| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator.h" |
| |
| #ifdef ART_ENABLE_CODEGEN_arm |
| #include "code_generator_arm_vixl.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| #include "code_generator_arm64.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| #include "code_generator_x86.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| #include "code_generator_x86_64.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_mips |
| #include "code_generator_mips.h" |
| #endif |
| |
| #ifdef ART_ENABLE_CODEGEN_mips64 |
| #include "code_generator_mips64.h" |
| #endif |
| |
| #include "base/bit_utils.h" |
| #include "base/bit_utils_iterator.h" |
| #include "base/casts.h" |
| #include "bytecode_utils.h" |
| #include "class_linker.h" |
| #include "compiled_method.h" |
| #include "dex/code_item_accessors-inl.h" |
| #include "dex/verified_method.h" |
| #include "driver/compiler_driver.h" |
| #include "graph_visualizer.h" |
| #include "intern_table.h" |
| #include "intrinsics.h" |
| #include "leb128.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/object_reference.h" |
| #include "mirror/reference.h" |
| #include "mirror/string.h" |
| #include "parallel_move_resolver.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "ssa_liveness_analysis.h" |
| #include "stack_map_stream.h" |
| #include "thread-current-inl.h" |
| #include "utils/assembler.h" |
| |
| namespace art { |
| |
| // If true, we record the static and direct invokes in the invoke infos. |
| static constexpr bool kEnableDexLayoutOptimizations = false; |
| |
| // Return whether a location is consistent with a type. |
| static bool CheckType(DataType::Type type, Location location) { |
| if (location.IsFpuRegister() |
| || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) { |
| return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64); |
| } else if (location.IsRegister() || |
| (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) { |
| return DataType::IsIntegralType(type) || (type == DataType::Type::kReference); |
| } else if (location.IsRegisterPair()) { |
| return type == DataType::Type::kInt64; |
| } else if (location.IsFpuRegisterPair()) { |
| return type == DataType::Type::kFloat64; |
| } else if (location.IsStackSlot()) { |
| return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64) |
| || (type == DataType::Type::kFloat32) |
| || (type == DataType::Type::kReference); |
| } else if (location.IsDoubleStackSlot()) { |
| return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64); |
| } else if (location.IsConstant()) { |
| if (location.GetConstant()->IsIntConstant()) { |
| return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64); |
| } else if (location.GetConstant()->IsNullConstant()) { |
| return type == DataType::Type::kReference; |
| } else if (location.GetConstant()->IsLongConstant()) { |
| return type == DataType::Type::kInt64; |
| } else if (location.GetConstant()->IsFloatConstant()) { |
| return type == DataType::Type::kFloat32; |
| } else { |
| return location.GetConstant()->IsDoubleConstant() |
| && (type == DataType::Type::kFloat64); |
| } |
| } else { |
| return location.IsInvalid() || (location.GetPolicy() == Location::kAny); |
| } |
| } |
| |
| // Check that a location summary is consistent with an instruction. |
| static bool CheckTypeConsistency(HInstruction* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (locations == nullptr) { |
| return true; |
| } |
| |
| if (locations->Out().IsUnallocated() |
| && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) { |
| DCHECK(CheckType(instruction->GetType(), locations->InAt(0))) |
| << instruction->GetType() |
| << " " << locations->InAt(0); |
| } else { |
| DCHECK(CheckType(instruction->GetType(), locations->Out())) |
| << instruction->GetType() |
| << " " << locations->Out(); |
| } |
| |
| HConstInputsRef inputs = instruction->GetInputs(); |
| for (size_t i = 0; i < inputs.size(); ++i) { |
| DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i))) |
| << inputs[i]->GetType() << " " << locations->InAt(i); |
| } |
| |
| HEnvironment* environment = instruction->GetEnvironment(); |
| for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) { |
| if (environment->GetInstructionAt(i) != nullptr) { |
| DataType::Type type = environment->GetInstructionAt(i)->GetType(); |
| DCHECK(CheckType(type, environment->GetLocationAt(i))) |
| << type << " " << environment->GetLocationAt(i); |
| } else { |
| DCHECK(environment->GetLocationAt(i).IsInvalid()) |
| << environment->GetLocationAt(i); |
| } |
| } |
| return true; |
| } |
| |
| class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> { |
| public: |
| static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack, |
| InstructionSet instruction_set) { |
| ScopedArenaAllocator allocator(arena_stack); |
| void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator); |
| return std::unique_ptr<CodeGenerationData>( |
| ::new (memory) CodeGenerationData(std::move(allocator), instruction_set)); |
| } |
| |
| ScopedArenaAllocator* GetScopedAllocator() { |
| return &allocator_; |
| } |
| |
| void AddSlowPath(SlowPathCode* slow_path) { |
| slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path)); |
| } |
| |
| ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const { |
| return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_); |
| } |
| |
| StackMapStream* GetStackMapStream() { return &stack_map_stream_; } |
| |
| void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) { |
| jit_string_roots_.Overwrite(string_reference, |
| reinterpret_cast64<uint64_t>(string.GetReference())); |
| } |
| |
| uint64_t GetJitStringRootIndex(StringReference string_reference) const { |
| return jit_string_roots_.Get(string_reference); |
| } |
| |
| size_t GetNumberOfJitStringRoots() const { |
| return jit_string_roots_.size(); |
| } |
| |
| void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) { |
| jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference())); |
| } |
| |
| uint64_t GetJitClassRootIndex(TypeReference type_reference) const { |
| return jit_class_roots_.Get(type_reference); |
| } |
| |
| size_t GetNumberOfJitClassRoots() const { |
| return jit_class_roots_.size(); |
| } |
| |
| size_t GetNumberOfJitRoots() const { |
| return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots(); |
| } |
| |
| void EmitJitRoots(Handle<mirror::ObjectArray<mirror::Object>> roots) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set) |
| : allocator_(std::move(allocator)), |
| stack_map_stream_(&allocator_, instruction_set), |
| slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)), |
| jit_string_roots_(StringReferenceValueComparator(), |
| allocator_.Adapter(kArenaAllocCodeGenerator)), |
| jit_class_roots_(TypeReferenceValueComparator(), |
| allocator_.Adapter(kArenaAllocCodeGenerator)) { |
| slow_paths_.reserve(kDefaultSlowPathsCapacity); |
| } |
| |
| static constexpr size_t kDefaultSlowPathsCapacity = 8; |
| |
