blob: 031761e7f7247cb830b7034ec5b6f6ed0ced0d94 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
#define ART_COMPILER_OPTIMIZING_NODES_H_
#include "base/arena_containers.h"
#include "base/arena_object.h"
#include "dex/compiler_enums.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "handle.h"
#include "handle_scope.h"
#include "invoke_type.h"
#include "locations.h"
#include "mirror/class.h"
#include "offsets.h"
#include "primitive.h"
#include "utils/arena_bit_vector.h"
#include "utils/growable_array.h"
namespace art {
class GraphChecker;
class HBasicBlock;
class HDoubleConstant;
class HEnvironment;
class HFloatConstant;
class HGraphVisitor;
class HInstruction;
class HIntConstant;
class HInvoke;
class HLongConstant;
class HNullConstant;
class HPhi;
class HSuspendCheck;
class LiveInterval;
class LocationSummary;
class SlowPathCode;
class SsaBuilder;
static const int kDefaultNumberOfBlocks = 8;
static const int kDefaultNumberOfSuccessors = 2;
static const int kDefaultNumberOfPredecessors = 2;
static const int kDefaultNumberOfDominatedBlocks = 1;
static const int kDefaultNumberOfBackEdges = 1;
static constexpr uint32_t kMaxIntShiftValue = 0x1f;
static constexpr uint64_t kMaxLongShiftValue = 0x3f;
enum IfCondition {
kCondEQ,
kCondNE,
kCondLT,
kCondLE,
kCondGT,
kCondGE,
};
class HInstructionList {
public:
HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
void AddInstruction(HInstruction* instruction);
void RemoveInstruction(HInstruction* instruction);
// Insert `instruction` before/after an existing instruction `cursor`.
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
// Return true if this list contains `instruction`.
bool Contains(HInstruction* instruction) const;
// Return true if `instruction1` is found before `instruction2` in
// this instruction list and false otherwise. Abort if none
// of these instructions is found.
bool FoundBefore(const HInstruction* instruction1,
const HInstruction* instruction2) const;
bool IsEmpty() const { return first_instruction_ == nullptr; }
void Clear() { first_instruction_ = last_instruction_ = nullptr; }
// Update the block of all instructions to be `block`.
void SetBlockOfInstructions(HBasicBlock* block) const;
void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
void Add(const HInstructionList& instruction_list);
// Return the number of instructions in the list. This is an expensive operation.
size_t CountSize() const;
private:
HInstruction* first_instruction_;
HInstruction* last_instruction_;
friend class HBasicBlock;
friend class HGraph;
friend class HInstruction;
friend class HInstructionIterator;
friend class HBackwardInstructionIterator;
DISALLOW_COPY_AND_ASSIGN(HInstructionList);
};
// Control-flow graph of a method. Contains a list of basic blocks.
class HGraph : public ArenaObject<kArenaAllocMisc> {
public:
HGraph(ArenaAllocator* arena,
const DexFile& dex_file,
uint32_t method_idx,
bool debuggable = false,
int start_instruction_id = 0)
: arena_(arena),
blocks_(arena, kDefaultNumberOfBlocks),
reverse_post_order_(arena, kDefaultNumberOfBlocks),
linear_order_(arena, kDefaultNumberOfBlocks),
entry_block_(nullptr),
exit_block_(nullptr),
maximum_number_of_out_vregs_(0),
number_of_vregs_(0),
number_of_in_vregs_(0),
temporaries_vreg_slots_(0),
has_bounds_checks_(false),
debuggable_(debuggable),
current_instruction_id_(start_instruction_id),
dex_file_(dex_file),
method_idx_(method_idx),
cached_null_constant_(nullptr),
cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
cached_float_constants_(std::less<int32_t>(), arena->Adapter()),
cached_long_constants_(std::less<int64_t>(), arena->Adapter()),
cached_double_constants_(std::less<int64_t>(), arena->Adapter()) {}
ArenaAllocator* GetArena() const { return arena_; }
const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
HBasicBlock* GetEntryBlock() const { return entry_block_; }
HBasicBlock* GetExitBlock() const { return exit_block_; }
void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
void AddBlock(HBasicBlock* block);
// Try building the SSA form of this graph, with dominance computation and loop
// recognition. Returns whether it was successful in doing all these steps.
