blob: d30fac4cde79627526ee070e95627261264daed0 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_file.h"
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <memory>
#include <sstream>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/logging.h"
#include "base/stringprintf.h"
#include "class_linker.h"
#include "dex_file-inl.h"
#include "dex_file_verifier.h"
#include "globals.h"
#include "leb128.h"
#include "mirror/string.h"
#include "os.h"
#include "safe_map.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include "utf-inl.h"
#include "utils.h"
#include "well_known_classes.h"
#include "zip_archive.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#include "ScopedFd.h"
#pragma GCC diagnostic pop
namespace art {
const uint8_t DexFile::kDexMagic[] = { 'd', 'e', 'x', '\n' };
const uint8_t DexFile::kDexMagicVersion[] = { '0', '3', '5', '\0' };
static int OpenAndReadMagic(const char* filename, uint32_t* magic, std::string* error_msg) {
CHECK(magic != nullptr);
ScopedFd fd(open(filename, O_RDONLY, 0));
if (fd.get() == -1) {
*error_msg = StringPrintf("Unable to open '%s' : %s", filename, strerror(errno));
return -1;
}
int n = TEMP_FAILURE_RETRY(read(fd.get(), magic, sizeof(*magic)));
if (n != sizeof(*magic)) {
*error_msg = StringPrintf("Failed to find magic in '%s'", filename);
return -1;
}
if (lseek(fd.get(), 0, SEEK_SET) != 0) {
*error_msg = StringPrintf("Failed to seek to beginning of file '%s' : %s", filename,
strerror(errno));
return -1;
}
return fd.release();
}
bool DexFile::GetChecksum(const char* filename, uint32_t* checksum, std::string* error_msg) {
CHECK(checksum != nullptr);
uint32_t magic;
// Strip ":...", which is the location
const char* zip_entry_name = kClassesDex;
const char* file_part = filename;
std::string file_part_storage;
if (DexFile::IsMultiDexLocation(filename)) {
file_part_storage = GetBaseLocation(filename);
file_part = file_part_storage.c_str();
zip_entry_name = filename + file_part_storage.size() + 1;
DCHECK_EQ(zip_entry_name[-1], kMultiDexSeparator);
}
ScopedFd fd(OpenAndReadMagic(file_part, &magic, error_msg));
if (fd.get() == -1) {
DCHECK(!error_msg->empty());
return false;
}
if (IsZipMagic(magic)) {
std::unique_ptr<ZipArchive> zip_archive(
ZipArchive::OpenFromFd(fd.release(), filename, error_msg));
if (zip_archive.get() == nullptr) {
*error_msg = StringPrintf("Failed to open zip archive '%s' (error msg: %s)", file_part,
error_msg->c_str());
return false;
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(zip_entry_name, error_msg));
if (zip_entry.get() == nullptr) {
*error_msg = StringPrintf("Zip archive '%s' doesn't contain %s (error msg: %s)", file_part,
zip_entry_name, error_msg->c_str());
return false;
}
*checksum = zip_entry->GetCrc32();
return true;
}
if (IsDexMagic(magic)) {
std::unique_ptr<const DexFile> dex_file(
DexFile::OpenFile(fd.release(), filename, false, error_msg));
if (dex_file.get() == nullptr) {
return false;
}
*checksum = dex_file->GetHeader().checksum_;
return true;
}
*error_msg = StringPrintf("Expected valid zip or dex file: '%s'", filename);
return false;
}
bool DexFile::Open(const char* filename, const char* location, std::string* error_msg,
std::vector<std::unique_ptr<const DexFile>>* dex_files) {
DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr";
uint32_t magic;
ScopedFd fd(OpenAndReadMagic(filename, &magic, error_msg));
if (fd.get() == -1) {
DCHECK(!error_msg->empty());
return false;
}
if (IsZipMagic(magic)) {
return DexFile::OpenZip(fd.release(), location, error_msg, dex_files);
}
if (IsDexMagic(magic)) {
std::unique_ptr<const DexFile> dex_file(DexFile::OpenFile(fd.release(), location, true,
error_msg));
if (dex_file.get() != nullptr) {
dex_files->push_back(std::move(dex_file));
return true;
} else {
return false;
}
}
*error_msg = StringPrintf("Expected valid zip or dex file: '%s'", filename);
return false;
}
static bool ContainsClassesDex(int fd, const char* filename) {
std::string error_msg;
std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(fd, filename, &error_msg));
if (zip_archive.get() == nullptr) {
return false;
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(DexFile::kClassesDex, &error_msg));
return (zip_entry.get() != nullptr);
}
bool DexFile::MaybeDex(const char* filename) {
uint32_t magic;
std::string error_msg;
ScopedFd fd(OpenAndReadMagic(filename, &magic, &error_msg));
if (fd.get() == -1) {
return false;
}
if (IsZipMagic(magic)) {
return ContainsClassesDex(fd.release(), filename);
} else if (IsDexMagic(magic)) {
return true;
}
return false;
}
int DexFile::GetPermissions() const {
if (mem_map_.get() == nullptr) {
return 0;
} else {
return mem_map_->GetProtect();
}
}
bool DexFile::IsReadOnly() const {
return GetPermissions() == PROT_READ;
}
bool DexFile::EnableWrite() const {
