blob: 5190eb3b2675a0318fc9b6169b04edf74b66dbb5 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ssa_builder.h"
#include "nodes.h"
#include "primitive_type_propagation.h"
#include "ssa_phi_elimination.h"
namespace art {
/**
* A debuggable application may require to reviving phis, to ensure their
* associated DEX register is available to a debugger. This class implements
* the logic for statement (c) of the SsaBuilder (see ssa_builder.h). It
* also makes sure that phis with incompatible input types are not revived
* (statement (b) of the SsaBuilder).
*
* This phase must be run after detecting dead phis through the
* DeadPhiElimination phase, and before deleting the dead phis.
*/
class DeadPhiHandling : public ValueObject {
public:
explicit DeadPhiHandling(HGraph* graph)
: graph_(graph), worklist_(graph->GetArena()->Adapter(kArenaAllocSsaBuilder)) {
worklist_.reserve(kDefaultWorklistSize);
}
void Run();
private:
void VisitBasicBlock(HBasicBlock* block);
void ProcessWorklist();
void AddToWorklist(HPhi* phi);
void AddDependentInstructionsToWorklist(HPhi* phi);
bool UpdateType(HPhi* phi);
HGraph* const graph_;
ArenaVector<HPhi*> worklist_;
static constexpr size_t kDefaultWorklistSize = 8;
DISALLOW_COPY_AND_ASSIGN(DeadPhiHandling);
};
static bool HasConflictingEquivalent(HPhi* phi) {
if (phi->GetNext() == nullptr) {
return false;
}
HPhi* next = phi->GetNext()->AsPhi();
if (next->GetRegNumber() == phi->GetRegNumber()) {
if (next->GetType() == Primitive::kPrimVoid) {
// We only get a void type for an equivalent phi we processed and found out
// it was conflicting.
return true;
} else {
// Go to the next phi, in case it is also an equivalent.
return HasConflictingEquivalent(next);
}
}
return false;
}
bool DeadPhiHandling::UpdateType(HPhi* phi) {
if (phi->IsDead()) {
// Phi was rendered dead while waiting in the worklist because it was replaced
// with an equivalent.
return false;
}
Primitive::Type existing = phi->GetType();
bool conflict = false;
Primitive::Type new_type = existing;
for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
HInstruction* input = phi->InputAt(i);
if (input->IsPhi() && input->AsPhi()->IsDead()) {
// We are doing a reverse post order visit of the graph, reviving
// phis that have environment uses and updating their types. If an
// input is a phi, and it is dead (because its input types are
// conflicting), this phi must be marked dead as well.
conflict = true;
break;
}
Primitive::Type input_type = HPhi::ToPhiType(input->GetType());
// The only acceptable transitions are:
// - From void to typed: first time we update the type of this phi.
// - From int to reference (or reference to int): the phi has to change
// to reference type. If the integer input cannot be converted to a
// reference input, the phi will remain dead.
if (new_type == Primitive::kPrimVoid) {
new_type = input_type;
} else if (new_type == Primitive::kPrimNot && input_type == Primitive::kPrimInt) {
if (input->IsPhi() && HasConflictingEquivalent(input->AsPhi())) {
// If we already asked for an equivalent of the input phi, but that equivalent
// ended up conflicting, make this phi conflicting too.
conflict = true;
break;
}
HInstruction* equivalent = SsaBuilder::GetReferenceTypeEquivalent(input);
if (equivalent == nullptr) {
conflict = true;
break;
}
phi->ReplaceInput(equivalent, i);
if (equivalent->IsPhi()) {
DCHECK_EQ(equivalent->GetType(), Primitive::kPrimNot);
// We created a new phi, but that phi has the same inputs as the old phi. We
// add it to the worklist to ensure its inputs can also be converted to reference.
