blob: 99736e95d0e190c7efb43e0e33705181413d01a5 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include "base/memory_tool.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_set>
#include <vector>
#if defined(__linux__) && defined(__arm__)
#include <sys/personality.h>
#include <sys/utsname.h>
#endif
#define ATRACE_TAG ATRACE_TAG_DALVIK
#include <cutils/trace.h>
#include "art_method-inl.h"
#include "arch/instruction_set_features.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "base/dumpable.h"
#include "base/macros.h"
#include "base/stl_util.h"
#include "base/stringpiece.h"
#include "base/time_utils.h"
#include "base/timing_logger.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "compiler.h"
#include "compiler_callbacks.h"
#include "dex_file-inl.h"
#include "dex/pass_manager.h"
#include "dex/verification_results.h"
#include "dex/quick_compiler_callbacks.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "elf_file.h"
#include "elf_writer.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "image_writer.h"
#include "interpreter/unstarted_runtime.h"
#include "leb128.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat_writer.h"
#include "os.h"
#include "runtime.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "utils.h"
#include "vector_output_stream.h"
#include "well_known_classes.h"
#include "zip_archive.h"
namespace art {
static int original_argc;
static char** original_argv;
static std::string CommandLine() {
std::vector<std::string> command;
for (int i = 0; i < original_argc; ++i) {
command.push_back(original_argv[i]);
}
return Join(command, ' ');
}
// A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be
// even more aggressive. There won't be much reasonable data here for us in that case anyways (the
// locations are all staged).
static std::string StrippedCommandLine() {
std::vector<std::string> command;
// Do a pre-pass to look for zip-fd.
bool saw_zip_fd = false;
for (int i = 0; i < original_argc; ++i) {
if (StartsWith(original_argv[i], "--zip-fd=")) {
saw_zip_fd = true;
break;
}
}
// Now filter out things.
for (int i = 0; i < original_argc; ++i) {
// All runtime-arg parameters are dropped.
if (strcmp(original_argv[i], "--runtime-arg") == 0) {
i++; // Drop the next part, too.
continue;
}
// Any instruction-setXXX is dropped.
if (StartsWith(original_argv[i], "--instruction-set")) {
continue;
}
// The boot image is dropped.
if (StartsWith(original_argv[i], "--boot-image=")) {
continue;
}
// This should leave any dex-file and oat-file options, describing what we compiled.
// However, we prefer to drop this when we saw --zip-fd.
if (saw_zip_fd) {
// Drop anything --zip-X, --dex-X, --oat-X, --swap-X.
if (StartsWith(original_argv[i], "--zip-") ||
StartsWith(original_argv[i], "--dex-") ||
StartsWith(original_argv[i], "--oat-") ||
StartsWith(original_argv[i], "--swap-")) {
continue;
}
}
command.push_back(original_argv[i]);
}
// Construct the final output.
if (command.size() <= 1U) {
// It seems only "/system/bin/dex2oat" is left, or not even that. Use a pretty line.
return "Starting dex2oat.";
}
return Join(command, ' ');
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: dex2oat [options]...");
UsageError("");
UsageError(" -j<number>: specifies the number of threads used for compilation.");
UsageError(" Default is the number of detected hardware threads available on the");
UsageError(" host system.");
UsageError(" Example: -j12");
UsageError("");
UsageError(" --dex-file=<dex-file>: specifies a .dex, .jar, or .apk file to compile.");
UsageError(" Example: --dex-file=/system/framework/core.jar");
UsageError("");
UsageError(" --dex-location=<dex-location>: specifies an alternative dex location to");
UsageError(" encode in the oat file for the corresponding --dex-file argument.");
UsageError(" Example: --dex-file=/home/build/out/system/framework/core.jar");
UsageError(" --dex-location=/system/framework/core.jar");
UsageError("");
UsageError(" --zip-fd=<file-descriptor>: specifies a file descriptor of a zip file");
UsageError(" containing a classes.dex file to compile.");
UsageError(" Example: --zip-fd=5");
UsageError("");
UsageError(" --zip-location=<zip-location>: specifies a symbolic name for the file");
UsageError(" corresponding to the file descriptor specified by --zip-fd.");
UsageError(" Example: --zip-location=/system/app/Calculator.apk");
UsageError("");
UsageError(" --oat-file=<file.oat>: specifies the oat output destination via a filename.");
UsageError(" Example: --oat-file=/system/framework/boot.oat");
UsageError("");
UsageError(" --oat-fd=<number>: specifies the oat output destination via a file descriptor.");
UsageError(" Example: --oat-fd=6");
UsageError("");
UsageError(" --oat-location=<oat-name>: specifies a symbolic name for the file corresponding");
UsageError(" to the file descriptor specified by --oat-fd.");
UsageError(" Example: --oat-location=/data/dalvik-cache/system@app@Calculator.apk.oat");
UsageError("");
UsageError(" --oat-symbols=<file.oat>: specifies the oat output destination with full symbols.");
UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat");
UsageError("");
UsageError(" --image=<file.art>: specifies the output image filename.");
UsageError(" Example: --image=/system/framework/boot.art");
UsageError("");
UsageError(" --image-classes=<classname-file>: specifies classes to include in an image.");
UsageError(" Example: --image=frameworks/base/preloaded-classes");
UsageError("");
UsageError(" --base=<hex-address>: specifies the base address when creating a boot image.");
UsageError(" Example: --base=0x50000000");
UsageError("");
UsageError(" --boot-image=<file.art>: provide the image file for the boot class path.");
UsageError(" Example: --boot-image=/system/framework/boot.art");
UsageError(" Default: $ANDROID_ROOT/system/framework/boot.art");
UsageError("");
UsageError(" --android-root=<path>: used to locate libraries for portable linking.");
UsageError(" Example: --android-root=out/host/linux-x86");
UsageError(" Default: $ANDROID_ROOT");
UsageError("");
UsageError(" --instruction-set=(arm|arm64|mips|mips64|x86|x86_64): compile for a particular");
UsageError(" instruction set.");
UsageError(" Example: --instruction-set=x86");
UsageError(" Default: arm");
UsageError("");
UsageError(" --instruction-set-features=...,: Specify instruction set features");
UsageError(" Example: --instruction-set-features=div");
UsageError(" Default: default");
UsageError("");
UsageError(" --compile-pic: Force indirect use of code, methods, and classes");
UsageError(" Default: disabled");
UsageError("");
UsageError(" --compiler-backend=(Quick|Optimizing): select compiler backend");
UsageError(" set.");
UsageError(" Example: --compiler-backend=Optimizing");
if (kUseOptimizingCompiler) {
UsageError(" Default: Optimizing");
} else {
UsageError(" Default: Quick");
}
UsageError("");
UsageError(" --compiler-filter="
"(verify-none"
"|interpret-only"
"|space"
"|balanced"
"|speed"
"|everything"
"|time):");
UsageError(" select compiler filter.");
UsageError(" Example: --compiler-filter=everything");
UsageError(" Default: speed");
UsageError("");
UsageError(" --huge-method-max=<method-instruction-count>: threshold size for a huge");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold);
UsageError("");
UsageError(" --large-method-max=<method-instruction-count>: threshold size for a large");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --large-method-max=%d", CompilerOptions::kDefaultLargeMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultLargeMethodThreshold);
UsageError("");
UsageError(" --small-method-max=<method-instruction-count>: threshold size for a small");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --small-method-max=%d", CompilerOptions::kDefaultSmallMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultSmallMethodThreshold);
UsageError("");
UsageError(" --tiny-method-max=<method-instruction-count>: threshold size for a tiny");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --tiny-method-max=%d", CompilerOptions::kDefaultTinyMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultTinyMethodThreshold);
UsageError("");
UsageError(" --num-dex-methods=<method-count>: threshold size for a small dex file for");
UsageError(" compiler filter tuning. If the input has fewer than this many methods");
UsageError(" and the filter is not interpret-only or verify-none, overrides the");
UsageError(" filter to use speed");
UsageError(" Example: --num-dex-method=%d", CompilerOptions::kDefaultNumDexMethodsThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultNumDexMethodsThreshold);
UsageError("");
UsageError(" --inline-depth-limit=<depth-limit>: the depth limit of inlining for fine tuning");
UsageError(" the compiler. A zero value will disable inlining. Honored only by Optimizing.");
UsageError(" Has priority over the --compiler-filter option. Intended for ");
UsageError(" development/experimental use.");
UsageError(" Example: --inline-depth-limit=%d", CompilerOptions::kDefaultInlineDepthLimit);
UsageError(" Default: %d", CompilerOptions::kDefaultInlineDepthLimit);
UsageError("");
UsageError(" --inline-max-code-units=<code-units-count>: the maximum code units that a method");
UsageError(" can have to be considered for inlining. A zero value will disable inlining.");
UsageError(" Honored only by Optimizing. Has priority over the --compiler-filter option.");
UsageError(" Intended for development/experimental use.");
UsageError(" Example: --inline-max-code-units=%d",
CompilerOptions::kDefaultInlineMaxCodeUnits);
UsageError(" Default: %d", CompilerOptions::kDefaultInlineMaxCodeUnits);
UsageError("");
UsageError(" --dump-timing: display a breakdown of where time was spent");
UsageError("");
UsageError(" --include-patch-information: Include patching information so the generated code");
UsageError(" can have its base address moved without full recompilation.");
UsageError("");
UsageError(" --no-include-patch-information: Do not include patching information.");
UsageError("");
UsageError(" -g");
UsageError(" --generate-debug-info: Generate debug information for native debugging,");
UsageError(" such as stack unwinding information, ELF symbols and DWARF sections.");
UsageError(" This generates all the available information. Unneeded parts can be");
UsageError(" stripped using standard command line tools such as strip or objcopy.");
UsageError(" (enabled by default in debug builds, disabled by default otherwise)");
UsageError("");
UsageError(" --no-generate-debug-info: Do not generate debug information for native debugging.");
UsageError("");
UsageError(" --runtime-arg <argument>: used to specify various arguments for the runtime,");
UsageError(" such as initial heap size, maximum heap size, and verbose output.");
UsageError(" Use a separate --runtime-arg switch for each argument.");
UsageError(" Example: --runtime-arg -Xms256m");
UsageError("");
UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation.");
UsageError("");
UsageError(" --print-pass-names: print a list of pass names");
UsageError("");
UsageError(" --disable-passes=<pass-names>: disable one or more passes separated by comma.");
UsageError(" Example: --disable-passes=UseCount,BBOptimizations");
UsageError("");
UsageError(" --print-pass-options: print a list of passes that have configurable options along "
"with the setting.");
UsageError(" Will print default if no overridden setting exists.");
UsageError("");
UsageError(" --pass-options=Pass1Name:Pass1OptionName:Pass1Option#,"
"Pass2Name:Pass2OptionName:Pass2Option#");
UsageError(" Used to specify a pass specific option. The setting itself must be integer.");
UsageError(" Separator used between options is a comma.");
UsageError("");
UsageError(" --swap-file=<file-name>: specifies a file to use for swap.");
UsageError(" Example: --swap-file=/data/tmp/swap.001");
UsageError("");
UsageError(" --swap-fd=<file-descriptor>: specifies a file to use for swap (by descriptor).");
UsageError(" Example: --swap-fd=10");
UsageError("");
std::cerr << "See log for usage error information\n";
exit(EXIT_FAILURE);
}
// The primary goal of the watchdog is to prevent stuck build servers
// during development when fatal aborts lead to a cascade of failures
// that result in a deadlock.