bool TryBuildingSsa() {
BuildDominatorTree();
// The SSA builder requires loops to all be natural. Specifically, the dead phi
// elimination phase checks the consistency of the graph when doing a post-order
// visit for eliminating dead phis: a dead phi can only have loop header phi
// users remaining when being visited.
if (!AnalyzeNaturalLoops()) return false;
TransformToSsa();
return true;
}
void BuildDominatorTree();
void TransformToSsa();
void SimplifyCFG();
// Analyze all natural loops in this graph. Returns false if one
// loop is not natural, that is the header does not dominate the
// back edge.
bool AnalyzeNaturalLoops() const;
// Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
void InlineInto(HGraph* outer_graph, HInvoke* invoke);
// Removes `block` from the graph.
void DeleteDeadBlock(HBasicBlock* block);
void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
void SimplifyLoop(HBasicBlock* header);
int32_t GetNextInstructionId() {
DCHECK_NE(current_instruction_id_, INT32_MAX);
return current_instruction_id_++;
}
int32_t GetCurrentInstructionId() const {
return current_instruction_id_;
}
void SetCurrentInstructionId(int32_t id) {
current_instruction_id_ = id;
}
uint16_t GetMaximumNumberOfOutVRegs() const {
return maximum_number_of_out_vregs_;
}
void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
maximum_number_of_out_vregs_ = new_value;
}
void UpdateTemporariesVRegSlots(size_t slots) {
temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
}
size_t GetTemporariesVRegSlots() const {
return temporaries_vreg_slots_;
}
void SetNumberOfVRegs(uint16_t number_of_vregs) {
number_of_vregs_ = number_of_vregs;
}
uint16_t GetNumberOfVRegs() const {
return number_of_vregs_;
}
void SetNumberOfInVRegs(uint16_t value) {
number_of_in_vregs_ = value;
}
uint16_t GetNumberOfLocalVRegs() const {
return number_of_vregs_ - number_of_in_vregs_;
}
const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
return reverse_post_order_;
}
const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
return linear_order_;
}
bool HasBoundsChecks() const {
return has_bounds_checks_;
}
void SetHasBoundsChecks(bool value) {
has_bounds_checks_ = value;
}
bool IsDebuggable() const { return debuggable_; }
// Returns a constant of the given type and value. If it does not exist
// already, it is created and inserted into the graph. This method is only for
// integral types.
HConstant* GetConstant(Primitive::Type type, int64_t value);
HNullConstant* GetNullConstant();
HIntConstant* GetIntConstant(int32_t value) {
return CreateConstant(value, &cached_int_constants_);
}
HLongConstant* GetLongConstant(int64_t value) {
return CreateConstant(value, &cached_long_constants_);
}
HFloatConstant* GetFloatConstant(float value) {
return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
}
HDoubleConstant* GetDoubleConstant(double value) {
return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
}
HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
const DexFile& GetDexFile() const {
return dex_file_;
}
uint32_t GetMethodIdx() const {
return method_idx_;
}
private:
void VisitBlockForDominatorTree(HBasicBlock* block,
HBasicBlock* predecessor,
GrowableArray<size_t>* visits);
void FindBackEdges(ArenaBitVector* visited);
void VisitBlockForBackEdges(HBasicBlock* block,
ArenaBitVector* visited,
ArenaBitVector* visiting);
void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
void RemoveDeadBlocks(const ArenaBitVector& visited);
template <class InstructionType, typename ValueType>
InstructionType* CreateConstant(ValueType value,
ArenaSafeMap<ValueType, InstructionType*>* cache) {
// Try to find an existing constant of the given value.
