| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "mem_map.h" |
| |
| #include <sys/mman.h> |
| |
| #include <memory> |
| #include <random> |
| |
| #include "base/memory_tool.h" |
| #include "base/unix_file/fd_file.h" |
| #include "common_runtime_test.h" |
| |
| namespace art { |
| |
| class MemMapTest : public CommonRuntimeTest { |
| public: |
| static uint8_t* BaseBegin(MemMap* mem_map) { |
| return reinterpret_cast<uint8_t*>(mem_map->base_begin_); |
| } |
| |
| static size_t BaseSize(MemMap* mem_map) { |
| return mem_map->base_size_; |
| } |
| |
| static bool IsAddressMapped(void* addr) { |
| bool res = msync(addr, 1, MS_SYNC) == 0; |
| if (!res && errno != ENOMEM) { |
| PLOG(FATAL) << "Unexpected error occurred on msync"; |
| } |
| return res; |
| } |
| |
| static std::vector<uint8_t> RandomData(size_t size) { |
| std::random_device rd; |
| std::uniform_int_distribution<uint8_t> dist; |
| std::vector<uint8_t> res; |
| res.resize(size); |
| for (size_t i = 0; i < size; i++) { |
| res[i] = dist(rd); |
| } |
| return res; |
| } |
| |
| static uint8_t* GetValidMapAddress(size_t size, bool low_4gb) { |
| // Find a valid map address and unmap it before returning. |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("temp", |
| nullptr, |
| size, |
| PROT_READ, |
| low_4gb, |
| false, |
| &error_msg)); |
| CHECK(map != nullptr); |
| return map->Begin(); |
| } |
| |
| static void RemapAtEndTest(bool low_4gb) { |
| std::string error_msg; |
| // Cast the page size to size_t. |
| const size_t page_size = static_cast<size_t>(kPageSize); |
| // Map a two-page memory region. |
| MemMap* m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0", |
| nullptr, |
| 2 * page_size, |
| PROT_READ | PROT_WRITE, |
| low_4gb, |
| false, |
| &error_msg); |
| // Check its state and write to it. |
| uint8_t* base0 = m0->Begin(); |
| ASSERT_TRUE(base0 != nullptr) << error_msg; |
| size_t size0 = m0->Size(); |
| EXPECT_EQ(m0->Size(), 2 * page_size); |
| EXPECT_EQ(BaseBegin(m0), base0); |
| EXPECT_EQ(BaseSize(m0), size0); |
| memset(base0, 42, 2 * page_size); |
| // Remap the latter half into a second MemMap. |
| MemMap* m1 = m0->RemapAtEnd(base0 + page_size, |
| "MemMapTest_RemapAtEndTest_map1", |
| PROT_READ | PROT_WRITE, |
| &error_msg); |
| // Check the states of the two maps. |
| EXPECT_EQ(m0->Begin(), base0) << error_msg; |
| EXPECT_EQ(m0->Size(), page_size); |
| EXPECT_EQ(BaseBegin(m0), base0); |
| EXPECT_EQ(BaseSize(m0), page_size); |
| uint8_t* base1 = m1->Begin(); |
| size_t size1 = m1->Size(); |
| EXPECT_EQ(base1, base0 + page_size); |
| EXPECT_EQ(size1, page_size); |
| EXPECT_EQ(BaseBegin(m1), base1); |
| EXPECT_EQ(BaseSize(m1), size1); |
| // Write to the second region. |
| memset(base1, 43, page_size); |
| // Check the contents of the two regions. |
| for (size_t i = 0; i < page_size; ++i) { |
| EXPECT_EQ(base0[i], 42); |
| } |
| for (size_t i = 0; i < page_size; ++i) { |
| EXPECT_EQ(base1[i], 43); |
| } |
| // Unmap the first region. |
| delete m0; |
| // Make sure the second region is still accessible after the first |
| // region is unmapped. |
| for (size_t i = 0; i < page_size; ++i) { |
| EXPECT_EQ(base1[i], 43); |
| } |
| delete m1; |
| } |
| |
| void CommonInit() { |
| MemMap::Init(); |
| } |
| |
| #if defined(__LP64__) && !defined(__x86_64__) |
| static uintptr_t GetLinearScanPos() { |
| return MemMap::next_mem_pos_; |
| } |
| #endif |
| }; |
| |
| #if defined(__LP64__) && !defined(__x86_64__) |
| |
| #ifdef __BIONIC__ |
| extern uintptr_t CreateStartPos(uint64_t input); |
| #endif |
| |
| TEST_F(MemMapTest, Start) { |
| CommonInit(); |
| uintptr_t start = GetLinearScanPos(); |
