| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "ssa_liveness_analysis.h" |
| |
| #include "base/bit_vector-inl.h" |
| #include "code_generator.h" |
| #include "nodes.h" |
| |
| namespace art { |
| |
| void SsaLivenessAnalysis::Analyze() { |
| LinearizeGraph(); |
| NumberInstructions(); |
| ComputeLiveness(); |
| } |
| |
| static bool IsLoop(HLoopInformation* info) { |
| return info != nullptr; |
| } |
| |
| static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) { |
| return first_loop == second_loop; |
| } |
| |
| static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) { |
| return (inner != outer) |
| && (inner != nullptr) |
| && (outer != nullptr) |
| && inner->IsIn(*outer); |
| } |
| |
| static void AddToListForLinearization(ArenaVector<HBasicBlock*>* worklist, HBasicBlock* block) { |
| HLoopInformation* block_loop = block->GetLoopInformation(); |
| auto insert_pos = worklist->rbegin(); // insert_pos.base() will be the actual position. |
| for (auto end = worklist->rend(); insert_pos != end; ++insert_pos) { |
| HBasicBlock* current = *insert_pos; |
| HLoopInformation* current_loop = current->GetLoopInformation(); |
| if (InSameLoop(block_loop, current_loop) |
| || !IsLoop(current_loop) |
| || IsInnerLoop(current_loop, block_loop)) { |
| // The block can be processed immediately. |
| break; |
| } |
| } |
| worklist->insert(insert_pos.base(), block); |
| } |
| |
| void SsaLivenessAnalysis::LinearizeGraph() { |
| // Create a reverse post ordering with the following properties: |
| // - Blocks in a loop are consecutive, |
| // - Back-edge is the last block before loop exits. |
| |
| // (1): Record the number of forward predecessors for each block. This is to |
| // ensure the resulting order is reverse post order. We could use the |
| // current reverse post order in the graph, but it would require making |
| // order queries to a GrowableArray, which is not the best data structure |
| // for it. |
| ArenaVector<uint32_t> forward_predecessors(graph_->GetBlocks().size(), |
| graph_->GetArena()->Adapter(kArenaAllocSsaLiveness)); |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| size_t number_of_forward_predecessors = block->GetPredecessors().size(); |
| if (block->IsLoopHeader()) { |
| number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges(); |
| } |
| forward_predecessors[block->GetBlockId()] = number_of_forward_predecessors; |
| } |
| |
| // (2): Following a worklist approach, first start with the entry block, and |
| // iterate over the successors. When all non-back edge predecessors of a |
| // successor block are visited, the successor block is added in the worklist |
| // following an order that satisfies the requirements to build our linear graph. |
| graph_->linear_order_.reserve(graph_->GetReversePostOrder().size()); |
| ArenaVector<HBasicBlock*> worklist(graph_->GetArena()->Adapter(kArenaAllocSsaLiveness)); |
| worklist.push_back(graph_->GetEntryBlock()); |
| do { |
| HBasicBlock* current = worklist.back(); |
| worklist.pop_back(); |
| graph_->linear_order_.push_back(current); |
| for (HBasicBlock* successor : current->GetSuccessors()) { |
| int block_id = successor->GetBlockId(); |
| size_t number_of_remaining_predecessors = forward_predecessors[block_id]; |
| if (number_of_remaining_predecessors == 1) { |
| AddToListForLinearization(&worklist, successor); |
| } |
| forward_predecessors[block_id] = number_of_remaining_predecessors - 1; |
| } |
| } while (!worklist.empty()); |
| } |
| |
| void SsaLivenessAnalysis::NumberInstructions() { |
| int ssa_index = 0; |
| size_t lifetime_position = 0; |
| // Each instruction gets a lifetime position, and a block gets a lifetime |
| // start and end position. Non-phi instructions have a distinct lifetime position than |
| // the block they are in. Phi instructions have the lifetime start of their block as |
| // lifetime position. |
| // |
| // Because the register allocator will insert moves in the graph, we need |
| // to differentiate between the start and end of an instruction. Adding 2 to |
| // the lifetime position for each instruction ensures the start of an |
| // instruction is different than the end of the previous instruction. |
| for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| block->SetLifetimeStart(lifetime_position); |
| |
| for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { |
| HInstruction* current = inst_it.Current(); |
| codegen_->AllocateLocations(current); |
| LocationSummary* locations = current->GetLocations(); |
| if (locations != nullptr && locations->Out().IsValid()) { |
| instructions_from_ssa_index_.push_back(current); |
| current->SetSsaIndex(ssa_index++); |
| current->SetLiveInterval( |
| LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current)); |
| } |
| current->SetLifetimePosition(lifetime_position); |
| } |
| lifetime_position += 2; |
| |
| // Add a null marker to notify we are starting a block. |
| instructions_from_lifetime_position_.push_back(nullptr); |
| |
| for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done(); |
| inst_it.Advance()) { |
| HInstruction* current = inst_it.Current(); |
| codegen_->AllocateLocations(current); |
| LocationSummary* locations = current->GetLocations(); |
| if (locations != nullptr && locations->Out().IsValid()) { |
| instructions_from_ssa_index_.push_back(current); |
| current->SetSsaIndex(ssa_index++); |
| current->SetLiveInterval( |
| LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current)); |
| } |
| instructions_from_lifetime_position_.push_back(current); |
| current->SetLifetimePosition(lifetime_position); |
| lifetime_position += 2; |
| } |
| |
| block->SetLifetimeEnd(lifetime_position); |
| } |
| number_of_ssa_values_ = ssa_index; |
| } |
| |
| void SsaLivenessAnalysis::ComputeLiveness() { |
| for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| block_infos_[block->GetBlockId()] = |
| new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_); |
| } |
| |
| // Compute the live ranges, as well as the initial live_in, live_out, and kill sets. |
| // This method does not handle backward branches for the sets, therefore live_in |
| // and live_out sets are not yet correct. |
| ComputeLiveRanges(); |
| |
| // Do a fixed point calculation to take into account backward branches, |
| // that will update live_in of loop headers, and therefore live_out and live_in |
| // of blocks in the loop. |
| ComputeLiveInAndLiveOutSets(); |
| } |
| |
| static void RecursivelyProcessInputs(HInstruction* current, |
| HInstruction* actual_user, |
| BitVector* live_in) { |
| for (size_t i = 0, e = current->InputCount(); i < e; ++i) { |
| HInstruction* input = current->InputAt(i); |
| bool has_in_location = current->GetLocations()->InAt(i).IsValid(); |
| bool has_out_location = input->GetLocations()->Out().IsValid(); |
| |
| if (has_in_location) { |
| DCHECK(has_out_location) |
| << "Instruction " << current->DebugName() << current->GetId() |
| << " expects an input value at index " << i << " but " |
| << input->DebugName() << input->GetId() << " does not produce one."; |
| DCHECK(input->HasSsaIndex()); |
| // `input` generates a result used by `current`. Add use and update |
| // the live-in set. |
| input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i, actual_user); |
| live_in->SetBit(input->GetSsaIndex()); |
| } else if (has_out_location) { |
| // `input` generates a result but it is not used by `current`. |
| } else { |
| // `input` is inlined into `current`. Walk over its inputs and record |
| // uses at `current`. |
| DCHECK(input->IsEmittedAtUseSite()); |
| // Check that the inlined input is not a phi. Recursing on loop phis could |
| // lead to an infinite loop. |
| DCHECK(!input->IsPhi()); |
| RecursivelyProcessInputs(input, actual_user, live_in); |
| } |
| } |
| } |
| |
| void SsaLivenessAnalysis::ComputeLiveRanges() { |
| // Do a post order visit, adding inputs of instructions live in the block where |
| // that instruction is defined, and killing instructions that are being visited. |
| for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| |
| BitVector* kill = GetKillSet(*block); |
| BitVector* live_in = GetLiveInSet(*block); |
| |
| // Set phi inputs of successors of this block corresponding to this block |
| // as live_in. |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| live_in->Union(GetLiveInSet(*successor)); |
| if (successor->IsCatchBlock()) { |
| // Inputs of catch phis will be kept alive through their environment |
| // uses, allowing the runtime to copy their values to the corresponding |
| // catch phi spill slots when an exception is thrown. |
| // The only instructions which may not be recorded in the environments |
