| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "ssa_liveness_analysis.h" | 
 |  | 
 | #include "base/bit_vector-inl.h" | 
 | #include "code_generator.h" | 
 | #include "nodes.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | void SsaLivenessAnalysis::Analyze() { | 
 |   LinearizeGraph(); | 
 |   NumberInstructions(); | 
 |   ComputeLiveness(); | 
 | } | 
 |  | 
 | static bool IsLoop(HLoopInformation* info) { | 
 |   return info != nullptr; | 
 | } | 
 |  | 
 | static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) { | 
 |   return first_loop == second_loop; | 
 | } | 
 |  | 
 | static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) { | 
 |   return (inner != outer) | 
 |       && (inner != nullptr) | 
 |       && (outer != nullptr) | 
 |       && inner->IsIn(*outer); | 
 | } | 
 |  | 
 | static void AddToListForLinearization(ArenaVector<HBasicBlock*>* worklist, HBasicBlock* block) { | 
 |   HLoopInformation* block_loop = block->GetLoopInformation(); | 
 |   auto insert_pos = worklist->rbegin();  // insert_pos.base() will be the actual position. | 
 |   for (auto end = worklist->rend(); insert_pos != end; ++insert_pos) { | 
 |     HBasicBlock* current = *insert_pos; | 
 |     HLoopInformation* current_loop = current->GetLoopInformation(); | 
 |     if (InSameLoop(block_loop, current_loop) | 
 |         || !IsLoop(current_loop) | 
 |         || IsInnerLoop(current_loop, block_loop)) { | 
 |       // The block can be processed immediately. | 
 |       break; | 
 |     } | 
 |   } | 
 |   worklist->insert(insert_pos.base(), block); | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::LinearizeGraph() { | 
 |   // Create a reverse post ordering with the following properties: | 
 |   // - Blocks in a loop are consecutive, | 
 |   // - Back-edge is the last block before loop exits. | 
 |  | 
 |   // (1): Record the number of forward predecessors for each block. This is to | 
 |   //      ensure the resulting order is reverse post order. We could use the | 
 |   //      current reverse post order in the graph, but it would require making | 
 |   //      order queries to a GrowableArray, which is not the best data structure | 
 |   //      for it. | 
 |   ArenaVector<uint32_t> forward_predecessors(graph_->GetBlocks().size(), | 
 |                                              graph_->GetArena()->Adapter(kArenaAllocSsaLiveness)); | 
 |   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     size_t number_of_forward_predecessors = block->GetPredecessors().size(); | 
 |     if (block->IsLoopHeader()) { | 
 |       number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges(); | 
 |     } | 
 |     forward_predecessors[block->GetBlockId()] = number_of_forward_predecessors; | 
 |   } | 
 |  | 
 |   // (2): Following a worklist approach, first start with the entry block, and | 
 |   //      iterate over the successors. When all non-back edge predecessors of a | 
 |   //      successor block are visited, the successor block is added in the worklist | 
 |   //      following an order that satisfies the requirements to build our linear graph. | 
 |   graph_->linear_order_.reserve(graph_->GetReversePostOrder().size()); | 
 |   ArenaVector<HBasicBlock*> worklist(graph_->GetArena()->Adapter(kArenaAllocSsaLiveness)); | 
 |   worklist.push_back(graph_->GetEntryBlock()); | 
 |   do { | 
 |     HBasicBlock* current = worklist.back(); | 
 |     worklist.pop_back(); | 
 |     graph_->linear_order_.push_back(current); | 
 |     for (HBasicBlock* successor : current->GetSuccessors()) { | 
 |       int block_id = successor->GetBlockId(); | 
 |       size_t number_of_remaining_predecessors = forward_predecessors[block_id]; | 
 |       if (number_of_remaining_predecessors == 1) { | 
 |         AddToListForLinearization(&worklist, successor); | 
 |       } | 
 |       forward_predecessors[block_id] = number_of_remaining_predecessors - 1; | 
 |     } | 
 |   } while (!worklist.empty()); | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::NumberInstructions() { | 
 |   int ssa_index = 0; | 
 |   size_t lifetime_position = 0; | 
 |   // Each instruction gets a lifetime position, and a block gets a lifetime | 
 |   // start and end position. Non-phi instructions have a distinct lifetime position than | 