InstructionType* constant = nullptr;
auto cached_constant = cache->find(value);
if (cached_constant != cache->end()) {
constant = cached_constant->second;
}
// If not found or previously deleted, create and cache a new instruction.
if (constant == nullptr || constant->GetBlock() == nullptr) {
constant = new (arena_) InstructionType(value);
cache->Overwrite(value, constant);
InsertConstant(constant);
}
return constant;
}
void InsertConstant(HConstant* instruction);
// Cache a float constant into the graph. This method should only be
// called by the SsaBuilder when creating "equivalent" instructions.
void CacheFloatConstant(HFloatConstant* constant);
// See CacheFloatConstant comment.
void CacheDoubleConstant(HDoubleConstant* constant);
ArenaAllocator* const arena_;
// List of blocks in insertion order.
GrowableArray<HBasicBlock*> blocks_;
// List of blocks to perform a reverse post order tree traversal.
GrowableArray<HBasicBlock*> reverse_post_order_;
// List of blocks to perform a linear order tree traversal.
GrowableArray<HBasicBlock*> linear_order_;
HBasicBlock* entry_block_;
HBasicBlock* exit_block_;
// The maximum number of virtual registers arguments passed to a HInvoke in this graph.
uint16_t maximum_number_of_out_vregs_;
// The number of virtual registers in this method. Contains the parameters.
uint16_t number_of_vregs_;
// The number of virtual registers used by parameters of this method.
uint16_t number_of_in_vregs_;
// Number of vreg size slots that the temporaries use (used in baseline compiler).
size_t temporaries_vreg_slots_;
// Has bounds checks. We can totally skip BCE if it's false.
bool has_bounds_checks_;
// Indicates whether the graph should be compiled in a way that
// ensures full debuggability. If false, we can apply more
// aggressive optimizations that may limit the level of debugging.
const bool debuggable_;
// The current id to assign to a newly added instruction. See HInstruction.id_.
int32_t current_instruction_id_;
// The dex file from which the method is from.
const DexFile& dex_file_;
// The method index in the dex file.
const uint32_t method_idx_;
// Cached constants.
HNullConstant* cached_null_constant_;
ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
friend class SsaBuilder; // For caching constants.
friend class SsaLivenessAnalysis; // For the linear order.
ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
DISALLOW_COPY_AND_ASSIGN(HGraph);
};
class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
public:
HLoopInformation(HBasicBlock* header, HGraph* graph)
: header_(header),
suspend_check_(nullptr),
back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
// Make bit vector growable, as the number of blocks may change.
blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
HBasicBlock* GetHeader() const {
return header_;
}
void SetHeader(HBasicBlock* block) {
header_ = block;
}
HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
void AddBackEdge(HBasicBlock* back_edge) {
back_edges_.Add(back_edge);
}
void RemoveBackEdge(HBasicBlock* back_edge) {
back_edges_.Delete(back_edge);
}
bool IsBackEdge(const HBasicBlock& block) const {
for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
if (back_edges_.Get(i) == &block) return true;
}
return false;
}
size_t NumberOfBackEdges() const {
return back_edges_.Size();
}
HBasicBlock* GetPreHeader() const;
const GrowableArray<HBasicBlock*>& GetBackEdges() const {
return back_edges_;
}
// Returns the lifetime position of the back edge that has the
// greatest lifetime position.
size_t GetLifetimeEnd() const;
void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
if (back_edges_.Get(i) == existing) {
back_edges_.Put(i, new_back_edge);
return;
}
}
UNREACHABLE();
}
// Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
// that is the header dominates the back edge.
bool Populate();
// Returns whether this loop information contains `block`.
// Note that this loop information *must* be populated before entering this function.
bool Contains(const HBasicBlock& block) const;
// Returns whether this loop information is an inner loop of `other`.