| // are constants created by the SSA builder as typed equivalents of |
| // untyped constants from the bytecode, or phis with only such constants |
| // as inputs (verified by SSAChecker). Their raw binary value must |
| // therefore be the same and we only need to keep alive one. |
| } else { |
| size_t phi_input_index = successor->GetPredecessorIndexOf(block); |
| for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HInstruction* phi = phi_it.Current(); |
| HInstruction* input = phi->InputAt(phi_input_index); |
| input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block); |
| // A phi input whose last user is the phi dies at the end of the predecessor block, |
| // and not at the phi's lifetime position. |
| live_in->SetBit(input->GetSsaIndex()); |
| } |
| } |
| } |
| |
| // Add a range that covers this block to all instructions live_in because of successors. |
| // Instructions defined in this block will have their start of the range adjusted. |
| for (uint32_t idx : live_in->Indexes()) { |
| HInstruction* current = GetInstructionFromSsaIndex(idx); |
| current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd()); |
| } |
| |
| for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done(); |
| back_it.Advance()) { |
| HInstruction* current = back_it.Current(); |
| if (current->HasSsaIndex()) { |
| // Kill the instruction and shorten its interval. |
| kill->SetBit(current->GetSsaIndex()); |
| live_in->ClearBit(current->GetSsaIndex()); |
| current->GetLiveInterval()->SetFrom(current->GetLifetimePosition()); |
| } |
| |
| // Process the environment first, because we know their uses come after |
| // or at the same liveness position of inputs. |
| for (HEnvironment* environment = current->GetEnvironment(); |
| environment != nullptr; |
| environment = environment->GetParent()) { |
| // Handle environment uses. See statements (b) and (c) of the |
| // SsaLivenessAnalysis. |
| for (size_t i = 0, e = environment->Size(); i < e; ++i) { |
| HInstruction* instruction = environment->GetInstructionAt(i); |
| bool should_be_live = ShouldBeLiveForEnvironment(current, instruction); |
| if (should_be_live) { |
| DCHECK(instruction->HasSsaIndex()); |
| live_in->SetBit(instruction->GetSsaIndex()); |
| } |
| if (instruction != nullptr) { |
| instruction->GetLiveInterval()->AddUse( |
| current, environment, i, /* actual_user */ nullptr, should_be_live); |
| } |
| } |
| } |
| |
| // Process inputs of instructions. |
| if (current->IsEmittedAtUseSite()) { |
| if (kIsDebugBuild) { |
| DCHECK(!current->GetLocations()->Out().IsValid()); |
| for (HUseIterator<HInstruction*> use_it(current->GetUses()); |
| !use_it.Done(); |
| use_it.Advance()) { |
| HInstruction* user = use_it.Current()->GetUser(); |
| size_t index = use_it.Current()->GetIndex(); |
| DCHECK(!user->GetLocations()->InAt(index).IsValid()); |
| } |
| DCHECK(!current->HasEnvironmentUses()); |
| } |
| } else { |
| RecursivelyProcessInputs(current, current, live_in); |
| } |
| } |
| |
| // Kill phis defined in this block. |
| for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { |
| HInstruction* current = inst_it.Current(); |
| if (current->HasSsaIndex()) { |
| kill->SetBit(current->GetSsaIndex()); |
| live_in->ClearBit(current->GetSsaIndex()); |
| LiveInterval* interval = current->GetLiveInterval(); |
| DCHECK((interval->GetFirstRange() == nullptr) |
| || (interval->GetStart() == current->GetLifetimePosition())); |
| interval->SetFrom(current->GetLifetimePosition()); |
| } |
| } |
| |
| if (block->IsLoopHeader()) { |
| if (kIsDebugBuild && block->GetLoopInformation()->IsIrreducible()) { |
| // To satisfy our liveness algorithm, we need to ensure loop headers of |
| // irreducible loops do not have any live-in instructions, except constants |
| // and the current method, which can be trivially re-materialized. |
| for (uint32_t idx : live_in->Indexes()) { |
| HInstruction* instruction = GetInstructionFromSsaIndex(idx); |
| DCHECK(instruction->GetBlock()->IsEntryBlock()) << instruction->DebugName(); |
| DCHECK(!instruction->IsParameterValue()) << instruction->DebugName(); |
| DCHECK(instruction->IsCurrentMethod() || instruction->IsConstant()) |
| << instruction->DebugName(); |
| } |
| } |
| size_t last_position = block->GetLoopInformation()->GetLifetimeEnd(); |
| // For all live_in instructions at the loop header, we need to create a range |