| EXPECT_LE(64 * KB, start); |
| EXPECT_LT(start, static_cast<uintptr_t>(ART_BASE_ADDRESS)); |
| #ifdef __BIONIC__ |
| // Test a couple of values. Make sure they are different. |
| uintptr_t last = 0; |
| for (size_t i = 0; i < 100; ++i) { |
| uintptr_t random_start = CreateStartPos(i * kPageSize); |
| EXPECT_NE(last, random_start); |
| last = random_start; |
| } |
| |
| // Even on max, should be below ART_BASE_ADDRESS. |
| EXPECT_LT(CreateStartPos(~0), static_cast<uintptr_t>(ART_BASE_ADDRESS)); |
| #endif |
| // End of test. |
| } |
| #endif |
| |
| // We need mremap to be able to test ReplaceMapping at all |
| #if HAVE_MREMAP_SYSCALL |
| TEST_F(MemMapTest, ReplaceMapping_SameSize) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> dest(MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest", |
| nullptr, |
| kPageSize, |
| PROT_READ, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(dest != nullptr); |
| MemMap* source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", |
| nullptr, |
| kPageSize, |
| PROT_WRITE | PROT_READ, |
| false, |
| false, |
| &error_msg); |
| ASSERT_TRUE(source != nullptr); |
| void* source_addr = source->Begin(); |
| void* dest_addr = dest->Begin(); |
| ASSERT_TRUE(IsAddressMapped(source_addr)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| |
| std::vector<uint8_t> data = RandomData(kPageSize); |
| memcpy(source->Begin(), data.data(), data.size()); |
| |
| ASSERT_TRUE(dest->ReplaceWith(&source, &error_msg)) << error_msg; |
| |
| ASSERT_FALSE(IsAddressMapped(source_addr)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| ASSERT_TRUE(source == nullptr); |
| |
| ASSERT_EQ(dest->Size(), static_cast<size_t>(kPageSize)); |
| |
| ASSERT_EQ(memcmp(dest->Begin(), data.data(), dest->Size()), 0); |
| } |
| |
| TEST_F(MemMapTest, ReplaceMapping_MakeLarger) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> dest(MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest", |
| nullptr, |
| 5 * kPageSize, // Need to make it larger |
| // initially so we know |
| // there won't be mappings |
| // in the way we we move |
| // source. |
| PROT_READ, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(dest != nullptr); |
| MemMap* source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", |
| nullptr, |
| 3 * kPageSize, |
| PROT_WRITE | PROT_READ, |
| false, |
| false, |
| &error_msg); |
| ASSERT_TRUE(source != nullptr); |
| uint8_t* source_addr = source->Begin(); |
| uint8_t* dest_addr = dest->Begin(); |
| ASSERT_TRUE(IsAddressMapped(source_addr)); |
| |
| // Fill the source with random data. |
| std::vector<uint8_t> data = RandomData(3 * kPageSize); |
| memcpy(source->Begin(), data.data(), data.size()); |
| |
| // Make the dest smaller so that we know we'll have space. |
| dest->SetSize(kPageSize); |
| |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| ASSERT_FALSE(IsAddressMapped(dest_addr + 2 * kPageSize)); |
| ASSERT_EQ(dest->Size(), static_cast<size_t>(kPageSize)); |
| |
| ASSERT_TRUE(dest->ReplaceWith(&source, &error_msg)) << error_msg; |
| |
| ASSERT_FALSE(IsAddressMapped(source_addr)); |
| ASSERT_EQ(dest->Size(), static_cast<size_t>(3 * kPageSize)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr + 2 * kPageSize)); |
| ASSERT_TRUE(source == nullptr); |
| |
| ASSERT_EQ(memcmp(dest->Begin(), data.data(), dest->Size()), 0); |
| } |
| |
| TEST_F(MemMapTest, ReplaceMapping_MakeSmaller) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> dest(MemMap::MapAnonymous("MapAnonymousEmpty-atomic-replace-dest", |
| nullptr, |
| 3 * kPageSize, |
| PROT_READ, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(dest != nullptr); |