CHECK(IsReadOnly());
if (mem_map_.get() == nullptr) {
return false;
} else {
return mem_map_->Protect(PROT_READ | PROT_WRITE);
}
}
bool DexFile::DisableWrite() const {
CHECK(!IsReadOnly());
if (mem_map_.get() == nullptr) {
return false;
} else {
return mem_map_->Protect(PROT_READ);
}
}
std::unique_ptr<const DexFile> DexFile::OpenFile(int fd, const char* location, bool verify,
std::string* error_msg) {
CHECK(location != nullptr);
std::unique_ptr<MemMap> map;
{
ScopedFd delayed_close(fd);
struct stat sbuf;
memset(&sbuf, 0, sizeof(sbuf));
if (fstat(fd, &sbuf) == -1) {
*error_msg = StringPrintf("DexFile: fstat '%s' failed: %s", location, strerror(errno));
return nullptr;
}
if (S_ISDIR(sbuf.st_mode)) {
*error_msg = StringPrintf("Attempt to mmap directory '%s'", location);
return nullptr;
}
size_t length = sbuf.st_size;
map.reset(MemMap::MapFile(length, PROT_READ, MAP_PRIVATE, fd, 0, location, error_msg));
if (map.get() == nullptr) {
DCHECK(!error_msg->empty());
return nullptr;
}
}
if (map->Size() < sizeof(DexFile::Header)) {
*error_msg = StringPrintf(
"DexFile: failed to open dex file '%s' that is too short to have a header", location);
return nullptr;
}
const Header* dex_header = reinterpret_cast<const Header*>(map->Begin());
std::unique_ptr<const DexFile> dex_file(OpenMemory(location, dex_header->checksum_, map.release(),
error_msg));
if (dex_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to open dex file '%s' from memory: %s", location,
error_msg->c_str());
return nullptr;
}
if (verify && !DexFileVerifier::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(),
location, error_msg)) {
return nullptr;
}
return dex_file;
}
const char* DexFile::kClassesDex = "classes.dex";
bool DexFile::OpenZip(int fd, const std::string& location, std::string* error_msg,
std::vector<std::unique_ptr<const DexFile>>* dex_files) {
DCHECK(dex_files != nullptr) << "DexFile::OpenZip: out-param is nullptr";
std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(fd, location.c_str(), error_msg));
if (zip_archive.get() == nullptr) {
DCHECK(!error_msg->empty());
return false;
}
return DexFile::OpenFromZip(*zip_archive, location, error_msg, dex_files);
}
std::unique_ptr<const DexFile> DexFile::OpenMemory(const std::string& location,
uint32_t location_checksum,
MemMap* mem_map,
std::string* error_msg) {
return OpenMemory(mem_map->Begin(),
mem_map->Size(),
location,
location_checksum,
mem_map,
nullptr,
error_msg);
}
std::unique_ptr<const DexFile> DexFile::Open(const ZipArchive& zip_archive, const char* entry_name,
const std::string& location, std::string* error_msg,
ZipOpenErrorCode* error_code) {
CHECK(!location.empty());
std::unique_ptr<ZipEntry> zip_entry(zip_archive.Find(entry_name, error_msg));
if (zip_entry.get() == nullptr) {
*error_code = ZipOpenErrorCode::kEntryNotFound;
return nullptr;
}
std::unique_ptr<MemMap> map(zip_entry->ExtractToMemMap(location.c_str(), entry_name, error_msg));
if (map.get() == nullptr) {
*error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(),
error_msg->c_str());
*error_code = ZipOpenErrorCode::kExtractToMemoryError;
return nullptr;
}
std::unique_ptr<const DexFile> dex_file(OpenMemory(location, zip_entry->GetCrc32(), map.release(),
error_msg));
if (dex_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to open dex file '%s' from memory: %s", location.c_str(),
error_msg->c_str());
*error_code = ZipOpenErrorCode::kDexFileError;
return nullptr;
}
if (!dex_file->DisableWrite()) {
*error_msg = StringPrintf("Failed to make dex file '%s' read only", location.c_str());
*error_code = ZipOpenErrorCode::kMakeReadOnlyError;
return nullptr;
}
CHECK(dex_file->IsReadOnly()) << location;
if (!DexFileVerifier::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(),
location.c_str(), error_msg)) {
*error_code = ZipOpenErrorCode::kVerifyError;
return nullptr;
}
*error_code = ZipOpenErrorCode::kNoError;
return dex_file;
}
// Technically we do not have a limitation with respect to the number of dex files that can be in a
// multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols
// (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what
// seems an excessive number.
static constexpr size_t kWarnOnManyDexFilesThreshold = 100;
bool DexFile::OpenFromZip(const ZipArchive& zip_archive, const std::string& location,
std::string* error_msg,
std::vector<std::unique_ptr<const DexFile>>* dex_files) {
DCHECK(dex_files != nullptr) << "DexFile::OpenFromZip: out-param is nullptr";
ZipOpenErrorCode error_code;
std::unique_ptr<const DexFile> dex_file(Open(zip_archive, kClassesDex, location, error_msg,
&error_code));
if (dex_file.get() == nullptr) {
return false;
} else {
// Had at least classes.dex.
dex_files->push_back(std::move(dex_file));
// Now try some more.