| // that covers the full loop. |
| for (uint32_t idx : live_in->Indexes()) { |
| HInstruction* current = GetInstructionFromSsaIndex(idx); |
| current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position); |
| } |
| } |
| } |
| } |
| |
| void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() { |
| bool changed; |
| do { |
| changed = false; |
| |
| for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| const HBasicBlock& block = *it.Current(); |
| |
| // The live_in set depends on the kill set (which does not |
| // change in this loop), and the live_out set. If the live_out |
| // set does not change, there is no need to update the live_in set. |
| if (UpdateLiveOut(block) && UpdateLiveIn(block)) { |
| changed = true; |
| } |
| } |
| } while (changed); |
| } |
| |
| bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) { |
| BitVector* live_out = GetLiveOutSet(block); |
| bool changed = false; |
| // The live_out set of a block is the union of live_in sets of its successors. |
| for (HBasicBlock* successor : block.GetSuccessors()) { |
| if (live_out->Union(GetLiveInSet(*successor))) { |
| changed = true; |
| } |
| } |
| return changed; |
| } |
| |
| |
| bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) { |
| BitVector* live_out = GetLiveOutSet(block); |
| BitVector* kill = GetKillSet(block); |
| BitVector* live_in = GetLiveInSet(block); |
| // If live_out is updated (because of backward branches), we need to make |
| // sure instructions in live_out are also in live_in, unless they are killed |
| // by this block. |
| return live_in->UnionIfNotIn(live_out, kill); |
| } |
| |
| static int RegisterOrLowRegister(Location location) { |
| return location.IsPair() ? location.low() : location.reg(); |
| } |
| |
| int LiveInterval::FindFirstRegisterHint(size_t* free_until, |
| const SsaLivenessAnalysis& liveness) const { |
| DCHECK(!IsHighInterval()); |
| if (IsTemp()) return kNoRegister; |
| |
| if (GetParent() == this && defined_by_ != nullptr) { |
| // This is the first interval for the instruction. Try to find |
| // a register based on its definition. |
| DCHECK_EQ(defined_by_->GetLiveInterval(), this); |
| int hint = FindHintAtDefinition(); |
| if (hint != kNoRegister && free_until[hint] > GetStart()) { |
| return hint; |
| } |
| } |
| |
| if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) { |
| // If the start of this interval is at a block boundary, we look at the |
| // location of the interval in blocks preceding the block this interval |
| // starts at. If one location is a register we return it as a hint. This |
| // will avoid a move between the two blocks. |
| HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2); |
| size_t next_register_use = FirstRegisterUse(); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| size_t position = predecessor->GetLifetimeEnd() - 1; |
| // We know positions above GetStart() do not have a location yet. |
| if (position < GetStart()) { |
| LiveInterval* existing = GetParent()->GetSiblingAt(position); |
| if (existing != nullptr |
| && existing->HasRegister() |
| // It's worth using that register if it is available until |
| // the next use. |
| && (free_until[existing->GetRegister()] >= next_register_use)) { |
| return existing->GetRegister(); |
| } |
| } |
| } |
| } |
| |
| UsePosition* use = first_use_; |
| size_t start = GetStart(); |
| size_t end = GetEnd(); |
| while (use != nullptr && use->GetPosition() <= end) { |
| size_t use_position = use->GetPosition(); |
| if (use_position >= start && !use->IsSynthesized()) { |
| HInstruction* user = use->GetUser(); |
| size_t input_index = use->GetInputIndex(); |
| if (user->IsPhi()) { |
| // If the phi has a register, try to use the same. |
| Location phi_location = user->GetLiveInterval()->ToLocation(); |
| if (phi_location.IsRegisterKind()) { |
| DCHECK(SameRegisterKind(phi_location)); |
| int reg = RegisterOrLowRegister(phi_location); |
| if (free_until[reg] >= use_position) { |
| return reg; |
| } |
| } |
| // If the instruction dies at the phi assignment, we can try having the |
| // same register. |
| if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) { |
| for (size_t i = 0, e = user->InputCount(); i < e; ++i) { |
| if (i == input_index) { |
| continue; |
| } |
| HInstruction* input = user->InputAt(i); |
| Location location = input->GetLiveInterval()->GetLocationAt( |