 |   // the block they are in. Phi instructions have the lifetime start of their block as | 
 |   // lifetime position. | 
 |   // | 
 |   // Because the register allocator will insert moves in the graph, we need | 
 |   // to differentiate between the start and end of an instruction. Adding 2 to | 
 |   // the lifetime position for each instruction ensures the start of an | 
 |   // instruction is different than the end of the previous instruction. | 
 |   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     block->SetLifetimeStart(lifetime_position); | 
 |  | 
 |     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { | 
 |       HInstruction* current = inst_it.Current(); | 
 |       codegen_->AllocateLocations(current); | 
 |       LocationSummary* locations = current->GetLocations(); | 
 |       if (locations != nullptr && locations->Out().IsValid()) { | 
 |         instructions_from_ssa_index_.push_back(current); | 
 |         current->SetSsaIndex(ssa_index++); | 
 |         current->SetLiveInterval( | 
 |             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current)); | 
 |       } | 
 |       current->SetLifetimePosition(lifetime_position); | 
 |     } | 
 |     lifetime_position += 2; | 
 |  | 
 |     // Add a null marker to notify we are starting a block. | 
 |     instructions_from_lifetime_position_.push_back(nullptr); | 
 |  | 
 |     for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done(); | 
 |          inst_it.Advance()) { | 
 |       HInstruction* current = inst_it.Current(); | 
 |       codegen_->AllocateLocations(current); | 
 |       LocationSummary* locations = current->GetLocations(); | 
 |       if (locations != nullptr && locations->Out().IsValid()) { | 
 |         instructions_from_ssa_index_.push_back(current); | 
 |         current->SetSsaIndex(ssa_index++); | 
 |         current->SetLiveInterval( | 
 |             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current)); | 
 |       } | 
 |       instructions_from_lifetime_position_.push_back(current); | 
 |       current->SetLifetimePosition(lifetime_position); | 
 |       lifetime_position += 2; | 
 |     } | 
 |  | 
 |     block->SetLifetimeEnd(lifetime_position); | 
 |   } | 
 |   number_of_ssa_values_ = ssa_index; | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::ComputeLiveness() { | 
 |   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     block_infos_[block->GetBlockId()] = | 
 |         new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_); | 
 |   } | 
 |  | 
 |   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets. | 
 |   // This method does not handle backward branches for the sets, therefore live_in | 
 |   // and live_out sets are not yet correct. | 
 |   ComputeLiveRanges(); | 
 |  | 
 |   // Do a fixed point calculation to take into account backward branches, | 
 |   // that will update live_in of loop headers, and therefore live_out and live_in | 
 |   // of blocks in the loop. | 
 |   ComputeLiveInAndLiveOutSets(); | 
 | } | 
 |  | 
 | static void RecursivelyProcessInputs(HInstruction* current, | 
 |                                      HInstruction* actual_user, | 
 |                                      BitVector* live_in) { | 
 |   for (size_t i = 0, e = current->InputCount(); i < e; ++i) { | 
 |     HInstruction* input = current->InputAt(i); | 
 |     bool has_in_location = current->GetLocations()->InAt(i).IsValid(); | 
 |     bool has_out_location = input->GetLocations()->Out().IsValid(); | 
 |  | 
 |     if (has_in_location) { | 
 |       DCHECK(has_out_location) | 
 |           << "Instruction " << current->DebugName() << current->GetId() | 
 |           << " expects an input value at index " << i << " but " | 
 |           << input->DebugName() << input->GetId() << " does not produce one."; | 
 |       DCHECK(input->HasSsaIndex()); | 
 |       // `input` generates a result used by `current`. Add use and update | 
 |       // the live-in set. | 
 |       input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i, actual_user); | 
 |       live_in->SetBit(input->GetSsaIndex()); | 
 |     } else if (has_out_location) { | 
 |       // `input` generates a result but it is not used by `current`. | 
 |     } else { | 