class WatchDog {
// WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks
#undef CHECK_PTHREAD_CALL
#define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \
do { \
int rc = call args; \
if (rc != 0) { \
errno = rc; \
std::string message(# call); \
message += " failed for "; \
message += reason; \
Fatal(message); \
} \
} while (false)
public:
explicit WatchDog(bool is_watch_dog_enabled) {
is_watch_dog_enabled_ = is_watch_dog_enabled;
if (!is_watch_dog_enabled_) {
return;
}
shutting_down_ = false;
const char* reason = "dex2oat watch dog thread startup";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason);
}
~WatchDog() {
if (!is_watch_dog_enabled_) {
return;
}
const char* reason = "dex2oat watch dog thread shutdown";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
shutting_down_ = true;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason);
}
private:
static void* CallBack(void* arg) {
WatchDog* self = reinterpret_cast<WatchDog*>(arg);
::art::SetThreadName("dex2oat watch dog");
self->Wait();
return nullptr;
}
NO_RETURN static void Fatal(const std::string& message) {
// TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However,
// it's rather easy to hang in unwinding.
// LogLine also avoids ART logging lock issues, as it's really only a wrapper around
// logcat logging or stderr output.
LogMessage::LogLine(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str());
exit(1);
}
void Wait() {
// TODO: tune the multiplier for GC verification, the following is just to make the timeout
// large.
constexpr int64_t multiplier = kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1;
timespec timeout_ts;
InitTimeSpec(true, CLOCK_REALTIME, multiplier * kWatchDogTimeoutSeconds * 1000, 0, &timeout_ts);
const char* reason = "dex2oat watch dog thread waiting";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
while (!shutting_down_) {
int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts));
if (rc == ETIMEDOUT) {
Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " seconds",
kWatchDogTimeoutSeconds));
} else if (rc != 0) {
std::string message(StringPrintf("pthread_cond_timedwait failed: %s",
strerror(errno)));
Fatal(message.c_str());
}
}
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
}
// When setting timeouts, keep in mind that the build server may not be as fast as your desktop.
// Debug builds are slower so they have larger timeouts.
static constexpr int64_t kSlowdownFactor = kIsDebugBuild ? 5U : 1U;
// 10 minutes scaled by kSlowdownFactor.
static constexpr int64_t kWatchDogTimeoutSeconds = kSlowdownFactor * 10 * 60;
bool is_watch_dog_enabled_;
bool shutting_down_;
// TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases.
pthread_mutex_t mutex_;
pthread_cond_t cond_;
pthread_attr_t attr_;
pthread_t pthread_;
};
static void ParseStringAfterChar(const std::string& s, char c, std::string* parsed_value) {
std::string::size_type colon = s.find(c);
if (colon == std::string::npos) {
Usage("Missing char %c in option %s\n", c, s.c_str());
}
// Add one to remove the char we were trimming until.
*parsed_value = s.substr(colon + 1);
}
static void ParseDouble(const std::string& option, char after_char, double min, double max,
double* parsed_value) {
std::string substring;
ParseStringAfterChar(option, after_char, &substring);
bool sane_val = true;
double value;
if (false) {
// TODO: this doesn't seem to work on the emulator. b/15114595
std::stringstream iss(substring);
iss >> value;
// Ensure that we have a value, there was no cruft after it and it satisfies a sensible range.
sane_val = iss.eof() && (value >= min) && (value <= max);
} else {
char* end = nullptr;
value = strtod(substring.c_str(), &end);
sane_val = *end == '\0' && value >= min && value <= max;
}
if (!sane_val) {
Usage("Invalid double value %s for option %s\n", substring.c_str(), option.c_str());
}
*parsed_value = value;
}
static constexpr size_t kMinDexFilesForSwap = 2;
static constexpr size_t kMinDexFileCumulativeSizeForSwap = 20 * MB;
static bool UseSwap(bool is_image, std::vector<const DexFile*>& dex_files) {
if (is_image) {
// Don't use swap, we know generation should succeed, and we don't want to slow it down.
return false;
}
if (dex_files.size() < kMinDexFilesForSwap) {
// If there are less dex files than the threshold, assume it's gonna be fine.
return false;
}
size_t dex_files_size = 0;
for (const auto* dex_file : dex_files) {
dex_files_size += dex_file->GetHeader().file_size_;
}
return dex_files_size >= kMinDexFileCumulativeSizeForSwap;
}
class Dex2Oat FINAL {
public:
explicit Dex2Oat(TimingLogger* timings) :
compiler_kind_(kUseOptimizingCompiler ? Compiler::kOptimizing : Compiler::kQuick),
instruction_set_(kRuntimeISA),
// Take the default set of instruction features from the build.
method_inliner_map_(),
runtime_(nullptr),
thread_count_(sysconf(_SC_NPROCESSORS_CONF)),
start_ns_(NanoTime()),
oat_fd_(-1),
zip_fd_(-1),
image_base_(0U),
image_classes_zip_filename_(nullptr),
image_classes_filename_(nullptr),
compiled_classes_zip_filename_(nullptr),
compiled_classes_filename_(nullptr),
compiled_methods_zip_filename_(nullptr),
compiled_methods_filename_(nullptr),
image_(false),
is_host_(false),
dump_stats_(false),
dump_passes_(false),
dump_timing_(false),
dump_slow_timing_(kIsDebugBuild),
swap_fd_(-1),
timings_(timings) {}
~Dex2Oat() {
// Free opened dex files before deleting the runtime_, because ~DexFile
// uses MemMap, which is shut down by ~Runtime.
class_path_files_.clear();
opened_dex_files_.clear();
// Log completion time before deleting the runtime_, because this accesses
// the runtime.
LogCompletionTime();
if (kIsDebugBuild || (RUNNING_ON_MEMORY_TOOL && kMemoryToolDetectsLeaks)) {
delete runtime_; // See field declaration for why this is manual.
