| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "indirect_reference_table-inl.h" |
| |
| #include "base/mutator_locked_dumpable.h" |
| #include "base/systrace.h" |
| #include "base/utils.h" |
| #include "jni/java_vm_ext.h" |
| #include "jni/jni_internal.h" |
| #include "mirror/object-inl.h" |
| #include "nth_caller_visitor.h" |
| #include "reference_table.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread.h" |
| |
| #include <cstdlib> |
| |
| namespace art { |
| |
| static constexpr bool kDumpStackOnNonLocalReference = false; |
| static constexpr bool kDebugIRT = false; |
| |
| // Maximum table size we allow. |
| static constexpr size_t kMaxTableSizeInBytes = 128 * MB; |
| |
| const char* GetIndirectRefKindString(const IndirectRefKind& kind) { |
| switch (kind) { |
| case kHandleScopeOrInvalid: |
| return "HandleScopeOrInvalid"; |
| case kLocal: |
| return "Local"; |
| case kGlobal: |
| return "Global"; |
| case kWeakGlobal: |
| return "WeakGlobal"; |
| } |
| return "IndirectRefKind Error"; |
| } |
| |
| void IndirectReferenceTable::AbortIfNoCheckJNI(const std::string& msg) { |
| // If -Xcheck:jni is on, it'll give a more detailed error before aborting. |
| JavaVMExt* vm = Runtime::Current()->GetJavaVM(); |
| if (!vm->IsCheckJniEnabled()) { |
| // Otherwise, we want to abort rather than hand back a bad reference. |
| LOG(FATAL) << msg; |
| } else { |
| LOG(ERROR) << msg; |
| } |
| } |
| |
| IndirectReferenceTable::IndirectReferenceTable(size_t max_count, |
| IndirectRefKind desired_kind, |
| ResizableCapacity resizable, |
| std::string* error_msg) |
| : segment_state_(kIRTFirstSegment), |
| kind_(desired_kind), |
| max_entries_(max_count), |
| current_num_holes_(0), |
| resizable_(resizable) { |
| CHECK(error_msg != nullptr); |
| CHECK_NE(desired_kind, kHandleScopeOrInvalid); |
| |
| // Overflow and maximum check. |
| CHECK_LE(max_count, kMaxTableSizeInBytes / sizeof(IrtEntry)); |
| |
| const size_t table_bytes = max_count * sizeof(IrtEntry); |
| table_mem_map_ = MemMap::MapAnonymous("indirect ref table", |
| table_bytes, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ false, |
| error_msg); |
| if (!table_mem_map_.IsValid() && error_msg->empty()) { |
| *error_msg = "Unable to map memory for indirect ref table"; |
| } |
| |
| if (table_mem_map_.IsValid()) { |
| table_ = reinterpret_cast<IrtEntry*>(table_mem_map_.Begin()); |
| } else { |
| table_ = nullptr; |
| } |
| segment_state_ = kIRTFirstSegment; |
| last_known_previous_state_ = kIRTFirstSegment; |
| } |
| |
| IndirectReferenceTable::~IndirectReferenceTable() { |
| } |
| |
| void IndirectReferenceTable::ConstexprChecks() { |
| // Use this for some assertions. They can't be put into the header as C++ wants the class |
| // to be complete. |
| |
| // Check kind. |
| static_assert((EncodeIndirectRefKind(kLocal) & (~kKindMask)) == 0, "Kind encoding error"); |
| static_assert((EncodeIndirectRefKind(kGlobal) & (~kKindMask)) == 0, "Kind encoding error"); |
| static_assert((EncodeIndirectRefKind(kWeakGlobal) & (~kKindMask)) == 0, "Kind encoding error"); |
| static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kLocal)) == kLocal, |
| "Kind encoding error"); |
| static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kGlobal)) == kGlobal, |
| "Kind encoding error"); |
| static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kWeakGlobal)) == kWeakGlobal, |
| "Kind encoding error"); |
| |
| // Check serial. |
| static_assert(DecodeSerial(EncodeSerial(0u)) == 0u, "Serial encoding error"); |
| static_assert(DecodeSerial(EncodeSerial(1u)) == 1u, "Serial encoding error"); |
| static_assert(DecodeSerial(EncodeSerial(2u)) == 2u, "Serial encoding error"); |
| static_assert(DecodeSerial(EncodeSerial(3u)) == 3u, "Serial encoding error"); |