// Note that `other` *must* be populated before entering this function.
bool IsIn(const HLoopInformation& other) const;
const ArenaBitVector& GetBlocks() const { return blocks_; }
void Add(HBasicBlock* block);
void Remove(HBasicBlock* block);
private:
// Internal recursive implementation of `Populate`.
void PopulateRecursive(HBasicBlock* block);
HBasicBlock* header_;
HSuspendCheck* suspend_check_;
GrowableArray<HBasicBlock*> back_edges_;
ArenaBitVector blocks_;
DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
};
static constexpr size_t kNoLifetime = -1;
static constexpr uint32_t kNoDexPc = -1;
// A block in a method. Contains the list of instructions represented
// as a double linked list. Each block knows its predecessors and
// successors.
class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
public:
explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
: graph_(graph),
predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
loop_information_(nullptr),
dominator_(nullptr),
dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
block_id_(-1),
dex_pc_(dex_pc),
lifetime_start_(kNoLifetime),
lifetime_end_(kNoLifetime),
is_catch_block_(false) {}
const GrowableArray<HBasicBlock*>& GetPredecessors() const {
return predecessors_;
}
const GrowableArray<HBasicBlock*>& GetSuccessors() const {
return successors_;
}
const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
return dominated_blocks_;
}
bool IsEntryBlock() const {
return graph_->GetEntryBlock() == this;
}
bool IsExitBlock() const {
return graph_->GetExitBlock() == this;
}
bool IsSingleGoto() const;
void AddBackEdge(HBasicBlock* back_edge) {
if (loop_information_ == nullptr) {
loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
}
DCHECK_EQ(loop_information_->GetHeader(), this);
loop_information_->AddBackEdge(back_edge);
}
HGraph* GetGraph() const { return graph_; }
void SetGraph(HGraph* graph) { graph_ = graph; }
int GetBlockId() const { return block_id_; }
void SetBlockId(int id) { block_id_ = id; }
HBasicBlock* GetDominator() const { return dominator_; }
void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
if (dominated_blocks_.Get(i) == existing) {
dominated_blocks_.Put(i, new_block);
return;
}
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
int NumberOfBackEdges() const {
return loop_information_ == nullptr
? 0
: loop_information_->NumberOfBackEdges();
}
HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
const HInstructionList& GetInstructions() const { return instructions_; }
HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
const HInstructionList& GetPhis() const { return phis_; }
void AddSuccessor(HBasicBlock* block) {
successors_.Add(block);
block->predecessors_.Add(this);
}
void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
size_t successor_index = GetSuccessorIndexOf(existing);
DCHECK_NE(successor_index, static_cast<size_t>(-1));
existing->RemovePredecessor(this);
new_block->predecessors_.Add(this);
successors_.Put(successor_index, new_block);
}
void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
size_t predecessor_index = GetPredecessorIndexOf(existing);
DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
existing->RemoveSuccessor(this);
new_block->successors_.Add(this);
predecessors_.Put(predecessor_index, new_block);
}
void RemovePredecessor(HBasicBlock* block) {
predecessors_.Delete(block);
}
void RemoveSuccessor(HBasicBlock* block) {
successors_.Delete(block);
}
void ClearAllPredecessors() {
predecessors_.Reset();
}
void AddPredecessor(HBasicBlock* block) {
predecessors_.Add(block);
block->successors_.Add(this);
}
void SwapPredecessors() {
DCHECK_EQ(predecessors_.Size(), 2u);
HBasicBlock* temp = predecessors_.Get(0);
predecessors_.Put(0, predecessors_.Get(1));
predecessors_.Put(1, temp);
}
void SwapSuccessors() {
DCHECK_EQ(successors_.Size(), 2u);
HBasicBlock* temp = successors_.Get(0);
successors_.Put(0, successors_.Get(1));
successors_.Put(1, temp);
}
size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
if (predecessors_.Get(i) == predecessor) {
return i;
}
}
return -1;
}
size_t GetSuccessorIndexOf(HBasicBlock* successor) {
for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
if (successors_.Get(i) == successor) {
return i;
}
}
return -1;
}
// Split the block into two blocks just after `cursor`. Returns the newly
// created block. Note that this method just updates raw block information,
// like predecessors, successors, dominators, and instruction list. It does not
// update the graph, reverse post order, loop information, nor make sure the
// blocks are consistent (for example ending with a control flow instruction).
HBasicBlock* SplitAfter(HInstruction* cursor);
// Merge `other` at the end of `this`. Successors and dominated blocks of
// `other` are changed to be successors and dominated blocks of `this`. Note
// that this method does not update the graph, reverse post order, loop
// information, nor make sure the blocks are consistent (for example ending
// with a control flow instruction).
void MergeWithInlined(HBasicBlock* other);
// Replace `this` with `other`. Predecessors, successors, and dominated blocks
// of `this` are moved to `other`.