}
}
struct ParserOptions {
std::string oat_symbols;
std::string boot_image_filename;
const char* compiler_filter_string = nullptr;
CompilerOptions::CompilerFilter compiler_filter = CompilerOptions::kDefaultCompilerFilter;
bool compile_pic = false;
int huge_method_threshold = CompilerOptions::kDefaultHugeMethodThreshold;
int large_method_threshold = CompilerOptions::kDefaultLargeMethodThreshold;
int small_method_threshold = CompilerOptions::kDefaultSmallMethodThreshold;
int tiny_method_threshold = CompilerOptions::kDefaultTinyMethodThreshold;
int num_dex_methods_threshold = CompilerOptions::kDefaultNumDexMethodsThreshold;
static constexpr int kUnsetInlineDepthLimit = -1;
int inline_depth_limit = kUnsetInlineDepthLimit;
static constexpr int kUnsetInlineMaxCodeUnits = -1;
int inline_max_code_units = kUnsetInlineMaxCodeUnits;
// Profile file to use
double top_k_profile_threshold = CompilerOptions::kDefaultTopKProfileThreshold;
bool debuggable = false;
bool include_patch_information = CompilerOptions::kDefaultIncludePatchInformation;
bool generate_debug_info = kIsDebugBuild;
bool watch_dog_enabled = true;
bool abort_on_hard_verifier_error = false;
bool requested_specific_compiler = false;
bool implicit_null_checks = false;
bool implicit_so_checks = false;
bool implicit_suspend_checks = false;
PassManagerOptions pass_manager_options;
std::string error_msg;
};
template <typename T>
static void ParseUintOption(const StringPiece& option,
const std::string& option_name,
T* out,
bool is_long_option = true) {
std::string option_prefix = option_name + (is_long_option ? "=" : "");
DCHECK(option.starts_with(option_prefix));
const char* value_string = option.substr(option_prefix.size()).data();
int64_t parsed_integer_value;
if (!ParseInt(value_string, &parsed_integer_value)) {
Usage("Failed to parse %s '%s' as an integer", option_name.c_str(), value_string);
}
if (parsed_integer_value < 0) {
Usage("%s passed a negative value %d", option_name.c_str(), parsed_integer_value);
}
*out = dchecked_integral_cast<T>(parsed_integer_value);
}
void ParseZipFd(const StringPiece& option) {
ParseUintOption(option, "--zip-fd", &zip_fd_);
}
void ParseOatFd(const StringPiece& option) {
ParseUintOption(option, "--oat-fd", &oat_fd_);
}
void ParseJ(const StringPiece& option) {
ParseUintOption(option, "-j", &thread_count_, /* is_long_option */ false);
}
void ParseBase(const StringPiece& option) {
DCHECK(option.starts_with("--base="));
const char* image_base_str = option.substr(strlen("--base=")).data();
char* end;
image_base_ = strtoul(image_base_str, &end, 16);
if (end == image_base_str || *end != '\0') {
Usage("Failed to parse hexadecimal value for option %s", option.data());
}
}
void ParseInstructionSet(const StringPiece& option) {
DCHECK(option.starts_with("--instruction-set="));
StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data();
// StringPiece is not necessarily zero-terminated, so need to make a copy and ensure it.
std::unique_ptr<char[]> buf(new char[instruction_set_str.length() + 1]);
strncpy(buf.get(), instruction_set_str.data(), instruction_set_str.length());
buf.get()[instruction_set_str.length()] = 0;
instruction_set_ = GetInstructionSetFromString(buf.get());
// arm actually means thumb2.
if (instruction_set_ == InstructionSet::kArm) {
instruction_set_ = InstructionSet::kThumb2;
}
}
void ParseInstructionSetVariant(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--instruction-set-variant="));
StringPiece str = option.substr(strlen("--instruction-set-variant=")).data();
instruction_set_features_.reset(
InstructionSetFeatures::FromVariant(
instruction_set_, str.as_string(), &parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("%s", parser_options->error_msg.c_str());
}
}
void ParseInstructionSetFeatures(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--instruction-set-features="));
StringPiece str = option.substr(strlen("--instruction-set-features=")).data();
if (instruction_set_features_.get() == nullptr) {
instruction_set_features_.reset(
InstructionSetFeatures::FromVariant(
instruction_set_, "default", &parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
instruction_set_features_.reset(
instruction_set_features_->AddFeaturesFromString(str.as_string(),
&parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("Error parsing '%s': %s", option.data(), parser_options->error_msg.c_str());
}
}
void ParseCompilerBackend(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--compiler-backend="));
parser_options->requested_specific_compiler = true;
StringPiece backend_str = option.substr(strlen("--compiler-backend=")).data();
if (backend_str == "Quick") {
compiler_kind_ = Compiler::kQuick;
} else if (backend_str == "Optimizing") {
compiler_kind_ = Compiler::kOptimizing;
} else {
Usage("Unknown compiler backend: %s", backend_str.data());
}
}
void ParseHugeMethodMax(const StringPiece& option, ParserOptions* parser_options) {
ParseUintOption(option, "--huge-method-max", &parser_options->huge_method_threshold);
}
void ParseLargeMethodMax(const StringPiece& option, ParserOptions* parser_options) {
ParseUintOption(option, "--large-method-max", &parser_options->large_method_threshold);
}
void ParseSmallMethodMax(const StringPiece& option, ParserOptions* parser_options) {
ParseUintOption(option, "--small-method-max", &parser_options->small_method_threshold);
}
void ParseTinyMethodMax(const StringPiece& option, ParserOptions* parser_options) {
ParseUintOption(option, "--tiny-method-max", &parser_options->tiny_method_threshold);
}
void ParseNumDexMethods(const StringPiece& option, ParserOptions* parser_options) {
ParseUintOption(option, "--num-dex-methods", &parser_options->num_dex_methods_threshold);
}
void ParseInlineDepthLimit(const StringPiece& option, ParserOptions* parser_options) {
ParseUintOption(option, "--inline-depth-limit", &parser_options->inline_depth_limit);
}
void ParseInlineMaxCodeUnits(const StringPiece& option, ParserOptions* parser_options) {
ParseUintOption(option, "--inline-max-code-units=", &parser_options->inline_max_code_units);
}
void ParseDisablePasses(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--disable-passes="));
const std::string disable_passes = option.substr(strlen("--disable-passes=")).data();
parser_options->pass_manager_options.SetDisablePassList(disable_passes);
}
void ParsePrintPasses(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--print-passes="));
const std::string print_passes = option.substr(strlen("--print-passes=")).data();
parser_options->pass_manager_options.SetPrintPassList(print_passes);
}
void ParseDumpCfgPasses(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--dump-cfg-passes="));
const std::string dump_passes_string = option.substr(strlen("--dump-cfg-passes=")).data();
parser_options->pass_manager_options.SetDumpPassList(dump_passes_string);
}
void ParsePassOptions(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--pass-options="));
const std::string pass_options = option.substr(strlen("--pass-options=")).data();
parser_options->pass_manager_options.SetOverriddenPassOptions(pass_options);
}
void ParseDumpInitFailures(const StringPiece& option) {
DCHECK(option.starts_with("--dump-init-failures="));
std::string file_name = option.substr(strlen("--dump-init-failures=")).data();
init_failure_output_.reset(new std::ofstream(file_name));
if (init_failure_output_.get() == nullptr) {
LOG(ERROR) << "Failed to allocate ofstream";
} else if (init_failure_output_->fail()) {
LOG(ERROR) << "Failed to open " << file_name << " for writing the initialization "
<< "failures.";
init_failure_output_.reset();
}
}
void ParseSwapFd(const StringPiece& option) {
ParseUintOption(option, "--swap-fd", &swap_fd_);
}
void ProcessOptions(ParserOptions* parser_options) {
image_ = (!image_filename_.empty());
if (!parser_options->requested_specific_compiler && !kUseOptimizingCompiler) {
// If no specific compiler is requested, the current behavior is
// to compile the boot image with Quick, and the rest with Optimizing.
compiler_kind_ = image_ ? Compiler::kQuick : Compiler::kOptimizing;
}
if (oat_filename_.empty() && oat_fd_ == -1) {
Usage("Output must be supplied with either --oat-file or --oat-fd");
}
if (!oat_filename_.empty() && oat_fd_ != -1) {
Usage("--oat-file should not be used with --oat-fd");
}
if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) {
Usage("--oat-symbols should not be used with --oat-fd");
}
if (!parser_options->oat_symbols.empty() && is_host_) {
Usage("--oat-symbols should not be used with --host");
}
if (oat_fd_ != -1 && !image_filename_.empty()) {
Usage("--oat-fd should not be used with --image");
}
if (android_root_.empty()) {
const char* android_root_env_var = getenv("ANDROID_ROOT");
if (android_root_env_var == nullptr) {
Usage("--android-root unspecified and ANDROID_ROOT not set");
}
android_root_ += android_root_env_var;
}
if (!image_ && parser_options->boot_image_filename.empty()) {
parser_options->boot_image_filename += android_root_;
parser_options->boot_image_filename += "/framework/boot.art";
}
if (!parser_options->boot_image_filename.empty()) {
boot_image_option_ += "-Ximage:";
boot_image_option_ += parser_options->boot_image_filename;
}
if (image_classes_filename_ != nullptr && !image_) {
Usage("--image-classes should only be used with --image");
}
if (image_classes_filename_ != nullptr && !boot_image_option_.empty()) {
Usage("--image-classes should not be used with --boot-image");
}
if (image_classes_zip_filename_ != nullptr && image_classes_filename_ == nullptr) {
Usage("--image-classes-zip should be used with --image-classes");
}
if (compiled_classes_filename_ != nullptr && !image_) {
Usage("--compiled-classes should only be used with --image");
}
if (compiled_classes_filename_ != nullptr && !boot_image_option_.empty()) {
Usage("--compiled-classes should not be used with --boot-image");
}
if (compiled_classes_zip_filename_ != nullptr && compiled_classes_filename_ == nullptr) {
Usage("--compiled-classes-zip should be used with --compiled-classes");
}
if (dex_filenames_.empty() && zip_fd_ == -1) {
Usage("Input must be supplied with either --dex-file or --zip-fd");
}
if (!dex_filenames_.empty() && zip_fd_ != -1) {
Usage("--dex-file should not be used with --zip-fd");
}
if (!dex_filenames_.empty() && !zip_location_.empty()) {
Usage("--dex-file should not be used with --zip-location");
}
if (dex_locations_.empty()) {
for (const char* dex_file_name : dex_filenames_) {
dex_locations_.push_back(dex_file_name);
}
} else if (dex_locations_.size() != dex_filenames_.size()) {
Usage("--dex-location arguments do not match --dex-file arguments");
}
if (zip_fd_ != -1 && zip_location_.empty()) {
Usage("--zip-location should be supplied with --zip-fd");
}
if (boot_image_option_.empty()) {
if (image_base_ == 0) {
Usage("Non-zero --base not specified");
}
}
oat_stripped_ = oat_filename_;
if (!parser_options->oat_symbols.empty()) {
oat_unstripped_ = parser_options->oat_symbols;
} else {
oat_unstripped_ = oat_filename_;
}
// If no instruction set feature was given, use the default one for the target
// instruction set.