| MemMap* source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", |
| nullptr, |
| kPageSize, |
| PROT_WRITE | PROT_READ, |
| false, |
| false, |
| &error_msg); |
| ASSERT_TRUE(source != nullptr); |
| uint8_t* source_addr = source->Begin(); |
| uint8_t* dest_addr = dest->Begin(); |
| ASSERT_TRUE(IsAddressMapped(source_addr)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr + 2 * kPageSize)); |
| ASSERT_EQ(dest->Size(), static_cast<size_t>(3 * kPageSize)); |
| |
| std::vector<uint8_t> data = RandomData(kPageSize); |
| memcpy(source->Begin(), data.data(), kPageSize); |
| |
| ASSERT_TRUE(dest->ReplaceWith(&source, &error_msg)) << error_msg; |
| |
| ASSERT_FALSE(IsAddressMapped(source_addr)); |
| ASSERT_EQ(dest->Size(), static_cast<size_t>(kPageSize)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| ASSERT_FALSE(IsAddressMapped(dest_addr + 2 * kPageSize)); |
| ASSERT_TRUE(source == nullptr); |
| |
| ASSERT_EQ(memcmp(dest->Begin(), data.data(), dest->Size()), 0); |
| } |
| |
| TEST_F(MemMapTest, ReplaceMapping_FailureOverlap) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> dest( |
| MemMap::MapAnonymous( |
| "MapAnonymousEmpty-atomic-replace-dest", |
| nullptr, |
| 3 * kPageSize, // Need to make it larger initially so we know there won't be mappings in |
| // the way we we move source. |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(dest != nullptr); |
| // Resize down to 1 page so we can remap the rest. |
| dest->SetSize(kPageSize); |
| // Create source from the last 2 pages |
| MemMap* source = MemMap::MapAnonymous("MapAnonymous-atomic-replace-source", |
| dest->Begin() + kPageSize, |
| 2 * kPageSize, |
| PROT_WRITE | PROT_READ, |
| false, |
| false, |
| &error_msg); |
| ASSERT_TRUE(source != nullptr); |
| MemMap* orig_source = source; |
| ASSERT_EQ(dest->Begin() + kPageSize, source->Begin()); |
| uint8_t* source_addr = source->Begin(); |
| uint8_t* dest_addr = dest->Begin(); |
| ASSERT_TRUE(IsAddressMapped(source_addr)); |
| |
| // Fill the source and dest with random data. |
| std::vector<uint8_t> data = RandomData(2 * kPageSize); |
| memcpy(source->Begin(), data.data(), data.size()); |
| std::vector<uint8_t> dest_data = RandomData(kPageSize); |
| memcpy(dest->Begin(), dest_data.data(), dest_data.size()); |
| |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| ASSERT_EQ(dest->Size(), static_cast<size_t>(kPageSize)); |
| |
| ASSERT_FALSE(dest->ReplaceWith(&source, &error_msg)) << error_msg; |
| |
| ASSERT_TRUE(source == orig_source); |
| ASSERT_TRUE(IsAddressMapped(source_addr)); |
| ASSERT_TRUE(IsAddressMapped(dest_addr)); |
| ASSERT_EQ(source->Size(), data.size()); |
| ASSERT_EQ(dest->Size(), dest_data.size()); |
| |
| ASSERT_EQ(memcmp(source->Begin(), data.data(), data.size()), 0); |
| ASSERT_EQ(memcmp(dest->Begin(), dest_data.data(), dest_data.size()), 0); |
| |
| delete source; |
| } |
| #endif // HAVE_MREMAP_SYSCALL |
| |
| TEST_F(MemMapTest, MapAnonymousEmpty) { |
| CommonInit(); |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", |
| nullptr, |
| 0, |
| PROT_READ, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| map.reset(MemMap::MapAnonymous("MapAnonymousEmpty", |
| nullptr, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| } |
| |
| TEST_F(MemMapTest, MapAnonymousFailNullError) { |
| CommonInit(); |
| // Test that we don't crash with a null error_str when mapping at an invalid location. |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousInvalid", |
| reinterpret_cast<uint8_t*>(kPageSize), |
| 0x20000, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| nullptr)); |
| ASSERT_EQ(nullptr, map.get()); |
| } |
| |