| |
| // Table index. |
| static_assert(DecodeIndex(EncodeIndex(0u)) == 0u, "Index encoding error"); |
| static_assert(DecodeIndex(EncodeIndex(1u)) == 1u, "Index encoding error"); |
| static_assert(DecodeIndex(EncodeIndex(2u)) == 2u, "Index encoding error"); |
| static_assert(DecodeIndex(EncodeIndex(3u)) == 3u, "Index encoding error"); |
| } |
| |
| bool IndirectReferenceTable::IsValid() const { |
| return table_mem_map_.IsValid(); |
| } |
| |
| // Holes: |
| // |
| // To keep the IRT compact, we want to fill "holes" created by non-stack-discipline Add & Remove |
| // operation sequences. For simplicity and lower memory overhead, we do not use a free list or |
| // similar. Instead, we scan for holes, with the expectation that we will find holes fast as they |
| // are usually near the end of the table (see the header, TODO: verify this assumption). To avoid |
| // scans when there are no holes, the number of known holes should be tracked. |
| // |
| // A previous implementation stored the top index and the number of holes as the segment state. |
| // This constraints the maximum number of references to 16-bit. We want to relax this, as it |
| // is easy to require more references (e.g., to list all classes in large applications). Thus, |
| // the implicitly stack-stored state, the IRTSegmentState, is only the top index. |
| // |
| // Thus, hole count is a local property of the current segment, and needs to be recovered when |
| // (or after) a frame is pushed or popped. To keep JNI transitions simple (and inlineable), we |
| // cannot do work when the segment changes. Thus, Add and Remove need to ensure the current |
| // hole count is correct. |
| // |
| // To be able to detect segment changes, we require an additional local field that can describe |
| // the known segment. This is last_known_previous_state_. The requirement will become clear with |
| // the following (some non-trivial) cases that have to be supported: |
| // |
| // 1) Segment with holes (current_num_holes_ > 0), push new segment, add/remove reference |
| // 2) Segment with holes (current_num_holes_ > 0), pop segment, add/remove reference |
| // 3) Segment with holes (current_num_holes_ > 0), push new segment, pop segment, add/remove |
| // reference |
| // 4) Empty segment, push new segment, create a hole, pop a segment, add/remove a reference |
| // 5) Base segment, push new segment, create a hole, pop a segment, push new segment, add/remove |
| // reference |
| // |
| // Storing the last known *previous* state (bottom index) allows conservatively detecting all the |
| // segment changes above. The condition is simply that the last known state is greater than or |
| // equal to the current previous state, and smaller than the current state (top index). The |
| // condition is conservative as it adds O(1) overhead to operations on an empty segment. |
| |
| static size_t CountNullEntries(const IrtEntry* table, size_t from, size_t to) { |
| size_t count = 0; |
| for (size_t index = from; index != to; ++index) { |
| if (table[index].GetReference()->IsNull()) { |
| count++; |
| } |
| } |
| return count; |
| } |
| |
| void IndirectReferenceTable::RecoverHoles(IRTSegmentState prev_state) { |
| if (last_known_previous_state_.top_index >= segment_state_.top_index || |
| last_known_previous_state_.top_index < prev_state.top_index) { |
| const size_t top_index = segment_state_.top_index; |
| size_t count = CountNullEntries(table_, prev_state.top_index, top_index); |
| |
| if (kDebugIRT) { |
| LOG(INFO) << "+++ Recovered holes: " |
| << " Current prev=" << prev_state.top_index |
| << " Current top_index=" << top_index |
| << " Old num_holes=" << current_num_holes_ |