if (instruction_set_features_.get() == nullptr) {
instruction_set_features_.reset(
InstructionSetFeatures::FromVariant(
instruction_set_, "default", &parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
if (instruction_set_ == kRuntimeISA) {
std::unique_ptr<const InstructionSetFeatures> runtime_features(
InstructionSetFeatures::FromCppDefines());
if (!instruction_set_features_->Equals(runtime_features.get())) {
LOG(WARNING) << "Mismatch between dex2oat instruction set features ("
<< *instruction_set_features_ << ") and those of dex2oat executable ("
<< *runtime_features <<") for the command line:\n"
<< CommandLine();
}
}
if (parser_options->compiler_filter_string == nullptr) {
parser_options->compiler_filter_string = "speed";
}
CHECK(parser_options->compiler_filter_string != nullptr);
if (strcmp(parser_options->compiler_filter_string, "verify-none") == 0) {
parser_options->compiler_filter = CompilerOptions::kVerifyNone;
} else if (strcmp(parser_options->compiler_filter_string, "interpret-only") == 0) {
parser_options->compiler_filter = CompilerOptions::kInterpretOnly;
} else if (strcmp(parser_options->compiler_filter_string, "verify-at-runtime") == 0) {
parser_options->compiler_filter = CompilerOptions::kVerifyAtRuntime;
} else if (strcmp(parser_options->compiler_filter_string, "space") == 0) {
parser_options->compiler_filter = CompilerOptions::kSpace;
} else if (strcmp(parser_options->compiler_filter_string, "balanced") == 0) {
parser_options->compiler_filter = CompilerOptions::kBalanced;
} else if (strcmp(parser_options->compiler_filter_string, "speed") == 0) {
parser_options->compiler_filter = CompilerOptions::kSpeed;
} else if (strcmp(parser_options->compiler_filter_string, "everything") == 0) {
parser_options->compiler_filter = CompilerOptions::kEverything;
} else if (strcmp(parser_options->compiler_filter_string, "time") == 0) {
parser_options->compiler_filter = CompilerOptions::kTime;
} else {
Usage("Unknown --compiler-filter value %s", parser_options->compiler_filter_string);
}
// It they are not set, use default values for inlining settings.
// TODO: We should rethink the compiler filter. We mostly save
// time here, which is orthogonal to space.
if (parser_options->inline_depth_limit == ParserOptions::kUnsetInlineDepthLimit) {
parser_options->inline_depth_limit =
(parser_options->compiler_filter == CompilerOptions::kSpace)
// Implementation of the space filter: limit inlining depth.
? CompilerOptions::kSpaceFilterInlineDepthLimit
: CompilerOptions::kDefaultInlineDepthLimit;
}
if (parser_options->inline_max_code_units == ParserOptions::kUnsetInlineMaxCodeUnits) {
parser_options->inline_max_code_units =
(parser_options->compiler_filter == CompilerOptions::kSpace)
// Implementation of the space filter: limit inlining max code units.
? CompilerOptions::kSpaceFilterInlineMaxCodeUnits
: CompilerOptions::kDefaultInlineMaxCodeUnits;
}
// Checks are all explicit until we know the architecture.
// Set the compilation target's implicit checks options.
switch (instruction_set_) {
case kArm:
case kThumb2:
case kArm64:
case kX86:
case kX86_64:
case kMips:
case kMips64:
parser_options->implicit_null_checks = true;
parser_options->implicit_so_checks = true;
break;
default:
// Defaults are correct.
break;
}
compiler_options_.reset(new CompilerOptions(parser_options->compiler_filter,
parser_options->huge_method_threshold,
parser_options->large_method_threshold,
parser_options->small_method_threshold,
parser_options->tiny_method_threshold,
parser_options->num_dex_methods_threshold,
parser_options->inline_depth_limit,
parser_options->inline_max_code_units,
parser_options->include_patch_information,
parser_options->top_k_profile_threshold,
parser_options->debuggable,
parser_options->generate_debug_info,
parser_options->implicit_null_checks,
parser_options->implicit_so_checks,
parser_options->implicit_suspend_checks,
parser_options->compile_pic,
verbose_methods_.empty() ?
nullptr :
&verbose_methods_,
new PassManagerOptions(
parser_options->pass_manager_options),
init_failure_output_.get(),
parser_options->abort_on_hard_verifier_error));
// Done with usage checks, enable watchdog if requested
if (parser_options->watch_dog_enabled) {
watchdog_.reset(new WatchDog(true));
}
// Fill some values into the key-value store for the oat header.
key_value_store_.reset(new SafeMap<std::string, std::string>());
}
void InsertCompileOptions(int argc, char** argv, ParserOptions* parser_options) {
std::ostringstream oss;
for (int i = 0; i < argc; ++i) {
if (i > 0) {
oss << ' ';
}
oss << argv[i];
}
key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str());
oss.str(""); // Reset.
oss << kRuntimeISA;
key_value_store_->Put(OatHeader::kDex2OatHostKey, oss.str());
key_value_store_->Put(
OatHeader::kPicKey,
parser_options->compile_pic ? OatHeader::kTrueValue : OatHeader::kFalseValue);
key_value_store_->Put(
OatHeader::kDebuggableKey,
parser_options->debuggable ? OatHeader::kTrueValue : OatHeader::kFalseValue);
}
// Parse the arguments from the command line. In case of an unrecognized option or impossible
// values/combinations, a usage error will be displayed and exit() is called. Thus, if the method
// returns, arguments have been successfully parsed.
void ParseArgs(int argc, char** argv) {
original_argc = argc;
original_argv = argv;
InitLogging(argv);
// Skip over argv[0].