// If not, it will remain dead, and the algorithm will make the current phi dead
// as well.
equivalent->AsPhi()->SetLive();
AddToWorklist(equivalent->AsPhi());
}
} else if (new_type == Primitive::kPrimInt && input_type == Primitive::kPrimNot) {
new_type = Primitive::kPrimNot;
// Start over, we may request reference equivalents for the inputs of the phi.
i = -1;
} else if (new_type != input_type) {
conflict = true;
break;
}
}
if (conflict) {
phi->SetType(Primitive::kPrimVoid);
phi->SetDead();
return true;
} else if (existing == new_type) {
return false;
}
DCHECK(phi->IsLive());
phi->SetType(new_type);
// There might exist a `new_type` equivalent of `phi` already. In that case,
// we replace the equivalent with the, now live, `phi`.
HPhi* equivalent = phi->GetNextEquivalentPhiWithSameType();
if (equivalent != nullptr) {
// There cannot be more than two equivalents with the same type.
DCHECK(equivalent->GetNextEquivalentPhiWithSameType() == nullptr);
// If doing fix-point iteration, the equivalent might be in `worklist_`.
// Setting it dead will make UpdateType skip it.
equivalent->SetDead();
equivalent->ReplaceWith(phi);
}
return true;
}
void DeadPhiHandling::VisitBasicBlock(HBasicBlock* block) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
if (phi->IsDead() && phi->HasEnvironmentUses()) {
phi->SetLive();
if (block->IsLoopHeader()) {
// Give a type to the loop phi to guarantee convergence of the algorithm.
// Note that the dead phi may already have a type if it is an equivalent
// generated for a typed LoadLocal. In that case we do not change the
// type because it could lead to an unsupported PrimNot/Float/Double ->
// PrimInt/Long transition and create same type equivalents.
if (phi->GetType() == Primitive::kPrimVoid) {
phi->SetType(phi->InputAt(0)->GetType());
}
AddToWorklist(phi);
} else {
// Because we are doing a reverse post order visit, all inputs of
// this phi have been visited and therefore had their (initial) type set.
UpdateType(phi);
}
}
}
}
void DeadPhiHandling::ProcessWorklist() {
while (!worklist_.empty()) {
HPhi* instruction = worklist_.back();
worklist_.pop_back();
// Note that the same equivalent phi can be added multiple times in the work list, if
// used by multiple phis. The first call to `UpdateType` will know whether the phi is
// dead or live.
if (instruction->IsLive() && UpdateType(instruction)) {
AddDependentInstructionsToWorklist(instruction);
}
}
}
void DeadPhiHandling::AddToWorklist(HPhi* instruction) {
DCHECK(instruction->IsLive());
worklist_.push_back(instruction);
}
void DeadPhiHandling::AddDependentInstructionsToWorklist(HPhi* instruction) {
for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->GetUser()->AsPhi();
if (phi != nullptr && !phi->IsDead()) {
AddToWorklist(phi);
}
}
}
void DeadPhiHandling::Run() {
for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
VisitBasicBlock(it.Current());
}
ProcessWorklist();
}
void SsaBuilder::FixNullConstantType() {
// The order doesn't matter here.
for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) {
for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* equality_instr = it.Current();
if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
continue;
}
HInstruction* left = equality_instr->InputAt(0);
HInstruction* right = equality_instr->InputAt(1);
HInstruction* int_operand = nullptr;
if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) {
int_operand = right;
} else if ((right->GetType() == Primitive::kPrimNot)
&& (left->GetType() == Primitive::kPrimInt)) {
int_operand = left;
} else {
continue;
}
// If we got here, we are comparing against a reference and the int constant
// should be replaced with a null constant.
// Both type propagation and redundant phi elimination ensure `int_operand`
// can only be the 0 constant.