| ScopedArenaAllocator allocator_; |
| StackMapStream stack_map_stream_; |
| ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_; |
| |
| // Maps a StringReference (dex_file, string_index) to the index in the literal table. |
| // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots` |
| // will compute all the indices. |
| ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_; |
| |
| // Maps a ClassReference (dex_file, type_index) to the index in the literal table. |
| // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots` |
| // will compute all the indices. |
| ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_; |
| }; |
| |
| void CodeGenerator::CodeGenerationData::EmitJitRoots( |
| Handle<mirror::ObjectArray<mirror::Object>> roots) { |
| DCHECK_EQ(static_cast<size_t>(roots->GetLength()), GetNumberOfJitRoots()); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| size_t index = 0; |
| for (auto& entry : jit_string_roots_) { |
| // Update the `roots` with the string, and replace the address temporarily |
| // stored to the index in the table. |
| uint64_t address = entry.second; |
| roots->Set(index, reinterpret_cast<StackReference<mirror::String>*>(address)->AsMirrorPtr()); |
| DCHECK(roots->Get(index) != nullptr); |
| entry.second = index; |
| // Ensure the string is strongly interned. This is a requirement on how the JIT |
| // handles strings. b/32995596 |
| class_linker->GetInternTable()->InternStrong( |
| reinterpret_cast<mirror::String*>(roots->Get(index))); |
| ++index; |
| } |
| for (auto& entry : jit_class_roots_) { |
| // Update the `roots` with the class, and replace the address temporarily |
| // stored to the index in the table. |
| uint64_t address = entry.second; |
| roots->Set(index, reinterpret_cast<StackReference<mirror::Class>*>(address)->AsMirrorPtr()); |
| DCHECK(roots->Get(index) != nullptr); |
| entry.second = index; |
| ++index; |
| } |
| } |
| |
| ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetScopedAllocator(); |
| } |
| |
| StackMapStream* CodeGenerator::GetStackMapStream() { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetStackMapStream(); |
| } |
| |
| void CodeGenerator::ReserveJitStringRoot(StringReference string_reference, |
| Handle<mirror::String> string) { |
| DCHECK(code_generation_data_ != nullptr); |
| code_generation_data_->ReserveJitStringRoot(string_reference, string); |
| } |
| |
| uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetJitStringRootIndex(string_reference); |
| } |
| |
| void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) { |
| DCHECK(code_generation_data_ != nullptr); |
| code_generation_data_->ReserveJitClassRoot(type_reference, klass); |
| } |
| |
| uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetJitClassRootIndex(type_reference); |
| } |
| |
| void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED, |
| const uint8_t* roots_data ATTRIBUTE_UNUSED) { |
| DCHECK(code_generation_data_ != nullptr); |
| DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u); |
| DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u); |
| } |
| |
| uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) { |
| return array_length->IsStringLength() |
| ? mirror::String::CountOffset().Uint32Value() |
| : mirror::Array::LengthOffset().Uint32Value(); |
| } |
| |
| uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) { |
| DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt()); |
| return array_get->IsStringCharAt() |
| ? mirror::String::ValueOffset().Uint32Value() |
| : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value(); |
| } |
| |
| bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { |
| DCHECK_EQ((*block_order_)[current_block_index_], current); |
| return GetNextBlockToEmit() == FirstNonEmptyBlock(next); |
| } |
| |
| HBasicBlock* CodeGenerator::GetNextBlockToEmit() const { |
| for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) { |
| HBasicBlock* block = (*block_order_)[i]; |
| if (!block->IsSingleJump()) { |
| return block; |
| } |
| } |
| return nullptr; |
| } |
| |
| HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const { |
| while (block->IsSingleJump()) { |
| block = block->GetSuccessors()[0]; |
| } |
| return block; |
| } |
| |
| class DisassemblyScope { |
| public: |
| DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen) |
| : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) { |
| if (codegen_.GetDisassemblyInformation() != nullptr) { |
| start_offset_ = codegen_.GetAssembler().CodeSize(); |
| } |
| } |
| |
| ~DisassemblyScope() { |
| // We avoid building this data when we know it will not be used. |
| if (codegen_.GetDisassemblyInformation() != nullptr) { |
| codegen_.GetDisassemblyInformation()->AddInstructionInterval( |
| instruction_, start_offset_, codegen_.GetAssembler().CodeSize()); |
| } |
| } |
| |
| private: |
| const CodeGenerator& codegen_; |
| HInstruction* instruction_; |
| size_t start_offset_; |
| }; |
| |
| |
| void CodeGenerator::GenerateSlowPaths() { |
| DCHECK(code_generation_data_ != nullptr); |
| size_t code_start = 0; |
| for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) { |
| SlowPathCode* slow_path = slow_path_ptr.get(); |
| current_slow_path_ = slow_path; |
| if (disasm_info_ != nullptr) { |
| code_start = GetAssembler()->CodeSize(); |
| } |
| // Record the dex pc at start of slow path (required for java line number mapping). |
| MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path); |
| slow_path->EmitNativeCode(this); |
| if (disasm_info_ != nullptr) { |
| disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize()); |
| } |
| } |
| current_slow_path_ = nullptr; |
| } |
| |
| void CodeGenerator::InitializeCodeGenerationData() { |
| DCHECK(code_generation_data_ == nullptr); |
| code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet()); |
| } |
| |
| void CodeGenerator::Compile(CodeAllocator* allocator) { |
| InitializeCodeGenerationData(); |
| |
| // The register allocator already called `InitializeCodeGeneration`, |
| // where the frame size has been computed. |
| DCHECK(block_order_ != nullptr); |
| Initialize(); |
| |
| HGraphVisitor* instruction_visitor = GetInstructionVisitor(); |
| DCHECK_EQ(current_block_index_, 0u); |
| |
| size_t frame_start = GetAssembler()->CodeSize(); |
| GenerateFrameEntry(); |
| DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_)); |
| if (disasm_info_ != nullptr) { |
| disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize()); |
| } |
| |
| for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) { |
| HBasicBlock* block = (*block_order_)[current_block_index_]; |
| // Don't generate code for an empty block. Its predecessors will branch to its successor |
| // directly. Also, the label of that block will not be emitted, so this helps catch |
| // errors where we reference that label. |
| if (block->IsSingleJump()) continue; |
| Bind(block); |
| // This ensures that we have correct native line mapping for all native instructions. |