argv++;
argc--;
if (argc == 0) {
Usage("No arguments specified");
}
std::unique_ptr<ParserOptions> parser_options(new ParserOptions());
for (int i = 0; i < argc; i++) {
const StringPiece option(argv[i]);
const bool log_options = false;
if (log_options) {
LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
}
if (option.starts_with("--dex-file=")) {
dex_filenames_.push_back(option.substr(strlen("--dex-file=")).data());
} else if (option.starts_with("--dex-location=")) {
dex_locations_.push_back(option.substr(strlen("--dex-location=")).data());
} else if (option.starts_with("--zip-fd=")) {
ParseZipFd(option);
} else if (option.starts_with("--zip-location=")) {
zip_location_ = option.substr(strlen("--zip-location=")).data();
} else if (option.starts_with("--oat-file=")) {
oat_filename_ = option.substr(strlen("--oat-file=")).data();
} else if (option.starts_with("--oat-symbols=")) {
parser_options->oat_symbols = option.substr(strlen("--oat-symbols=")).data();
} else if (option.starts_with("--oat-fd=")) {
ParseOatFd(option);
} else if (option == "--watch-dog") {
parser_options->watch_dog_enabled = true;
} else if (option == "--no-watch-dog") {
parser_options->watch_dog_enabled = false;
} else if (option.starts_with("-j")) {
ParseJ(option);
} else if (option.starts_with("--oat-location=")) {
oat_location_ = option.substr(strlen("--oat-location=")).data();
} else if (option.starts_with("--image=")) {
image_filename_ = option.substr(strlen("--image=")).data();
} else if (option.starts_with("--image-classes=")) {
image_classes_filename_ = option.substr(strlen("--image-classes=")).data();
} else if (option.starts_with("--image-classes-zip=")) {
image_classes_zip_filename_ = option.substr(strlen("--image-classes-zip=")).data();
} else if (option.starts_with("--compiled-classes=")) {
compiled_classes_filename_ = option.substr(strlen("--compiled-classes=")).data();
} else if (option.starts_with("--compiled-classes-zip=")) {
compiled_classes_zip_filename_ = option.substr(strlen("--compiled-classes-zip=")).data();
} else if (option.starts_with("--compiled-methods=")) {
compiled_methods_filename_ = option.substr(strlen("--compiled-methods=")).data();
} else if (option.starts_with("--compiled-methods-zip=")) {
compiled_methods_zip_filename_ = option.substr(strlen("--compiled-methods-zip=")).data();
} else if (option.starts_with("--base=")) {
ParseBase(option);
} else if (option.starts_with("--boot-image=")) {
parser_options->boot_image_filename = option.substr(strlen("--boot-image=")).data();
} else if (option.starts_with("--android-root=")) {
android_root_ = option.substr(strlen("--android-root=")).data();
} else if (option.starts_with("--instruction-set=")) {
ParseInstructionSet(option);
} else if (option.starts_with("--instruction-set-variant=")) {
ParseInstructionSetVariant(option, parser_options.get());
} else if (option.starts_with("--instruction-set-features=")) {
ParseInstructionSetFeatures(option, parser_options.get());
} else if (option.starts_with("--compiler-backend=")) {
ParseCompilerBackend(option, parser_options.get());
} else if (option.starts_with("--compiler-filter=")) {
parser_options->compiler_filter_string = option.substr(strlen("--compiler-filter=")).data();
} else if (option == "--compile-pic") {
parser_options->compile_pic = true;
} else if (option.starts_with("--huge-method-max=")) {
ParseHugeMethodMax(option, parser_options.get());
} else if (option.starts_with("--large-method-max=")) {
ParseLargeMethodMax(option, parser_options.get());
} else if (option.starts_with("--small-method-max=")) {
ParseSmallMethodMax(option, parser_options.get());
} else if (option.starts_with("--tiny-method-max=")) {
ParseTinyMethodMax(option, parser_options.get());
} else if (option.starts_with("--num-dex-methods=")) {
ParseNumDexMethods(option, parser_options.get());
} else if (option.starts_with("--inline-depth-limit=")) {
ParseInlineDepthLimit(option, parser_options.get());
} else if (option.starts_with("--inline-max-code-units=")) {
ParseInlineMaxCodeUnits(option, parser_options.get());
} else if (option == "--host") {
is_host_ = true;
} else if (option == "--runtime-arg") {
if (++i >= argc) {
Usage("Missing required argument for --runtime-arg");
}
if (log_options) {
LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
}
runtime_args_.push_back(argv[i]);
} else if (option == "--dump-timing") {
dump_timing_ = true;
} else if (option == "--dump-passes") {
dump_passes_ = true;
} else if (option.starts_with("--dump-cfg=")) {
dump_cfg_file_name_ = option.substr(strlen("--dump-cfg=")).data();
} else if (option == "--dump-stats") {
dump_stats_ = true;
} else if (option == "--generate-debug-info" || option == "-g") {
parser_options->generate_debug_info = true;
} else if (option == "--no-generate-debug-info") {
parser_options->generate_debug_info = false;
} else if (option == "--debuggable") {
parser_options->debuggable = true;
parser_options->generate_debug_info = true;
} else if (option.starts_with("--profile-file=")) {
profile_file_ = option.substr(strlen("--profile-file=")).data();
VLOG(compiler) << "dex2oat: profile file is " << profile_file_;
} else if (option == "--no-profile-file") {
// No profile
} else if (option.starts_with("--top-k-profile-threshold=")) {
ParseDouble(option.data(), '=', 0.0, 100.0, &parser_options->top_k_profile_threshold);
} else if (option == "--print-pass-names") {
parser_options->pass_manager_options.SetPrintPassNames(true);
} else if (option.starts_with("--disable-passes=")) {
ParseDisablePasses(option, parser_options.get());
} else if (option.starts_with("--print-passes=")) {
ParsePrintPasses(option, parser_options.get());
} else if (option == "--print-all-passes") {
parser_options->pass_manager_options.SetPrintAllPasses();
} else if (option.starts_with("--dump-cfg-passes=")) {
ParseDumpCfgPasses(option, parser_options.get());
} else if (option == "--print-pass-options") {
parser_options->pass_manager_options.SetPrintPassOptions(true);
} else if (option.starts_with("--pass-options=")) {
ParsePassOptions(option, parser_options.get());
} else if (option == "--include-patch-information") {
parser_options->include_patch_information = true;
} else if (option == "--no-include-patch-information") {
parser_options->include_patch_information = false;
} else if (option.starts_with("--verbose-methods=")) {
// TODO: rather than switch off compiler logging, make all VLOG(compiler) messages
// conditional on having verbost methods.
gLogVerbosity.compiler = false;
Split(option.substr(strlen("--verbose-methods=")).ToString(), ',', &verbose_methods_);
} else if (option.starts_with("--dump-init-failures=")) {
ParseDumpInitFailures(option);
} else if (option.starts_with("--swap-file=")) {
swap_file_name_ = option.substr(strlen("--swap-file=")).data();
} else if (option.starts_with("--swap-fd=")) {
ParseSwapFd(option);
} else if (option == "--abort-on-hard-verifier-error") {
parser_options->abort_on_hard_verifier_error = true;
} else {
Usage("Unknown argument %s", option.data());
}
}
ProcessOptions(parser_options.get());
// Insert some compiler things.
InsertCompileOptions(argc, argv, parser_options.get());
}
// Check whether the oat output file is writable, and open it for later. Also open a swap file,
// if a name is given.
bool OpenFile() {
bool create_file = !oat_unstripped_.empty(); // as opposed to using open file descriptor
if (create_file) {
oat_file_.reset(OS::CreateEmptyFile(oat_unstripped_.c_str()));
if (oat_location_.empty()) {
oat_location_ = oat_filename_;
}
} else {
oat_file_.reset(new File(oat_fd_, oat_location_, true));
oat_file_->DisableAutoClose();
if (oat_file_->SetLength(0) != 0) {
PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed.";
}
}
if (oat_file_.get() == nullptr) {
PLOG(ERROR) << "Failed to create oat file: " << oat_location_;
return false;
}
if (create_file && fchmod(oat_file_->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make oat file world readable: " << oat_location_;
oat_file_->Erase();
return false;
}
// Swap file handling.
//
// If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file
// that we can use for swap.
//
// If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We
// will immediately unlink to satisfy the swap fd assumption.
if (swap_fd_ == -1 && !swap_file_name_.empty()) {
std::unique_ptr<File> swap_file(OS::CreateEmptyFile(swap_file_name_.c_str()));
if (swap_file.get() == nullptr) {
PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_;
return false;
}
swap_fd_ = swap_file->Fd();
swap_file->MarkUnchecked(); // We don't we to track this, it will be unlinked immediately.
swap_file->DisableAutoClose(); // We'll handle it ourselves, the File object will be
// released immediately.
unlink(swap_file_name_.c_str());
}
return true;
}
void EraseOatFile() {
DCHECK(oat_file_.get() != nullptr);
oat_file_->Erase();
oat_file_.reset();
}
// Set up the environment for compilation. Includes starting the runtime and loading/opening the
// boot class path.
bool Setup() {
TimingLogger::ScopedTiming t("dex2oat Setup", timings_);
RuntimeOptions runtime_options;
art::MemMap::Init(); // For ZipEntry::ExtractToMemMap.
if (boot_image_option_.empty()) {
std::string boot_class_path = "-Xbootclasspath:";
boot_class_path += Join(dex_filenames_, ':');
runtime_options.push_back(std::make_pair(boot_class_path, nullptr));
std::string boot_class_path_locations = "-Xbootclasspath-locations:";
boot_class_path_locations += Join(dex_locations_, ':');
runtime_options.push_back(std::make_pair(boot_class_path_locations, nullptr));
} else {
runtime_options.push_back(std::make_pair(boot_image_option_, nullptr));
}
for (size_t i = 0; i < runtime_args_.size(); i++) {
runtime_options.push_back(std::make_pair(runtime_args_[i], nullptr));
}
verification_results_.reset(new VerificationResults(compiler_options_.get()));
callbacks_.reset(new QuickCompilerCallbacks(
verification_results_.get(),
&method_inliner_map_,
image_ ?
CompilerCallbacks::CallbackMode::kCompileBootImage :
CompilerCallbacks::CallbackMode::kCompileApp));
runtime_options.push_back(std::make_pair("compilercallbacks", callbacks_.get()));
runtime_options.push_back(
std::make_pair("imageinstructionset", GetInstructionSetString(instruction_set_)));
// Only allow no boot image for the runtime if we're compiling one. When we compile an app,
// we don't want fallback mode, it will abort as we do not push a boot classpath (it might
// have been stripped in preopting, anyways).
if (!image_) {
runtime_options.push_back(std::make_pair("-Xno-dex-file-fallback", nullptr));
}
// Disable libsigchain. We don't don't need it during compilation and it prevents us
// from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT).
runtime_options.push_back(std::make_pair("-Xno-sig-chain", nullptr));
if (!CreateRuntime(runtime_options)) {
return false;
}
// Runtime::Create acquired the mutator_lock_ that is normally given away when we
// Runtime::Start, give it away now so that we don't starve GC.
Thread* self = Thread::Current();
self->TransitionFromRunnableToSuspended(kNative);
// If we're doing the image, override the compiler filter to force full compilation. Must be
// done ahead of WellKnownClasses::Init that causes verification. Note: doesn't force
// compilation of class initializers.
// Whilst we're in native take the opportunity to initialize well known classes.
