blob: a7ba06198473a2787fefdcbcc660194883f3b8f3 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "local_value_numbering.h"
#include "dataflow_iterator-inl.h"
namespace art {
/*
* Main table containing data flow attributes for each bytecode. The
* first kNumPackedOpcodes entries are for Dalvik bytecode
* instructions, where extended opcode at the MIR level are appended
* afterwards.
*
* TODO - many optimization flags are incomplete - they will only limit the
* scope of optimizations but will not cause mis-optimizations.
*/
const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {
// 00 NOP
DF_NOP,
// 01 MOVE vA, vB
DF_DA | DF_UB | DF_IS_MOVE,
// 02 MOVE_FROM16 vAA, vBBBB
DF_DA | DF_UB | DF_IS_MOVE,
// 03 MOVE_16 vAAAA, vBBBB
DF_DA | DF_UB | DF_IS_MOVE,
// 04 MOVE_WIDE vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
// 05 MOVE_WIDE_FROM16 vAA, vBBBB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
// 06 MOVE_WIDE_16 vAAAA, vBBBB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
// 07 MOVE_OBJECT vA, vB
DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
// 08 MOVE_OBJECT_FROM16 vAA, vBBBB
DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
// 09 MOVE_OBJECT_16 vAAAA, vBBBB
DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
// 0A MOVE_RESULT vAA
DF_DA,
// 0B MOVE_RESULT_WIDE vAA
DF_DA | DF_A_WIDE,
// 0C MOVE_RESULT_OBJECT vAA
DF_DA | DF_REF_A,
// 0D MOVE_EXCEPTION vAA
DF_DA | DF_REF_A | DF_NON_NULL_DST,
// 0E RETURN_VOID
DF_NOP,
// 0F RETURN vAA
DF_UA,
// 10 RETURN_WIDE vAA
DF_UA | DF_A_WIDE,
// 11 RETURN_OBJECT vAA
DF_UA | DF_REF_A,
// 12 CONST_4 vA, #+B
DF_DA | DF_SETS_CONST,
// 13 CONST_16 vAA, #+BBBB
DF_DA | DF_SETS_CONST,
// 14 CONST vAA, #+BBBBBBBB
DF_DA | DF_SETS_CONST,
// 15 CONST_HIGH16 VAA, #+BBBB0000
DF_DA | DF_SETS_CONST,
// 16 CONST_WIDE_16 vAA, #+BBBB
DF_DA | DF_A_WIDE | DF_SETS_CONST,
// 17 CONST_WIDE_32 vAA, #+BBBBBBBB
DF_DA | DF_A_WIDE | DF_SETS_CONST,
// 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
DF_DA | DF_A_WIDE | DF_SETS_CONST,
// 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
DF_DA | DF_A_WIDE | DF_SETS_CONST,
// 1A CONST_STRING vAA, string@BBBB
DF_DA | DF_REF_A | DF_NON_NULL_DST,
// 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
DF_DA | DF_REF_A | DF_NON_NULL_DST,
// 1C CONST_CLASS vAA, type@BBBB
DF_DA | DF_REF_A | DF_NON_NULL_DST,
// 1D MONITOR_ENTER vAA
DF_UA | DF_NULL_CHK_A | DF_REF_A,
// 1E MONITOR_EXIT vAA
DF_UA | DF_NULL_CHK_A | DF_REF_A,
// 1F CHK_CAST vAA, type@BBBB
DF_UA | DF_REF_A | DF_CHK_CAST | DF_UMS,
// 20 INSTANCE_OF vA, vB, type@CCCC
DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
// 21 ARRAY_LENGTH vA, vB
DF_DA | DF_UB | DF_NULL_CHK_B | DF_CORE_A | DF_REF_B,
// 22 NEW_INSTANCE vAA, type@BBBB
DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
// 23 NEW_ARRAY vA, vB, type@CCCC
DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
// 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
// 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
// 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
DF_UA | DF_REF_A | DF_UMS,
// 27 THROW vAA
DF_UA | DF_REF_A | DF_UMS,
// 28 GOTO
DF_NOP,
// 29 GOTO_16
DF_NOP,
// 2A GOTO_32
DF_NOP,
// 2B PACKED_SWITCH vAA, +BBBBBBBB
DF_UA | DF_CORE_A,
// 2C SPARSE_SWITCH vAA, +BBBBBBBB
DF_UA | DF_CORE_A,
// 2D CMPL_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
// 2E CMPG_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
// 2F CMPL_DOUBLE vAA, vBB, vCC
DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
// 30 CMPG_DOUBLE vAA, vBB, vCC
DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
// 31 CMP_LONG vAA, vBB, vCC
DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 32 IF_EQ vA, vB, +CCCC
DF_UA | DF_UB | DF_SAME_TYPE_AB,
// 33 IF_NE vA, vB, +CCCC
DF_UA | DF_UB | DF_SAME_TYPE_AB,
// 34 IF_LT vA, vB, +CCCC
DF_UA | DF_UB | DF_SAME_TYPE_AB,
// 35 IF_GE vA, vB, +CCCC
DF_UA | DF_UB | DF_SAME_TYPE_AB,
// 36 IF_GT vA, vB, +CCCC
DF_UA | DF_UB | DF_SAME_TYPE_AB,
// 37 IF_LE vA, vB, +CCCC
DF_UA | DF_UB | DF_SAME_TYPE_AB,
// 38 IF_EQZ vAA, +BBBB
DF_UA,
// 39 IF_NEZ vAA, +BBBB
DF_UA,
// 3A IF_LTZ vAA, +BBBB
DF_UA,
// 3B IF_GEZ vAA, +BBBB
DF_UA,
// 3C IF_GTZ vAA, +BBBB
DF_UA,
// 3D IF_LEZ vAA, +BBBB
DF_UA,
// 3E UNUSED_3E
DF_NOP,
// 3F UNUSED_3F
DF_NOP,
// 40 UNUSED_40
DF_NOP,
// 41 UNUSED_41
DF_NOP,
// 42 UNUSED_42
DF_NOP,
// 43 UNUSED_43
DF_NOP,
// 44 AGET vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 45 AGET_WIDE vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 46 AGET_OBJECT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