 |       // `input` is inlined into `current`. Walk over its inputs and record | 
 |       // uses at `current`. | 
 |       DCHECK(input->IsEmittedAtUseSite()); | 
 |       // Check that the inlined input is not a phi. Recursing on loop phis could | 
 |       // lead to an infinite loop. | 
 |       DCHECK(!input->IsPhi()); | 
 |       RecursivelyProcessInputs(input, actual_user, live_in); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::ComputeLiveRanges() { | 
 |   // Do a post order visit, adding inputs of instructions live in the block where | 
 |   // that instruction is defined, and killing instructions that are being visited. | 
 |   for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |  | 
 |     BitVector* kill = GetKillSet(*block); | 
 |     BitVector* live_in = GetLiveInSet(*block); | 
 |  | 
 |     // Set phi inputs of successors of this block corresponding to this block | 
 |     // as live_in. | 
 |     for (HBasicBlock* successor : block->GetSuccessors()) { | 
 |       live_in->Union(GetLiveInSet(*successor)); | 
 |       if (successor->IsCatchBlock()) { | 
 |         // Inputs of catch phis will be kept alive through their environment | 
 |         // uses, allowing the runtime to copy their values to the corresponding | 
 |         // catch phi spill slots when an exception is thrown. | 
 |         // The only instructions which may not be recorded in the environments | 
 |         // are constants created by the SSA builder as typed equivalents of | 
 |         // untyped constants from the bytecode, or phis with only such constants | 
 |         // as inputs (verified by SSAChecker). Their raw binary value must | 
 |         // therefore be the same and we only need to keep alive one. | 
 |       } else { | 
 |         size_t phi_input_index = successor->GetPredecessorIndexOf(block); | 
 |         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { | 
 |           HInstruction* phi = phi_it.Current(); | 
 |           HInstruction* input = phi->InputAt(phi_input_index); | 
 |           input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block); | 
 |           // A phi input whose last user is the phi dies at the end of the predecessor block, | 
 |           // and not at the phi's lifetime position. | 
 |           live_in->SetBit(input->GetSsaIndex()); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Add a range that covers this block to all instructions live_in because of successors. | 
 |     // Instructions defined in this block will have their start of the range adjusted. | 
 |     for (uint32_t idx : live_in->Indexes()) { | 
 |       HInstruction* current = GetInstructionFromSsaIndex(idx); | 
 |       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd()); | 
 |     } | 
 |  | 
 |     for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done(); | 
 |          back_it.Advance()) { | 
 |       HInstruction* current = back_it.Current(); | 
 |       if (current->HasSsaIndex()) { | 
 |         // Kill the instruction and shorten its interval. | 
 |         kill->SetBit(current->GetSsaIndex()); | 
 |         live_in->ClearBit(current->GetSsaIndex()); | 
 |         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition()); | 
 |       } | 
 |  | 
 |       // Process the environment first, because we know their uses come after | 
 |       // or at the same liveness position of inputs. | 
 |       for (HEnvironment* environment = current->GetEnvironment(); | 
 |            environment != nullptr; | 
 |            environment = environment->GetParent()) { | 
 |         // Handle environment uses. See statements (b) and (c) of the | 
 |         // SsaLivenessAnalysis. | 
 |         for (size_t i = 0, e = environment->Size(); i < e; ++i) { | 
 |           HInstruction* instruction = environment->GetInstructionAt(i); | 
 |           bool should_be_live = ShouldBeLiveForEnvironment(current, instruction); | 
 |           if (should_be_live) { | 
 |             DCHECK(instruction->HasSsaIndex()); | 
 |             live_in->SetBit(instruction->GetSsaIndex()); | 
 |           } | 
 |           if (instruction != nullptr) { | 
 |             instruction->GetLiveInterval()->AddUse( | 
 |                 current, environment, i, /* actual_user */ nullptr, should_be_live); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Process inputs of instructions. | 