// We could try to avoid std::string allocations by working on a char array directly. As we
// do not expect a lot of iterations, this seems too involved and brittle.
for (size_t i = 1; ; ++i) {
std::string name = GetMultiDexClassesDexName(i);
std::string fake_location = GetMultiDexLocation(i, location.c_str());
std::unique_ptr<const DexFile> next_dex_file(Open(zip_archive, name.c_str(), fake_location,
error_msg, &error_code));
if (next_dex_file.get() == nullptr) {
if (error_code != ZipOpenErrorCode::kEntryNotFound) {
LOG(WARNING) << error_msg;
}
break;
} else {
dex_files->push_back(std::move(next_dex_file));
}
if (i == kWarnOnManyDexFilesThreshold) {
LOG(WARNING) << location << " has in excess of " << kWarnOnManyDexFilesThreshold
<< " dex files. Please consider coalescing and shrinking the number to "
" avoid runtime overhead.";
}
if (i == std::numeric_limits<size_t>::max()) {
LOG(ERROR) << "Overflow in number of dex files!";
break;
}
}
return true;
}
}
std::unique_ptr<const DexFile> DexFile::OpenMemory(const uint8_t* base,
size_t size,
const std::string& location,
uint32_t location_checksum,
MemMap* mem_map,
const OatDexFile* oat_dex_file,
std::string* error_msg) {
CHECK_ALIGNED(base, 4); // various dex file structures must be word aligned
std::unique_ptr<DexFile> dex_file(
new DexFile(base, size, location, location_checksum, mem_map, oat_dex_file));
if (!dex_file->Init(error_msg)) {
dex_file.reset();
}
return std::unique_ptr<const DexFile>(dex_file.release());
}
DexFile::DexFile(const uint8_t* base, size_t size,
const std::string& location,
uint32_t location_checksum,
MemMap* mem_map,
const OatDexFile* oat_dex_file)
: begin_(base),
size_(size),
location_(location),
location_checksum_(location_checksum),
mem_map_(mem_map),
header_(reinterpret_cast<const Header*>(base)),
string_ids_(reinterpret_cast<const StringId*>(base + header_->string_ids_off_)),
type_ids_(reinterpret_cast<const TypeId*>(base + header_->type_ids_off_)),
field_ids_(reinterpret_cast<const FieldId*>(base + header_->field_ids_off_)),
method_ids_(reinterpret_cast<const MethodId*>(base + header_->method_ids_off_)),
proto_ids_(reinterpret_cast<const ProtoId*>(base + header_->proto_ids_off_)),
class_defs_(reinterpret_cast<const ClassDef*>(base + header_->class_defs_off_)),
find_class_def_misses_(0),
class_def_index_(nullptr),
oat_dex_file_(oat_dex_file) {
CHECK(begin_ != nullptr) << GetLocation();
CHECK_GT(size_, 0U) << GetLocation();
}
DexFile::~DexFile() {
// We don't call DeleteGlobalRef on dex_object_ because we're only called by DestroyJavaVM, and
// that's only called after DetachCurrentThread, which means there's no JNIEnv. We could
// re-attach, but cleaning up these global references is not obviously useful. It's not as if
// the global reference table is otherwise empty!
// Remove the index if one were created.
delete class_def_index_.LoadRelaxed();
}
bool DexFile::Init(std::string* error_msg) {
if (!CheckMagicAndVersion(error_msg)) {
return false;
}
return true;
}
bool DexFile::CheckMagicAndVersion(std::string* error_msg) const {
if (!IsMagicValid(header_->magic_)) {
std::ostringstream oss;
oss << "Unrecognized magic number in " << GetLocation() << ":"
<< " " << header_->magic_[0]
<< " " << header_->magic_[1]
<< " " << header_->magic_[2]
<< " " << header_->magic_[3];
*error_msg = oss.str();
return false;
}
if (!IsVersionValid(header_->magic_)) {
std::ostringstream oss;
oss << "Unrecognized version number in " << GetLocation() << ":"
<< " " << header_->magic_[4]
<< " " << header_->magic_[5]
<< " " << header_->magic_[6]
<< " " << header_->magic_[7];
*error_msg = oss.str();
return false;
}
return true;
}
bool DexFile::IsMagicValid(const uint8_t* magic) {
return (memcmp(magic, kDexMagic, sizeof(kDexMagic)) == 0);
}
bool DexFile::IsVersionValid(const uint8_t* magic) {
const uint8_t* version = &magic[sizeof(kDexMagic)];
return (memcmp(version, kDexMagicVersion, sizeof(kDexMagicVersion)) == 0);
}
uint32_t DexFile::GetVersion() const {
const char* version = reinterpret_cast<const char*>(&GetHeader().magic_[sizeof(kDexMagic)]);
return atoi(version);
}
const DexFile::ClassDef* DexFile::FindClassDef(const char* descriptor, size_t hash) const {
DCHECK_EQ(ComputeModifiedUtf8Hash(descriptor), hash);
// If we have an index lookup the descriptor via that as its constant time to search.