// 47 AGET_BOOLEAN vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 48 AGET_BYTE vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 49 AGET_CHAR vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 4A AGET_SHORT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 4B APUT vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 4C APUT_WIDE vAA, vBB, vCC
DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 4D APUT_OBJECT vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
// 4E APUT_BOOLEAN vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 4F APUT_BYTE vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 50 APUT_CHAR vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 51 APUT_SHORT vAA, vBB, vCC
DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 52 IGET vA, vB, field@CCCC
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 53 IGET_WIDE vA, vB, field@CCCC
DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 54 IGET_OBJECT vA, vB, field@CCCC
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
// 55 IGET_BOOLEAN vA, vB, field@CCCC
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 56 IGET_BYTE vA, vB, field@CCCC
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 57 IGET_CHAR vA, vB, field@CCCC
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 58 IGET_SHORT vA, vB, field@CCCC
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 59 IPUT vA, vB, field@CCCC
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 5A IPUT_WIDE vA, vB, field@CCCC
DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 5B IPUT_OBJECT vA, vB, field@CCCC
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
// 5C IPUT_BOOLEAN vA, vB, field@CCCC
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 5D IPUT_BYTE vA, vB, field@CCCC
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 5E IPUT_CHAR vA, vB, field@CCCC
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 5F IPUT_SHORT vA, vB, field@CCCC
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// 60 SGET vAA, field@BBBB
DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 61 SGET_WIDE vAA, field@BBBB
DF_DA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS,
// 62 SGET_OBJECT vAA, field@BBBB
DF_DA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS,
// 63 SGET_BOOLEAN vAA, field@BBBB
DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 64 SGET_BYTE vAA, field@BBBB
DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 65 SGET_CHAR vAA, field@BBBB
DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 66 SGET_SHORT vAA, field@BBBB
DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 67 SPUT vAA, field@BBBB
DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 68 SPUT_WIDE vAA, field@BBBB
DF_UA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS,
// 69 SPUT_OBJECT vAA, field@BBBB
DF_UA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS,
// 6A SPUT_BOOLEAN vAA, field@BBBB
DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 6B SPUT_BYTE vAA, field@BBBB
DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 6C SPUT_CHAR vAA, field@BBBB
DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 6D SPUT_SHORT vAA, field@BBBB
DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
// 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
// 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
// 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
// 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
DF_FORMAT_35C | DF_CLINIT | DF_UMS,
// 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
// 73 RETURN_VOID_NO_BARRIER
DF_NOP,
// 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
// 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
// 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
// 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC | DF_CLINIT | DF_UMS,
// 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
// 79 UNUSED_79
DF_NOP,
// 7A UNUSED_7A
DF_NOP,
// 7B NEG_INT vA, vB
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// 7C NOT_INT vA, vB
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// 7D NEG_LONG vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// 7E NOT_LONG vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// 7F NEG_FLOAT vA, vB
DF_DA | DF_UB | DF_FP_A | DF_FP_B,
// 80 NEG_DOUBLE vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// 81 INT_TO_LONG vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
// 82 INT_TO_FLOAT vA, vB
DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
// 83 INT_TO_DOUBLE vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
// 84 LONG_TO_INT vA, vB
DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// 85 LONG_TO_FLOAT vA, vB
DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
