blob: 8daf6d4c9edf11f4a9bd69543f428701acf99326 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_HASH_SET_H_
#define ART_RUNTIME_BASE_HASH_SET_H_
#include <functional>
#include <memory>
#include <stdint.h>
#include <utility>
#include "bit_utils.h"
#include "logging.h"
namespace art {
// Returns true if an item is empty.
template <class T>
class DefaultEmptyFn {
public:
void MakeEmpty(T& item) const {
item = T();
}
bool IsEmpty(const T& item) const {
return item == T();
}
};
template <class T>
class DefaultEmptyFn<T*> {
public:
void MakeEmpty(T*& item) const {
item = nullptr;
}
bool IsEmpty(const T*& item) const {
return item == nullptr;
}
};
// Low memory version of a hash set, uses less memory than std::unordered_set since elements aren't
// boxed. Uses linear probing to resolve collisions.
// EmptyFn needs to implement two functions MakeEmpty(T& item) and IsEmpty(const T& item).
// TODO: We could get rid of this requirement by using a bitmap, though maybe this would be slower
// and more complicated.
template <class T, class EmptyFn = DefaultEmptyFn<T>, class HashFn = std::hash<T>,
class Pred = std::equal_to<T>, class Alloc = std::allocator<T>>
class HashSet {
template <class Elem, class HashSetType>
class BaseIterator {
public:
BaseIterator(const BaseIterator&) = default;
BaseIterator(BaseIterator&&) = default;
BaseIterator(HashSetType* hash_set, size_t index) : index_(index), hash_set_(hash_set) {
}
BaseIterator& operator=(const BaseIterator&) = default;
BaseIterator& operator=(BaseIterator&&) = default;
bool operator==(const BaseIterator& other) const {
return hash_set_ == other.hash_set_ && this->index_ == other.index_;
}
bool operator!=(const BaseIterator& other) const {
return !(*this == other);
}
BaseIterator operator++() { // Value after modification.
this->index_ = this->NextNonEmptySlot(this->index_, hash_set_);
return *this;
}
BaseIterator operator++(int) {
Iterator temp = *this;
this->index_ = this->NextNonEmptySlot(this->index_, hash_set_);
return temp;
}
Elem& operator*() const {
DCHECK(!hash_set_->IsFreeSlot(this->index_));
return hash_set_->ElementForIndex(this->index_);
}
Elem* operator->() const {
return &**this;
}
// TODO: Operator -- --(int)
private:
size_t index_;
HashSetType* hash_set_;
size_t NextNonEmptySlot(size_t index, const HashSet* hash_set) const {
const size_t num_buckets = hash_set->NumBuckets();
DCHECK_LT(index, num_buckets);
do {
++index;
} while (index < num_buckets && hash_set->IsFreeSlot(index));
return index;
}
friend class HashSet;
};
public:
static constexpr double kDefaultMinLoadFactor = 0.5;
static constexpr double kDefaultMaxLoadFactor = 0.9;
static constexpr size_t kMinBuckets = 1000;
typedef BaseIterator<T, HashSet> Iterator;
typedef BaseIterator<const T, const HashSet> ConstIterator;
// If we don't own the data, this will create a new array which owns the data.
void Clear() {
DeallocateStorage();
AllocateStorage(1);
num_elements_ = 0;
elements_until_expand_ = 0;
}
HashSet() : num_elements_(0), num_buckets_(0), owns_data_(false), data_(nullptr),
min_load_factor_(kDefaultMinLoadFactor), max_load_factor_(kDefaultMaxLoadFactor) {
Clear();
}
HashSet(const HashSet& other) : num_elements_(0), num_buckets_(0), owns_data_(false),
data_(nullptr) {
*this = other;
}
HashSet(HashSet&& other) : num_elements_(0), num_buckets_(0), owns_data_(false),
data_(nullptr) {
*this = std::move(other);
}
// Construct from existing data.
// Read from a block of memory, if make_copy_of_data is false, then data_ points to within the
// passed in ptr_.