// Note that this method does not update the graph, reverse post order, loop
// information, nor make sure the blocks are consistent (for example ending
// with a control flow instruction).
void ReplaceWith(HBasicBlock* other);
// Merge `other` at the end of `this`. This method updates loops, reverse post
// order, links to predecessors, successors, dominators and deletes the block
// from the graph. The two blocks must be successive, i.e. `this` the only
// predecessor of `other` and vice versa.
void MergeWith(HBasicBlock* other);
// Disconnects `this` from all its predecessors, successors and dominator,
// removes it from all loops it is included in and eventually from the graph.
// The block must not dominate any other block. Predecessors and successors
// are safely updated.
void DisconnectAndDelete();
void AddInstruction(HInstruction* instruction);
// Insert `instruction` before/after an existing instruction `cursor`.
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
// Replace instruction `initial` with `replacement` within this block.
void ReplaceAndRemoveInstructionWith(HInstruction* initial,
HInstruction* replacement);
void AddPhi(HPhi* phi);
void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
// RemoveInstruction and RemovePhi delete a given instruction from the respective
// instruction list. With 'ensure_safety' set to true, it verifies that the
// instruction is not in use and removes it from the use lists of its inputs.
void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
void RemovePhi(HPhi* phi, bool ensure_safety = true);
void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
bool IsLoopHeader() const {
return IsInLoop() && (loop_information_->GetHeader() == this);
}
bool IsLoopPreHeaderFirstPredecessor() const {
DCHECK(IsLoopHeader());
DCHECK(!GetPredecessors().IsEmpty());
return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
}
HLoopInformation* GetLoopInformation() const {
return loop_information_;
}
// Set the loop_information_ on this block. Overrides the current
// loop_information if it is an outer loop of the passed loop information.
// Note that this method is called while creating the loop information.
void SetInLoop(HLoopInformation* info) {
if (IsLoopHeader()) {
// Nothing to do. This just means `info` is an outer loop.
} else if (!IsInLoop()) {
loop_information_ = info;
} else if (loop_information_->Contains(*info->GetHeader())) {
// Block is currently part of an outer loop. Make it part of this inner loop.
// Note that a non loop header having a loop information means this loop information
// has already been populated
loop_information_ = info;
} else {
// Block is part of an inner loop. Do not update the loop information.
// Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
// at this point, because this method is being called while populating `info`.
}
}
// Raw update of the loop information.
void SetLoopInformation(HLoopInformation* info) {
loop_information_ = info;
}
// Checks if the loop information points to a valid loop. If the loop has been
// dismantled (does not have a back edge any more), loop information is
// removed or replaced with the information of the first valid outer loop.
void UpdateLoopInformation();
bool IsInLoop() const { return loop_information_ != nullptr; }
// Returns wheter this block dominates the blocked passed as parameter.
bool Dominates(HBasicBlock* block) const;
size_t GetLifetimeStart() const { return lifetime_start_; }
size_t GetLifetimeEnd() const { return lifetime_end_; }
void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
uint32_t GetDexPc() const { return dex_pc_; }
bool IsCatchBlock() const { return is_catch_block_; }
void SetIsCatchBlock() { is_catch_block_ = true; }
bool EndsWithControlFlowInstruction() const;
bool EndsWithIf() const;
bool HasSinglePhi() const;
private:
HGraph* graph_;
GrowableArray<HBasicBlock*> predecessors_;
GrowableArray<HBasicBlock*> successors_;
HInstructionList instructions_;
HInstructionList phis_;
HLoopInformation* loop_information_;
HBasicBlock* dominator_;
GrowableArray<HBasicBlock*> dominated_blocks_;
int block_id_;
// The dex program counter of the first instruction of this block.
const uint32_t dex_pc_;
size_t lifetime_start_;
size_t lifetime_end_;
bool is_catch_block_;
friend class HGraph;
friend class HInstruction;
DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
};
// Iterates over the LoopInformation of all loops which contain 'block'
// from the innermost to the outermost.