DCHECK(int_operand->IsIntConstant());
DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
equality_instr->ReplaceInput(GetGraph()->GetNullConstant(), int_operand == right ? 1 : 0);
}
}
}
void SsaBuilder::EquivalentPhisCleanup() {
// The order doesn't matter here.
for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) {
for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
HPhi* next = phi->GetNextEquivalentPhiWithSameType();
if (next != nullptr) {
// Make sure we do not replace a live phi with a dead phi. A live phi has been
// handled by the type propagation phase, unlike a dead phi.
if (next->IsLive()) {
phi->ReplaceWith(next);
} else {
next->ReplaceWith(phi);
}
DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
<< "More then one phi equivalent with type " << phi->GetType()
<< " found for phi" << phi->GetId();
}
}
}
}
void SsaBuilder::BuildSsa() {
// 1) Visit in reverse post order. We need to have all predecessors of a block visited
// (with the exception of loops) in order to create the right environment for that
// block. For loops, we create phis whose inputs will be set in 2).
for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
VisitBasicBlock(it.Current());
}
// 2) Set inputs of loop phis.
for (HBasicBlock* block : loop_headers_) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
for (HBasicBlock* predecessor : block->GetPredecessors()) {
HInstruction* input = ValueOfLocal(predecessor, phi->GetRegNumber());
phi->AddInput(input);
}
}
}
// 3) Mark dead phis. This will mark phis that are only used by environments:
// at the DEX level, the type of these phis does not need to be consistent, but
// our code generator will complain if the inputs of a phi do not have the same
// type. The marking allows the type propagation to know which phis it needs
// to handle. We mark but do not eliminate: the elimination will be done in
// step 9).
SsaDeadPhiElimination dead_phis_for_type_propagation(GetGraph());
dead_phis_for_type_propagation.MarkDeadPhis();
// 4) Propagate types of phis. At this point, phis are typed void in the general
// case, or float/double/reference when we created an equivalent phi. So we
// need to propagate the types across phis to give them a correct type.
PrimitiveTypePropagation type_propagation(GetGraph());
type_propagation.Run();
// 5) When creating equivalent phis we copy the inputs of the original phi which
// may be improperly typed. This was fixed during the type propagation in 4) but
// as a result we may end up with two equivalent phis with the same type for
// the same dex register. This pass cleans them up.
EquivalentPhisCleanup();
// 6) Mark dead phis again. Step 4) may have introduced new phis.
// Step 5) might enable the death of new phis.
SsaDeadPhiElimination dead_phis(GetGraph());
dead_phis.MarkDeadPhis();
// 7) Now that the graph is correctly typed, we can get rid of redundant phis.
// Note that we cannot do this phase before type propagation, otherwise
// we could get rid of phi equivalents, whose presence is a requirement for the
// type propagation phase. Note that this is to satisfy statement (a) of the
// SsaBuilder (see ssa_builder.h).
SsaRedundantPhiElimination redundant_phi(GetGraph());
redundant_phi.Run();
// 8) Fix the type for null constants which are part of an equality comparison.
// We need to do this after redundant phi elimination, to ensure the only cases
// that we can see are reference comparison against 0. The redundant phi
// elimination ensures we do not see a phi taking two 0 constants in a HEqual
// or HNotEqual.
FixNullConstantType();
// 9) Make sure environments use the right phi "equivalent": a phi marked dead
// can have a phi equivalent that is not dead. We must therefore update
// all environment uses of the dead phi to use its equivalent. Note that there
// can be multiple phis for the same Dex register that are live (for example
// when merging constants), in which case it is OK for the environments
// to just reference one.
for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
HPhi* phi = it_phis.Current()->AsPhi();
// If the phi is not dead, or has no environment uses, there is nothing to do.
if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
HInstruction* next = phi->GetNext();
if (!phi->IsVRegEquivalentOf(next)) continue;
if (next->AsPhi()->IsDead()) {
// If the phi equivalent is dead, check if there is another one.
next = next->GetNext();
if (!phi->IsVRegEquivalentOf(next)) continue;
// There can be at most two phi equivalents.