// 86 LONG_TO_DOUBLE vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
// 87 FLOAT_TO_INT vA, vB
DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
// 88 FLOAT_TO_LONG vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
// 89 FLOAT_TO_DOUBLE vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
// 8A DOUBLE_TO_INT vA, vB
DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
// 8B DOUBLE_TO_LONG vA, vB
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
// 8C DOUBLE_TO_FLOAT vA, vB
DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// 8D INT_TO_BYTE vA, vB
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// 8E INT_TO_CHAR vA, vB
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// 8F INT_TO_SHORT vA, vB
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// 90 ADD_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 91 SUB_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 92 MUL_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 93 DIV_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 94 REM_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 95 AND_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 96 OR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 97 XOR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 98 SHL_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 99 SHR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 9A USHR_INT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 9B ADD_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 9C SUB_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 9D MUL_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 9E DIV_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// 9F REM_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// A0 AND_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// A1 OR_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// A2 XOR_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// A3 SHL_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// A4 SHR_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// A5 USHR_LONG vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
// A6 ADD_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// A7 SUB_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// A8 MUL_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// A9 DIV_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// AA REM_FLOAT vAA, vBB, vCC
DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
// AB ADD_DOUBLE vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AC SUB_DOUBLE vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AD MUL_DOUBLE vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AE DIV_DOUBLE vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// AF REM_DOUBLE vAA, vBB, vCC
DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
// B0 ADD_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B1 SUB_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B2 MUL_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B3 DIV_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B4 REM_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B5 AND_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B6 OR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B7 XOR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B8 SHL_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// B9 SHR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// BA USHR_INT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// BB ADD_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// BC SUB_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// BD MUL_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// BE DIV_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// BF REM_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// C0 AND_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// C1 OR_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// C2 XOR_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// C3 SHL_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// C4 SHR_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// C5 USHR_LONG_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
// C6 ADD_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// C7 SUB_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// C8 MUL_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// C9 DIV_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// CA REM_FLOAT_2ADDR vA, vB
DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// CB ADD_DOUBLE_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// CC SUB_DOUBLE_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// CD MUL_DOUBLE_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// CE DIV_DOUBLE_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// CF REM_DOUBLE_2ADDR vA, vB
DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// D0 ADD_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D1 RSUB_INT vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D2 MUL_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D3 DIV_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D4 REM_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D5 AND_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D6 OR_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D7 XOR_INT_LIT16 vA, vB, #+CCCC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D8 ADD_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// D9 RSUB_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// DA MUL_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// DB DIV_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// DC REM_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// DD AND_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// DE OR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// DF XOR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// E0 SHL_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// E1 SHR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// E2 USHR_INT_LIT8 vAA, vBB, #+CC
DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
// E3 IGET_QUICK
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// E4 IGET_WIDE_QUICK
DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// E5 IGET_OBJECT_QUICK
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
// E6 IPUT_QUICK
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// E7 IPUT_WIDE_QUICK
DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// E8 IPUT_OBJECT_QUICK
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
// E9 INVOKE_VIRTUAL_QUICK
DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
// EA INVOKE_VIRTUAL_RANGE_QUICK
DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
// EB IPUT_BOOLEAN_QUICK vA, vB, index
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// EC IPUT_BYTE_QUICK vA, vB, index
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// ED IPUT_CHAR_QUICK vA, vB, index
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// EE IPUT_SHORT_QUICK vA, vB, index
DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// EF IGET_BOOLEAN_QUICK vA, vB, index
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// F0 IGET_BYTE_QUICK vA, vB, index
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// F1 IGET_CHAR_QUICK vA, vB, index
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// F2 IGET_SHORT_QUICK vA, vB, index
DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
// F3 UNUSED_F3
DF_NOP,
// F4 UNUSED_F4
DF_NOP,
// F5 UNUSED_F5
DF_NOP,
// F6 UNUSED_F6
DF_NOP,
// F7 UNUSED_F7
DF_NOP,
// F8 UNUSED_F8
DF_NOP,
// F9 UNUSED_F9
DF_NOP,
// FA UNUSED_FA
DF_NOP,
// FB UNUSED_FB
DF_NOP,
// FC UNUSED_FC
DF_NOP,
// FD UNUSED_FD
DF_NOP,
// FE UNUSED_FE
DF_NOP,
// FF UNUSED_FF
DF_NOP,
// Beginning of extended MIR opcodes
// 100 MIR_PHI
DF_DA | DF_NULL_TRANSFER_N,
// 101 MIR_COPY
DF_DA | DF_UB | DF_IS_MOVE,
// 102 MIR_FUSED_CMPL_FLOAT
DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// 103 MIR_FUSED_CMPG_FLOAT
DF_UA | DF_UB | DF_FP_A | DF_FP_B,
// 104 MIR_FUSED_CMPL_DOUBLE
DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// 105 MIR_FUSED_CMPG_DOUBLE
DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
// 106 MIR_FUSED_CMP_LONG
DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
// 107 MIR_NOP
DF_NOP,
// 108 MIR_NULL_CHECK
DF_UA | DF_REF_A | DF_NULL_CHK_A | DF_LVN,
// 109 MIR_RANGE_CHECK
0,
// 10A MIR_DIV_ZERO_CHECK
0,
// 10B MIR_CHECK
0,
// 10D MIR_SELECT
DF_DA | DF_UB,
// 10E MirOpConstVector
0,
// 10F MirOpMoveVector
0,
// 110 MirOpPackedMultiply
0,
// 111 MirOpPackedAddition
0,
// 112 MirOpPackedSubtract
0,
// 113 MirOpPackedShiftLeft
0,
// 114 MirOpPackedSignedShiftRight
0,
// 115 MirOpPackedUnsignedShiftRight
0,
// 116 MirOpPackedAnd
0,
// 117 MirOpPackedOr
0,
// 118 MirOpPackedXor
0,
// 119 MirOpPackedAddReduce
DF_FORMAT_EXTENDED,
// 11A MirOpPackedReduce
DF_FORMAT_EXTENDED,
// 11B MirOpPackedSet
DF_FORMAT_EXTENDED,
// 11C MirOpReserveVectorRegisters
0,
// 11D MirOpReturnVectorRegisters
0,
// 11E MirOpMemBarrier
0,
// 11F MirOpPackedArrayGet
DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 120 MirOpPackedArrayPut
DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
// 121 MirOpMaddInt
DF_FORMAT_EXTENDED,
// 122 MirOpMsubInt