| user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1); |
| if (location.IsRegisterKind()) { |
| int reg = RegisterOrLowRegister(location); |
| if (free_until[reg] >= use_position) { |
| return reg; |
| } |
| } |
| } |
| } |
| } else { |
| // If the instruction is expected in a register, try to use it. |
| LocationSummary* locations = user->GetLocations(); |
| Location expected = locations->InAt(use->GetInputIndex()); |
| // We use the user's lifetime position - 1 (and not `use_position`) because the |
| // register is blocked at the beginning of the user. |
| size_t position = user->GetLifetimePosition() - 1; |
| if (expected.IsRegisterKind()) { |
| DCHECK(SameRegisterKind(expected)); |
| int reg = RegisterOrLowRegister(expected); |
| if (free_until[reg] >= position) { |
| return reg; |
| } |
| } |
| } |
| } |
| use = use->GetNext(); |
| } |
| |
| return kNoRegister; |
| } |
| |
| int LiveInterval::FindHintAtDefinition() const { |
| if (defined_by_->IsPhi()) { |
| // Try to use the same register as one of the inputs. |
| const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors(); |
| for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) { |
| HInstruction* input = defined_by_->InputAt(i); |
| size_t end = predecessors[i]->GetLifetimeEnd(); |
| LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1); |
| if (input_interval->GetEnd() == end) { |
| // If the input dies at the end of the predecessor, we know its register can |
| // be reused. |
| Location input_location = input_interval->ToLocation(); |
| if (input_location.IsRegisterKind()) { |
| DCHECK(SameRegisterKind(input_location)); |
| return RegisterOrLowRegister(input_location); |
| } |
| } |
| } |
| } else { |
| LocationSummary* locations = GetDefinedBy()->GetLocations(); |
| Location out = locations->Out(); |
| if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) { |
| // Try to use the same register as the first input. |
| LiveInterval* input_interval = |
| GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1); |
| if (input_interval->GetEnd() == GetStart()) { |
| // If the input dies at the start of this instruction, we know its register can |
| // be reused. |
| Location location = input_interval->ToLocation(); |
| if (location.IsRegisterKind()) { |
| DCHECK(SameRegisterKind(location)); |
| return RegisterOrLowRegister(location); |
| } |
| } |
| } |
| } |
| return kNoRegister; |
| } |
| |
| bool LiveInterval::SameRegisterKind(Location other) const { |
| if (IsFloatingPoint()) { |
| if (IsLowInterval() || IsHighInterval()) { |
| return other.IsFpuRegisterPair(); |
| } else { |
| return other.IsFpuRegister(); |
| } |
| } else { |
| if (IsLowInterval() || IsHighInterval()) { |
| return other.IsRegisterPair(); |
| } else { |
| return other.IsRegister(); |
| } |
| } |
| } |
| |
| bool LiveInterval::NeedsTwoSpillSlots() const { |
| return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble; |
| } |
| |
| Location LiveInterval::ToLocation() const { |
| DCHECK(!IsHighInterval()); |
| if (HasRegister()) { |
| if (IsFloatingPoint()) { |
| if (HasHighInterval()) { |
| return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister()); |
| } else { |
| return Location::FpuRegisterLocation(GetRegister()); |
| } |
| } else { |
| if (HasHighInterval()) { |
| return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister()); |
| } else { |
| return Location::RegisterLocation(GetRegister()); |
| } |
| } |
| } else { |
| HInstruction* defined_by = GetParent()->GetDefinedBy(); |
| if (defined_by->IsConstant()) { |
| return defined_by->GetLocations()->Out(); |
| } else if (GetParent()->HasSpillSlot()) { |
| if (NeedsTwoSpillSlots()) { |
| return Location::DoubleStackSlot(GetParent()->GetSpillSlot()); |
| } else { |
| return Location::StackSlot(GetParent()->GetSpillSlot()); |
| } |
| } else { |
| return Location(); |
| } |
| } |
| } |
| |
| Location LiveInterval::GetLocationAt(size_t position) { |
| LiveInterval* sibling = GetSiblingAt(position); |
| DCHECK(sibling != nullptr); |
| return sibling->ToLocation(); |
| } |
| |
| LiveInterval* LiveInterval::GetSiblingAt(size_t position) { |
| LiveInterval* current = this; |
| while (current != nullptr && !current->IsDefinedAt(position)) { |
| current = current->GetNextSibling(); |
| } |
| return current; |
| } |
| |
| } // namespace art |