blob: e1ab340b2802b758463eef4f731fe5fcdfbdbf49 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "elf_writer_debug.h"
#include <unordered_set>
#include "base/casts.h"
#include "compiled_method.h"
#include "driver/compiler_driver.h"
#include "dex_file-inl.h"
#include "dwarf/headers.h"
#include "dwarf/register.h"
#include "elf_builder.h"
#include "oat_writer.h"
#include "utils.h"
namespace art {
namespace dwarf {
static void WriteCIE(InstructionSet isa,
CFIFormat format,
std::vector<uint8_t>* buffer) {
// Scratch registers should be marked as undefined. This tells the
// debugger that its value in the previous frame is not recoverable.
bool is64bit = Is64BitInstructionSet(isa);
switch (isa) {
case kArm:
case kThumb2: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP).
// core registers.
for (int reg = 0; reg < 13; reg++) {
if (reg < 4 || reg == 12) {
opcodes.Undefined(Reg::ArmCore(reg));
} else {
opcodes.SameValue(Reg::ArmCore(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 16) {
opcodes.Undefined(Reg::ArmFp(reg));
} else {
opcodes.SameValue(Reg::ArmFp(reg));
}
}
auto return_reg = Reg::ArmCore(14); // R14(LR).
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
return;
}
case kArm64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP).
// core registers.
for (int reg = 0; reg < 30; reg++) {
if (reg < 8 || reg == 16 || reg == 17) {
opcodes.Undefined(Reg::Arm64Core(reg));
} else {
opcodes.SameValue(Reg::Arm64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 8 || reg >= 16) {
opcodes.Undefined(Reg::Arm64Fp(reg));
} else {
opcodes.SameValue(Reg::Arm64Fp(reg));
}
}
auto return_reg = Reg::Arm64Core(30); // R30(LR).
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
return;
}
case kMips:
case kMips64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP).
// core registers.
for (int reg = 1; reg < 26; reg++) {
if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*.
opcodes.Undefined(Reg::MipsCore(reg));
} else {
opcodes.SameValue(Reg::MipsCore(reg));
}
}
auto return_reg = Reg::MipsCore(31); // R31(RA).
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
return;
}
case kX86: {
// FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296
constexpr bool generate_opcodes_for_x86_fp = false;
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP).
opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP).
// core registers.
for (int reg = 0; reg < 8; reg++) {
if (reg <= 3) {
opcodes.Undefined(Reg::X86Core(reg));
} else if (reg == 4) {
// Stack pointer.
} else {
opcodes.SameValue(Reg::X86Core(reg));
}
}
// fp registers.
if (generate_opcodes_for_x86_fp) {
for (int reg = 0; reg < 8; reg++) {
opcodes.Undefined(Reg::X86Fp(reg));
}
}
auto return_reg = Reg::X86Core(8); // R8(EIP).
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
return;
}
case kX86_64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP).
opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP).
// core registers.
for (int reg = 0; reg < 16; reg++) {
if (reg == 4) {
// Stack pointer.
} else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP.
opcodes.Undefined(Reg::X86_64Core(reg));
} else {
opcodes.SameValue(Reg::X86_64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 16; reg++) {
if (reg < 12) {
opcodes.Undefined(Reg::X86_64Fp(reg));
} else {
opcodes.SameValue(Reg::X86_64Fp(reg));
}
}
auto return_reg = Reg::X86_64Core(16); // R16(RIP).
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
return;
}
case kNone:
break;
}
LOG(FATAL) << "Can not write CIE frame for ISA " << isa;
UNREACHABLE();
}
template<typename ElfTypes>
void WriteCFISection(ElfBuilder<ElfTypes>* builder,
const std::vector<OatWriter::DebugInfo>& method_infos,
CFIFormat format) {
CHECK(format == dwarf::DW_DEBUG_FRAME_FORMAT ||
format == dwarf::DW_EH_FRAME_FORMAT);
typedef typename ElfTypes::Addr Elf_Addr;
std::vector<uint32_t> binary_search_table;
std::vector<uintptr_t> patch_locations;
if (format == DW_EH_FRAME_FORMAT) {
binary_search_table.reserve(2 * method_infos.size());
} else {
patch_locations.reserve(method_infos.size());
}
// Write .eh_frame/.debug_frame section.
auto* cfi_section = (format == dwarf::DW_DEBUG_FRAME_FORMAT
? builder->GetDebugFrame()
: builder->GetEhFrame());
{
cfi_section->Start();
const bool is64bit = Is64BitInstructionSet(builder->GetIsa());
const Elf_Addr text_address = builder->GetText()->GetAddress();
const Elf_Addr cfi_address = cfi_section->GetAddress();
const Elf_Addr cie_address = cfi_address;
Elf_Addr buffer_address = cfi_address;
std::vector<uint8_t> buffer; // Small temporary buffer.