HashSet(const uint8_t* ptr, bool make_copy_of_data, size_t* read_count) {
uint64_t temp;
size_t offset = 0;
offset = ReadFromBytes(ptr, offset, &temp);
num_elements_ = static_cast<uint64_t>(temp);
offset = ReadFromBytes(ptr, offset, &temp);
num_buckets_ = static_cast<uint64_t>(temp);
CHECK_LE(num_elements_, num_buckets_);
offset = ReadFromBytes(ptr, offset, &temp);
elements_until_expand_ = static_cast<uint64_t>(temp);
offset = ReadFromBytes(ptr, offset, &min_load_factor_);
offset = ReadFromBytes(ptr, offset, &max_load_factor_);
if (!make_copy_of_data) {
owns_data_ = false;
data_ = const_cast<T*>(reinterpret_cast<const T*>(ptr + offset));
offset += sizeof(*data_) * num_buckets_;
} else {
AllocateStorage(num_buckets_);
// Write elements, not that this may not be safe for cross compilation if the elements are
// pointer sized.
for (size_t i = 0; i < num_buckets_; ++i) {
offset = ReadFromBytes(ptr, offset, &data_[i]);
}
}
// Caller responsible for aligning.
*read_count = offset;
}
// Returns how large the table is after being written. If target is null, then no writing happens
// but the size is still returned. Target must be 8 byte aligned.
size_t WriteToMemory(uint8_t* ptr) {
size_t offset = 0;
offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_elements_));
offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_buckets_));
offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(elements_until_expand_));
offset = WriteToBytes(ptr, offset, min_load_factor_);
offset = WriteToBytes(ptr, offset, max_load_factor_);
// Write elements, not that this may not be safe for cross compilation if the elements are
// pointer sized.
for (size_t i = 0; i < num_buckets_; ++i) {
offset = WriteToBytes(ptr, offset, data_[i]);
}
// Caller responsible for aligning.
return offset;
}
~HashSet() {
DeallocateStorage();
}
HashSet& operator=(HashSet&& other) {
std::swap(data_, other.data_);
std::swap(num_buckets_, other.num_buckets_);
std::swap(num_elements_, other.num_elements_);
std::swap(elements_until_expand_, other.elements_until_expand_);
std::swap(min_load_factor_, other.min_load_factor_);
std::swap(max_load_factor_, other.max_load_factor_);
std::swap(owns_data_, other.owns_data_);
return *this;
}
HashSet& operator=(const HashSet& other) {
DeallocateStorage();
AllocateStorage(other.NumBuckets());
for (size_t i = 0; i < num_buckets_; ++i) {
ElementForIndex(i) = other.data_[i];
}
num_elements_ = other.num_elements_;
elements_until_expand_ = other.elements_until_expand_;
min_load_factor_ = other.min_load_factor_;
max_load_factor_ = other.max_load_factor_;
return *this;
}
// Lower case for c++11 for each.
Iterator begin() {
Iterator ret(this, 0);
if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) {
++ret; // Skip all the empty slots.
}
return ret;
}
// Lower case for c++11 for each.
Iterator end() {
return Iterator(this, NumBuckets());
}
bool Empty() {
return Size() == 0;
}
// Erase algorithm:
// Make an empty slot where the iterator is pointing.
// Scan fowards until we hit another empty slot.
// If an element inbetween doesn't rehash to the range from the current empty slot to the
// iterator. It must be before the empty slot, in that case we can move it to the empty slot
// and set the empty slot to be the location we just moved from.
// Relies on maintaining the invariant that there's no empty slots from the 'ideal' index of an
// element to its actual location/index.
Iterator Erase(Iterator it) {
// empty_index is the index that will become empty.
size_t empty_index = it.index_;
DCHECK(!IsFreeSlot(empty_index));
size_t next_index = empty_index;
bool filled = false; // True if we filled the empty index.
while (true) {
next_index = NextIndex(next_index);
T& next_element = ElementForIndex(next_index);
// If the next element is empty, we are done. Make sure to clear the current empty index.
if (emptyfn_.IsEmpty(next_element)) {
emptyfn_.MakeEmpty(ElementForIndex(empty_index));
break;
}
// Otherwise try to see if the next element can fill the current empty index.
const size_t next_hash = hashfn_(next_element);
// Calculate the ideal index, if it is within empty_index + 1 to next_index then there is
// nothing we can do.