| // It is necessary to make stepping over a statement work. Otherwise, any initial |
| // instructions (e.g. moves) would be assumed to be the start of next statement. |
| MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc()); |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* current = it.Current(); |
| if (current->HasEnvironment()) { |
| // Create stackmap for HNativeDebugInfo or any instruction which calls native code. |
| // Note that we need correct mapping for the native PC of the call instruction, |
| // so the runtime's stackmap is not sufficient since it is at PC after the call. |
| MaybeRecordNativeDebugInfo(current, block->GetDexPc()); |
| } |
| DisassemblyScope disassembly_scope(current, *this); |
| DCHECK(CheckTypeConsistency(current)); |
| current->Accept(instruction_visitor); |
| } |
| } |
| |
| GenerateSlowPaths(); |
| |
| // Emit catch stack maps at the end of the stack map stream as expected by the |
| // runtime exception handler. |
| if (graph_->HasTryCatch()) { |
| RecordCatchBlockInfo(); |
| } |
| |
| // Finalize instructions in assember; |
| Finalize(allocator); |
| } |
| |
| void CodeGenerator::Finalize(CodeAllocator* allocator) { |
| size_t code_size = GetAssembler()->CodeSize(); |
| uint8_t* buffer = allocator->Allocate(code_size); |
| |
| MemoryRegion code(buffer, code_size); |
| GetAssembler()->FinalizeInstructions(code); |
| } |
| |
| void CodeGenerator::EmitLinkerPatches( |
| ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) { |
| // No linker patches by default. |
| } |
| |
| void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots, |
| size_t maximum_safepoint_spill_size, |
| size_t number_of_out_slots, |
| const ArenaVector<HBasicBlock*>& block_order) { |
| block_order_ = &block_order; |
| DCHECK(!block_order.empty()); |
| DCHECK(block_order[0] == GetGraph()->GetEntryBlock()); |
| ComputeSpillMask(); |
| first_register_slot_in_slow_path_ = RoundUp( |
| (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment()); |
| |
| if (number_of_spill_slots == 0 |
| && !HasAllocatedCalleeSaveRegisters() |
| && IsLeafMethod() |
| && !RequiresCurrentMethod()) { |
| DCHECK_EQ(maximum_safepoint_spill_size, 0u); |
| SetFrameSize(CallPushesPC() ? GetWordSize() : 0); |
| } else { |
| SetFrameSize(RoundUp( |
| first_register_slot_in_slow_path_ |
| + maximum_safepoint_spill_size |
| + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0) |
| + FrameEntrySpillSize(), |
| kStackAlignment)); |
| } |
| } |
| |
| void CodeGenerator::CreateCommonInvokeLocationSummary( |
| HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) { |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnMainOnly); |
| |
| for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) { |
| HInstruction* input = invoke->InputAt(i); |
| locations->SetInAt(i, visitor->GetNextLocation(input->GetType())); |
| } |
| |
| locations->SetOut(visitor->GetReturnLocation(invoke->GetType())); |
| |
| if (invoke->IsInvokeStaticOrDirect()) { |
| HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect(); |
| switch (call->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: |
| locations->AddTemp(visitor->GetMethodLocation()); |
| locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister()); |
| break; |
| default: |
| locations->AddTemp(visitor->GetMethodLocation()); |
| break; |
| } |
| } else { |
| locations->AddTemp(visitor->GetMethodLocation()); |
| } |
| } |
| |
| void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall( |
| HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { |
| MoveConstant(temp, invoke->GetDexMethodIndex()); |
| |
| // The access check is unnecessary but we do not want to introduce |
| // extra entrypoints for the codegens that do not support some |
| // invoke type and fall back to the runtime call. |
| |
| // Initialize to anything to silent compiler warnings. |
| QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| switch (invoke->GetInvokeType()) { |
| case kStatic: |
| entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| break; |
| case kDirect: |
| entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck; |
| break; |
| case kSuper: |
| entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck; |
| break; |
| case kVirtual: |
| case kInterface: |
| case kPolymorphic: |
| LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType(); |
| UNREACHABLE(); |
| } |
| |
| InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path); |
| } |
| void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) { |
| MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex()); |
| |
| // Initialize to anything to silent compiler warnings. |
| QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| switch (invoke->GetInvokeType()) { |
| case kStatic: |
| entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; |
| break; |
| case kDirect: |
| entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck; |
| break; |
| case kVirtual: |
| entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck; |
| break; |
| case kSuper: |
| entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck; |
| break; |
| case kInterface: |
| entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck; |
| break; |
| case kPolymorphic: |
| LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType(); |
| UNREACHABLE(); |
| } |
| InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr); |
| } |
| |
| void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) { |
| MoveConstant(invoke->GetLocations()->GetTemp(0), static_cast<int32_t>(invoke->GetType())); |
| QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic; |
| InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr); |
| } |
| |
| void CodeGenerator::CreateUnresolvedFieldLocationSummary( |
| HInstruction* field_access, |
| DataType::Type field_type, |
| const FieldAccessCallingConvention& calling_convention) { |
| bool is_instance = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedInstanceFieldSet(); |
| bool is_get = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedStaticFieldGet(); |
| |
| ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly); |
| |
| locations->AddTemp(calling_convention.GetFieldIndexLocation()); |
| |
| if (is_instance) { |
| // Add the `this` object for instance field accesses. |
| locations->SetInAt(0, calling_convention.GetObjectLocation()); |
| } |
| |
| // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64 |
| // regardless of the the type. Because of that we forced to special case |
| // the access to floating point values. |
| if (is_get) { |
| if (DataType::IsFloatingPointType(field_type)) { |
| // The return value will be stored in regular registers while register |
| // allocator expects it in a floating point register. |
| // Note We don't need to request additional temps because the return |
| // register(s) are already blocked due the call and they may overlap with |
| // the input or field index. |
| // The transfer between the two will be done at codegen level. |