DCHECK(!phi->IsVRegEquivalentOf(next->GetNext()));
if (next->AsPhi()->IsDead()) continue;
}
// We found a live phi equivalent. Update the environment uses of `phi` with it.
phi->ReplaceWith(next);
}
}
// 10) Deal with phis to guarantee liveness of phis in case of a debuggable
// application. This is for satisfying statement (c) of the SsaBuilder
// (see ssa_builder.h).
if (GetGraph()->IsDebuggable()) {
DeadPhiHandling dead_phi_handler(GetGraph());
dead_phi_handler.Run();
}
// 11) Now that the right phis are used for the environments, and we
// have potentially revive dead phis in case of a debuggable application,
// we can eliminate phis we do not need. Regardless of the debuggable status,
// this phase is necessary for statement (b) of the SsaBuilder (see ssa_builder.h),
// as well as for the code generation, which does not deal with phis of conflicting
// input types.
dead_phis.EliminateDeadPhis();
// 12) Clear locals.
for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions());
!it.Done();
it.Advance()) {
HInstruction* current = it.Current();
if (current->IsLocal()) {
current->GetBlock()->RemoveInstruction(current);
}
}
}
ArenaVector<HInstruction*>* SsaBuilder::GetLocalsFor(HBasicBlock* block) {
ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
const size_t vregs = GetGraph()->GetNumberOfVRegs();
if (locals->empty() && vregs != 0u) {
locals->resize(vregs, nullptr);
if (block->IsCatchBlock()) {
ArenaAllocator* arena = GetGraph()->GetArena();
// We record incoming inputs of catch phis at throwing instructions and
// must therefore eagerly create the phis. Phis for undefined vregs will
// be deleted when the first throwing instruction with the vreg undefined
// is encountered. Unused phis will be removed by dead phi analysis.
for (size_t i = 0; i < vregs; ++i) {
// No point in creating the catch phi if it is already undefined at
// the first throwing instruction.
if ((*current_locals_)[i] != nullptr) {
HPhi* phi = new (arena) HPhi(arena, i, 0, Primitive::kPrimVoid);
block->AddPhi(phi);
(*locals)[i] = phi;
}
}
}
}
return locals;
}
HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) {
ArenaVector<HInstruction*>* locals = GetLocalsFor(block);
return (*locals)[local];
}
void SsaBuilder::VisitBasicBlock(HBasicBlock* block) {
current_locals_ = GetLocalsFor(block);
if (block->IsCatchBlock()) {
// Catch phis were already created and inputs collected from throwing sites.
if (kIsDebugBuild) {
// Make sure there was at least one throwing instruction which initialized
// locals (guaranteed by HGraphBuilder) and that all try blocks have been
// visited already (from HTryBoundary scoping and reverse post order).
bool throwing_instruction_found = false;
bool catch_block_visited = false;
for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
HBasicBlock* current = it.Current();
if (current == block) {
catch_block_visited = true;
} else if (current->IsTryBlock() &&
current->GetTryCatchInformation()->GetTryEntry().HasExceptionHandler(*block)) {
DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
throwing_instruction_found |= current->HasThrowingInstructions();
}
}
DCHECK(throwing_instruction_found) << "No instructions throwing into a live catch block.";
}
} else if (block->IsLoopHeader()) {
// If the block is a loop header, we know we only have visited the pre header
// because we are visiting in reverse post order. We create phis for all initialized
// locals from the pre header. Their inputs will be populated at the end of
// the analysis.
for (size_t local = 0; local < current_locals_->size(); ++local) {
HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local);
if (incoming != nullptr) {
HPhi* phi = new (GetGraph()->GetArena()) HPhi(
GetGraph()->GetArena(), local, 0, Primitive::kPrimVoid);
block->AddPhi(phi);
(*current_locals_)[local] = phi;
}
}
// Save the loop header so that the last phase of the analysis knows which
// blocks need to be updated.
loop_headers_.push_back(block);
} else if (block->GetPredecessors().size() > 0) {
// All predecessors have already been visited because we are visiting in reverse post order.