DF_FORMAT_EXTENDED,
// 123 MirOpMaddLong
DF_FORMAT_EXTENDED,
// 124 MirOpMsubLong
DF_FORMAT_EXTENDED,
};
/* Any register that is used before being defined is considered live-in */
void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
ArenaBitVector* live_in_v, int dalvik_reg_id) {
use_v->SetBit(dalvik_reg_id);
if (!def_v->IsBitSet(dalvik_reg_id)) {
live_in_v->SetBit(dalvik_reg_id);
}
}
/* Mark a reg as being defined */
void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) {
def_v->SetBit(dalvik_reg_id);
}
void MIRGraph::HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
ArenaBitVector* live_in_v,
const MIR::DecodedInstruction& d_insn) {
// For vector MIRs, vC contains type information
bool is_vector_type_wide = false;
int type_size = d_insn.vC >> 16;
if (type_size == k64 || type_size == kDouble) {
is_vector_type_wide = true;
}
switch (static_cast<int>(d_insn.opcode)) {
case kMirOpPackedAddReduce:
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vA);
if (is_vector_type_wide == true) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vA + 1);
}
HandleDef(def_v, d_insn.vA);
if (is_vector_type_wide == true) {
HandleDef(def_v, d_insn.vA + 1);
}
break;
case kMirOpPackedReduce:
HandleDef(def_v, d_insn.vA);
if (is_vector_type_wide == true) {
HandleDef(def_v, d_insn.vA + 1);
}
break;
case kMirOpPackedSet:
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB);
if (is_vector_type_wide == true) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB + 1);
}
break;
case kMirOpMaddInt:
case kMirOpMsubInt:
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB);
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vC);
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.arg[0]);
HandleDef(def_v, d_insn.vA);
break;
case kMirOpMaddLong:
case kMirOpMsubLong:
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB);
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB + 1);
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vC);
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vC + 1);
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.arg[0]);
HandleLiveInUse(use_v, def_v, live_in_v, d_insn.arg[0] + 1);
HandleDef(def_v, d_insn.vA);
HandleDef(def_v, d_insn.vA + 1);
break;
default:
LOG(ERROR) << "Unexpected Extended Opcode " << d_insn.opcode;
break;
}
}
/*
* Find out live-in variables for natural loops. Variables that are live-in in
* the main loop body are considered to be defined in the entry block.
*/
bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) {
MIR* mir;
ArenaBitVector *use_v, *def_v, *live_in_v;
if (bb->data_flow_info == nullptr) return false;
use_v = bb->data_flow_info->use_v =
new (arena_) ArenaBitVector(arena_, GetNumOfCodeAndTempVRs(), false, kBitMapUse);
def_v = bb->data_flow_info->def_v =
new (arena_) ArenaBitVector(arena_, GetNumOfCodeAndTempVRs(), false, kBitMapDef);
live_in_v = bb->data_flow_info->live_in_v =
new (arena_) ArenaBitVector(arena_, GetNumOfCodeAndTempVRs(), false, kBitMapLiveIn);
for (mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
uint64_t df_attributes = GetDataFlowAttributes(mir);
MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
if (df_attributes & DF_HAS_USES) {
if (df_attributes & DF_UA) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
if (df_attributes & DF_A_WIDE) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
}
}
if (df_attributes & DF_UB) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
if (df_attributes & DF_B_WIDE) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
}
}
if (df_attributes & DF_UC) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
if (df_attributes & DF_C_WIDE) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
}
}
}
if (df_attributes & DF_FORMAT_35C) {
for (unsigned int i = 0; i < d_insn->vA; i++) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
}
}
if (df_attributes & DF_FORMAT_3RC) {
for (unsigned int i = 0; i < d_insn->vA; i++) {
HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
}
}
if (df_attributes & DF_HAS_DEFS) {
HandleDef(def_v, d_insn->vA);
if (df_attributes & DF_A_WIDE) {
HandleDef(def_v, d_insn->vA+1);
}
}
if (df_attributes & DF_FORMAT_EXTENDED) {
HandleExtended(use_v, def_v, live_in_v, mir->dalvikInsn);
}
}
return true;
}
int MIRGraph::AddNewSReg(int v_reg) {
int subscript = ++ssa_last_defs_[v_reg];
uint32_t ssa_reg = GetNumSSARegs();
SetNumSSARegs(ssa_reg + 1);
ssa_base_vregs_.push_back(v_reg);
ssa_subscripts_.push_back(subscript);
DCHECK_EQ(ssa_base_vregs_.size(), ssa_subscripts_.size());
// If we are expanding very late, update use counts too.
if (ssa_reg > 0 && use_counts_.size() == ssa_reg) {
// Need to expand the counts.