WellKnownClasses::Init(self->GetJniEnv());
// If --image-classes was specified, calculate the full list of classes to include in the image
if (image_classes_filename_ != nullptr) {
std::string error_msg;
if (image_classes_zip_filename_ != nullptr) {
image_classes_.reset(ReadImageClassesFromZip(image_classes_zip_filename_,
image_classes_filename_,
&error_msg));
} else {
image_classes_.reset(ReadImageClassesFromFile(image_classes_filename_));
}
if (image_classes_.get() == nullptr) {
LOG(ERROR) << "Failed to create list of image classes from '" << image_classes_filename_ <<
"': " << error_msg;
return false;
}
} else if (image_) {
image_classes_.reset(new std::unordered_set<std::string>);
}
// If --compiled-classes was specified, calculate the full list of classes to compile in the
// image.
if (compiled_classes_filename_ != nullptr) {
std::string error_msg;
if (compiled_classes_zip_filename_ != nullptr) {
compiled_classes_.reset(ReadImageClassesFromZip(compiled_classes_zip_filename_,
compiled_classes_filename_,
&error_msg));
} else {
compiled_classes_.reset(ReadImageClassesFromFile(compiled_classes_filename_));
}
if (compiled_classes_.get() == nullptr) {
LOG(ERROR) << "Failed to create list of compiled classes from '"
<< compiled_classes_filename_ << "': " << error_msg;
return false;
}
} else {
compiled_classes_.reset(nullptr); // By default compile everything.
}
// If --compiled-methods was specified, read the methods to compile from the given file(s).
if (compiled_methods_filename_ != nullptr) {
std::string error_msg;
if (compiled_methods_zip_filename_ != nullptr) {
compiled_methods_.reset(ReadCommentedInputFromZip(compiled_methods_zip_filename_,
compiled_methods_filename_,
nullptr, // No post-processing.
&error_msg));
} else {
compiled_methods_.reset(ReadCommentedInputFromFile(compiled_methods_filename_,
nullptr)); // No post-processing.
}
if (compiled_methods_.get() == nullptr) {
LOG(ERROR) << "Failed to create list of compiled methods from '"
<< compiled_methods_filename_ << "': " << error_msg;
return false;
}
} else {
compiled_methods_.reset(nullptr); // By default compile everything.
}
if (boot_image_option_.empty()) {
dex_files_ = Runtime::Current()->GetClassLinker()->GetBootClassPath();
} else {
if (dex_filenames_.empty()) {
ATRACE_BEGIN("Opening zip archive from file descriptor");
std::string error_msg;
std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(zip_fd_,
zip_location_.c_str(),
&error_msg));
if (zip_archive.get() == nullptr) {
LOG(ERROR) << "Failed to open zip from file descriptor for '" << zip_location_ << "': "
<< error_msg;
return false;
}
if (!DexFile::OpenFromZip(*zip_archive.get(), zip_location_, &error_msg, &opened_dex_files_)) {
LOG(ERROR) << "Failed to open dex from file descriptor for zip file '" << zip_location_
<< "': " << error_msg;
return false;
}
for (auto& dex_file : opened_dex_files_) {
dex_files_.push_back(dex_file.get());
}
ATRACE_END();
} else {
size_t failure_count = OpenDexFiles(dex_filenames_, dex_locations_, &opened_dex_files_);
if (failure_count > 0) {
LOG(ERROR) << "Failed to open some dex files: " << failure_count;
return false;
}
for (auto& dex_file : opened_dex_files_) {
dex_files_.push_back(dex_file.get());
}
}
constexpr bool kSaveDexInput = false;
if (kSaveDexInput) {
for (size_t i = 0; i < dex_files_.size(); ++i) {
const DexFile* dex_file = dex_files_[i];
std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex",
getpid(), i));
std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str()));
if (tmp_file.get() == nullptr) {
PLOG(ERROR) << "Failed to open file " << tmp_file_name
<< ". Try: adb shell chmod 777 /data/local/tmp";
continue;
}
// This is just dumping files for debugging. Ignore errors, and leave remnants.
UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size()));
UNUSED(tmp_file->Flush());
UNUSED(tmp_file->Close());
LOG(INFO) << "Wrote input to " << tmp_file_name;
}
}
}
// Ensure opened dex files are writable for dex-to-dex transformations.
for (const auto& dex_file : dex_files_) {
if (!dex_file->EnableWrite()) {
PLOG(ERROR) << "Failed to make .dex file writeable '" << dex_file->GetLocation() << "'\n";
}
}
// If we use a swap file, ensure we are above the threshold to make it necessary.
if (swap_fd_ != -1) {
if (!UseSwap(image_, dex_files_)) {
close(swap_fd_);
swap_fd_ = -1;
VLOG(compiler) << "Decided to run without swap.";
} else {
LOG(INFO) << "Large app, accepted running with swap.";
}
}
// Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that.
/*
* If we're not in interpret-only or verify-none mode, go ahead and compile small applications.
* Don't bother to check if we're doing the image.
*/
if (!image_ &&
compiler_options_->IsCompilationEnabled() &&
compiler_kind_ == Compiler::kQuick) {
size_t num_methods = 0;
for (size_t i = 0; i != dex_files_.size(); ++i) {
const DexFile* dex_file = dex_files_[i];
CHECK(dex_file != nullptr);
num_methods += dex_file->NumMethodIds();
}
if (num_methods <= compiler_options_->GetNumDexMethodsThreshold()) {
compiler_options_->SetCompilerFilter(CompilerOptions::kSpeed);
VLOG(compiler) << "Below method threshold, compiling anyways";
}
}
return true;
}
// Create and invoke the compiler driver. This will compile all the dex files.
void Compile() {
TimingLogger::ScopedTiming t("dex2oat Compile", timings_);
compiler_phases_timings_.reset(new CumulativeLogger("compilation times"));
// Handle and ClassLoader creation needs to come after Runtime::Create
jobject class_loader = nullptr;
Thread* self = Thread::Current();
if (!boot_image_option_.empty()) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
OpenClassPathFiles(runtime_->GetClassPathString(), dex_files_, &class_path_files_);
ScopedObjectAccess soa(self);
// Classpath: first the class-path given.
std::vector<const DexFile*> class_path_files;
for (auto& class_path_file : class_path_files_) {
class_path_files.push_back(class_path_file.get());
}
// Store the classpath we have right now.
key_value_store_->Put(OatHeader::kClassPathKey,
OatFile::EncodeDexFileDependencies(class_path_files));
// Then the dex files we'll compile. Thus we'll resolve the class-path first.
class_path_files.insert(class_path_files.end(), dex_files_.begin(), dex_files_.end());
class_loader = class_linker->CreatePathClassLoader(self, class_path_files);
}
driver_.reset(new CompilerDriver(compiler_options_.get(),
verification_results_.get(),
&method_inliner_map_,
compiler_kind_,
instruction_set_,
instruction_set_features_.get(),
image_,
image_classes_.release(),
compiled_classes_.release(),
nullptr,
thread_count_,
dump_stats_,
dump_passes_,
dump_cfg_file_name_,
compiler_phases_timings_.get(),
swap_fd_,
profile_file_));
driver_->CompileAll(class_loader, dex_files_, timings_);
}
// Notes on the interleaving of creating the image and oat file to
// ensure the references between the two are correct.
//
// Currently we have a memory layout that looks something like this:
//
// +--------------+
// | image |
// +--------------+
// | boot oat |
// +--------------+
// | alloc spaces |
// +--------------+
//
// There are several constraints on the loading of the image and boot.oat.
//
// 1. The image is expected to be loaded at an absolute address and
// contains Objects with absolute pointers within the image.
//
// 2. There are absolute pointers from Methods in the image to their
// code in the oat.
//
// 3. There are absolute pointers from the code in the oat to Methods
// in the image.
//
// 4. There are absolute pointers from code in the oat to other code
// in the oat.
//
// To get this all correct, we go through several steps.
//
// 1. We prepare offsets for all data in the oat file and calculate
// the oat data size and code size. During this stage, we also set
// oat code offsets in methods for use by the image writer.
//
// 2. We prepare offsets for the objects in the image and calculate
// the image size.
//
// 3. We create the oat file. Originally this was just our own proprietary
// file but now it is contained within an ELF dynamic object (aka an .so
// file). Since we know the image size and oat data size and code size we
// can prepare the ELF headers and we then know the ELF memory segment
// layout and we can now resolve all references. The compiler provides
// LinkerPatch information in each CompiledMethod and we resolve these,
// using the layout information and image object locations provided by
// image writer, as we're writing the method code.
//
// 4. We create the image file. It needs to know where the oat file
// will be loaded after itself. Originally when oat file was simply
// memory mapped so we could predict where its contents were based
// on the file size. Now that it is an ELF file, we need to inspect
// the ELF file to understand the in memory segment layout including
// where the oat header is located within.
// TODO: We could just remember this information from step 3.
//
// 5. We fixup the ELF program headers so that dlopen will try to
// load the .so at the desired location at runtime by offsetting the
// Elf32_Phdr.p_vaddr values by the desired base address.
// TODO: Do this in step 3. We already know the layout there.
//
// Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5.
// are done by the CreateImageFile() below.
// Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the
// ImageWriter, if necessary.