 |       if (current->IsEmittedAtUseSite()) { | 
 |         if (kIsDebugBuild) { | 
 |           DCHECK(!current->GetLocations()->Out().IsValid()); | 
 |           for (HUseIterator<HInstruction*> use_it(current->GetUses()); | 
 |                !use_it.Done(); | 
 |                use_it.Advance()) { | 
 |             HInstruction* user = use_it.Current()->GetUser(); | 
 |             size_t index = use_it.Current()->GetIndex(); | 
 |             DCHECK(!user->GetLocations()->InAt(index).IsValid()); | 
 |           } | 
 |           DCHECK(!current->HasEnvironmentUses()); | 
 |         } | 
 |       } else { | 
 |         RecursivelyProcessInputs(current, current, live_in); | 
 |       } | 
 |     } | 
 |  | 
 |     // Kill phis defined in this block. | 
 |     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { | 
 |       HInstruction* current = inst_it.Current(); | 
 |       if (current->HasSsaIndex()) { | 
 |         kill->SetBit(current->GetSsaIndex()); | 
 |         live_in->ClearBit(current->GetSsaIndex()); | 
 |         LiveInterval* interval = current->GetLiveInterval(); | 
 |         DCHECK((interval->GetFirstRange() == nullptr) | 
 |                || (interval->GetStart() == current->GetLifetimePosition())); | 
 |         interval->SetFrom(current->GetLifetimePosition()); | 
 |       } | 
 |     } | 
 |  | 
 |     if (block->IsLoopHeader()) { | 
 |       if (kIsDebugBuild && block->GetLoopInformation()->IsIrreducible()) { | 
 |         // To satisfy our liveness algorithm, we need to ensure loop headers of | 
 |         // irreducible loops do not have any live-in instructions, except constants | 
 |         // and the current method, which can be trivially re-materialized. | 
 |         for (uint32_t idx : live_in->Indexes()) { | 
 |           HInstruction* instruction = GetInstructionFromSsaIndex(idx); | 
 |           DCHECK(instruction->GetBlock()->IsEntryBlock()) << instruction->DebugName(); | 
 |           DCHECK(!instruction->IsParameterValue()) << instruction->DebugName(); | 
 |           DCHECK(instruction->IsCurrentMethod() || instruction->IsConstant()) | 
 |               << instruction->DebugName(); | 
 |         } | 
 |       } | 
 |       size_t last_position = block->GetLoopInformation()->GetLifetimeEnd(); | 
 |       // For all live_in instructions at the loop header, we need to create a range | 
 |       // that covers the full loop. | 
 |       for (uint32_t idx : live_in->Indexes()) { | 
 |         HInstruction* current = GetInstructionFromSsaIndex(idx); | 
 |         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() { | 
 |   bool changed; | 
 |   do { | 
 |     changed = false; | 
 |  | 
 |     for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) { | 
 |       const HBasicBlock& block = *it.Current(); | 
 |  | 
 |       // The live_in set depends on the kill set (which does not | 
 |       // change in this loop), and the live_out set.  If the live_out | 
 |       // set does not change, there is no need to update the live_in set. | 
 |       if (UpdateLiveOut(block) && UpdateLiveIn(block)) { | 
 |         changed = true; | 
 |       } | 
 |     } | 
 |   } while (changed); | 
 | } | 
 |  | 
 | bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) { | 
 |   BitVector* live_out = GetLiveOutSet(block); | 
 |   bool changed = false; | 
 |   // The live_out set of a block is the union of live_in sets of its successors. | 
 |   for (HBasicBlock* successor : block.GetSuccessors()) { | 
 |     if (live_out->Union(GetLiveInSet(*successor))) { | 
 |       changed = true; | 
 |     } | 
 |   } | 
 |   return changed; | 
 | } | 
 |  | 
 |  | 
 | bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) { | 
 |   BitVector* live_out = GetLiveOutSet(block); | 
 |   BitVector* kill = GetKillSet(block); | 
 |   BitVector* live_in = GetLiveInSet(block); | 
 |   // If live_out is updated (because of backward branches), we need to make | 
 |   // sure instructions in live_out are also in live_in, unless they are killed | 
 |   // by this block. | 
 |   return live_in->UnionIfNotIn(live_out, kill); | 
 | } | 
 |  | 
 | static int RegisterOrLowRegister(Location location) { | 