class HLoopInformationOutwardIterator : public ValueObject {
public:
explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
: current_(block.GetLoopInformation()) {}
bool Done() const { return current_ == nullptr; }
void Advance() {
DCHECK(!Done());
current_ = current_->GetPreHeader()->GetLoopInformation();
}
HLoopInformation* Current() const {
DCHECK(!Done());
return current_;
}
private:
HLoopInformation* current_;
DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
};
#define FOR_EACH_CONCRETE_INSTRUCTION(M) \
M(Add, BinaryOperation) \
M(And, BinaryOperation) \
M(ArrayGet, Instruction) \
M(ArrayLength, Instruction) \
M(ArraySet, Instruction) \
M(BooleanNot, UnaryOperation) \
M(BoundsCheck, Instruction) \
M(BoundType, Instruction) \
M(CheckCast, Instruction) \
M(ClinitCheck, Instruction) \
M(Compare, BinaryOperation) \
M(Condition, BinaryOperation) \
M(Deoptimize, Instruction) \
M(Div, BinaryOperation) \
M(DivZeroCheck, Instruction) \
M(DoubleConstant, Constant) \
M(Equal, Condition) \
M(Exit, Instruction) \
M(FloatConstant, Constant) \
M(Goto, Instruction) \
M(GreaterThan, Condition) \
M(GreaterThanOrEqual, Condition) \
M(If, Instruction) \
M(InstanceFieldGet, Instruction) \
M(InstanceFieldSet, Instruction) \
M(InstanceOf, Instruction) \
M(IntConstant, Constant) \
M(InvokeInterface, Invoke) \
M(InvokeStaticOrDirect, Invoke) \
M(InvokeVirtual, Invoke) \
M(LessThan, Condition) \
M(LessThanOrEqual, Condition) \
M(LoadClass, Instruction) \
M(LoadException, Instruction) \
M(LoadLocal, Instruction) \
M(LoadString, Instruction) \
M(Local, Instruction) \
M(LongConstant, Constant) \
M(MemoryBarrier, Instruction) \
M(MonitorOperation, Instruction) \
M(Mul, BinaryOperation) \
M(Neg, UnaryOperation) \
M(NewArray, Instruction) \
M(NewInstance, Instruction) \
M(Not, UnaryOperation) \
M(NotEqual, Condition) \
M(NullConstant, Instruction) \
M(NullCheck, Instruction) \
M(Or, BinaryOperation) \
M(ParallelMove, Instruction) \
M(ParameterValue, Instruction) \
M(Phi, Instruction) \
M(Rem, BinaryOperation) \
M(Return, Instruction) \
M(ReturnVoid, Instruction) \
M(Shl, BinaryOperation) \
M(Shr, BinaryOperation) \
M(StaticFieldGet, Instruction) \
M(StaticFieldSet, Instruction) \
M(StoreLocal, Instruction) \
M(Sub, BinaryOperation) \
M(SuspendCheck, Instruction) \
M(Temporary, Instruction) \
M(Throw, Instruction) \
M(TypeConversion, Instruction) \
M(UShr, BinaryOperation) \
M(Xor, BinaryOperation) \
#define FOR_EACH_INSTRUCTION(M) \
FOR_EACH_CONCRETE_INSTRUCTION(M) \
M(Constant, Instruction) \
M(UnaryOperation, Instruction) \
M(BinaryOperation, Instruction) \
M(Invoke, Instruction)
#define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
#undef FORWARD_DECLARATION
#define DECLARE_INSTRUCTION(type) \
InstructionKind GetKind() const OVERRIDE { return k##type; } \
const char* DebugName() const OVERRIDE { return #type; } \
const H##type* As##type() const OVERRIDE { return this; } \
H##type* As##type() OVERRIDE { return this; } \
bool InstructionTypeEquals(HInstruction* other) const OVERRIDE { \
return other->Is##type(); \
} \
void Accept(HGraphVisitor* visitor) OVERRIDE
template <typename T> class HUseList;
template <typename T>
class HUseListNode : public ArenaObject<kArenaAllocMisc> {
public:
HUseListNode* GetPrevious() const { return prev_; }
HUseListNode* GetNext() const { return next_; }
T GetUser() const { return user_; }
size_t GetIndex() const { return index_; }
void SetIndex(size_t index) { index_ = index; }
private:
HUseListNode(T user, size_t index)
: user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
T const user_;
size_t index_;
HUseListNode<T>* prev_;
HUseListNode<T>* next_;
friend class HUseList<T>;
DISALLOW_COPY_AND_ASSIGN(HUseListNode);
};
template <typename T>
class HUseList : public ValueObject {
public:
HUseList() : first_(nullptr) {}
void Clear() {
first_ = nullptr;
}
// Adds a new entry at the beginning of the use list and returns
// the newly created node.
HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
if (IsEmpty()) {
first_ = new_node;
} else {
first_->prev_ = new_node;
new_node->next_ = first_;
first_ = new_node;
}
return new_node;
}
HUseListNode<T>* GetFirst() const {
return first_;
}
void Remove(HUseListNode<T>* node) {
DCHECK(node != nullptr);
DCHECK(Contains(node));
if (node->prev_ != nullptr) {
node->prev_->next_ = node->next_;
}
if (node->next_ != nullptr) {
node->next_->prev_ = node->prev_;
}
if (node == first_) {
first_ = node->next_;
}
}
bool Contains(const HUseListNode<T>* node) const {
if (node == nullptr) {
return false;
}
for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
if (current == node) {
return true;
}
}
return false;
}
bool IsEmpty() const {
return first_ == nullptr;
}
bool HasOnlyOneUse() const {
return first_ != nullptr && first_->next_ == nullptr;
}
size_t SizeSlow() const {
size_t count = 0;
for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
++count;
}
return count;
}
private:
HUseListNode<T>* first_;
};
template<typename T>
class HUseIterator : public ValueObject {
public:
explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
bool Done() const { return current_ == nullptr; }
void Advance() {
DCHECK(!Done());
current_ = current_->GetNext();
}
HUseListNode<T>* Current() const {
DCHECK(!Done());
return current_;
}
private:
HUseListNode<T>* current_;
friend class HValue;
};
// This class is used by HEnvironment and HInstruction classes to record the
// instructions they use and pointers to the corresponding HUseListNodes kept
// by the used instructions.
template <typename T>
class HUserRecord : public ValueObject {
public:
HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
: instruction_(old_record.instruction_), use_node_(use_node) {
DCHECK(instruction_ != nullptr);
DCHECK(use_node_ != nullptr);
DCHECK(old_record.use_node_ == nullptr);
}
HInstruction* GetInstruction() const { return instruction_; }
HUseListNode<T>* GetUseNode() const { return use_node_; }
private:
// Instruction used by the user.
HInstruction* instruction_;
// Corresponding entry in the use list kept by 'instruction_'.
HUseListNode<T>* use_node_;
};
// TODO: Add better documentation to this class and maybe refactor with more suggestive names.
// - Has(All)SideEffects suggests that all the side effects are present but only ChangesSomething
// flag is consider.
// - DependsOn suggests that there is a real dependency between side effects but it only
// checks DependendsOnSomething flag.
//
// Represents the side effects an instruction may have.
class SideEffects : public ValueObject {
public:
SideEffects() : flags_(0) {}
static SideEffects None() {
return SideEffects(0);
}
static SideEffects All() {
return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
}
static SideEffects ChangesSomething() {
return SideEffects((1 << kFlagChangesCount) - 1);
}
static SideEffects DependsOnSomething() {
int count = kFlagDependsOnCount - kFlagChangesCount;
return SideEffects(((1 << count) - 1) << kFlagChangesCount);
}
SideEffects Union(SideEffects other) const {
return SideEffects(flags_ | other.flags_);
}
bool HasSideEffects() const {
size_t all_bits_set = (1 << kFlagChangesCount) - 1;
return (flags_ & all_bits_set) != 0;
}
bool HasAllSideEffects() const {
size_t all_bits_set = (1 << kFlagChangesCount) - 1;
return all_bits_set == (flags_ & all_bits_set);
}
bool DependsOn(SideEffects other) const {
size_t depends_flags = other.ComputeDependsFlags();
return (flags_ & depends_flags) != 0;
}
bool HasDependencies() const {
int count = kFlagDependsOnCount - kFlagChangesCount;
size_t all_bits_set = (1 << count) - 1;
return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
}
private:
static constexpr int kFlagChangesSomething = 0;
static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
explicit SideEffects(size_t flags) : flags_(flags) {}
size_t ComputeDependsFlags() const {
return flags_ << kFlagChangesCount;
}
size_t flags_;
};
// A HEnvironment object contains the values of virtual registers at a given location.