use_counts_.push_back(0);
raw_use_counts_.push_back(0);
}
return ssa_reg;
}
/* Find out the latest SSA register for a given Dalvik register */
void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) {
DCHECK((dalvik_reg >= 0) && (dalvik_reg < static_cast<int>(GetNumOfCodeAndTempVRs())));
uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
}
/* Setup a new SSA register for a given Dalvik register */
void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) {
DCHECK((dalvik_reg >= 0) && (dalvik_reg < static_cast<int>(GetNumOfCodeAndTempVRs())));
int ssa_reg = AddNewSReg(dalvik_reg);
vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
defs[reg_index] = ssa_reg;
}
void MIRGraph::AllocateSSAUseData(MIR *mir, int num_uses) {
mir->ssa_rep->num_uses = num_uses;
if (mir->ssa_rep->num_uses_allocated < num_uses) {
mir->ssa_rep->uses = arena_->AllocArray<int32_t>(num_uses, kArenaAllocDFInfo);
}
}
void MIRGraph::AllocateSSADefData(MIR *mir, int num_defs) {
mir->ssa_rep->num_defs = num_defs;
if (mir->ssa_rep->num_defs_allocated < num_defs) {
mir->ssa_rep->defs = arena_->AllocArray<int32_t>(num_defs, kArenaAllocDFInfo);
}
}
/* Look up new SSA names for format_35c instructions */
void MIRGraph::DataFlowSSAFormat35C(MIR* mir) {
MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
int num_uses = d_insn->vA;
int i;
AllocateSSAUseData(mir, num_uses);
for (i = 0; i < num_uses; i++) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
}
}
/* Look up new SSA names for format_3rc instructions */
void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) {
MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
int num_uses = d_insn->vA;
int i;
AllocateSSAUseData(mir, num_uses);
for (i = 0; i < num_uses; i++) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
}
}
void MIRGraph::DataFlowSSAFormatExtended(MIR* mir) {
const MIR::DecodedInstruction& d_insn = mir->dalvikInsn;
// For vector MIRs, vC contains type information
bool is_vector_type_wide = false;
int type_size = d_insn.vC >> 16;
if (type_size == k64 || type_size == kDouble) {
is_vector_type_wide = true;
}
switch (static_cast<int>(mir->dalvikInsn.opcode)) {
case kMirOpPackedAddReduce:
// We have one use, plus one more for wide
AllocateSSAUseData(mir, is_vector_type_wide ? 2 : 1);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vA, 0);
if (is_vector_type_wide == true) {
HandleSSAUse(mir->ssa_rep->uses, d_insn.vA + 1, 1);
}
// We have a def, plus one more for wide
AllocateSSADefData(mir, is_vector_type_wide ? 2 : 1);
HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
if (is_vector_type_wide == true) {
HandleSSADef(mir->ssa_rep->defs, d_insn.vA + 1, 1);
}
break;
case kMirOpPackedReduce:
// We have a def, plus one more for wide
AllocateSSADefData(mir, is_vector_type_wide ? 2 : 1);
HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
if (is_vector_type_wide == true) {
HandleSSADef(mir->ssa_rep->defs, d_insn.vA + 1, 1);
}
break;
case kMirOpPackedSet:
// We have one use, plus one more for wide
AllocateSSAUseData(mir, is_vector_type_wide ? 2 : 1);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vB, 0);
if (is_vector_type_wide == true) {
HandleSSAUse(mir->ssa_rep->uses, d_insn.vB + 1, 1);
}
break;
case kMirOpMaddInt:
case kMirOpMsubInt:
AllocateSSAUseData(mir, 3);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vB, 0);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vC, 1);
HandleSSAUse(mir->ssa_rep->uses, d_insn.arg[0], 2);
AllocateSSADefData(mir, 1);
HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
break;
case kMirOpMaddLong:
case kMirOpMsubLong:
AllocateSSAUseData(mir, 6);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vB, 0);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vB + 1, 1);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vC, 2);
HandleSSAUse(mir->ssa_rep->uses, d_insn.vC + 1, 3);
HandleSSAUse(mir->ssa_rep->uses, d_insn.arg[0], 4);
HandleSSAUse(mir->ssa_rep->uses, d_insn.arg[0] + 1, 5);
AllocateSSADefData(mir, 2);
HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
HandleSSADef(mir->ssa_rep->defs, d_insn.vA + 1, 1);
break;
default:
LOG(ERROR) << "Missing case for extended MIR: " << mir->dalvikInsn.opcode;
break;
}
}
/* Entry function to convert a block into SSA representation */
bool MIRGraph::DoSSAConversion(BasicBlock* bb) {
if (bb->data_flow_info == nullptr) return false;
/*
* Pruned SSA form: Insert phi nodes for each dalvik register marked in phi_node_blocks
* only if the dalvik register is in the live-in set.