// Note: Flushing (and closing) the file is the caller's responsibility, except for the failure
// case (when the file will be explicitly erased).
bool CreateOatFile() {
CHECK(key_value_store_.get() != nullptr);
TimingLogger::ScopedTiming t("dex2oat Oat", timings_);
std::unique_ptr<OatWriter> oat_writer;
{
TimingLogger::ScopedTiming t2("dex2oat OatWriter", timings_);
std::string image_file_location;
uint32_t image_file_location_oat_checksum = 0;
uintptr_t image_file_location_oat_data_begin = 0;
int32_t image_patch_delta = 0;
if (image_) {
PrepareImageWriter(image_base_);
} else {
TimingLogger::ScopedTiming t3("Loading image checksum", timings_);
gc::space::ImageSpace* image_space = Runtime::Current()->GetHeap()->GetImageSpace();
image_file_location_oat_checksum = image_space->GetImageHeader().GetOatChecksum();
image_file_location_oat_data_begin =
reinterpret_cast<uintptr_t>(image_space->GetImageHeader().GetOatDataBegin());
image_file_location = image_space->GetImageFilename();
image_patch_delta = image_space->GetImageHeader().GetPatchDelta();
}
if (!image_file_location.empty()) {
key_value_store_->Put(OatHeader::kImageLocationKey, image_file_location);
}
oat_writer.reset(new OatWriter(dex_files_, image_file_location_oat_checksum,
image_file_location_oat_data_begin,
image_patch_delta,
driver_.get(),
image_writer_.get(),
timings_,
key_value_store_.get()));
}
if (image_) {
// The OatWriter constructor has already updated offsets in methods and we need to
// prepare method offsets in the image address space for direct method patching.
TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_);
if (!image_writer_->PrepareImageAddressSpace()) {
LOG(ERROR) << "Failed to prepare image address space.";
return false;
}
}
{
TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_);
if (!driver_->WriteElf(android_root_, is_host_, dex_files_, oat_writer.get(),
oat_file_.get())) {
LOG(ERROR) << "Failed to write ELF file " << oat_file_->GetPath();
return false;
}
}
VLOG(compiler) << "Oat file written successfully (unstripped): " << oat_location_;
return true;
}
// If we are compiling an image, invoke the image creation routine. Else just skip.
bool HandleImage() {
if (image_) {
TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_);
if (!CreateImageFile()) {
return false;
}
VLOG(compiler) << "Image written successfully: " << image_filename_;
}
return true;
}
// Create a copy from unstripped to stripped.
bool CopyUnstrippedToStripped() {
// If we don't want to strip in place, copy from unstripped location to stripped location.
// We need to strip after image creation because FixupElf needs to use .strtab.
if (oat_unstripped_ != oat_stripped_) {
// If the oat file is still open, flush it.
if (oat_file_.get() != nullptr && oat_file_->IsOpened()) {
if (!FlushCloseOatFile()) {
return false;
}
}
TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_);
std::unique_ptr<File> in(OS::OpenFileForReading(oat_unstripped_.c_str()));
std::unique_ptr<File> out(OS::CreateEmptyFile(oat_stripped_.c_str()));
size_t buffer_size = 8192;
std::unique_ptr<uint8_t[]> buffer(new uint8_t[buffer_size]);
while (true) {
int bytes_read = TEMP_FAILURE_RETRY(read(in->Fd(), buffer.get(), buffer_size));
if (bytes_read <= 0) {
break;
}
bool write_ok = out->WriteFully(buffer.get(), bytes_read);
CHECK(write_ok);
}
if (out->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_stripped_;
return false;
}
VLOG(compiler) << "Oat file copied successfully (stripped): " << oat_stripped_;
}
return true;
}
bool FlushOatFile() {
if (oat_file_.get() != nullptr) {
TimingLogger::ScopedTiming t2("dex2oat Flush ELF", timings_);
if (oat_file_->Flush() != 0) {
PLOG(ERROR) << "Failed to flush oat file: " << oat_location_ << " / "
<< oat_filename_;
oat_file_->Erase();
return false;
}
}
return true;
}
bool FlushCloseOatFile() {
if (oat_file_.get() != nullptr) {
std::unique_ptr<File> tmp(oat_file_.release());
if (tmp->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close oat file: " << oat_location_ << " / "
<< oat_filename_;
return false;
}
}
return true;
}
void DumpTiming() {
if (dump_timing_ || (dump_slow_timing_ && timings_->GetTotalNs() > MsToNs(1000))) {
LOG(INFO) << Dumpable<TimingLogger>(*timings_);
}
if (dump_passes_) {
LOG(INFO) << Dumpable<CumulativeLogger>(*driver_->GetTimingsLogger());
}
}
CompilerOptions* GetCompilerOptions() const {
return compiler_options_.get();
}
bool IsImage() const {
return image_;
}
bool IsHost() const {
return is_host_;
}
private:
static size_t OpenDexFiles(const std::vector<const char*>& dex_filenames,
const std::vector<const char*>& dex_locations,
std::vector<std::unique_ptr<const DexFile>>* dex_files) {
DCHECK(dex_files != nullptr) << "OpenDexFiles out-param is nullptr";
size_t failure_count = 0;
for (size_t i = 0; i < dex_filenames.size(); i++) {
const char* dex_filename = dex_filenames[i];
const char* dex_location = dex_locations[i];
ATRACE_BEGIN(StringPrintf("Opening dex file '%s'", dex_filenames[i]).c_str());
std::string error_msg;
if (!OS::FileExists(dex_filename)) {
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
continue;
}
if (!DexFile::Open(dex_filename, dex_location, &error_msg, dex_files)) {
LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
++failure_count;
}
ATRACE_END();
}
return failure_count;
}
// Returns true if dex_files has a dex with the named location. We compare canonical locations,
// so that relative and absolute paths will match. Not caching for the dex_files isn't very
// efficient, but under normal circumstances the list is neither large nor is this part too
// sensitive.
static bool DexFilesContains(const std::vector<const DexFile*>& dex_files,
const std::string& location) {
std::string canonical_location(DexFile::GetDexCanonicalLocation(location.c_str()));
for (size_t i = 0; i < dex_files.size(); ++i) {
if (DexFile::GetDexCanonicalLocation(dex_files[i]->GetLocation().c_str()) ==
canonical_location) {
return true;
}
}
return false;
}
// Appends to opened_dex_files any elements of class_path that dex_files
// doesn't already contain. This will open those dex files as necessary.
static void OpenClassPathFiles(const std::string& class_path,
std::vector<const DexFile*> dex_files,
std::vector<std::unique_ptr<const DexFile>>* opened_dex_files) {
DCHECK(opened_dex_files != nullptr) << "OpenClassPathFiles out-param is nullptr";
std::vector<std::string> parsed;
Split(class_path, ':', &parsed);
// Take Locks::mutator_lock_ so that lock ordering on the ClassLinker::dex_lock_ is maintained.
ScopedObjectAccess soa(Thread::Current());
for (size_t i = 0; i < parsed.size(); ++i) {
if (DexFilesContains(dex_files, parsed[i])) {
continue;
}
std::string error_msg;
if (!DexFile::Open(parsed[i].c_str(), parsed[i].c_str(), &error_msg, opened_dex_files)) {
LOG(WARNING) << "Failed to open dex file '" << parsed[i] << "': " << error_msg;
}
}
}
// Create a runtime necessary for compilation.
bool CreateRuntime(const RuntimeOptions& runtime_options)
SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) {
if (!Runtime::Create(runtime_options, false)) {
LOG(ERROR) << "Failed to create runtime";
return false;
}
Runtime* runtime = Runtime::Current();
runtime->SetInstructionSet(instruction_set_);
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
if (!runtime->HasCalleeSaveMethod(type)) {
runtime->SetCalleeSaveMethod(runtime->CreateCalleeSaveMethod(), type);
}
}
runtime->GetClassLinker()->FixupDexCaches(runtime->GetResolutionMethod());
// Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this
// set up.
interpreter::UnstartedRuntime::Initialize();
runtime->GetClassLinker()->RunRootClinits();
runtime_ = runtime;
return true;
}
void PrepareImageWriter(uintptr_t image_base) {
image_writer_.reset(new ImageWriter(*driver_, image_base, compiler_options_->GetCompilePic()));
}
// Let the ImageWriter write the image file. If we do not compile PIC, also fix up the oat file.
bool CreateImageFile()
REQUIRES(!Locks::mutator_lock_) {
CHECK(image_writer_ != nullptr);
if (!image_writer_->Write(image_filename_, oat_unstripped_, oat_location_)) {
LOG(ERROR) << "Failed to create image file " << image_filename_;
return false;
}
uintptr_t oat_data_begin = image_writer_->GetOatDataBegin();
// Destroy ImageWriter before doing FixupElf.
image_writer_.reset();
// Do not fix up the ELF file if we are --compile-pic
if (!compiler_options_->GetCompilePic()) {
std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_unstripped_.c_str()));
if (oat_file.get() == nullptr) {
PLOG(ERROR) << "Failed to open ELF file: " << oat_unstripped_;
return false;
}
if (!ElfWriter::Fixup(oat_file.get(), oat_data_begin)) {
oat_file->Erase();
LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath();
return false;
}
if (oat_file->FlushCloseOrErase()) {
PLOG(ERROR) << "Failed to flush and close fixed ELF file " << oat_file->GetPath();
return false;
}
}
return true;
}
// Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;)
static std::unordered_set<std::string>* ReadImageClassesFromFile(
const char* image_classes_filename) {
std::function<std::string(const char*)> process = DotToDescriptor;
return ReadCommentedInputFromFile(image_classes_filename, &process);
}
// Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;)
static std::unordered_set<std::string>* ReadImageClassesFromZip(
const char* zip_filename,
const char* image_classes_filename,
std::string* error_msg) {
std::function<std::string(const char*)> process = DotToDescriptor;
return ReadCommentedInputFromZip(zip_filename, image_classes_filename, &process, error_msg);
}
// Read lines from the given file, dropping comments and empty lines. Post-process each line with
// the given function.
static std::unordered_set<std::string>* ReadCommentedInputFromFile(
const char* input_filename, std::function<std::string(const char*)>* process) {
std::unique_ptr<std::ifstream> input_file(new std::ifstream(input_filename, std::ifstream::in));
if (input_file.get() == nullptr) {
LOG(ERROR) << "Failed to open input file " << input_filename;
return nullptr;
}
std::unique_ptr<std::unordered_set<std::string>> result(
ReadCommentedInputStream(*input_file, process));
input_file->close();
return result.release();
}
// Read lines from the given file from the given zip file, dropping comments and empty lines.
