blob: 0625f1f7cb72768e19f3485c07b65d9da0af3a3e [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "atomic.h"
#include <sched.h>
namespace art {
/*
* Quasi-atomic 64-bit operations, for platforms that lack the real thing.
*
* TODO: unify ARMv6/x86/sh implementations using the to-be-written
* spin lock implementation. We don't want to rely on mutex innards,
* and it would be great if all platforms were running the same code.
*/
#if defined(HAVE_MACOSX_IPC)
#include <libkern/OSAtomic.h>
#if defined(__ppc__) \
|| defined(__PPC__) \
|| defined(__powerpc__) \
|| defined(__powerpc) \
|| defined(__POWERPC__) \
|| defined(_M_PPC) \
|| defined(__PPC)
#define NEED_QUASIATOMICS 1
#else
int QuasiAtomicCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
return OSAtomicCompareAndSwap64Barrier(old_value, new_value, const_cast<int64_t*>(addr)) == 0;
}
static inline int64_t QuasiAtomicSwap64Impl(int64_t value, volatile int64_t* addr) {
int64_t old_value;
do {
old_value = *addr;
} while (QuasiAtomicCas64(old_value, value, addr));
return old_value;
}
int64_t QuasiAtomicSwap64(int64_t value, volatile int64_t* addr) {
return QuasiAtomicSwap64Impl(value, addr);
}
int64_t QuasiAtomicSwap64Sync(int64_t value, volatile int64_t* addr) {
ANDROID_MEMBAR_STORE();
int64_t old_value = QuasiAtomicSwap64Impl(value, addr);
/* TUNING: barriers can be avoided on some architectures */
ANDROID_MEMBAR_FULL();
return old_value;
}
int64_t QuasiAtomicRead64(volatile const int64_t* addr) {
return OSAtomicAdd64Barrier(0, const_cast<volatile int64_t*>(addr));
}
#endif
#elif defined(__i386__) || defined(__x86_64__)
#define NEED_QUASIATOMICS 1
#elif __arm__
#include <machine/cpu-features.h>
#ifdef __ARM_HAVE_LDREXD
static inline int64_t QuasiAtomicSwap64Impl(int64_t new_value, volatile int64_t* addr) {
int64_t prev;
int status;
do {
__asm__ __volatile__("@ QuasiAtomicSwap64\n"
"ldrexd %0, %H0, [%3]\n"
"strexd %1, %4, %H4, [%3]"
: "=&r" (prev), "=&r" (status), "+m"(*addr)
: "r" (addr), "r" (new_value)
: "cc");
} while (__builtin_expect(status != 0, 0));
return prev;
}
int64_t QuasiAtomicSwap64(int64_t new_value, volatile int64_t* addr) {
return QuasiAtomicSwap64Impl(new_value, addr);
}
int64_t QuasiAtomicSwap64Sync(int64_t new_value, volatile int64_t* addr) {
ANDROID_MEMBAR_STORE();
int64_t old_value = QuasiAtomicSwap64Impl(new_value, addr);
ANDROID_MEMBAR_FULL();
return old_value;
}
int QuasiAtomicCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
int64_t prev;
int status;
do {
__asm__ __volatile__("@ QuasiAtomicCas64\n"
"ldrexd %0, %H0, [%3]\n"
"mov %1, #0\n"
"teq %0, %4\n"
"teqeq %H0, %H4\n"
"strexdeq %1, %5, %H5, [%3]"
: "=&r" (prev), "=&r" (status), "+m"(*addr)
: "r" (addr), "Ir" (old_value), "r" (new_value)
: "cc");
} while (__builtin_expect(status != 0, 0));
return prev != old_value;
}
int64_t QuasiAtomicRead64(volatile const int64_t* addr) {
int64_t value;
__asm__ __volatile__("@ QuasiAtomicRead64\n"
"ldrexd %0, %H0, [%1]"
: "=&r" (value)
: "r" (addr));
return value;
}
#else
// on the device, we implement the 64-bit atomic operations through
// mutex locking. normally, this is bad because we must initialize
// a pthread_mutex_t before being able to use it, and this means
// having to do an initialization check on each function call, and
// that's where really ugly things begin...