| locations->SetOut(calling_convention.GetFpuLocation(field_type)); |
| } else { |
| locations->SetOut(calling_convention.GetReturnLocation(field_type)); |
| } |
| } else { |
| size_t set_index = is_instance ? 1 : 0; |
| if (DataType::IsFloatingPointType(field_type)) { |
| // The set value comes from a float location while the calling convention |
| // expects it in a regular register location. Allocate a temp for it and |
| // make the transfer at codegen. |
| AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations); |
| locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type)); |
| } else { |
| locations->SetInAt(set_index, |
| calling_convention.GetSetValueLocation(field_type, is_instance)); |
| } |
| } |
| } |
| |
| void CodeGenerator::GenerateUnresolvedFieldAccess( |
| HInstruction* field_access, |
| DataType::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc, |
| const FieldAccessCallingConvention& calling_convention) { |
| LocationSummary* locations = field_access->GetLocations(); |
| |
| MoveConstant(locations->GetTemp(0), field_index); |
| |
| bool is_instance = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedInstanceFieldSet(); |
| bool is_get = field_access->IsUnresolvedInstanceFieldGet() |
| || field_access->IsUnresolvedStaticFieldGet(); |
| |
| if (!is_get && DataType::IsFloatingPointType(field_type)) { |
| // Copy the float value to be set into the calling convention register. |
| // Note that using directly the temp location is problematic as we don't |
| // support temp register pairs. To avoid boilerplate conversion code, use |
| // the location from the calling convention. |
| MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance), |
| locations->InAt(is_instance ? 1 : 0), |
| (DataType::Is64BitType(field_type) ? DataType::Type::kInt64 |
| : DataType::Type::kInt32)); |
| } |
| |
| QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings. |
| switch (field_type) { |
| case DataType::Type::kBool: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance) |
| : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static); |
| break; |
| case DataType::Type::kInt8: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance) |
| : (is_get ? kQuickGetByteStatic : kQuickSet8Static); |
| break; |
| case DataType::Type::kInt16: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance) |
| : (is_get ? kQuickGetShortStatic : kQuickSet16Static); |
| break; |
| case DataType::Type::kUint16: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance) |
| : (is_get ? kQuickGetCharStatic : kQuickSet16Static); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kFloat32: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGet32Instance : kQuickSet32Instance) |
| : (is_get ? kQuickGet32Static : kQuickSet32Static); |
| break; |
| case DataType::Type::kReference: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance) |
| : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic); |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat64: |
| entrypoint = is_instance |
| ? (is_get ? kQuickGet64Instance : kQuickSet64Instance) |
| : (is_get ? kQuickGet64Static : kQuickSet64Static); |
| break; |
| default: |
| LOG(FATAL) << "Invalid type " << field_type; |
| } |
| InvokeRuntime(entrypoint, field_access, dex_pc, nullptr); |
| |
| if (is_get && DataType::IsFloatingPointType(field_type)) { |
| MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type); |
| } |
| } |
| |
| void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls, |
| Location runtime_type_index_location, |
| Location runtime_return_location) { |
| DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall); |
| DCHECK_EQ(cls->InputCount(), 1u); |
| LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary( |
| cls, LocationSummary::kCallOnMainOnly); |
| locations->SetInAt(0, Location::NoLocation()); |
| locations->AddTemp(runtime_type_index_location); |
| locations->SetOut(runtime_return_location); |
| } |
| |
| void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) { |
| DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall); |
| LocationSummary* locations = cls->GetLocations(); |
| MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_); |
| if (cls->NeedsAccessCheck()) { |
| CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>(); |
| InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc()); |
| } else if (cls->MustGenerateClinitCheck()) { |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); |
| InvokeRuntime(kQuickInitializeStaticStorage, cls, cls->GetDexPc()); |
| } else { |
| CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); |
| InvokeRuntime(kQuickInitializeType, cls, cls->GetDexPc()); |
| } |
| } |
| |
| void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const { |
| // The DCHECKS below check that a register is not specified twice in |
| // the summary. The out location can overlap with an input, so we need |
| // to special case it. |
| if (location.IsRegister()) { |
| DCHECK(is_out || !blocked_core_registers_[location.reg()]); |
| blocked_core_registers_[location.reg()] = true; |
| } else if (location.IsFpuRegister()) { |
| DCHECK(is_out || !blocked_fpu_registers_[location.reg()]); |
| blocked_fpu_registers_[location.reg()] = true; |
| } else if (location.IsFpuRegisterPair()) { |
| DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]); |
| blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true; |
| DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]); |
| blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true; |
| } else if (location.IsRegisterPair()) { |
| DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]); |
| blocked_core_registers_[location.AsRegisterPairLow<int>()] = true; |
| DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]); |
| blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true; |
| } |
| } |
| |
| void CodeGenerator::AllocateLocations(HInstruction* instruction) { |
| for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) { |
| env->AllocateLocations(); |
| } |
| instruction->Accept(GetLocationBuilder()); |
| DCHECK(CheckTypeConsistency(instruction)); |
| LocationSummary* locations = instruction->GetLocations(); |
| if (!instruction->IsSuspendCheckEntry()) { |
| if (locations != nullptr) { |
| if (locations->CanCall()) { |
| MarkNotLeaf(); |
| } else if (locations->Intrinsified() && |
| instruction->IsInvokeStaticOrDirect() && |
| !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) { |
| // A static method call that has been fully intrinsified, and cannot call on the slow |
| // path or refer to the current method directly, no longer needs current method. |
| return; |
| } |
| } |
| if (instruction->NeedsCurrentMethod()) { |
| SetRequiresCurrentMethod(); |
| } |
| } |
| } |
| |
| std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph, |
| InstructionSet instruction_set, |
| const InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) { |
