implies <clinit> has finished
// running.
if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) {
return klass;
}
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
if (!class_linker->EnsureInitialized(self, h_class, true, true)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
return h_class.Get();
}
inline mirror::String* ResolveStringFromCode(ArtMethod* referrer, uint32_t string_idx) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
return class_linker->ResolveString(string_idx, referrer);
}
inline void UnlockJniSynchronizedMethod(jobject locked, Thread* self) {
// Save any pending exception over monitor exit call.
mirror::Throwable* saved_exception = nullptr;
if (UNLIKELY(self->IsExceptionPending())) {
saved_exception = self->GetException();
self->ClearException();
}
// Decode locked object and unlock, before popping local references.
self->DecodeJObject(locked)->MonitorExit(self);
if (UNLIKELY(self->IsExceptionPending())) {
LOG(FATAL) << "Synchronized JNI code returning with an exception:\n"
<< saved_exception->Dump()
<< "\nEncountered second exception during implicit MonitorExit:\n"
<< self->GetException()->Dump();
}
// Restore pending exception.
if (saved_exception != nullptr) {
self->SetException(saved_exception);
}
}
template <typename INT_TYPE, typename FLOAT_TYPE>
inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) {
const INT_TYPE kMaxInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::max());
const INT_TYPE kMinInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::min());
const FLOAT_TYPE kMaxIntAsFloat = static_cast<FLOAT_TYPE>(kMaxInt);
const FLOAT_TYPE kMinIntAsFloat = static_cast<FLOAT_TYPE>(kMinInt);
if (LIKELY(f > kMinIntAsFloat)) {
if (LIKELY(f < kMaxIntAsFloat)) {
return static_cast<INT_TYPE>(f);
} else {
return kMaxInt;
}
} else {
return (f != f) ? 0 : kMinInt; // f != f implies NaN
}
}
} // namespace art
#endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_