//
// BUT, as a special twist, we take advantage of the fact that in our
// pthread library, a mutex is simply a volatile word whose value is always
// initialized to 0. In other words, simply declaring a static mutex
// object initializes it !
//
// another twist is that we use a small array of mutexes to dispatch
// the contention locks from different memory addresses
//
#include <pthread.h>
#define SWAP_LOCK_COUNT 32U
static pthread_mutex_t _swap_locks[SWAP_LOCK_COUNT];
#define SWAP_LOCK(addr) &_swap_locks[((unsigned)(void*)(addr) >> 3U) % SWAP_LOCK_COUNT]
int64_t QuasiAtomicSwap64(int64_t value, volatile int64_t* addr) {
pthread_mutex_t* lock = SWAP_LOCK(addr);
pthread_mutex_lock(lock);
int64_t old_value = *addr;
*addr = value;
pthread_mutex_unlock(lock);
return old_value;
}
int64_t QuasiAtomicSwap64Sync(int64_t value, volatile int64_t* addr) {
// Same as QuasiAtomicSwap64 - mutex handles barrier.
return QuasiAtomicSwap64(value, addr);
}
int QuasiAtomicCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
int result;
pthread_mutex_t* lock = SWAP_LOCK(addr);
pthread_mutex_lock(lock);
if (*addr == old_value) {
*addr = new_value;
result = 0;
} else {
result = 1;
}
pthread_mutex_unlock(lock);
return result;
}
int64_t QuasiAtomicRead64(volatile const int64_t* addr) {
int64_t result;
pthread_mutex_t* lock = SWAP_LOCK(addr);
pthread_mutex_lock(lock);
result = *addr;
pthread_mutex_unlock(lock);
return result;
}
#endif /*__ARM_HAVE_LDREXD*/
/*****************************************************************************/
#elif __sh__
#define NEED_QUASIATOMICS 1
#else
#error "Unsupported atomic operations for this platform"
#endif
#if NEED_QUASIATOMICS
/* Note that a spinlock is *not* a good idea in general
* since they can introduce subtle issues. For example,
* a real-time thread trying to acquire a spinlock already
* acquired by another thread will never yeld, making the
* CPU loop endlessly!
*
* However, this code is only used on the Linux simulator
* so it's probably ok for us.
*
* The alternative is to use a pthread mutex, but
* these must be initialized before being used, and
* then you have the problem of lazily initializing
* a mutex without any other synchronization primitive.
*
* TODO: these currently use sched_yield(), which is not guaranteed to
* do anything at all. We need to use dvmIterativeSleep or a wait /
* notify mechanism if the initial attempt fails.
*/
/* global spinlock for all 64-bit quasiatomic operations */
static int32_t quasiatomic_spinlock = 0;
int QuasiAtomicCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
int result;
while (android_atomic_acquire_cas(0, 1, &quasiatomic_spinlock)) {
#ifdef HAVE_WIN32_THREADS
Sleep(0);
#else
sched_yield();
#endif
}
if (*addr == old_value) {
*addr = new_value;
result = 0;
} else {
result = 1;
}
android_atomic_release_store(0, &quasiatomic_spinlock);
return result;
}
int64_t QuasiAtomicRead64(volatile const int64_t* addr) {
int64_t result;
while (android_atomic_acquire_cas(0, 1, &quasiatomic_spinlock)) {
#ifdef HAVE_WIN32_THREADS
Sleep(0);
#else
sched_yield();
#endif
}
result = *addr;
android_atomic_release_store(0, &quasiatomic_spinlock);
return result;
}
int64_t QuasiAtomicSwap64(int64_t value, volatile int64_t* addr) {
int64_t result;
while (android_atomic_acquire_cas(0, 1, &quasiatomic_spinlock)) {
#ifdef HAVE_WIN32_THREADS
Sleep(0);
#else
sched_yield();
#endif
}
result = *addr;
*addr = value;
android_atomic_release_store(0, &quasiatomic_spinlock);
return result;
}
int64_t QuasiAtomicSwap64Sync(int64_t value, volatile int64_t* addr) {
// Same as QuasiAtomicSwap64 - syscall handles barrier.
return QuasiAtomicSwap64(value, addr);
}
#endif /*NEED_QUASIATOMICS*/
} // namespace art