| ArenaAllocator* allocator = graph->GetAllocator(); |
| switch (instruction_set) { |
| #ifdef ART_ENABLE_CODEGEN_arm |
| case InstructionSet::kArm: |
| case InstructionSet::kThumb2: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) arm::CodeGeneratorARMVIXL( |
| graph, *isa_features.AsArmInstructionSetFeatures(), compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_arm64 |
| case InstructionSet::kArm64: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) arm64::CodeGeneratorARM64( |
| graph, *isa_features.AsArm64InstructionSetFeatures(), compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips |
| case InstructionSet::kMips: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) mips::CodeGeneratorMIPS( |
| graph, *isa_features.AsMipsInstructionSetFeatures(), compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_mips64 |
| case InstructionSet::kMips64: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) mips64::CodeGeneratorMIPS64( |
| graph, *isa_features.AsMips64InstructionSetFeatures(), compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86 |
| case InstructionSet::kX86: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) x86::CodeGeneratorX86( |
| graph, *isa_features.AsX86InstructionSetFeatures(), compiler_options, stats)); |
| } |
| #endif |
| #ifdef ART_ENABLE_CODEGEN_x86_64 |
| case InstructionSet::kX86_64: { |
| return std::unique_ptr<CodeGenerator>( |
| new (allocator) x86_64::CodeGeneratorX86_64( |
| graph, *isa_features.AsX86_64InstructionSetFeatures(), compiler_options, stats)); |
| } |
| #endif |
| default: |
| return nullptr; |
| } |
| } |
| |
| CodeGenerator::CodeGenerator(HGraph* graph, |
| size_t number_of_core_registers, |
| size_t number_of_fpu_registers, |
| size_t number_of_register_pairs, |
| uint32_t core_callee_save_mask, |
| uint32_t fpu_callee_save_mask, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : frame_size_(0), |
| core_spill_mask_(0), |
| fpu_spill_mask_(0), |
| first_register_slot_in_slow_path_(0), |
| allocated_registers_(RegisterSet::Empty()), |
| blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers, |
| kArenaAllocCodeGenerator)), |
| blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers, |
| kArenaAllocCodeGenerator)), |
| number_of_core_registers_(number_of_core_registers), |
| number_of_fpu_registers_(number_of_fpu_registers), |
| number_of_register_pairs_(number_of_register_pairs), |
| core_callee_save_mask_(core_callee_save_mask), |
| fpu_callee_save_mask_(fpu_callee_save_mask), |
| block_order_(nullptr), |
| disasm_info_(nullptr), |
| stats_(stats), |
| graph_(graph), |
| compiler_options_(compiler_options), |
| current_slow_path_(nullptr), |
| current_block_index_(0), |
| is_leaf_(true), |
| requires_current_method_(false), |
| code_generation_data_() { |
| } |
| |
| CodeGenerator::~CodeGenerator() {} |
| |
| void CodeGenerator::ComputeStackMapAndMethodInfoSize(size_t* stack_map_size, |
| size_t* method_info_size) { |
| DCHECK(stack_map_size != nullptr); |
| DCHECK(method_info_size != nullptr); |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| *stack_map_size = stack_map_stream->PrepareForFillIn(); |
| *method_info_size = stack_map_stream->ComputeMethodInfoSize(); |
| } |
| |
| size_t CodeGenerator::GetNumberOfJitRoots() const { |
| DCHECK(code_generation_data_ != nullptr); |
| return code_generation_data_->GetNumberOfJitRoots(); |
| } |
| |
| static void CheckCovers(uint32_t dex_pc, |
| const HGraph& graph, |
| const CodeInfo& code_info, |
| const ArenaVector<HSuspendCheck*>& loop_headers, |
| ArenaVector<size_t>* covered) { |
| CodeInfoEncoding encoding = code_info.ExtractEncoding(); |
| for (size_t i = 0; i < loop_headers.size(); ++i) { |
| if (loop_headers[i]->GetDexPc() == dex_pc) { |
| if (graph.IsCompilingOsr()) { |
| DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid()); |
| } |
| ++(*covered)[i]; |
| } |
| } |
| } |
| |
| // Debug helper to ensure loop entries in compiled code are matched by |
| // dex branch instructions. |
| static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph, |
| const CodeInfo& code_info, |
| const DexFile::CodeItem& code_item) { |
| if (graph.HasTryCatch()) { |
| // One can write loops through try/catch, which we do not support for OSR anyway. |
| return; |
| } |
| ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc)); |
| for (HBasicBlock* block : graph.GetReversePostOrder()) { |
| if (block->IsLoopHeader()) { |
| HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck(); |
| if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) { |
| loop_headers.push_back(suspend_check); |
| } |
| } |
| } |
| ArenaVector<size_t> covered( |
| loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc)); |
| for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(), |
| &code_item)) { |
| const uint32_t dex_pc = pair.DexPc(); |
| const Instruction& instruction = pair.Inst(); |
| if (instruction.IsBranch()) { |
| uint32_t target = dex_pc + instruction.GetTargetOffset(); |
| CheckCovers(target, graph, code_info, loop_headers, &covered); |
| } else if (instruction.IsSwitch()) { |
| DexSwitchTable table(instruction, dex_pc); |
| uint16_t num_entries = table.GetNumEntries(); |
| size_t offset = table.GetFirstValueIndex(); |
| |
| // Use a larger loop counter type to avoid overflow issues. |
| for (size_t i = 0; i < num_entries; ++i) { |
| // The target of the case. |
| uint32_t target = dex_pc + table.GetEntryAt(i + offset); |
| CheckCovers(target, graph, code_info, loop_headers, &covered); |
| } |
| } |
| } |
| |
| for (size_t i = 0; i < covered.size(); ++i) { |
| DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent"; |
| } |
| } |
| |
| void CodeGenerator::BuildStackMaps(MemoryRegion stack_map_region, |
| MemoryRegion method_info_region, |
| const DexFile::CodeItem* code_item_for_osr_check) { |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| stack_map_stream->FillInCodeInfo(stack_map_region); |
| stack_map_stream->FillInMethodInfo(method_info_region); |
| if (kIsDebugBuild && code_item_for_osr_check != nullptr) { |
| CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map_region), *code_item_for_osr_check); |
| } |
| } |
| |
| void CodeGenerator::RecordPcInfo(HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| if (instruction != nullptr) { |
| // The code generated for some type conversions |
| // may call the runtime, thus normally requiring a subsequent |
| // call to this method. However, the method verifier does not |
| // produce PC information for certain instructions, which are |
| // considered "atomic" (they cannot join a GC). |
| // Therefore we do not currently record PC information for such |
| // instructions. As this may change later, we added this special |
| // case so that code generators may nevertheless call |
| // CodeGenerator::RecordPcInfo without triggering an error in |
| // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x") |
| // thereafter. |
| if (instruction->IsTypeConversion()) { |