| << " New num_holes=" << count; |
| } |
| |
| current_num_holes_ = count; |
| last_known_previous_state_ = prev_state; |
| } else if (kDebugIRT) { |
| LOG(INFO) << "No need to recover holes"; |
| } |
| } |
| |
| ALWAYS_INLINE |
| static inline void CheckHoleCount(IrtEntry* table, |
| size_t exp_num_holes, |
| IRTSegmentState prev_state, |
| IRTSegmentState cur_state) { |
| if (kIsDebugBuild) { |
| size_t count = CountNullEntries(table, prev_state.top_index, cur_state.top_index); |
| CHECK_EQ(exp_num_holes, count) << "prevState=" << prev_state.top_index |
| << " topIndex=" << cur_state.top_index; |
| } |
| } |
| |
| bool IndirectReferenceTable::Resize(size_t new_size, std::string* error_msg) { |
| CHECK_GT(new_size, max_entries_); |
| |
| constexpr size_t kMaxEntries = kMaxTableSizeInBytes / sizeof(IrtEntry); |
| if (new_size > kMaxEntries) { |
| *error_msg = android::base::StringPrintf("Requested size exceeds maximum: %zu", new_size); |
| return false; |
| } |
| // Note: the above check also ensures that there is no overflow below. |
| |
| const size_t table_bytes = new_size * sizeof(IrtEntry); |
| MemMap new_map = MemMap::MapAnonymous("indirect ref table", |
| table_bytes, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ false, |
| error_msg); |
| if (!new_map.IsValid()) { |
| return false; |
| } |
| |
| memcpy(new_map.Begin(), table_mem_map_.Begin(), table_mem_map_.Size()); |
| table_mem_map_ = std::move(new_map); |
| table_ = reinterpret_cast<IrtEntry*>(table_mem_map_.Begin()); |
| max_entries_ = new_size; |
| |
| return true; |
| } |
| |
| IndirectRef IndirectReferenceTable::Add(IRTSegmentState previous_state, |
| ObjPtr<mirror::Object> obj, |
| std::string* error_msg) { |
| if (kDebugIRT) { |
| LOG(INFO) << "+++ Add: previous_state=" << previous_state.top_index |
| << " top_index=" << segment_state_.top_index |
| << " last_known_prev_top_index=" << last_known_previous_state_.top_index |
| << " holes=" << current_num_holes_; |
| } |
| |
| size_t top_index = segment_state_.top_index; |
| |
| CHECK(obj != nullptr); |
| VerifyObject(obj); |
| DCHECK(table_ != nullptr); |
| |
| if (top_index == max_entries_) { |
| if (resizable_ == ResizableCapacity::kNo) { |
| std::ostringstream oss; |
| oss << "JNI ERROR (app bug): " << kind_ << " table overflow " |
| << "(max=" << max_entries_ << ")" |
| << MutatorLockedDumpable<IndirectReferenceTable>(*this); |
| *error_msg = oss.str(); |
| return nullptr; |
| } |
| |
| // Try to double space. |
| if (std::numeric_limits<size_t>::max() / 2 < max_entries_) { |
| std::ostringstream oss; |
| oss << "JNI ERROR (app bug): " << kind_ << " table overflow " |
| << "(max=" << max_entries_ << ")" << std::endl |
| << MutatorLockedDumpable<IndirectReferenceTable>(*this) |
| << " Resizing failed: exceeds size_t"; |
| *error_msg = oss.str(); |
| return nullptr; |
| } |
| |
| std::string inner_error_msg; |
| if (!Resize(max_entries_ * 2, &inner_error_msg)) { |
| std::ostringstream oss; |
| oss << "JNI ERROR (app bug): " << kind_ << " table overflow " |
| << "(max=" << max_entries_ << ")" << std::endl |
| << MutatorLockedDumpable<IndirectReferenceTable>(*this) |
| << " Resizing failed: " << inner_error_msg; |
| *error_msg = oss.str(); |
| return nullptr; |
| } |
| } |
| |
| RecoverHoles(previous_state); |
| CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_); |
| |
| // We know there's enough room in the table. Now we just need to find |
| // the right spot. If there's a hole, find it and fill it; otherwise, |
| // add to the end of the list. |
| IndirectRef result; |
| size_t index; |
| if (current_num_holes_ > 0) { |
| DCHECK_GT(top_index, 1U); |
| // Find the first hole; likely to be near the end of the list. |