size_t next_ideal_index = IndexForHash(next_hash);
// Loop around if needed for our check.
size_t unwrapped_next_index = next_index;
if (unwrapped_next_index < empty_index) {
unwrapped_next_index += NumBuckets();
}
// Loop around if needed for our check.
size_t unwrapped_next_ideal_index = next_ideal_index;
if (unwrapped_next_ideal_index < empty_index) {
unwrapped_next_ideal_index += NumBuckets();
}
if (unwrapped_next_ideal_index <= empty_index ||
unwrapped_next_ideal_index > unwrapped_next_index) {
// If the target index isn't within our current range it must have been probed from before
// the empty index.
ElementForIndex(empty_index) = std::move(next_element);
filled = true; // TODO: Optimize
empty_index = next_index;
}
}
--num_elements_;
// If we didn't fill the slot then we need go to the next non free slot.
if (!filled) {
++it;
}
return it;
}
// Find an element, returns end() if not found.
// Allows custom key (K) types, example of when this is useful:
// Set of Class* sorted by name, want to find a class with a name but can't allocate a dummy
// object in the heap for performance solution.
template <typename K>
Iterator Find(const K& element) {
return FindWithHash(element, hashfn_(element));
}
template <typename K>
ConstIterator Find(const K& element) const {
return FindWithHash(element, hashfn_(element));
}
template <typename K>
Iterator FindWithHash(const K& element, size_t hash) {
return Iterator(this, FindIndex(element, hash));
}
template <typename K>
ConstIterator FindWithHash(const K& element, size_t hash) const {
return ConstIterator(this, FindIndex(element, hash));
}
// Insert an element, allows duplicates.
void Insert(const T& element) {
InsertWithHash(element, hashfn_(element));
}
void InsertWithHash(const T& element, size_t hash) {
DCHECK_EQ(hash, hashfn_(element));
if (num_elements_ >= elements_until_expand_) {
Expand();
DCHECK_LT(num_elements_, elements_until_expand_);
}
const size_t index = FirstAvailableSlot(IndexForHash(hash));
data_[index] = element;
++num_elements_;
}
size_t Size() const {
return num_elements_;
}
void ShrinkToMaximumLoad() {
Resize(Size() / max_load_factor_);
}
// To distance that inserted elements were probed. Used for measuring how good hash functions
// are.
size_t TotalProbeDistance() const {
size_t total = 0;
for (size_t i = 0; i < NumBuckets(); ++i) {
const T& element = ElementForIndex(i);
if (!emptyfn_.IsEmpty(element)) {
size_t ideal_location = IndexForHash(hashfn_(element));
if (ideal_location > i) {
total += i + NumBuckets() - ideal_location;
} else {
total += i - ideal_location;
}
}
}
return total;
}
// Calculate the current load factor and return it.
double CalculateLoadFactor() const {
return static_cast<double>(Size()) / static_cast<double>(NumBuckets());
}
// Make sure that everything reinserts in the right spot. Returns the number of errors.
size_t Verify() {
size_t errors = 0;
for (size_t i = 0; i < num_buckets_; ++i) {
T& element = data_[i];
if (!emptyfn_.IsEmpty(element)) {
T temp;
emptyfn_.MakeEmpty(temp);
std::swap(temp, element);
size_t first_slot = FirstAvailableSlot(IndexForHash(hashfn_(temp)));
if (i != first_slot) {
LOG(ERROR) << "Element " << i << " should be in slot " << first_slot;
++errors;
}
std::swap(temp, element);
}
}
return errors;
}
private:
T& ElementForIndex(size_t index) {
DCHECK_LT(index, NumBuckets());
DCHECK(data_ != nullptr);
return data_[index];
}
const T& ElementForIndex(size_t index) const {
DCHECK_LT(index, NumBuckets());
DCHECK(data_ != nullptr);
return data_[index];
}
size_t IndexForHash(size_t hash) const {
return hash % num_buckets_;
}
size_t NextIndex(size_t index) const {
if (UNLIKELY(++index >= num_buckets_)) {
DCHECK_EQ(index, NumBuckets());
return 0;
}
return index;
}
// Find the hash table slot for an element, or return NumBuckets() if not found.