WriteCIE(builder->GetIsa(), format, &buffer);
cfi_section->WriteFully(buffer.data(), buffer.size());
buffer_address += buffer.size();
buffer.clear();
for (const OatWriter::DebugInfo& mi : method_infos) {
if (!mi.deduped_) { // Only one FDE per unique address.
ArrayRef<const uint8_t> opcodes = mi.compiled_method_->GetCFIInfo();
if (!opcodes.empty()) {
const Elf_Addr code_address = text_address + mi.low_pc_;
if (format == DW_EH_FRAME_FORMAT) {
binary_search_table.push_back(
dchecked_integral_cast<uint32_t>(code_address));
binary_search_table.push_back(
dchecked_integral_cast<uint32_t>(buffer_address));
}
WriteFDE(is64bit, cfi_address, cie_address,
code_address, mi.high_pc_ - mi.low_pc_,
opcodes, format, buffer_address, &buffer,
&patch_locations);
cfi_section->WriteFully(buffer.data(), buffer.size());
buffer_address += buffer.size();
buffer.clear();
}
}
}
cfi_section->End();
}
if (format == DW_EH_FRAME_FORMAT) {
auto* header_section = builder->GetEhFrameHdr();
header_section->Start();
uint32_t header_address = dchecked_integral_cast<int32_t>(header_section->GetAddress());
// Write .eh_frame_hdr section.
std::vector<uint8_t> buffer;
Writer<> header(&buffer);
header.PushUint8(1); // Version.
// Encoding of .eh_frame pointer - libunwind does not honor datarel here,
// so we have to use pcrel which means relative to the pointer's location.
header.PushUint8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
// Encoding of binary search table size.
header.PushUint8(DW_EH_PE_udata4);
// Encoding of binary search table addresses - libunwind supports only this
// specific combination, which means relative to the start of .eh_frame_hdr.
header.PushUint8(DW_EH_PE_datarel | DW_EH_PE_sdata4);
// .eh_frame pointer
header.PushInt32(cfi_section->GetAddress() - (header_address + 4u));
// Binary search table size (number of entries).
header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2));
header_section->WriteFully(buffer.data(), buffer.size());
// Binary search table.
for (size_t i = 0; i < binary_search_table.size(); i++) {
// Make addresses section-relative since we know the header address now.
binary_search_table[i] -= header_address;
}
header_section->WriteFully(binary_search_table.data(), binary_search_table.size());
header_section->End();
} else {
builder->WritePatches(".debug_frame.oat_patches", &patch_locations);
}
}
template<typename ElfTypes>
class DebugInfoWriter {
typedef typename ElfTypes::Addr Elf_Addr;
public:
explicit DebugInfoWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder) {
}
void Start() {
builder_->GetDebugInfo()->Start();
}
void Write(const std::vector<const OatWriter::DebugInfo*>& method_infos,
size_t debug_line_offset) {
const bool is64bit = Is64BitInstructionSet(builder_->GetIsa());
const Elf_Addr text_address = builder_->GetText()->GetAddress();
uint32_t cunit_low_pc = 0xFFFFFFFFU;
uint32_t cunit_high_pc = 0;
for (auto method_info : method_infos) {
cunit_low_pc = std::min(cunit_low_pc, method_info->low_pc_);
cunit_high_pc = std::max(cunit_high_pc, method_info->high_pc_);
}
size_t debug_abbrev_offset = debug_abbrev_.size();
DebugInfoEntryWriter<> info(is64bit, &debug_abbrev_);
info.StartTag(DW_TAG_compile_unit, DW_CHILDREN_yes);
info.WriteStrp(DW_AT_producer, "Android dex2oat", &debug_str_);
info.WriteData1(DW_AT_language, DW_LANG_Java);
info.WriteAddr(DW_AT_low_pc, text_address + cunit_low_pc);
info.WriteAddr(DW_AT_high_pc, text_address + cunit_high_pc);
info.WriteData4(DW_AT_stmt_list, debug_line_offset);
for (auto method_info : method_infos) {
std::string method_name = PrettyMethod(method_info->dex_method_index_,
*method_info->dex_file_, true);
info.StartTag(DW_TAG_subprogram, DW_CHILDREN_no);
info.WriteStrp(DW_AT_name, method_name.data(), &debug_str_);
info.WriteAddr(DW_AT_low_pc, text_address + method_info->low_pc_);
info.WriteAddr(DW_AT_high_pc, text_address + method_info->high_pc_);
info.EndTag(); // DW_TAG_subprogram
}
info.EndTag(); // DW_TAG_compile_unit
std::vector<uint8_t> buffer;
buffer.reserve(info.data()->size() + KB);
size_t offset = builder_->GetDebugInfo()->GetSize();
WriteDebugInfoCU(debug_abbrev_offset, info, offset, &buffer, &debug_info_patches_);
builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
}
void End() {
builder_->GetDebugInfo()->End();
builder_->WritePatches(".debug_info.oat_patches", &debug_info_patches_);
builder_->WriteSection(".debug_abbrev", &debug_abbrev_);
builder_->WriteSection(".debug_str", &debug_str_);
}
private:
ElfBuilder<ElfTypes>* builder_;
std::vector<uintptr_t> debug_info_patches_;
std::vector<uint8_t> debug_abbrev_;
std::vector<uint8_t> debug_str_;
};
template<typename ElfTypes>
class DebugLineWriter {
typedef typename ElfTypes::Addr Elf_Addr;
public:
explicit DebugLineWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder) {
}
void Start() {
builder_->GetDebugLine()->Start();
}
// Write line table for given set of methods.