// Post-process each line with the given function.
static std::unordered_set<std::string>* ReadCommentedInputFromZip(
const char* zip_filename,
const char* input_filename,
std::function<std::string(const char*)>* process,
std::string* error_msg) {
std::unique_ptr<ZipArchive> zip_archive(ZipArchive::Open(zip_filename, error_msg));
if (zip_archive.get() == nullptr) {
return nullptr;
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(input_filename, error_msg));
if (zip_entry.get() == nullptr) {
*error_msg = StringPrintf("Failed to find '%s' within '%s': %s", input_filename,
zip_filename, error_msg->c_str());
return nullptr;
}
std::unique_ptr<MemMap> input_file(zip_entry->ExtractToMemMap(zip_filename,
input_filename,
error_msg));
if (input_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", input_filename,
zip_filename, error_msg->c_str());
return nullptr;
}
const std::string input_string(reinterpret_cast<char*>(input_file->Begin()),
input_file->Size());
std::istringstream input_stream(input_string);
return ReadCommentedInputStream(input_stream, process);
}
// Read lines from the given stream, dropping comments and empty lines. Post-process each line
// with the given function.
static std::unordered_set<std::string>* ReadCommentedInputStream(
std::istream& in_stream,
std::function<std::string(const char*)>* process) {
std::unique_ptr<std::unordered_set<std::string>> image_classes(
new std::unordered_set<std::string>);
while (in_stream.good()) {
std::string dot;
std::getline(in_stream, dot);
if (StartsWith(dot, "#") || dot.empty()) {
continue;
}
if (process != nullptr) {
std::string descriptor((*process)(dot.c_str()));
image_classes->insert(descriptor);
} else {
image_classes->insert(dot);
}
}
return image_classes.release();
}
void LogCompletionTime() {
// Note: when creation of a runtime fails, e.g., when trying to compile an app but when there
// is no image, there won't be a Runtime::Current().
// Note: driver creation can fail when loading an invalid dex file.
LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_)
<< " (threads: " << thread_count_ << ") "
<< ((Runtime::Current() != nullptr && driver_.get() != nullptr) ?
driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) :
"");
}
std::unique_ptr<CompilerOptions> compiler_options_;
Compiler::Kind compiler_kind_;
InstructionSet instruction_set_;
std::unique_ptr<const InstructionSetFeatures> instruction_set_features_;
std::unique_ptr<SafeMap<std::string, std::string> > key_value_store_;
std::unique_ptr<VerificationResults> verification_results_;
DexFileToMethodInlinerMap method_inliner_map_;
std::unique_ptr<QuickCompilerCallbacks> callbacks_;
// Ownership for the class path files.
std::vector<std::unique_ptr<const DexFile>> class_path_files_;
// Not a unique_ptr as we want to just exit on non-debug builds, not bringing the runtime down
// in an orderly fashion. The destructor takes care of deleting this.
Runtime* runtime_;
size_t thread_count_;
uint64_t start_ns_;
std::unique_ptr<WatchDog> watchdog_;
std::unique_ptr<File> oat_file_;
std::string oat_stripped_;
std::string oat_unstripped_;
std::string oat_location_;
std::string oat_filename_;
int oat_fd_;
std::vector<const char*> dex_filenames_;
std::vector<const char*> dex_locations_;
int zip_fd_;
std::string zip_location_;
std::string boot_image_option_;
std::vector<const char*> runtime_args_;
std::string image_filename_;
uintptr_t image_base_;
const char* image_classes_zip_filename_;
const char* image_classes_filename_;
const char* compiled_classes_zip_filename_;
const char* compiled_classes_filename_;
const char* compiled_methods_zip_filename_;
const char* compiled_methods_filename_;
std::unique_ptr<std::unordered_set<std::string>> image_classes_;
std::unique_ptr<std::unordered_set<std::string>> compiled_classes_;
std::unique_ptr<std::unordered_set<std::string>> compiled_methods_;
bool image_;
std::unique_ptr<ImageWriter> image_writer_;
bool is_host_;
std::string android_root_;
std::vector<const DexFile*> dex_files_;
std::vector<std::unique_ptr<const DexFile>> opened_dex_files_;
std::unique_ptr<CompilerDriver> driver_;
std::vector<std::string> verbose_methods_;
bool dump_stats_;
bool dump_passes_;
bool dump_timing_;
bool dump_slow_timing_;
std::string dump_cfg_file_name_;
std::string swap_file_name_;
int swap_fd_;
std::string profile_file_; // Profile file to use
TimingLogger* timings_;
std::unique_ptr<CumulativeLogger> compiler_phases_timings_;
std::unique_ptr<std::ostream> init_failure_output_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat);
};
static void b13564922() {
#if defined(__linux__) && defined(__arm__)
int major, minor;
struct utsname uts;
if (uname(&uts) != -1 &&
sscanf(uts.release, "%d.%d", &major, &minor) == 2 &&
((major < 3) || ((major == 3) && (minor < 4)))) {
// Kernels before 3.4 don't handle the ASLR well and we can run out of address
// space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization.
int old_personality = personality(0xffffffff);
if ((old_personality & ADDR_NO_RANDOMIZE) == 0) {
int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE);
if (new_personality == -1) {
LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed.";
}
}
}
#endif
}
static int CompileImage(Dex2Oat& dex2oat) {
dex2oat.Compile();
// Create the boot.oat.
if (!dex2oat.CreateOatFile()) {
dex2oat.EraseOatFile();
return EXIT_FAILURE;
}
// Flush and close the boot.oat. We always expect the output file by name, and it will be
// re-opened from the unstripped name.
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
// Creates the boot.art and patches the boot.oat.
if (!dex2oat.HandleImage()) {
return EXIT_FAILURE;
}
// When given --host, finish early without stripping.
if (dex2oat.IsHost()) {
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
// Copy unstripped to stripped location, if necessary.
if (!dex2oat.CopyUnstrippedToStripped()) {
return EXIT_FAILURE;
}
// FlushClose again, as stripping might have re-opened the oat file.
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
static int CompileApp(Dex2Oat& dex2oat) {
dex2oat.Compile();
// Create the app oat.
if (!dex2oat.CreateOatFile()) {
dex2oat.EraseOatFile();
return EXIT_FAILURE;
}
// Do not close the oat file here. We might haven gotten the output file by file descriptor,
// which we would lose.
if (!dex2oat.FlushOatFile()) {
return EXIT_FAILURE;
}
// When given --host, finish early without stripping.
if (dex2oat.IsHost()) {
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
// Copy unstripped to stripped location, if necessary. This will implicitly flush & close the
// unstripped version. If this is given, we expect to be able to open writable files by name.
if (!dex2oat.CopyUnstrippedToStripped()) {
return EXIT_FAILURE;
}
// Flush and close the file.
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
static int dex2oat(int argc, char** argv) {
b13564922();
TimingLogger timings("compiler", false, false);
Dex2Oat dex2oat(&timings);
// Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError.
dex2oat.ParseArgs(argc, argv);
// Check early that the result of compilation can be written
if (!dex2oat.OpenFile()) {
return EXIT_FAILURE;
}
// Print the complete line when any of the following is true:
// 1) Debug build
// 2) Compiling an image
// 3) Compiling with --host
// 4) Compiling on the host (not a target build)
// Otherwise, print a stripped command line.
if (kIsDebugBuild || dex2oat.IsImage() || dex2oat.IsHost() || !kIsTargetBuild) {
LOG(INFO) << CommandLine();
} else {
LOG(INFO) << StrippedCommandLine();
}
if (!dex2oat.Setup()) {
dex2oat.EraseOatFile();
return EXIT_FAILURE;
}
if (dex2oat.IsImage()) {
return CompileImage(dex2oat);
} else {
return CompileApp(dex2oat);
}
}
} // namespace art
int main(int argc, char** argv) {
int result = art::dex2oat(argc, argv);
// Everything was done, do an explicit exit here to avoid running Runtime destructors that take
// time (bug 10645725) unless we're a debug build or running on valgrind. Note: The Dex2Oat class
// should not destruct the runtime in this case.
if (!art::kIsDebugBuild && (RUNNING_ON_MEMORY_TOOL == 0)) {
exit(result);
}
return result;
}