| #ifdef __LP64__ |
| TEST_F(MemMapTest, MapAnonymousEmpty32bit) { |
| CommonInit(); |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", |
| nullptr, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| true, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_LT(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 1ULL << 32); |
| } |
| TEST_F(MemMapTest, MapFile32Bit) { |
| CommonInit(); |
| std::string error_msg; |
| ScratchFile scratch_file; |
| constexpr size_t kMapSize = kPageSize; |
| std::unique_ptr<uint8_t[]> data(new uint8_t[kMapSize]()); |
| ASSERT_TRUE(scratch_file.GetFile()->WriteFully(&data[0], kMapSize)); |
| std::unique_ptr<MemMap> map(MemMap::MapFile(/*byte_count*/kMapSize, |
| PROT_READ, |
| MAP_PRIVATE, |
| scratch_file.GetFd(), |
| /*start*/0, |
| /*low_4gb*/true, |
| scratch_file.GetFilename().c_str(), |
| &error_msg)); |
| ASSERT_TRUE(map != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_EQ(map->Size(), kMapSize); |
| ASSERT_LT(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 1ULL << 32); |
| } |
| #endif |
| |
| TEST_F(MemMapTest, MapAnonymousExactAddr) { |
| CommonInit(); |
| std::string error_msg; |
| // Find a valid address. |
| uint8_t* valid_address = GetValidMapAddress(kPageSize, /*low_4gb*/false); |
| // Map at an address that should work, which should succeed. |
| std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", |
| valid_address, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map0.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_TRUE(map0->BaseBegin() == valid_address); |
| // Map at an unspecified address, which should succeed. |
| std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", |
| nullptr, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map1.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_TRUE(map1->BaseBegin() != nullptr); |
| // Attempt to map at the same address, which should fail. |
| std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", |
| reinterpret_cast<uint8_t*>(map1->BaseBegin()), |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map2.get() == nullptr) << error_msg; |
| ASSERT_TRUE(!error_msg.empty()); |
| } |
| |
| TEST_F(MemMapTest, RemapAtEnd) { |
| RemapAtEndTest(false); |
| } |
| |
| #ifdef __LP64__ |
| TEST_F(MemMapTest, RemapAtEnd32bit) { |
| RemapAtEndTest(true); |
| } |
| #endif |
| |
| TEST_F(MemMapTest, MapAnonymousExactAddr32bitHighAddr) { |
| // Some MIPS32 hardware (namely the Creator Ci20 development board) |
| // cannot allocate in the 2GB-4GB region. |
| TEST_DISABLED_FOR_MIPS(); |
| |
| CommonInit(); |
| // This test may not work under valgrind. |
| if (RUNNING_ON_MEMORY_TOOL == 0) { |
| constexpr size_t size = 0x100000; |
| // Try all addresses starting from 2GB to 4GB. |
| size_t start_addr = 2 * GB; |
| std::string error_msg; |
| std::unique_ptr<MemMap> map; |
| for (; start_addr <= std::numeric_limits<uint32_t>::max() - size; start_addr += size) { |
| map.reset(MemMap::MapAnonymous("MapAnonymousExactAddr32bitHighAddr", |
| reinterpret_cast<uint8_t*>(start_addr), |
| size, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb*/true, |
| false, |
| &error_msg)); |
| if (map != nullptr) { |
| break; |
| } |
| } |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_GE(reinterpret_cast<uintptr_t>(map->End()), 2u * GB); |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_EQ(BaseBegin(map.get()), reinterpret_cast<void*>(start_addr)); |
| } |
| } |
| |
| TEST_F(MemMapTest, MapAnonymousOverflow) { |
| CommonInit(); |
| std::string error_msg; |
| uintptr_t ptr = 0; |
| ptr -= kPageSize; // Now it's close to the top. |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousOverflow", |