// Returns the number of bytes written.
size_t Write(const std::vector<const OatWriter::DebugInfo*>& method_infos) {
const bool is64bit = Is64BitInstructionSet(builder_->GetIsa());
const Elf_Addr text_address = builder_->GetText()->GetAddress();
uint32_t cunit_low_pc = 0xFFFFFFFFU;
uint32_t cunit_high_pc = 0;
for (auto method_info : method_infos) {
cunit_low_pc = std::min(cunit_low_pc, method_info->low_pc_);
cunit_high_pc = std::max(cunit_high_pc, method_info->high_pc_);
}
std::vector<FileEntry> files;
std::unordered_map<std::string, size_t> files_map;
std::vector<std::string> directories;
std::unordered_map<std::string, size_t> directories_map;
int code_factor_bits_ = 0;
int dwarf_isa = -1;
switch (builder_->GetIsa()) {
case kArm: // arm actually means thumb2.
case kThumb2:
code_factor_bits_ = 1; // 16-bit instuctions
dwarf_isa = 1; // DW_ISA_ARM_thumb.
break;
case kArm64:
case kMips:
case kMips64:
code_factor_bits_ = 2; // 32-bit instructions
break;
case kNone:
case kX86:
case kX86_64:
break;
}
DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_);
opcodes.SetAddress(text_address + cunit_low_pc);
if (dwarf_isa != -1) {
opcodes.SetISA(dwarf_isa);
}
for (const OatWriter::DebugInfo* mi : method_infos) {
struct DebugInfoCallbacks {
static bool NewPosition(void* ctx, uint32_t address, uint32_t line) {
auto* context = reinterpret_cast<DebugInfoCallbacks*>(ctx);
context->dex2line_.push_back({address, static_cast<int32_t>(line)});
return false;
}
DefaultSrcMap dex2line_;
} debug_info_callbacks;
Elf_Addr method_address = text_address + mi->low_pc_;
const DexFile* dex = mi->dex_file_;
if (mi->code_item_ != nullptr) {
dex->DecodeDebugInfo(mi->code_item_,
(mi->access_flags_ & kAccStatic) != 0,
mi->dex_method_index_,
DebugInfoCallbacks::NewPosition,
nullptr,
&debug_info_callbacks);
}
// Get and deduplicate directory and filename.
int file_index = 0; // 0 - primary source file of the compilation.
auto& dex_class_def = dex->GetClassDef(mi->class_def_index_);
const char* source_file = dex->GetSourceFile(dex_class_def);
if (source_file != nullptr) {
std::string file_name(source_file);
size_t file_name_slash = file_name.find_last_of('/');
std::string class_name(dex->GetClassDescriptor(dex_class_def));
size_t class_name_slash = class_name.find_last_of('/');
std::string full_path(file_name);
// Guess directory from package name.
int directory_index = 0; // 0 - current directory of the compilation.
if (file_name_slash == std::string::npos && // Just filename.
class_name.front() == 'L' && // Type descriptor for a class.
class_name_slash != std::string::npos) { // Has package name.
std::string package_name = class_name.substr(1, class_name_slash - 1);
auto it = directories_map.find(package_name);
if (it == directories_map.end()) {
directory_index = 1 + directories.size();
directories_map.emplace(package_name, directory_index);
directories.push_back(package_name);
} else {
directory_index = it->second;
}
full_path = package_name + "/" + file_name;
}
// Add file entry.
auto it2 = files_map.find(full_path);
if (it2 == files_map.end()) {
file_index = 1 + files.size();
files_map.emplace(full_path, file_index);
files.push_back(FileEntry {
file_name,
directory_index,
0, // Modification time - NA.