| IrtEntry* p_scan = &table_[top_index - 1]; |
| DCHECK(!p_scan->GetReference()->IsNull()); |
| --p_scan; |
| while (!p_scan->GetReference()->IsNull()) { |
| DCHECK_GE(p_scan, table_ + previous_state.top_index); |
| --p_scan; |
| } |
| index = p_scan - table_; |
| current_num_holes_--; |
| } else { |
| // Add to the end. |
| index = top_index++; |
| segment_state_.top_index = top_index; |
| } |
| table_[index].Add(obj); |
| result = ToIndirectRef(index); |
| if (kDebugIRT) { |
| LOG(INFO) << "+++ added at " << ExtractIndex(result) << " top=" << segment_state_.top_index |
| << " holes=" << current_num_holes_; |
| } |
| |
| DCHECK(result != nullptr); |
| return result; |
| } |
| |
| void IndirectReferenceTable::AssertEmpty() { |
| for (size_t i = 0; i < Capacity(); ++i) { |
| if (!table_[i].GetReference()->IsNull()) { |
| LOG(FATAL) << "Internal Error: non-empty local reference table\n" |
| << MutatorLockedDumpable<IndirectReferenceTable>(*this); |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| // Removes an object. We extract the table offset bits from "iref" |
| // and zap the corresponding entry, leaving a hole if it's not at the top. |
| // If the entry is not between the current top index and the bottom index |
| // specified by the cookie, we don't remove anything. This is the behavior |
| // required by JNI's DeleteLocalRef function. |
| // This method is not called when a local frame is popped; this is only used |
| // for explicit single removals. |
| // Returns "false" if nothing was removed. |
| bool IndirectReferenceTable::Remove(IRTSegmentState previous_state, IndirectRef iref) { |
| if (kDebugIRT) { |
| LOG(INFO) << "+++ Remove: previous_state=" << previous_state.top_index |
| << " top_index=" << segment_state_.top_index |
| << " last_known_prev_top_index=" << last_known_previous_state_.top_index |
| << " holes=" << current_num_holes_; |
| } |
| |
| const uint32_t top_index = segment_state_.top_index; |
| const uint32_t bottom_index = previous_state.top_index; |
| |
| DCHECK(table_ != nullptr); |
| |
| if (GetIndirectRefKind(iref) == kHandleScopeOrInvalid) { |
| auto* self = Thread::Current(); |
| if (self->HandleScopeContains(reinterpret_cast<jobject>(iref))) { |
| auto* env = self->GetJniEnv(); |
| DCHECK(env != nullptr); |
| if (env->IsCheckJniEnabled()) { |
| ScopedObjectAccess soa(self); |
| LOG(WARNING) << "Attempt to remove non-JNI local reference, dumping thread"; |
| if (kDumpStackOnNonLocalReference) { |
| self->Dump(LOG_STREAM(WARNING)); |
| } |
| } |
| return true; |
| } |
| } |
| const uint32_t idx = ExtractIndex(iref); |
| if (idx < bottom_index) { |
| // Wrong segment. |
| LOG(WARNING) << "Attempt to remove index outside index area (" << idx |
| << " vs " << bottom_index << "-" << top_index << ")"; |
| return false; |
| } |
| if (idx >= top_index) { |
| // Bad --- stale reference? |
| LOG(WARNING) << "Attempt to remove invalid index " << idx |
| << " (bottom=" << bottom_index << " top=" << top_index << ")"; |
| return false; |
| } |
| |
| RecoverHoles(previous_state); |
| CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_); |
| |
| if (idx == top_index - 1) { |
| // Top-most entry. Scan up and consume holes. |
| |
| if (!CheckEntry("remove", iref, idx)) { |
| return false; |
| } |
| |
| *table_[idx].GetReference() = GcRoot<mirror::Object>(nullptr); |
| if (current_num_holes_ != 0) { |
| uint32_t collapse_top_index = top_index; |
| while (--collapse_top_index > bottom_index && current_num_holes_ != 0) { |
| if (kDebugIRT) { |
| ScopedObjectAccess soa(Thread::Current()); |
| LOG(INFO) << "+++ checking for hole at " << collapse_top_index - 1 |
| << " (previous_state=" << bottom_index << ") val=" |
| << table_[collapse_top_index - 1].GetReference()->Read<kWithoutReadBarrier>(); |