| reinterpret_cast<uint8_t*>(ptr), |
| 2 * kPageSize, // brings it over the top. |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_EQ(nullptr, map.get()); |
| ASSERT_FALSE(error_msg.empty()); |
| } |
| |
| #ifdef __LP64__ |
| TEST_F(MemMapTest, MapAnonymousLow4GBExpectedTooHigh) { |
| CommonInit(); |
| std::string error_msg; |
| std::unique_ptr<MemMap> map( |
| MemMap::MapAnonymous("MapAnonymousLow4GBExpectedTooHigh", |
| reinterpret_cast<uint8_t*>(UINT64_C(0x100000000)), |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| true, |
| false, |
| &error_msg)); |
| ASSERT_EQ(nullptr, map.get()); |
| ASSERT_FALSE(error_msg.empty()); |
| } |
| |
| TEST_F(MemMapTest, MapAnonymousLow4GBRangeTooHigh) { |
| CommonInit(); |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousLow4GBRangeTooHigh", |
| reinterpret_cast<uint8_t*>(0xF0000000), |
| 0x20000000, |
| PROT_READ | PROT_WRITE, |
| true, |
| false, |
| &error_msg)); |
| ASSERT_EQ(nullptr, map.get()); |
| ASSERT_FALSE(error_msg.empty()); |
| } |
| #endif |
| |
| TEST_F(MemMapTest, MapAnonymousReuse) { |
| CommonInit(); |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousReserve", |
| nullptr, |
| 0x20000, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_NE(nullptr, map.get()); |
| ASSERT_TRUE(error_msg.empty()); |
| std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymousReused", |
| reinterpret_cast<uint8_t*>(map->BaseBegin()), |
| 0x10000, |
| PROT_READ | PROT_WRITE, |
| false, |
| true, |
| &error_msg)); |
| ASSERT_NE(nullptr, map2.get()); |
| ASSERT_TRUE(error_msg.empty()); |
| } |
| |
| TEST_F(MemMapTest, CheckNoGaps) { |
| CommonInit(); |
| std::string error_msg; |
| constexpr size_t kNumPages = 3; |
| // Map a 3-page mem map. |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymous0", |
| nullptr, |
| kPageSize * kNumPages, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| // Record the base address. |
| uint8_t* map_base = reinterpret_cast<uint8_t*>(map->BaseBegin()); |
| // Unmap it. |
| map.reset(); |
| |
| // Map at the same address, but in page-sized separate mem maps, |
| // assuming the space at the address is still available. |
| std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", |
| map_base, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map0.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", |
| map_base + kPageSize, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map1.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", |
| map_base + kPageSize * 2, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map2.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| |
| // One-map cases. |
| ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map0.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map1.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map2.get(), map2.get())); |
| |
| // Two or three-map cases. |
| ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map1.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map2.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map2.get())); |
| |
| // Unmap the middle one. |
| map1.reset(); |
| |
| // Should return false now that there's a gap in the middle. |
| ASSERT_FALSE(MemMap::CheckNoGaps(map0.get(), map2.get())); |
| } |
| |
| TEST_F(MemMapTest, AlignBy) { |
| CommonInit(); |
| std::string error_msg; |
| // Cast the page size to size_t. |
| const size_t page_size = static_cast<size_t>(kPageSize); |
| // Map a region. |
| std::unique_ptr<MemMap> m0(MemMap::MapAnonymous("MemMapTest_AlignByTest_map0", |
| nullptr, |
| 14 * page_size, |
| PROT_READ | PROT_WRITE, |