Index* index = class_def_index_.LoadSequentiallyConsistent();
if (index != nullptr) {
auto it = index->FindWithHash(descriptor, hash);
return (it == index->end()) ? nullptr : it->second;
}
// Fast path for rate no class defs case.
uint32_t num_class_defs = NumClassDefs();
if (num_class_defs == 0) {
return nullptr;
}
// Search for class def with 2 binary searches and then a linear search.
const StringId* string_id = FindStringId(descriptor);
if (string_id != nullptr) {
const TypeId* type_id = FindTypeId(GetIndexForStringId(*string_id));
if (type_id != nullptr) {
uint16_t type_idx = GetIndexForTypeId(*type_id);
for (size_t i = 0; i < num_class_defs; ++i) {
const ClassDef& class_def = GetClassDef(i);
if (class_def.class_idx_ == type_idx) {
return &class_def;
}
}
}
}
// A miss. If we've had kMaxFailedDexClassDefLookups misses then build an index to speed things
// up. This isn't done eagerly at construction as construction is not performed in multi-threaded
// sections of tools like dex2oat. If we're lazy we hopefully increase the chance of balancing
// out which thread builds the index.
const uint32_t kMaxFailedDexClassDefLookups = 100;
uint32_t old_misses = find_class_def_misses_.FetchAndAddSequentiallyConsistent(1);
if (old_misses == kMaxFailedDexClassDefLookups) {
// Are we the ones moving the miss count past the max? Sanity check the index doesn't exist.
CHECK(class_def_index_.LoadSequentiallyConsistent() == nullptr);
// Build the index.
index = new Index();
for (uint32_t i = 0; i < num_class_defs; ++i) {
const ClassDef& class_def = GetClassDef(i);
const char* class_descriptor = GetClassDescriptor(class_def);
index->Insert(std::make_pair(class_descriptor, &class_def));
}
// Sanity check the index still doesn't exist, only 1 thread should build it.
CHECK(class_def_index_.LoadSequentiallyConsistent() == nullptr);
class_def_index_.StoreSequentiallyConsistent(index);
}
return nullptr;
}
const DexFile::ClassDef* DexFile::FindClassDef(uint16_t type_idx) const {
size_t num_class_defs = NumClassDefs();
for (size_t i = 0; i < num_class_defs; ++i) {
const ClassDef& class_def = GetClassDef(i);
if (class_def.class_idx_ == type_idx) {
return &class_def;
}
}
return nullptr;
}
const DexFile::FieldId* DexFile::FindFieldId(const DexFile::TypeId& declaring_klass,
const DexFile::StringId& name,
const DexFile::TypeId& type) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const uint16_t class_idx = GetIndexForTypeId(declaring_klass);
const uint32_t name_idx = GetIndexForStringId(name);
const uint16_t type_idx = GetIndexForTypeId(type);
int32_t lo = 0;
int32_t hi = NumFieldIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::FieldId& field = GetFieldId(mid);
if (class_idx > field.class_idx_) {
lo = mid + 1;
} else if (class_idx < field.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > field.name_idx_) {
lo = mid + 1;
} else if (name_idx < field.name_idx_) {
hi = mid - 1;
} else {
if (type_idx > field.type_idx_) {
lo = mid + 1;
} else if (type_idx < field.type_idx_) {
hi = mid - 1;
} else {
return &field;
}
}
}
}
return nullptr;
}
const DexFile::MethodId* DexFile::FindMethodId(const DexFile::TypeId& declaring_klass,
const DexFile::StringId& name,
const DexFile::ProtoId& signature) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const uint16_t class_idx = GetIndexForTypeId(declaring_klass);
const uint32_t name_idx = GetIndexForStringId(name);
const uint16_t proto_idx = GetIndexForProtoId(signature);
int32_t lo = 0;
int32_t hi = NumMethodIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::MethodId& method = GetMethodId(mid);
if (class_idx > method.class_idx_) {
lo = mid + 1;
} else if (class_idx < method.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > method.name_idx_) {
lo = mid + 1;
} else if (name_idx < method.name_idx_) {
hi = mid - 1;
} else {
if (proto_idx > method.proto_idx_) {
lo = mid + 1;
} else if (proto_idx < method.proto_idx_) {
hi = mid - 1;
} else {
return &method;
}
}
}
}
return nullptr;
}
const DexFile::StringId* DexFile::FindStringId(const char* string) const {
int32_t lo = 0;
int32_t hi = NumStringIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::StringId& str_id = GetStringId(mid);
const char* str = GetStringData(str_id);
int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &str_id;
}
}
return nullptr;
}
const DexFile::StringId* DexFile::FindStringId(const uint16_t* string, size_t length) const {
int32_t lo = 0;