*/
BasicBlockId bb_id = bb->id;
for (int dalvik_reg = GetNumOfCodeAndTempVRs() - 1; dalvik_reg >= 0; dalvik_reg--) {
if (temp_.ssa.phi_node_blocks[dalvik_reg]->IsBitSet(bb_id)) {
if (!bb->data_flow_info->live_in_v->IsBitSet(dalvik_reg)) {
/* Variable will be clobbered before being used - no need for phi */
vreg_to_ssa_map_[dalvik_reg] = INVALID_SREG;
continue;
}
MIR *phi = NewMIR();
phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpPhi);
phi->dalvikInsn.vA = dalvik_reg;
phi->offset = bb->start_offset;
phi->m_unit_index = 0; // Arbitrarily assign all Phi nodes to outermost method.
bb->PrependMIR(phi);
}
}
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
mir->ssa_rep =
static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation),
kArenaAllocDFInfo));
memset(mir->ssa_rep, 0, sizeof(*mir->ssa_rep));
uint64_t df_attributes = GetDataFlowAttributes(mir);
// If not a pseudo-op, note non-leaf or can throw
if (!MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
int flags = mir->dalvikInsn.FlagsOf();
if ((flags & Instruction::kInvoke) != 0) {
attributes_ &= ~METHOD_IS_LEAF;
}
}
int num_uses = 0;
if (df_attributes & DF_FORMAT_35C) {
DataFlowSSAFormat35C(mir);
continue;
}
if (df_attributes & DF_FORMAT_3RC) {
DataFlowSSAFormat3RC(mir);
continue;
}
if (df_attributes & DF_FORMAT_EXTENDED) {
DataFlowSSAFormatExtended(mir);
continue;
}
if (df_attributes & DF_HAS_USES) {
if (df_attributes & DF_UA) {
num_uses++;
if (df_attributes & DF_A_WIDE) {
num_uses++;
}
}
if (df_attributes & DF_UB) {
num_uses++;
if (df_attributes & DF_B_WIDE) {
num_uses++;
}
}
if (df_attributes & DF_UC) {
num_uses++;
if (df_attributes & DF_C_WIDE) {
num_uses++;
}
}
}
AllocateSSAUseData(mir, num_uses);
int num_defs = 0;
if (df_attributes & DF_HAS_DEFS) {
num_defs++;
if (df_attributes & DF_A_WIDE) {
num_defs++;
}
}
AllocateSSADefData(mir, num_defs);
MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
if (df_attributes & DF_HAS_USES) {
num_uses = 0;
if (df_attributes & DF_UA) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
if (df_attributes & DF_A_WIDE) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
}
}
if (df_attributes & DF_UB) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
if (df_attributes & DF_B_WIDE) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
}
}
if (df_attributes & DF_UC) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
if (df_attributes & DF_C_WIDE) {
HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
}
}
}
if (df_attributes & DF_HAS_DEFS) {
HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
if (df_attributes & DF_A_WIDE) {
HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
}
}
}
/*
* Take a snapshot of Dalvik->SSA mapping at the end of each block. The
* input to PHI nodes can be derived from the snapshot of all
* predecessor blocks.
*/
bb->data_flow_info->vreg_to_ssa_map_exit =
arena_->AllocArray<int32_t>(GetNumOfCodeAndTempVRs(), kArenaAllocDFInfo);
memcpy(bb->data_flow_info->vreg_to_ssa_map_exit, vreg_to_ssa_map_,
sizeof(int) * GetNumOfCodeAndTempVRs());
return true;
}
void MIRGraph::InitializeBasicBlockDataFlow() {
/*
* Allocate the BasicBlockDataFlow structure for the entry and code blocks.