| false, |
| false, |
| &error_msg)); |
| uint8_t* base0 = m0->Begin(); |
| ASSERT_TRUE(base0 != nullptr) << error_msg; |
| ASSERT_EQ(m0->Size(), 14 * page_size); |
| ASSERT_EQ(BaseBegin(m0.get()), base0); |
| ASSERT_EQ(BaseSize(m0.get()), m0->Size()); |
| |
| // Break it into several regions by using RemapAtEnd. |
| std::unique_ptr<MemMap> m1(m0->RemapAtEnd(base0 + 3 * page_size, |
| "MemMapTest_AlignByTest_map1", |
| PROT_READ | PROT_WRITE, |
| &error_msg)); |
| uint8_t* base1 = m1->Begin(); |
| ASSERT_TRUE(base1 != nullptr) << error_msg; |
| ASSERT_EQ(base1, base0 + 3 * page_size); |
| ASSERT_EQ(m0->Size(), 3 * page_size); |
| |
| std::unique_ptr<MemMap> m2(m1->RemapAtEnd(base1 + 4 * page_size, |
| "MemMapTest_AlignByTest_map2", |
| PROT_READ | PROT_WRITE, |
| &error_msg)); |
| uint8_t* base2 = m2->Begin(); |
| ASSERT_TRUE(base2 != nullptr) << error_msg; |
| ASSERT_EQ(base2, base1 + 4 * page_size); |
| ASSERT_EQ(m1->Size(), 4 * page_size); |
| |
| std::unique_ptr<MemMap> m3(m2->RemapAtEnd(base2 + 3 * page_size, |
| "MemMapTest_AlignByTest_map1", |
| PROT_READ | PROT_WRITE, |
| &error_msg)); |
| uint8_t* base3 = m3->Begin(); |
| ASSERT_TRUE(base3 != nullptr) << error_msg; |
| ASSERT_EQ(base3, base2 + 3 * page_size); |
| ASSERT_EQ(m2->Size(), 3 * page_size); |
| ASSERT_EQ(m3->Size(), 4 * page_size); |
| |
| uint8_t* end0 = base0 + m0->Size(); |
| uint8_t* end1 = base1 + m1->Size(); |
| uint8_t* end2 = base2 + m2->Size(); |
| uint8_t* end3 = base3 + m3->Size(); |
| |
| ASSERT_EQ(static_cast<size_t>(end3 - base0), 14 * page_size); |
| |
| if (IsAlignedParam(base0, 2 * page_size)) { |
| ASSERT_FALSE(IsAlignedParam(base1, 2 * page_size)); |
| ASSERT_FALSE(IsAlignedParam(base2, 2 * page_size)); |
| ASSERT_TRUE(IsAlignedParam(base3, 2 * page_size)); |
| ASSERT_TRUE(IsAlignedParam(end3, 2 * page_size)); |
| } else { |
| ASSERT_TRUE(IsAlignedParam(base1, 2 * page_size)); |
| ASSERT_TRUE(IsAlignedParam(base2, 2 * page_size)); |
| ASSERT_FALSE(IsAlignedParam(base3, 2 * page_size)); |
| ASSERT_FALSE(IsAlignedParam(end3, 2 * page_size)); |
| } |
| |
| // Align by 2 * page_size; |
| m0->AlignBy(2 * page_size); |
| m1->AlignBy(2 * page_size); |
| m2->AlignBy(2 * page_size); |
| m3->AlignBy(2 * page_size); |
| |
| EXPECT_TRUE(IsAlignedParam(m0->Begin(), 2 * page_size)); |
| EXPECT_TRUE(IsAlignedParam(m1->Begin(), 2 * page_size)); |
| EXPECT_TRUE(IsAlignedParam(m2->Begin(), 2 * page_size)); |
| EXPECT_TRUE(IsAlignedParam(m3->Begin(), 2 * page_size)); |
| |
| EXPECT_TRUE(IsAlignedParam(m0->Begin() + m0->Size(), 2 * page_size)); |
| EXPECT_TRUE(IsAlignedParam(m1->Begin() + m1->Size(), 2 * page_size)); |
| EXPECT_TRUE(IsAlignedParam(m2->Begin() + m2->Size(), 2 * page_size)); |
| EXPECT_TRUE(IsAlignedParam(m3->Begin() + m3->Size(), 2 * page_size)); |
| |
| if (IsAlignedParam(base0, 2 * page_size)) { |
| EXPECT_EQ(m0->Begin(), base0); |
| EXPECT_EQ(m0->Begin() + m0->Size(), end0 - page_size); |
| EXPECT_EQ(m1->Begin(), base1 + page_size); |
| EXPECT_EQ(m1->Begin() + m1->Size(), end1 - page_size); |
| EXPECT_EQ(m2->Begin(), base2 + page_size); |
| EXPECT_EQ(m2->Begin() + m2->Size(), end2); |
| EXPECT_EQ(m3->Begin(), base3); |
| EXPECT_EQ(m3->Begin() + m3->Size(), end3); |
| } else { |
| EXPECT_EQ(m0->Begin(), base0 + page_size); |
| EXPECT_EQ(m0->Begin() + m0->Size(), end0); |
| EXPECT_EQ(m1->Begin(), base1); |
| EXPECT_EQ(m1->Begin() + m1->Size(), end1); |
| EXPECT_EQ(m2->Begin(), base2); |
| EXPECT_EQ(m2->Begin() + m2->Size(), end2 - page_size); |
| EXPECT_EQ(m3->Begin(), base3 + page_size); |
| EXPECT_EQ(m3->Begin() + m3->Size(), end3 - page_size); |
| } |
| } |
| |
| } // namespace art |