int32_t hi = NumStringIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::StringId& str_id = GetStringId(mid);
const char* str = GetStringData(str_id);
int compare = CompareModifiedUtf8ToUtf16AsCodePointValues(str, string, length);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &str_id;
}
}
return nullptr;
}
const DexFile::TypeId* DexFile::FindTypeId(uint32_t string_idx) const {
int32_t lo = 0;
int32_t hi = NumTypeIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const TypeId& type_id = GetTypeId(mid);
if (string_idx > type_id.descriptor_idx_) {
lo = mid + 1;
} else if (string_idx < type_id.descriptor_idx_) {
hi = mid - 1;
} else {
return &type_id;
}
}
return nullptr;
}
const DexFile::ProtoId* DexFile::FindProtoId(uint16_t return_type_idx,
const uint16_t* signature_type_idxs,
uint32_t signature_length) const {
int32_t lo = 0;
int32_t hi = NumProtoIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::ProtoId& proto = GetProtoId(mid);
int compare = return_type_idx - proto.return_type_idx_;
if (compare == 0) {
DexFileParameterIterator it(*this, proto);
size_t i = 0;
while (it.HasNext() && i < signature_length && compare == 0) {
compare = signature_type_idxs[i] - it.GetTypeIdx();
it.Next();
i++;
}
if (compare == 0) {
if (it.HasNext()) {
compare = -1;
} else if (i < signature_length) {
compare = 1;
}
}
}
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &proto;
}
}
return nullptr;
}
// Given a signature place the type ids into the given vector
bool DexFile::CreateTypeList(const StringPiece& signature, uint16_t* return_type_idx,
std::vector<uint16_t>* param_type_idxs) const {
if (signature[0] != '(') {
return false;
}
size_t offset = 1;
size_t end = signature.size();
bool process_return = false;
while (offset < end) {
size_t start_offset = offset;
char c = signature[offset];
offset++;
if (c == ')') {
process_return = true;
continue;
}
while (c == '[') { // process array prefix
if (offset >= end) { // expect some descriptor following [
return false;
}
c = signature[offset];
offset++;
}
if (c == 'L') { // process type descriptors
do {
if (offset >= end) { // unexpected early termination of descriptor
return false;
}
c = signature[offset];
offset++;
} while (c != ';');
}
// TODO: avoid creating a std::string just to get a 0-terminated char array
std::string descriptor(signature.data() + start_offset, offset - start_offset);
const DexFile::StringId* string_id = FindStringId(descriptor.c_str());
if (string_id == nullptr) {
return false;
}
const DexFile::TypeId* type_id = FindTypeId(GetIndexForStringId(*string_id));
if (type_id == nullptr) {
return false;
}
uint16_t type_idx = GetIndexForTypeId(*type_id);
if (!process_return) {
param_type_idxs->push_back(type_idx);
} else {
*return_type_idx = type_idx;
return offset == end; // return true if the signature had reached a sensible end
}
}
return false; // failed to correctly parse return type
}
const Signature DexFile::CreateSignature(const StringPiece& signature) const {
uint16_t return_type_idx;
std::vector<uint16_t> param_type_indices;
bool success = CreateTypeList(signature, &return_type_idx, &param_type_indices);
if (!success) {
return Signature::NoSignature();
}
const ProtoId* proto_id = FindProtoId(return_type_idx, param_type_indices);
if (proto_id == nullptr) {
return Signature::NoSignature();
}
return Signature(this, *proto_id);
}
int32_t DexFile::GetLineNumFromPC(ArtMethod* method, uint32_t rel_pc) const {
// For native method, lineno should be -2 to indicate it is native. Note that
// "line number == -2" is how libcore tells from StackTraceElement.
if (method->GetCodeItemOffset() == 0) {
return -2;
}
const CodeItem* code_item = GetCodeItem(method->GetCodeItemOffset());
DCHECK(code_item != nullptr) << PrettyMethod(method) << " " << GetLocation();
// A method with no line number info should return -1
LineNumFromPcContext context(rel_pc, -1);
DecodeDebugInfo(code_item, method->IsStatic(), method->GetDexMethodIndex(), LineNumForPcCb,
nullptr, &context);
return context.line_num_;
}
int32_t DexFile::FindTryItem(const CodeItem &code_item, uint32_t address) {
// Note: Signed type is important for max and min.
int32_t min = 0;
int32_t max = code_item.tries_size_ - 1;
while (min <= max) {
int32_t mid = min + ((max - min) / 2);
const art::DexFile::TryItem* ti = GetTryItems(code_item, mid);
uint32_t start = ti->start_addr_;
uint32_t end = start + ti->insn_count_;
if (address < start) {
max = mid - 1;
} else if (address >= end) {
min = mid + 1;
} else { // We have a winner!
return mid;
}
}
// No match.