| return; |
| } |
| if (instruction->IsRem()) { |
| DataType::Type type = instruction->AsRem()->GetResultType(); |
| if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) { |
| return; |
| } |
| } |
| } |
| |
| // Collect PC infos for the mapping table. |
| uint32_t native_pc = GetAssembler()->CodePosition(); |
| |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| if (instruction == nullptr) { |
| // For stack overflow checks and native-debug-info entries without dex register |
| // mapping (i.e. start of basic block or start of slow path). |
| stack_map_stream->BeginStackMapEntry(dex_pc, native_pc, 0, 0, 0, 0); |
| stack_map_stream->EndStackMapEntry(); |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t register_mask = locations->GetRegisterMask(); |
| DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u); |
| if (locations->OnlyCallsOnSlowPath()) { |
| // In case of slow path, we currently set the location of caller-save registers |
| // to register (instead of their stack location when pushed before the slow-path |
| // call). Therefore register_mask contains both callee-save and caller-save |
| // registers that hold objects. We must remove the spilled caller-save from the |
| // mask, since they will be overwritten by the callee. |
| uint32_t spills = GetSlowPathSpills(locations, /* core_registers */ true); |
| register_mask &= ~spills; |
| } else { |
| // The register mask must be a subset of callee-save registers. |
| DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask); |
| } |
| |
| uint32_t outer_dex_pc = dex_pc; |
| uint32_t outer_environment_size = 0u; |
| uint32_t inlining_depth = 0; |
| HEnvironment* const environment = instruction->GetEnvironment(); |
| if (environment != nullptr) { |
| HEnvironment* outer_environment = environment; |
| while (outer_environment->GetParent() != nullptr) { |
| outer_environment = outer_environment->GetParent(); |
| ++inlining_depth; |
| } |
| outer_dex_pc = outer_environment->GetDexPc(); |
| outer_environment_size = outer_environment->Size(); |
| } |
| stack_map_stream->BeginStackMapEntry(outer_dex_pc, |
| native_pc, |
| register_mask, |
| locations->GetStackMask(), |
| outer_environment_size, |
| inlining_depth); |
| EmitEnvironment(environment, slow_path); |
| // Record invoke info, the common case for the trampoline is super and static invokes. Only |
| // record these to reduce oat file size. |
| if (kEnableDexLayoutOptimizations) { |
| if (instruction->IsInvokeStaticOrDirect()) { |
| HInvoke* const invoke = instruction->AsInvokeStaticOrDirect(); |
| DCHECK(environment != nullptr); |
| stack_map_stream->AddInvoke(invoke->GetInvokeType(), invoke->GetDexMethodIndex()); |
| } |
| } |
| stack_map_stream->EndStackMapEntry(); |
| |
| HLoopInformation* info = instruction->GetBlock()->GetLoopInformation(); |
| if (instruction->IsSuspendCheck() && |
| (info != nullptr) && |
| graph_->IsCompilingOsr() && |
| (inlining_depth == 0)) { |
| DCHECK_EQ(info->GetSuspendCheck(), instruction); |
| // We duplicate the stack map as a marker that this stack map can be an OSR entry. |
| // Duplicating it avoids having the runtime recognize and skip an OSR stack map. |
| DCHECK(info->IsIrreducible()); |
| stack_map_stream->BeginStackMapEntry( |
| dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0); |
| EmitEnvironment(instruction->GetEnvironment(), slow_path); |
| stack_map_stream->EndStackMapEntry(); |
| if (kIsDebugBuild) { |
| for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { |
| HInstruction* in_environment = environment->GetInstructionAt(i); |
| if (in_environment != nullptr) { |
| DCHECK(in_environment->IsPhi() || in_environment->IsConstant()); |
| Location location = environment->GetLocationAt(i); |
| DCHECK(location.IsStackSlot() || |
| location.IsDoubleStackSlot() || |
| location.IsConstant() || |
| location.IsInvalid()); |
| if (location.IsStackSlot() || location.IsDoubleStackSlot()) { |
| DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize())); |
| } |
| } |
| } |
| } |
| } else if (kIsDebugBuild) { |
| // Ensure stack maps are unique, by checking that the native pc in the stack map |
| // last emitted is different than the native pc of the stack map just emitted. |
| size_t number_of_stack_maps = stack_map_stream->GetNumberOfStackMaps(); |
| if (number_of_stack_maps > 1) { |
| DCHECK_NE(stack_map_stream->GetStackMap(number_of_stack_maps - 1).native_pc_code_offset, |
| stack_map_stream->GetStackMap(number_of_stack_maps - 2).native_pc_code_offset); |
| } |
| } |
| } |
| |
| bool CodeGenerator::HasStackMapAtCurrentPc() { |
| uint32_t pc = GetAssembler()->CodeSize(); |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| size_t count = stack_map_stream->GetNumberOfStackMaps(); |
| if (count == 0) { |
| return false; |
| } |
| CodeOffset native_pc_offset = stack_map_stream->GetStackMap(count - 1).native_pc_code_offset; |
| return (native_pc_offset.Uint32Value(GetInstructionSet()) == pc); |
| } |
| |
| void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) { |
| if (HasStackMapAtCurrentPc()) { |
| // Ensure that we do not collide with the stack map of the previous instruction. |
| GenerateNop(); |
| } |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| void CodeGenerator::RecordCatchBlockInfo() { |
| ArenaAllocator* allocator = graph_->GetAllocator(); |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| |
| for (HBasicBlock* block : *block_order_) { |
| if (!block->IsCatchBlock()) { |
| continue; |
| } |
| |
| uint32_t dex_pc = block->GetDexPc(); |
| uint32_t num_vregs = graph_->GetNumberOfVRegs(); |
| uint32_t inlining_depth = 0; // Inlining of catch blocks is not supported at the moment. |
| uint32_t native_pc = GetAddressOf(block); |
| uint32_t register_mask = 0; // Not used. |
| |
| // The stack mask is not used, so we leave it empty. |
| ArenaBitVector* stack_mask = |
| ArenaBitVector::Create(allocator, 0, /* expandable */ true, kArenaAllocCodeGenerator); |
| |
| stack_map_stream->BeginStackMapEntry(dex_pc, |
| native_pc, |
| register_mask, |
| stack_mask, |
| num_vregs, |
| inlining_depth); |
| |
| HInstruction* current_phi = block->GetFirstPhi(); |
| for (size_t vreg = 0; vreg < num_vregs; ++vreg) { |
| while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) { |
| HInstruction* next_phi = current_phi->GetNext(); |
| DCHECK(next_phi == nullptr || |
| current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber()) |
| << "Phis need to be sorted by vreg number to keep this a linear-time loop."; |
| current_phi = next_phi; |
| } |
| |
| if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); |
| } else { |
| Location location = current_phi->GetLocations()->Out(); |
| switch (location.GetKind()) { |
| case Location::kStackSlot: { |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); |
| break; |
| } |
| case Location::kDoubleStackSlot: { |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize)); |
| ++vreg; |
| DCHECK_LT(vreg, num_vregs); |
| break; |