// We merge the values of all locals, creating phis if those values differ.
for (size_t local = 0; local < current_locals_->size(); ++local) {
bool one_predecessor_has_no_value = false;
bool is_different = false;
HInstruction* value = ValueOfLocal(block->GetPredecessors()[0], local);
for (HBasicBlock* predecessor : block->GetPredecessors()) {
HInstruction* current = ValueOfLocal(predecessor, local);
if (current == nullptr) {
one_predecessor_has_no_value = true;
break;
} else if (current != value) {
is_different = true;
}
}
if (one_predecessor_has_no_value) {
// If one predecessor has no value for this local, we trust the verifier has
// successfully checked that there is a store dominating any read after this block.
continue;
}
if (is_different) {
HPhi* phi = new (GetGraph()->GetArena()) HPhi(
GetGraph()->GetArena(), local, block->GetPredecessors().size(), Primitive::kPrimVoid);
for (size_t i = 0; i < block->GetPredecessors().size(); i++) {
HInstruction* pred_value = ValueOfLocal(block->GetPredecessors()[i], local);
phi->SetRawInputAt(i, pred_value);
}
block->AddPhi(phi);
value = phi;
}
(*current_locals_)[local] = value;
}
}
// Visit all instructions. The instructions of interest are:
// - HLoadLocal: replace them with the current value of the local.
// - HStoreLocal: update current value of the local and remove the instruction.
// - Instructions that require an environment: populate their environment
// with the current values of the locals.
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
it.Current()->Accept(this);
}
}
/**
* Constants in the Dex format are not typed. So the builder types them as
* integers, but when doing the SSA form, we might realize the constant
* is used for floating point operations. We create a floating-point equivalent
* constant to make the operations correctly typed.
*/
HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
// We place the floating point constant next to this constant.
HFloatConstant* result = constant->GetNext()->AsFloatConstant();
if (result == nullptr) {
HGraph* graph = constant->GetBlock()->GetGraph();
ArenaAllocator* allocator = graph->GetArena();
result = new (allocator) HFloatConstant(bit_cast<float, int32_t>(constant->GetValue()));
constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
graph->CacheFloatConstant(result);
} else {
// If there is already a constant with the expected type, we know it is
// the floating point equivalent of this constant.
DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
}
return result;
}
/**
* Wide constants in the Dex format are not typed. So the builder types them as
* longs, but when doing the SSA form, we might realize the constant
* is used for floating point operations. We create a floating-point equivalent
* constant to make the operations correctly typed.
*/
HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
// We place the floating point constant next to this constant.
HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
if (result == nullptr) {
HGraph* graph = constant->GetBlock()->GetGraph();
ArenaAllocator* allocator = graph->GetArena();
result = new (allocator) HDoubleConstant(bit_cast<double, int64_t>(constant->GetValue()));
constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
graph->CacheDoubleConstant(result);
} else {
// If there is already a constant with the expected type, we know it is
// the floating point equivalent of this constant.
DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
}
return result;
}
/**
* Because of Dex format, we might end up having the same phi being
* used for non floating point operations and floating point / reference operations.
* Because we want the graph to be correctly typed (and thereafter avoid moves between
* floating point registers and core registers), we need to create a copy of the
* phi with a floating point / reference type.
*/
HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) {
// We place the floating point /reference phi next to this phi.