 |   return location.IsPair() ? location.low() : location.reg(); | 
 | } | 
 |  | 
 | int LiveInterval::FindFirstRegisterHint(size_t* free_until, | 
 |                                         const SsaLivenessAnalysis& liveness) const { | 
 |   DCHECK(!IsHighInterval()); | 
 |   if (IsTemp()) return kNoRegister; | 
 |  | 
 |   if (GetParent() == this && defined_by_ != nullptr) { | 
 |     // This is the first interval for the instruction. Try to find | 
 |     // a register based on its definition. | 
 |     DCHECK_EQ(defined_by_->GetLiveInterval(), this); | 
 |     int hint = FindHintAtDefinition(); | 
 |     if (hint != kNoRegister && free_until[hint] > GetStart()) { | 
 |       return hint; | 
 |     } | 
 |   } | 
 |  | 
 |   if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) { | 
 |     // If the start of this interval is at a block boundary, we look at the | 
 |     // location of the interval in blocks preceding the block this interval | 
 |     // starts at. If one location is a register we return it as a hint. This | 
 |     // will avoid a move between the two blocks. | 
 |     HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2); | 
 |     size_t next_register_use = FirstRegisterUse(); | 
 |     for (HBasicBlock* predecessor : block->GetPredecessors()) { | 
 |       size_t position = predecessor->GetLifetimeEnd() - 1; | 
 |       // We know positions above GetStart() do not have a location yet. | 
 |       if (position < GetStart()) { | 
 |         LiveInterval* existing = GetParent()->GetSiblingAt(position); | 
 |         if (existing != nullptr | 
 |             && existing->HasRegister() | 
 |             // It's worth using that register if it is available until | 
 |             // the next use. | 
 |             && (free_until[existing->GetRegister()] >= next_register_use)) { | 
 |           return existing->GetRegister(); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   UsePosition* use = first_use_; | 
 |   size_t start = GetStart(); | 
 |   size_t end = GetEnd(); | 
 |   while (use != nullptr && use->GetPosition() <= end) { | 
 |     size_t use_position = use->GetPosition(); | 
 |     if (use_position >= start && !use->IsSynthesized()) { | 
 |       HInstruction* user = use->GetUser(); | 
 |       size_t input_index = use->GetInputIndex(); | 
 |       if (user->IsPhi()) { | 
 |         // If the phi has a register, try to use the same. | 
 |         Location phi_location = user->GetLiveInterval()->ToLocation(); | 
 |         if (phi_location.IsRegisterKind()) { | 
 |           DCHECK(SameRegisterKind(phi_location)); | 
 |           int reg = RegisterOrLowRegister(phi_location); | 
 |           if (free_until[reg] >= use_position) { | 
 |             return reg; | 
 |           } | 
 |         } | 
 |         // If the instruction dies at the phi assignment, we can try having the | 
 |         // same register. | 
 |         if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) { | 
 |           for (size_t i = 0, e = user->InputCount(); i < e; ++i) { | 
 |             if (i == input_index) { | 
 |               continue; | 
 |             } | 
 |             HInstruction* input = user->InputAt(i); | 
 |             Location location = input->GetLiveInterval()->GetLocationAt( | 
 |                 user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1); | 
 |             if (location.IsRegisterKind()) { | 
 |               int reg = RegisterOrLowRegister(location); | 
 |               if (free_until[reg] >= use_position) { | 
 |                 return reg; | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } else { | 
 |         // If the instruction is expected in a register, try to use it. | 
 |         LocationSummary* locations = user->GetLocations(); | 
 |         Location expected = locations->InAt(use->GetInputIndex()); | 
 |         // We use the user's lifetime position - 1 (and not `use_position`) because the | 
 |         // register is blocked at the beginning of the user. | 
 |         size_t position = user->GetLifetimePosition() - 1; | 
 |         if (expected.IsRegisterKind()) { | 
 |           DCHECK(SameRegisterKind(expected)); | 
 |           int reg = RegisterOrLowRegister(expected); | 
 |           if (free_until[reg] >= position) { | 