0, // File size - NA.
});
} else {
file_index = it2->second;
}
}
opcodes.SetFile(file_index);
// Generate mapping opcodes from PC to Java lines.
const DefaultSrcMap& dex2line_map = debug_info_callbacks.dex2line_;
if (file_index != 0 && !dex2line_map.empty()) {
bool first = true;
for (SrcMapElem pc2dex : mi->compiled_method_->GetSrcMappingTable()) {
uint32_t pc = pc2dex.from_;
int dex_pc = pc2dex.to_;
auto dex2line = dex2line_map.Find(static_cast<uint32_t>(dex_pc));
if (dex2line.first) {
int line = dex2line.second;
if (first) {
first = false;
if (pc > 0) {
// Assume that any preceding code is prologue.
int first_line = dex2line_map.front().to_;
// Prologue is not a sensible place for a breakpoint.
opcodes.NegateStmt();
opcodes.AddRow(method_address, first_line);
opcodes.NegateStmt();
opcodes.SetPrologueEnd();
}
opcodes.AddRow(method_address + pc, line);
} else if (line != opcodes.CurrentLine()) {
opcodes.AddRow(method_address + pc, line);
}
}
}
} else {
// line 0 - instruction cannot be attributed to any source line.
opcodes.AddRow(method_address, 0);
}
}
opcodes.AdvancePC(text_address + cunit_high_pc);
opcodes.EndSequence();
std::vector<uint8_t> buffer;
buffer.reserve(opcodes.data()->size() + KB);
size_t offset = builder_->GetDebugLine()->GetSize();
WriteDebugLineTable(directories, files, opcodes, offset, &buffer, &debug_line_patches);
builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size());
return buffer.size();
}
void End() {
builder_->GetDebugLine()->End();
builder_->WritePatches(".debug_line.oat_patches", &debug_line_patches);
}
private:
ElfBuilder<ElfTypes>* builder_;
std::vector<uintptr_t> debug_line_patches;
};
template<typename ElfTypes>
void WriteDebugSections(ElfBuilder<ElfTypes>* builder,
const std::vector<OatWriter::DebugInfo>& method_infos) {
struct CompilationUnit {
std::vector<const OatWriter::DebugInfo*> methods_;
size_t debug_line_offset_ = 0;
};
// Group the methods into compilation units based on source file.
std::vector<CompilationUnit> compilation_units;
const char* last_source_file = nullptr;
for (const OatWriter::DebugInfo& mi : method_infos) {
// Attribute given instruction range only to single method.
// Otherwise the debugger might get really confused.
if (!mi.deduped_) {
auto& dex_class_def = mi.dex_file_->GetClassDef(mi.class_def_index_);
const char* source_file = mi.dex_file_->GetSourceFile(dex_class_def);
if (compilation_units.empty() || source_file != last_source_file) {
compilation_units.push_back(CompilationUnit());
}
compilation_units.back().methods_.push_back(&mi);
last_source_file = source_file;
}
}
// Write .debug_line section.
{
DebugLineWriter<ElfTypes> line_writer(builder);
line_writer.Start();
size_t offset = 0;
for (auto& compilation_unit : compilation_units) {
compilation_unit.debug_line_offset_ = offset;
offset += line_writer.Write(compilation_unit.methods_);
}
line_writer.End();
}
// Write .debug_info section.
{
DebugInfoWriter<ElfTypes> info_writer(builder);
info_writer.Start();
for (const auto& compilation_unit : compilation_units) {
info_writer.Write(compilation_unit.methods_, compilation_unit.debug_line_offset_);
}
info_writer.End();
}
}
// Explicit instantiations
template void WriteCFISection<ElfTypes32>(
ElfBuilder<ElfTypes32>* builder,
const std::vector<OatWriter::DebugInfo>& method_infos,
CFIFormat format);
template void WriteCFISection<ElfTypes64>(
ElfBuilder<ElfTypes64>* builder,
const std::vector<OatWriter::DebugInfo>& method_infos,
CFIFormat format);
template void WriteDebugSections<ElfTypes32>(
ElfBuilder<ElfTypes32>* builder,
const std::vector<OatWriter::DebugInfo>& method_infos);
template void WriteDebugSections<ElfTypes64>(
ElfBuilder<ElfTypes64>* builder,
const std::vector<OatWriter::DebugInfo>& method_infos);
} // namespace dwarf
} // namespace art