HInstruction* next = phi->GetNext();
if (next != nullptr
&& next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
&& next->GetType() != type) {
// Move to the next phi to see if it is the one we are looking for.
next = next->GetNext();
}
if (next == nullptr
|| (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
|| (next->GetType() != type)) {
ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena();
HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type);
for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
// Copy the inputs. Note that the graph may not be correctly typed by doing this copy,
// but the type propagation phase will fix it.
new_phi->SetRawInputAt(i, phi->InputAt(i));
}
phi->GetBlock()->InsertPhiAfter(new_phi, phi);
return new_phi;
} else {
DCHECK_EQ(next->GetType(), type);
return next->AsPhi();
}
}
HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user,
HInstruction* value,
Primitive::Type type) {
if (value->IsArrayGet()) {
// The verifier has checked that values in arrays cannot be used for both
// floating point and non-floating point operations. It is therefore safe to just
// change the type of the operation.
value->AsArrayGet()->SetType(type);
return value;
} else if (value->IsLongConstant()) {
return GetDoubleEquivalent(value->AsLongConstant());
} else if (value->IsIntConstant()) {
return GetFloatEquivalent(value->AsIntConstant());
} else if (value->IsPhi()) {
return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
} else {
// For other instructions, we assume the verifier has checked that the dex format is correctly
// typed and the value in a dex register will not be used for both floating point and
// non-floating point operations. So the only reason an instruction would want a floating
// point equivalent is for an unused phi that will be removed by the dead phi elimination phase.
DCHECK(user->IsPhi()) << "is actually " << user->DebugName() << " (" << user->GetId() << ")";
return value;
}
}
HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
return value->GetBlock()->GetGraph()->GetNullConstant();
} else if (value->IsPhi()) {
return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot);
} else {
return nullptr;
}
}
void SsaBuilder::VisitLoadLocal(HLoadLocal* load) {
HInstruction* value = (*current_locals_)[load->GetLocal()->GetRegNumber()];
// If the operation requests a specific type, we make sure its input is of that type.
if (load->GetType() != value->GetType()) {
if (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble) {
value = GetFloatOrDoubleEquivalent(load, value, load->GetType());
} else if (load->GetType() == Primitive::kPrimNot) {
value = GetReferenceTypeEquivalent(value);
}
}
load->ReplaceWith(value);
load->GetBlock()->RemoveInstruction(load);
}
void SsaBuilder::VisitStoreLocal(HStoreLocal* store) {
(*current_locals_)[store->GetLocal()->GetRegNumber()] = store->InputAt(1);
store->GetBlock()->RemoveInstruction(store);
}
void SsaBuilder::VisitInstruction(HInstruction* instruction) {
if (instruction->NeedsEnvironment()) {
HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment(
GetGraph()->GetArena(),
current_locals_->size(),
GetGraph()->GetDexFile(),
GetGraph()->GetMethodIdx(),
instruction->GetDexPc(),
GetGraph()->GetInvokeType(),
instruction);
environment->CopyFrom(*current_locals_);
instruction->SetRawEnvironment(environment);
}
// If in a try block, propagate values of locals into catch blocks.
if (instruction->CanThrowIntoCatchBlock()) {
const HTryBoundary& try_entry =
instruction->GetBlock()->GetTryCatchInformation()->GetTryEntry();
for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
DCHECK_EQ(handler_locals->size(), current_locals_->size());
for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
HInstruction* handler_value = (*handler_locals)[vreg];
if (handler_value == nullptr) {
// Vreg was undefined at a previously encountered throwing instruction
// and the catch phi was deleted. Do not record the local value.
continue;
}
DCHECK(handler_value->IsPhi());
HInstruction* local_value = (*current_locals_)[vreg];
if (local_value == nullptr) {
// This is the first instruction throwing into `catch_block` where
// `vreg` is undefined. Delete the catch phi.
catch_block->RemovePhi(handler_value->AsPhi());
(*handler_locals)[vreg] = nullptr;
} else {
// Vreg has been defined at all instructions throwing into `catch_block`
// encountered so far. Record the local value in the catch phi.
handler_value->AsPhi()->AddInput(local_value);
}
}
}
}
}
void SsaBuilder::VisitTemporary(HTemporary* temp) {
// Temporaries are only used by the baseline register allocator.
temp->GetBlock()->RemoveInstruction(temp);
}
} // namespace art