 |             return reg; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     use = use->GetNext(); | 
 |   } | 
 |  | 
 |   return kNoRegister; | 
 | } | 
 |  | 
 | int LiveInterval::FindHintAtDefinition() const { | 
 |   if (defined_by_->IsPhi()) { | 
 |     // Try to use the same register as one of the inputs. | 
 |     const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors(); | 
 |     for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) { | 
 |       HInstruction* input = defined_by_->InputAt(i); | 
 |       size_t end = predecessors[i]->GetLifetimeEnd(); | 
 |       LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1); | 
 |       if (input_interval->GetEnd() == end) { | 
 |         // If the input dies at the end of the predecessor, we know its register can | 
 |         // be reused. | 
 |         Location input_location = input_interval->ToLocation(); | 
 |         if (input_location.IsRegisterKind()) { | 
 |           DCHECK(SameRegisterKind(input_location)); | 
 |           return RegisterOrLowRegister(input_location); | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     LocationSummary* locations = GetDefinedBy()->GetLocations(); | 
 |     Location out = locations->Out(); | 
 |     if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) { | 
 |       // Try to use the same register as the first input. | 
 |       LiveInterval* input_interval = | 
 |           GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1); | 
 |       if (input_interval->GetEnd() == GetStart()) { | 
 |         // If the input dies at the start of this instruction, we know its register can | 
 |         // be reused. | 
 |         Location location = input_interval->ToLocation(); | 
 |         if (location.IsRegisterKind()) { | 
 |           DCHECK(SameRegisterKind(location)); | 
 |           return RegisterOrLowRegister(location); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return kNoRegister; | 
 | } | 
 |  | 
 | bool LiveInterval::SameRegisterKind(Location other) const { | 
 |   if (IsFloatingPoint()) { | 
 |     if (IsLowInterval() || IsHighInterval()) { | 
 |       return other.IsFpuRegisterPair(); | 
 |     } else { | 
 |       return other.IsFpuRegister(); | 
 |     } | 
 |   } else { | 
 |     if (IsLowInterval() || IsHighInterval()) { | 
 |       return other.IsRegisterPair(); | 
 |     } else { | 
 |       return other.IsRegister(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool LiveInterval::NeedsTwoSpillSlots() const { | 
 |   return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble; | 
 | } | 
 |  | 
 | Location LiveInterval::ToLocation() const { | 
 |   DCHECK(!IsHighInterval()); | 
 |   if (HasRegister()) { | 
 |     if (IsFloatingPoint()) { | 
 |       if (HasHighInterval()) { | 
 |         return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister()); | 
 |       } else { | 
 |         return Location::FpuRegisterLocation(GetRegister()); | 
 |       } | 
 |     } else { | 
 |       if (HasHighInterval()) { | 
 |         return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister()); | 
 |       } else { | 
 |         return Location::RegisterLocation(GetRegister()); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     HInstruction* defined_by = GetParent()->GetDefinedBy(); | 
 |     if (defined_by->IsConstant()) { | 
 |       return defined_by->GetLocations()->Out(); | 
 |     } else if (GetParent()->HasSpillSlot()) { | 
 |       if (NeedsTwoSpillSlots()) { | 
 |         return Location::DoubleStackSlot(GetParent()->GetSpillSlot()); | 
 |       } else { | 
 |         return Location::StackSlot(GetParent()->GetSpillSlot()); | 
 |       } | 
 |     } else { | 
 |       return Location(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | Location LiveInterval::GetLocationAt(size_t position) { | 
 |   LiveInterval* sibling = GetSiblingAt(position); | 
 |   DCHECK(sibling != nullptr); | 
 |   return sibling->ToLocation(); | 
 | } | 
 |  | 
 | LiveInterval* LiveInterval::GetSiblingAt(size_t position) { | 
 |   LiveInterval* current = this; | 
 |   while (current != nullptr && !current->IsDefinedAt(position)) { | 
 |     current = current->GetNextSibling(); | 
 |   } | 
 |   return current; | 
 | } | 
 |  | 
 | }  // namespace art |