| } |
| default: { |
| // All catch phis must be allocated to a stack slot. |
| LOG(FATAL) << "Unexpected kind " << location.GetKind(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| |
| stack_map_stream->EndStackMapEntry(); |
| } |
| } |
| |
| void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) { |
| DCHECK(code_generation_data_ != nullptr); |
| code_generation_data_->AddSlowPath(slow_path); |
| } |
| |
| void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) { |
| if (environment == nullptr) return; |
| |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| if (environment->GetParent() != nullptr) { |
| // We emit the parent environment first. |
| EmitEnvironment(environment->GetParent(), slow_path); |
| stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(), |
| environment->GetDexPc(), |
| environment->Size(), |
| &graph_->GetDexFile()); |
| } |
| |
| // Walk over the environment, and record the location of dex registers. |
| for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { |
| HInstruction* current = environment->GetInstructionAt(i); |
| if (current == nullptr) { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); |
| continue; |
| } |
| |
| Location location = environment->GetLocationAt(i); |
| switch (location.GetKind()) { |
| case Location::kConstant: { |
| DCHECK_EQ(current, location.GetConstant()); |
| if (current->IsLongConstant()) { |
| int64_t value = current->AsLongConstant()->GetValue(); |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, Low32Bits(value)); |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, High32Bits(value)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } else if (current->IsDoubleConstant()) { |
| int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue()); |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, Low32Bits(value)); |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kConstant, High32Bits(value)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } else if (current->IsIntConstant()) { |
| int32_t value = current->AsIntConstant()->GetValue(); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); |
| } else if (current->IsNullConstant()) { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0); |
| } else { |
| DCHECK(current->IsFloatConstant()) << current->DebugName(); |
| int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue()); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); |
| } |
| break; |
| } |
| |
| case Location::kStackSlot: { |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); |
| break; |
| } |
| |
| case Location::kDoubleStackSlot: { |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize)); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kRegister : { |
| int id = location.reg(); |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| if (current->GetType() == DataType::Type::kInt64) { |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, offset + kVRegSize); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } else { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id); |
| if (current->GetType() == DataType::Type::kInt64) { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } |
| break; |
| } |
| |
| case Location::kFpuRegister : { |
| int id = location.reg(); |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| if (current->GetType() == DataType::Type::kFloat64) { |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInStack, offset + kVRegSize); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } else { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id); |
| if (current->GetType() == DataType::Type::kFloat64) { |
| stack_map_stream->AddDexRegisterEntry( |
| DexRegisterLocation::Kind::kInFpuRegisterHigh, id); |
| ++i; |
| DCHECK_LT(i, environment_size); |
| } |
| } |
| break; |
| } |
| |
| case Location::kFpuRegisterPair : { |
| int low = location.low(); |
| int high = location.high(); |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| } else { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low); |
| } |
| if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) { |
| uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| ++i; |
| } else { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high); |
| ++i; |
| } |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kRegisterPair : { |
| int low = location.low(); |
| int high = location.high(); |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| } else { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low); |
| } |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) { |
| uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high); |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); |
| } else { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high); |
| } |
| ++i; |
| DCHECK_LT(i, environment_size); |
| break; |
| } |
| |
| case Location::kInvalid: { |
| stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected kind " << location.GetKind(); |
| } |
| } |
| |
| if (environment->GetParent() != nullptr) { |
| stack_map_stream->EndInlineInfoEntry(); |
| } |
| } |
| |
| bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) { |
| HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves(); |
| |
| return (first_next_not_move != nullptr) |
| && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0)); |
| } |
| |
| void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) { |
| if (!compiler_options_.GetImplicitNullChecks()) { |
| return; |
| } |
| |
| // If we are from a static path don't record the pc as we can't throw NPE. |
| // NB: having the checks here makes the code much less verbose in the arch |
| // specific code generators. |
| if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) { |
| return; |
| } |
| |
| if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) { |
| return; |
| } |
| |
| // Find the first previous instruction which is not a move. |
| HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves(); |
| |
| // If the instruction is a null check it means that `instr` is the first user |
| // and needs to record the pc. |
| if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) { |
| HNullCheck* null_check = first_prev_not_move->AsNullCheck(); |
| // TODO: The parallel moves modify the environment. Their changes need to be |
| // reverted otherwise the stack maps at the throw point will not be correct. |
| RecordPcInfo(null_check, null_check->GetDexPc()); |
| } |
| } |
| |
| LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction, |
| RegisterSet caller_saves) { |
| // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the |
| // HSuspendCheck from entry block). However, it will still get a valid stack frame |
| // because the HNullCheck needs an environment. |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| // When throwing from a try block, we may need to retrieve dalvik registers from |
| // physical registers and we also need to set up stack mask for GC. This is |