return -1;
}
int32_t DexFile::FindCatchHandlerOffset(const CodeItem &code_item, uint32_t address) {
int32_t try_item = FindTryItem(code_item, address);
if (try_item == -1) {
return -1;
} else {
return DexFile::GetTryItems(code_item, try_item)->handler_off_;
}
}
void DexFile::DecodeDebugInfo0(const CodeItem* code_item, bool is_static, uint32_t method_idx,
DexDebugNewPositionCb position_cb, DexDebugNewLocalCb local_cb,
void* context, const uint8_t* stream, LocalInfo* local_in_reg)
const {
uint32_t line = DecodeUnsignedLeb128(&stream);
uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
uint16_t arg_reg = code_item->registers_size_ - code_item->ins_size_;
uint32_t address = 0;
bool need_locals = (local_cb != nullptr);
if (!is_static) {
if (need_locals) {
const char* descriptor = GetMethodDeclaringClassDescriptor(GetMethodId(method_idx));
local_in_reg[arg_reg].name_ = "this";
local_in_reg[arg_reg].descriptor_ = descriptor;
local_in_reg[arg_reg].signature_ = nullptr;
local_in_reg[arg_reg].start_address_ = 0;
local_in_reg[arg_reg].is_live_ = true;
}
arg_reg++;
}
DexFileParameterIterator it(*this, GetMethodPrototype(GetMethodId(method_idx)));
for (uint32_t i = 0; i < parameters_size && it.HasNext(); ++i, it.Next()) {
if (arg_reg >= code_item->registers_size_) {
LOG(ERROR) << "invalid stream - arg reg >= reg size (" << arg_reg
<< " >= " << code_item->registers_size_ << ") in " << GetLocation();
return;
}
uint32_t id = DecodeUnsignedLeb128P1(&stream);
const char* descriptor = it.GetDescriptor();
if (need_locals && id != kDexNoIndex) {
const char* name = StringDataByIdx(id);
local_in_reg[arg_reg].name_ = name;
local_in_reg[arg_reg].descriptor_ = descriptor;
local_in_reg[arg_reg].signature_ = nullptr;
local_in_reg[arg_reg].start_address_ = address;
local_in_reg[arg_reg].is_live_ = true;
}
switch (*descriptor) {
case 'D':
case 'J':
arg_reg += 2;
break;
default:
arg_reg += 1;
break;
}
}
if (it.HasNext()) {
LOG(ERROR) << "invalid stream - problem with parameter iterator in " << GetLocation()
<< " for method " << PrettyMethod(method_idx, *this);
return;
}
for (;;) {
uint8_t opcode = *stream++;
uint16_t reg;
uint32_t name_idx;
uint32_t descriptor_idx;
uint32_t signature_idx = 0;
switch (opcode) {
case DBG_END_SEQUENCE:
return;
case DBG_ADVANCE_PC:
address += DecodeUnsignedLeb128(&stream);
break;
case DBG_ADVANCE_LINE:
line += DecodeSignedLeb128(&stream);
break;
case DBG_START_LOCAL:
case DBG_START_LOCAL_EXTENDED:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ") in " << GetLocation();
return;
}
name_idx = DecodeUnsignedLeb128P1(&stream);
descriptor_idx = DecodeUnsignedLeb128P1(&stream);
if (opcode == DBG_START_LOCAL_EXTENDED) {
signature_idx = DecodeUnsignedLeb128P1(&stream);
}
// Emit what was previously there, if anything
if (need_locals) {
InvokeLocalCbIfLive(context, reg, address, local_in_reg, local_cb);
local_in_reg[reg].name_ = StringDataByIdx(name_idx);
local_in_reg[reg].descriptor_ = StringByTypeIdx(descriptor_idx);
local_in_reg[reg].signature_ =
(opcode == DBG_START_LOCAL_EXTENDED) ? StringDataByIdx(signature_idx)
: nullptr;
local_in_reg[reg].start_address_ = address;
local_in_reg[reg].is_live_ = true;
}
break;
case DBG_END_LOCAL:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ") in " << GetLocation();
return;
}
if (need_locals) {
InvokeLocalCbIfLive(context, reg, address, local_in_reg, local_cb);
local_in_reg[reg].is_live_ = false;
}
break;
case DBG_RESTART_LOCAL:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ") in " << GetLocation();
return;
}
if (need_locals) {
if (local_in_reg[reg].name_ == nullptr || local_in_reg[reg].descriptor_ == nullptr) {
LOG(ERROR) << "invalid stream - no name or descriptor in " << GetLocation();
return;
}
// If the register is live, the "restart" is superfluous,
// and we don't want to mess with the existing start address.
if (!local_in_reg[reg].is_live_) {
local_in_reg[reg].start_address_ = address;
local_in_reg[reg].is_live_ = true;
}
}
break;
case DBG_SET_PROLOGUE_END:
case DBG_SET_EPILOGUE_BEGIN:
case DBG_SET_FILE:
break;
default: {
int adjopcode = opcode - DBG_FIRST_SPECIAL;
address += adjopcode / DBG_LINE_RANGE;
line += DBG_LINE_BASE + (adjopcode % DBG_LINE_RANGE);
if (position_cb != nullptr) {
if (position_cb(context, address, line)) {
// early exit
return;
}
}
break;
}
}
}
}
void DexFile::DecodeDebugInfo(const CodeItem* code_item, bool is_static, uint32_t method_idx,
DexDebugNewPositionCb position_cb, DexDebugNewLocalCb local_cb,
void* context) const {
DCHECK(code_item != nullptr);
const uint8_t* stream = GetDebugInfoStream(code_item);
std::unique_ptr<LocalInfo[]> local_in_reg(local_cb != nullptr ?
new LocalInfo[code_item->registers_size_] :
nullptr);
if (stream != nullptr) {
DecodeDebugInfo0(code_item, is_static, method_idx, position_cb, local_cb, context, stream,
&local_in_reg[0]);
}
for (int reg = 0; reg < code_item->registers_size_; reg++) {
InvokeLocalCbIfLive(context, reg, code_item->insns_size_in_code_units_, &local_in_reg[0],
local_cb);
}
}
bool DexFile::LineNumForPcCb(void* raw_context, uint32_t address, uint32_t line_num) {
LineNumFromPcContext* context = reinterpret_cast<LineNumFromPcContext*>(raw_context);
// We know that this callback will be called in
// ascending address order, so keep going until we find
// a match or we've just gone past it.
if (address > context->address_) {
// The line number from the previous positions callback
// wil be the final result.