// This value for not found is important so that Iterator(this, FindIndex(...)) == end().
template <typename K>
size_t FindIndex(const K& element, size_t hash) const {
DCHECK_EQ(hashfn_(element), hash);
size_t index = IndexForHash(hash);
while (true) {
const T& slot = ElementForIndex(index);
if (emptyfn_.IsEmpty(slot)) {
return NumBuckets();
}
if (pred_(slot, element)) {
return index;
}
index = NextIndex(index);
}
}
bool IsFreeSlot(size_t index) const {
return emptyfn_.IsEmpty(ElementForIndex(index));
}
size_t NumBuckets() const {
return num_buckets_;
}
// Allocate a number of buckets.
void AllocateStorage(size_t num_buckets) {
num_buckets_ = num_buckets;
data_ = allocfn_.allocate(num_buckets_);
owns_data_ = true;
for (size_t i = 0; i < num_buckets_; ++i) {
allocfn_.construct(allocfn_.address(data_[i]));
emptyfn_.MakeEmpty(data_[i]);
}
}
void DeallocateStorage() {
if (num_buckets_ != 0) {
if (owns_data_) {
for (size_t i = 0; i < NumBuckets(); ++i) {
allocfn_.destroy(allocfn_.address(data_[i]));
}
allocfn_.deallocate(data_, NumBuckets());
owns_data_ = false;
}
data_ = nullptr;
num_buckets_ = 0;
}
}
// Expand the set based on the load factors.
void Expand() {
size_t min_index = static_cast<size_t>(Size() / min_load_factor_);
if (min_index < kMinBuckets) {
min_index = kMinBuckets;
}
// Resize based on the minimum load factor.
Resize(min_index);
// When we hit elements_until_expand_, we are at the max load factor and must expand again.
elements_until_expand_ = NumBuckets() * max_load_factor_;
}
// Expand / shrink the table to the new specified size.
void Resize(size_t new_size) {
DCHECK_GE(new_size, Size());
T* const old_data = data_;
size_t old_num_buckets = num_buckets_;
// Reinsert all of the old elements.
const bool owned_data = owns_data_;
AllocateStorage(new_size);
for (size_t i = 0; i < old_num_buckets; ++i) {
T& element = old_data[i];
if (!emptyfn_.IsEmpty(element)) {
data_[FirstAvailableSlot(IndexForHash(hashfn_(element)))] = std::move(element);
}
if (owned_data) {
allocfn_.destroy(allocfn_.address(element));
}
}
if (owned_data) {
allocfn_.deallocate(old_data, old_num_buckets);
}
}
ALWAYS_INLINE size_t FirstAvailableSlot(size_t index) const {
while (!emptyfn_.IsEmpty(data_[index])) {
index = NextIndex(index);
}
return index;
}
// Return new offset.
template <typename Elem>
static size_t WriteToBytes(uint8_t* ptr, size_t offset, Elem n) {
DCHECK_ALIGNED(ptr + offset, sizeof(n));
if (ptr != nullptr) {
*reinterpret_cast<Elem*>(ptr + offset) = n;
}
return offset + sizeof(n);
}
template <typename Elem>
static size_t ReadFromBytes(const uint8_t* ptr, size_t offset, Elem* out) {
DCHECK(ptr != nullptr);
DCHECK_ALIGNED(ptr + offset, sizeof(*out));
*out = *reinterpret_cast<const Elem*>(ptr + offset);
return offset + sizeof(*out);
}
Alloc allocfn_; // Allocator function.
HashFn hashfn_; // Hashing function.
EmptyFn emptyfn_; // IsEmpty/SetEmpty function.
Pred pred_; // Equals function.
size_t num_elements_; // Number of inserted elements.
size_t num_buckets_; // Number of hash table buckets.
size_t elements_until_expand_; // Maxmimum number of elements until we expand the table.
bool owns_data_; // If we own data_ and are responsible for freeing it.
T* data_; // Backing storage.
double min_load_factor_;
double max_load_factor_;
};
} // namespace art
#endif // ART_RUNTIME_BASE_HASH_SET_H_