| // implicitly achieved by passing kCallOnSlowPath to the LocationSummary. |
| bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock(); |
| if (can_throw_into_catch_block) { |
| call_kind = LocationSummary::kCallOnSlowPath; |
| } |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) { |
| locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers. |
| } |
| DCHECK(!instruction->HasUses()); |
| return locations; |
| } |
| |
| void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) { |
| if (compiler_options_.GetImplicitNullChecks()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated); |
| GenerateImplicitNullCheck(instruction); |
| } else { |
| MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated); |
| GenerateExplicitNullCheck(instruction); |
| } |
| } |
| |
| void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check, |
| HParallelMove* spills) const { |
| LocationSummary* locations = suspend_check->GetLocations(); |
| HBasicBlock* block = suspend_check->GetBlock(); |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); |
| DCHECK(block->IsLoopHeader()); |
| DCHECK(block->GetFirstInstruction() == spills); |
| |
| for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) { |
| Location dest = spills->MoveOperandsAt(i)->GetDestination(); |
| // All parallel moves in loop headers are spills. |
| DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest; |
| // Clear the stack bit marking a reference. Do not bother to check if the spill is |
| // actually a reference spill, clearing bits that are already zero is harmless. |
| locations->ClearStackBit(dest.GetStackIndex() / kVRegSize); |
| } |
| } |
| |
| void CodeGenerator::EmitParallelMoves(Location from1, |
| Location to1, |
| DataType::Type type1, |
| Location from2, |
| Location to2, |
| DataType::Type type2) { |
| HParallelMove parallel_move(GetGraph()->GetAllocator()); |
| parallel_move.AddMove(from1, to1, type1, nullptr); |
| parallel_move.AddMove(from2, to2, type2, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| |
| void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| // Ensure that the call kind indication given to the register allocator is |
| // coherent with the runtime call generated. |
| if (slow_path == nullptr) { |
| DCHECK(instruction->GetLocations()->WillCall()) |
| << "instruction->DebugName()=" << instruction->DebugName(); |
| } else { |
| DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal()) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription(); |
| } |
| |
| // Check that the GC side effect is set when required. |
| // TODO: Reverse EntrypointCanTriggerGC |
| if (EntrypointCanTriggerGC(entrypoint)) { |
| if (slow_path == nullptr) { |
| DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC())) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " instruction->GetSideEffects().ToString()=" |
| << instruction->GetSideEffects().ToString(); |
| } else { |
| DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) || |
| // When (non-Baker) read barriers are enabled, some instructions |
| // use a slow path to emit a read barrier, which does not trigger |
| // GC. |
| (kEmitCompilerReadBarrier && |
| !kUseBakerReadBarrier && |
| (instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsArrayGet() || |
| instruction->IsLoadClass() || |
| instruction->IsLoadString() || |
| instruction->IsInstanceOf() || |
| instruction->IsCheckCast() || |
| (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified())))) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " instruction->GetSideEffects().ToString()=" |
| << instruction->GetSideEffects().ToString() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription(); |
| } |
| } else { |
| // The GC side effect is not required for the instruction. But the instruction might still have |
| // it, for example if it calls other entrypoints requiring it. |
| } |
| |
| // Check the coherency of leaf information. |
| DCHECK(instruction->IsSuspendCheck() |
| || ((slow_path != nullptr) && slow_path->IsFatal()) |
| || instruction->GetLocations()->CanCall() |
| || !IsLeafMethod()) |
| << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : ""); |
| } |
| |
| void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath()) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription(); |
| // Only the Baker read barrier marking slow path used by certains |
| // instructions is expected to invoke the runtime without recording |
| // PC-related information. |
| DCHECK(kUseBakerReadBarrier); |
| DCHECK(instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsArrayGet() || |
| instruction->IsArraySet() || |
| instruction->IsLoadClass() || |
| instruction->IsLoadString() || |
| instruction->IsInstanceOf() || |
| instruction->IsCheckCast() || |
| (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) || |
| (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified())) |
| << "instruction->DebugName()=" << instruction->DebugName() |
| << " slow_path->GetDescription()=" << slow_path->GetDescription(); |
| } |
| |
| void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += codegen->SaveCoreRegister(stack_offset, i); |
| } |
| |
| const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i); |
| } |
| } |
| |
| void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| stack_offset += codegen->RestoreCoreRegister(stack_offset, i); |
| } |
| |
| const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i); |
| } |
| } |
| |
| void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) { |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // The length must be >= 0. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| if (optimizations.GetDestinationIsSource()) { |
| if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) { |
| // We only support backward copying if source and destination are the same. |
| return; |
| } |
| } |
| |
| if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) { |
| // We currently don't intrinsify primitive copying. |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); |
| locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void CodeGenerator::EmitJitRoots(uint8_t* code, |
| Handle<mirror::ObjectArray<mirror::Object>> roots, |
| const uint8_t* roots_data) { |
| code_generation_data_->EmitJitRoots(roots); |
| EmitJitRootPatches(code, roots_data); |
| } |
| |
| QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass) { |
| ScopedObjectAccess soa(Thread::Current()); |
| if (array_klass == nullptr) { |
| // This can only happen for non-primitive arrays, as primitive arrays can always |
| // be resolved. |
| return kQuickAllocArrayResolved32; |
| } |
| |
| switch (array_klass->GetComponentSize()) { |
| case 1: return kQuickAllocArrayResolved8; |
| case 2: return kQuickAllocArrayResolved16; |
| case 4: return kQuickAllocArrayResolved32; |
| case 8: return kQuickAllocArrayResolved64; |
| } |
| LOG(FATAL) << "Unreachable"; |
| return kQuickAllocArrayResolved; |
| } |
| |
| } // namespace art |