return true;
} else {
context->line_num_ = line_num;
return address == context->address_;
}
}
bool DexFile::IsMultiDexLocation(const char* location) {
return strrchr(location, kMultiDexSeparator) != nullptr;
}
std::string DexFile::GetMultiDexClassesDexName(size_t index) {
if (index == 0) {
return "classes.dex";
} else {
return StringPrintf("classes%zu.dex", index + 1);
}
}
std::string DexFile::GetMultiDexLocation(size_t index, const char* dex_location) {
if (index == 0) {
return dex_location;
} else {
return StringPrintf("%s" kMultiDexSeparatorString "classes%zu.dex", dex_location, index + 1);
}
}
std::string DexFile::GetDexCanonicalLocation(const char* dex_location) {
CHECK_NE(dex_location, static_cast<const char*>(nullptr));
std::string base_location = GetBaseLocation(dex_location);
const char* suffix = dex_location + base_location.size();
DCHECK(suffix[0] == 0 || suffix[0] == kMultiDexSeparator);
UniqueCPtr<const char[]> path(realpath(base_location.c_str(), nullptr));
if (path != nullptr && path.get() != base_location) {
return std::string(path.get()) + suffix;
} else if (suffix[0] == 0) {
return base_location;
} else {
return dex_location;
}
}
std::ostream& operator<<(std::ostream& os, const DexFile& dex_file) {
os << StringPrintf("[DexFile: %s dex-checksum=%08x location-checksum=%08x %p-%p]",
dex_file.GetLocation().c_str(),
dex_file.GetHeader().checksum_, dex_file.GetLocationChecksum(),
dex_file.Begin(), dex_file.Begin() + dex_file.Size());
return os;
}
std::string Signature::ToString() const {
if (dex_file_ == nullptr) {
CHECK(proto_id_ == nullptr);
return "<no signature>";
}
const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_);
std::string result;
if (params == nullptr) {
result += "()";
} else {
result += "(";
for (uint32_t i = 0; i < params->Size(); ++i) {
result += dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_);
}
result += ")";
}
result += dex_file_->StringByTypeIdx(proto_id_->return_type_idx_);
return result;
}
bool Signature::operator==(const StringPiece& rhs) const {
if (dex_file_ == nullptr) {
return false;
}
StringPiece tail(rhs);
if (!tail.starts_with("(")) {
return false; // Invalid signature
}
tail.remove_prefix(1); // "(";
const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_);
if (params != nullptr) {
for (uint32_t i = 0; i < params->Size(); ++i) {
StringPiece param(dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_));
if (!tail.starts_with(param)) {
return false;
}
tail.remove_prefix(param.length());
}
}
if (!tail.starts_with(")")) {
return false;
}
tail.remove_prefix(1); // ")";
return tail == dex_file_->StringByTypeIdx(proto_id_->return_type_idx_);
}
std::ostream& operator<<(std::ostream& os, const Signature& sig) {
return os << sig.ToString();
}
// Decodes the header section from the class data bytes.
void ClassDataItemIterator::ReadClassDataHeader() {
CHECK(ptr_pos_ != nullptr);
header_.static_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.instance_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.direct_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.virtual_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
}
void ClassDataItemIterator::ReadClassDataField() {
field_.field_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
field_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
// The user of the iterator is responsible for checking if there
// are unordered or duplicate indexes.
}
void ClassDataItemIterator::ReadClassDataMethod() {
method_.method_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.code_off_ = DecodeUnsignedLeb128(&ptr_pos_);
if (last_idx_ != 0 && method_.method_idx_delta_ == 0) {
LOG(WARNING) << "Duplicate method in " << dex_file_.GetLocation();
}
}
// Read a signed integer. "zwidth" is the zero-based byte count.
static int32_t ReadSignedInt(const uint8_t* ptr, int zwidth) {
int32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
return val;
}
// Read an unsigned integer. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint32_t ReadUnsignedInt(const uint8_t* ptr, int zwidth, bool fill_on_right) {
uint32_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
}
return val;
}
// Read a signed long. "zwidth" is the zero-based byte count.