*/
for (BasicBlock* bb : block_list_) {
if (bb->hidden == true) continue;
if (bb->block_type == kDalvikByteCode ||
bb->block_type == kEntryBlock ||
bb->block_type == kExitBlock) {
bb->data_flow_info =
static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow),
kArenaAllocDFInfo));
}
}
}
/* Setup the basic data structures for SSA conversion */
void MIRGraph::CompilerInitializeSSAConversion() {
size_t num_reg = GetNumOfCodeAndTempVRs();
ssa_base_vregs_.clear();
ssa_base_vregs_.reserve(num_reg + GetDefCount() + 128);
ssa_subscripts_.clear();
ssa_subscripts_.reserve(num_reg + GetDefCount() + 128);
/*
* Initial number of SSA registers is equal to the number of Dalvik
* registers.
*/
SetNumSSARegs(num_reg);
/*
* Initialize the SSA2Dalvik map list. For the first num_reg elements,
* the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
* into "(0 << 16) | i"
*/
for (unsigned int i = 0; i < num_reg; i++) {
ssa_base_vregs_.push_back(i);
ssa_subscripts_.push_back(0);
}
/*
* Initialize the DalvikToSSAMap map. There is one entry for each
* Dalvik register, and the SSA names for those are the same.
*/
vreg_to_ssa_map_ = arena_->AllocArray<int32_t>(num_reg, kArenaAllocDFInfo);
/* Keep track of the higest def for each dalvik reg */
ssa_last_defs_ = arena_->AllocArray<int>(num_reg, kArenaAllocDFInfo);
for (unsigned int i = 0; i < num_reg; i++) {
vreg_to_ssa_map_[i] = i;
ssa_last_defs_[i] = 0;
}
// Create a compiler temporary for Method*. This is done after SSA initialization.
CompilerTemp* method_temp = GetNewCompilerTemp(kCompilerTempSpecialMethodPtr, false);
// The MIR graph keeps track of the sreg for method pointer specially, so record that now.
method_sreg_ = method_temp->s_reg_low;
InitializeBasicBlockDataFlow();
}
uint32_t MIRGraph::GetUseCountWeight(BasicBlock* bb) const {
// Each level of nesting adds *100 to count, up to 3 levels deep.
uint32_t depth = std::min(3U, static_cast<uint32_t>(bb->nesting_depth));
uint32_t weight = std::max(1U, depth * 100);
return weight;
}
/*
* Count uses, weighting by loop nesting depth. This code only
* counts explicitly used s_regs. A later phase will add implicit
* counts for things such as Method*, null-checked references, etc.
*/
void MIRGraph::CountUses(BasicBlock* bb) {
if (bb->block_type != kDalvikByteCode) {
return;
}
uint32_t weight = GetUseCountWeight(bb);
for (MIR* mir = bb->first_mir_insn; (mir != nullptr); mir = mir->next) {
if (mir->ssa_rep == nullptr) {
continue;
}
for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
int s_reg = mir->ssa_rep->uses[i];
raw_use_counts_[s_reg] += 1u;
use_counts_[s_reg] += weight;
}
}
}
/* Verify if all the successor is connected with all the claimed predecessors */
bool MIRGraph::VerifyPredInfo(BasicBlock* bb) {
for (BasicBlockId pred_id : bb->predecessors) {
BasicBlock* pred_bb = GetBasicBlock(pred_id);
DCHECK(pred_bb != nullptr);
bool found = false;
if (pred_bb->taken == bb->id) {
found = true;
} else if (pred_bb->fall_through == bb->id) {
found = true;
} else if (pred_bb->successor_block_list_type != kNotUsed) {
for (SuccessorBlockInfo* successor_block_info : pred_bb->successor_blocks) {
BasicBlockId succ_bb = successor_block_info->block;
if (succ_bb == bb->id) {
found = true;
break;
}
}
}
if (found == false) {
char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
GetBlockName(bb, block_name1);
GetBlockName(pred_bb, block_name2);
DumpCFG("/sdcard/cfg/", false);
LOG(FATAL) << "Successor " << block_name1 << " not found from "
<< block_name2;
}
}
return true;
}
void MIRGraph::VerifyDataflow() {
/* Verify if all blocks are connected as claimed */
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
VerifyPredInfo(bb);
}
}
} // namespace art