| } |
| if (!table_[collapse_top_index - 1].GetReference()->IsNull()) { |
| break; |
| } |
| if (kDebugIRT) { |
| LOG(INFO) << "+++ ate hole at " << (collapse_top_index - 1); |
| } |
| current_num_holes_--; |
| } |
| segment_state_.top_index = collapse_top_index; |
| |
| CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_); |
| } else { |
| segment_state_.top_index = top_index - 1; |
| if (kDebugIRT) { |
| LOG(INFO) << "+++ ate last entry " << top_index - 1; |
| } |
| } |
| } else { |
| // Not the top-most entry. This creates a hole. We null out the entry to prevent somebody |
| // from deleting it twice and screwing up the hole count. |
| if (table_[idx].GetReference()->IsNull()) { |
| LOG(INFO) << "--- WEIRD: removing null entry " << idx; |
| return false; |
| } |
| if (!CheckEntry("remove", iref, idx)) { |
| return false; |
| } |
| |
| *table_[idx].GetReference() = GcRoot<mirror::Object>(nullptr); |
| current_num_holes_++; |
| CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_); |
| if (kDebugIRT) { |
| LOG(INFO) << "+++ left hole at " << idx << ", holes=" << current_num_holes_; |
| } |
| } |
| |
| return true; |
| } |
| |
| void IndirectReferenceTable::Trim() { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| const size_t top_index = Capacity(); |
| auto* release_start = AlignUp(reinterpret_cast<uint8_t*>(&table_[top_index]), kPageSize); |
| uint8_t* release_end = table_mem_map_.End(); |
| madvise(release_start, release_end - release_start, MADV_DONTNEED); |
| } |
| |
| void IndirectReferenceTable::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) { |
| BufferedRootVisitor<kDefaultBufferedRootCount> root_visitor(visitor, root_info); |
| for (auto ref : *this) { |
| if (!ref->IsNull()) { |
| root_visitor.VisitRoot(*ref); |
| DCHECK(!ref->IsNull()); |
| } |
| } |
| } |
| |
| void IndirectReferenceTable::Dump(std::ostream& os) const { |
| os << kind_ << " table dump:\n"; |
| ReferenceTable::Table entries; |
| for (size_t i = 0; i < Capacity(); ++i) { |
| ObjPtr<mirror::Object> obj = table_[i].GetReference()->Read<kWithoutReadBarrier>(); |
| if (obj != nullptr) { |
| obj = table_[i].GetReference()->Read(); |
| entries.push_back(GcRoot<mirror::Object>(obj)); |
| } |
| } |
| ReferenceTable::Dump(os, entries); |
| } |
| |
| void IndirectReferenceTable::SetSegmentState(IRTSegmentState new_state) { |
| if (kDebugIRT) { |
| LOG(INFO) << "Setting segment state: " |
| << segment_state_.top_index |
| << " -> " |
| << new_state.top_index; |
| } |
| segment_state_ = new_state; |
| } |
| |
| bool IndirectReferenceTable::EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) { |
| size_t top_index = segment_state_.top_index; |
| if (top_index < max_entries_ && top_index + free_capacity <= max_entries_) { |
| return true; |
| } |
| |
| // We're only gonna do a simple best-effort here, ensuring the asked-for capacity at the end. |
| if (resizable_ == ResizableCapacity::kNo) { |
| *error_msg = "Table is not resizable"; |
| return false; |
| } |
| |
| // Try to increase the table size. |
| |
| // Would this overflow? |
| if (std::numeric_limits<size_t>::max() - free_capacity < top_index) { |
| *error_msg = "Cannot resize table, overflow."; |
| return false; |
| } |
| |
| if (!Resize(top_index + free_capacity, error_msg)) { |
| LOG(WARNING) << "JNI ERROR: Unable to reserve space in EnsureFreeCapacity (" << free_capacity |
| << "): " << std::endl |
| << MutatorLockedDumpable<IndirectReferenceTable>(*this) |
| << " Resizing failed: " << *error_msg; |
| return false; |
| } |
| return true; |
| } |
| |
| size_t IndirectReferenceTable::FreeCapacity() const { |
| return max_entries_ - segment_state_.top_index; |
| } |
| |
| } // namespace art |