static int64_t ReadSignedLong(const uint8_t* ptr, int zwidth) {
int64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
return val;
}
// Read an unsigned long. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint64_t ReadUnsignedLong(const uint8_t* ptr, int zwidth, bool fill_on_right) {
uint64_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
}
return val;
}
EncodedStaticFieldValueIterator::EncodedStaticFieldValueIterator(
const DexFile& dex_file, Handle<mirror::DexCache>* dex_cache,
Handle<mirror::ClassLoader>* class_loader, ClassLinker* linker,
const DexFile::ClassDef& class_def)
: dex_file_(dex_file), dex_cache_(dex_cache), class_loader_(class_loader), linker_(linker),
array_size_(), pos_(-1), type_(kByte) {
DCHECK(dex_cache != nullptr);
DCHECK(class_loader != nullptr);
ptr_ = dex_file.GetEncodedStaticFieldValuesArray(class_def);
if (ptr_ == nullptr) {
array_size_ = 0;
} else {
array_size_ = DecodeUnsignedLeb128(&ptr_);
}
if (array_size_ > 0) {
Next();
}
}
void EncodedStaticFieldValueIterator::Next() {
pos_++;
if (pos_ >= array_size_) {
return;
}
uint8_t value_type = *ptr_++;
uint8_t value_arg = value_type >> kEncodedValueArgShift;
size_t width = value_arg + 1; // assume and correct later
type_ = static_cast<ValueType>(value_type & kEncodedValueTypeMask);
switch (type_) {
case kBoolean:
jval_.i = (value_arg != 0) ? 1 : 0;
width = 0;
break;
case kByte:
jval_.i = ReadSignedInt(ptr_, value_arg);
CHECK(IsInt<8>(jval_.i));
break;
case kShort:
jval_.i = ReadSignedInt(ptr_, value_arg);
CHECK(IsInt<16>(jval_.i));
break;
case kChar:
jval_.i = ReadUnsignedInt(ptr_, value_arg, false);
CHECK(IsUint<16>(jval_.i));
break;
case kInt:
jval_.i = ReadSignedInt(ptr_, value_arg);
break;
case kLong:
jval_.j = ReadSignedLong(ptr_, value_arg);
break;
case kFloat:
jval_.i = ReadUnsignedInt(ptr_, value_arg, true);
break;
case kDouble:
jval_.j = ReadUnsignedLong(ptr_, value_arg, true);
break;
case kString:
case kType:
jval_.i = ReadUnsignedInt(ptr_, value_arg, false);
break;
case kField:
case kMethod:
case kEnum:
case kArray:
case kAnnotation:
UNIMPLEMENTED(FATAL) << ": type " << type_;
UNREACHABLE();
case kNull:
jval_.l = nullptr;
width = 0;
break;
default:
LOG(FATAL) << "Unreached";
UNREACHABLE();
}
ptr_ += width;
}
template<bool kTransactionActive>
void EncodedStaticFieldValueIterator::ReadValueToField(ArtField* field) const {
switch (type_) {
case kBoolean: field->SetBoolean<kTransactionActive>(field->GetDeclaringClass(), jval_.z);
break;
case kByte: field->SetByte<kTransactionActive>(field->GetDeclaringClass(), jval_.b); break;
case kShort: field->SetShort<kTransactionActive>(field->GetDeclaringClass(), jval_.s); break;
case kChar: field->SetChar<kTransactionActive>(field->GetDeclaringClass(), jval_.c); break;
case kInt: field->SetInt<kTransactionActive>(field->GetDeclaringClass(), jval_.i); break;
case kLong: field->SetLong<kTransactionActive>(field->GetDeclaringClass(), jval_.j); break;
case kFloat: field->SetFloat<kTransactionActive>(field->GetDeclaringClass(), jval_.f); break;
case kDouble: field->SetDouble<kTransactionActive>(field->GetDeclaringClass(), jval_.d); break;
case kNull: field->SetObject<kTransactionActive>(field->GetDeclaringClass(), nullptr); break;
case kString: {
mirror::String* resolved = linker_->ResolveString(dex_file_, jval_.i, *dex_cache_);
field->SetObject<kTransactionActive>(field->GetDeclaringClass(), resolved);
break;
}
case kType: {
mirror::Class* resolved = linker_->ResolveType(dex_file_, jval_.i, *dex_cache_,
*class_loader_);
field->SetObject<kTransactionActive>(field->GetDeclaringClass(), resolved);
break;
}
default: UNIMPLEMENTED(FATAL) << ": type " << type_;
}
}
template void EncodedStaticFieldValueIterator::ReadValueToField<true>(ArtField* field) const;
template void EncodedStaticFieldValueIterator::ReadValueToField<false>(ArtField* field) const;
CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, uint32_t address) {
handler_.address_ = -1;
int32_t offset = -1;
// Short-circuit the overwhelmingly common cases.
switch (code_item.tries_size_) {
case 0:
break;
case 1: {
const DexFile::TryItem* tries = DexFile::GetTryItems(code_item, 0);
uint32_t start = tries->start_addr_;
if (address >= start) {
uint32_t end = start + tries->insn_count_;
if (address < end) {
offset = tries->handler_off_;
}
}
break;
}
default:
offset = DexFile::FindCatchHandlerOffset(code_item, address);
}
Init(code_item, offset);
}
CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item,
const DexFile::TryItem& try_item) {
handler_.address_ = -1;
Init(code_item, try_item.handler_off_);
}
void CatchHandlerIterator::Init(const DexFile::CodeItem& code_item,
int32_t offset) {
if (offset >= 0) {
Init(DexFile::GetCatchHandlerData(code_item, offset));
} else {
// Not found, initialize as empty
current_data_ = nullptr;
remaining_count_ = -1;
catch_all_ = false;
DCHECK(!HasNext());
}
}
void CatchHandlerIterator::Init(const uint8_t* handler_data) {
current_data_ = handler_data;
remaining_count_ = DecodeSignedLeb128(&current_data_);
// If remaining_count_ is non-positive, then it is the negative of
// the number of catch types, and the catches are followed by a
// catch-all handler.
if (remaining_count_ <= 0) {
catch_all_ = true;
remaining_count_ = -remaining_count_;
} else {
catch_all_ = false;
}
Next();
}
void CatchHandlerIterator::Next() {
if (remaining_count_ > 0) {
handler_.type_idx_ = DecodeUnsignedLeb128(&current_data_);
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
remaining_count_--;
return;
}
if (catch_all_) {
handler_.type_idx_ = DexFile::kDexNoIndex16;
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
catch_all_ = false;
return;
}
// no more handler
remaining_count_ = -1;
}
} // namespace art