class HEnvironment : public ArenaObject<kArenaAllocMisc> {
public:
HEnvironment(ArenaAllocator* arena,
size_t number_of_vregs,
const DexFile& dex_file,
uint32_t method_idx,
uint32_t dex_pc)
: vregs_(arena, number_of_vregs),
locations_(arena, number_of_vregs),
parent_(nullptr),
dex_file_(dex_file),
method_idx_(method_idx),
dex_pc_(dex_pc) {
vregs_.SetSize(number_of_vregs);
for (size_t i = 0; i < number_of_vregs; i++) {
vregs_.Put(i, HUserRecord<HEnvironment*>());
}
locations_.SetSize(number_of_vregs);
for (size_t i = 0; i < number_of_vregs; ++i) {
locations_.Put(i, Location());
}
}
void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
parent_ = new (allocator) HEnvironment(allocator,
parent->Size(),
parent->GetDexFile(),
parent->GetMethodIdx(),
parent->GetDexPc());
if (parent->GetParent() != nullptr) {
parent_->SetAndCopyParentChain(allocator, parent->GetParent());
}
parent_->CopyFrom(parent);
}
void CopyFrom(const GrowableArray<HInstruction*>& locals);
void CopyFrom(HEnvironment* environment);
// Copy from `env`. If it's a loop phi for `loop_header`, copy the first
// input to the loop phi instead. This is for inserting instructions that
// require an environment (like HDeoptimization) in the loop pre-header.
void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
void SetRawEnvAt(size_t index, HInstruction* instruction) {
vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
}
HInstruction* GetInstructionAt(size_t index) const {
return vregs_.Get(index).GetInstruction();
}
void RemoveAsUserOfInput(size_t index) const;
size_t Size() const { return vregs_.Size(); }
HEnvironment* GetParent() const { return parent_; }
void SetLocationAt(size_t index, Location location) {
locations_.Put(index, location);
}
Location GetLocationAt(size_t index) const {
return locations_.Get(index);
}
uint32_t GetDexPc() const {
return dex_pc_;
}
uint32_t GetMethodIdx() const {
return method_idx_;
}
const DexFile& GetDexFile() const {
return dex_file_;
}
private:
// Record instructions' use entries of this environment for constant-time removal.
// It should only be called by HInstruction when a new environment use is added.
void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
DCHECK(env_use->GetUser() == this);
size_t index = env_use->GetIndex();
vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
}
GrowableArray<HUserRecord<HEnvironment*> > vregs_;
GrowableArray<Location> locations_;
HEnvironment* parent_;
const DexFile& dex_file_;
const uint32_t method_idx_;
const uint32_t dex_pc_;
friend class HInstruction;
DISALLOW_COPY_AND_ASSIGN(HEnvironment);
};
class ReferenceTypeInfo : ValueObject {
public:
typedef Handle<mirror::Class> TypeHandle;
static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (type_handle->IsObjectClass()) {
// Override the type handle to be consistent with the case when we get to
// Top but don't have the Object class available. It avoids having to guess
// what value the type_handle has when it's Top.
return ReferenceTypeInfo(TypeHandle(), is_exact, true);
} else {
return ReferenceTypeInfo(type_handle, is_exact, false);
}
}
static ReferenceTypeInfo CreateTop(bool is_exact) {
return ReferenceTypeInfo(TypeHandle(), is_exact, true);
}
bool IsExact() const { return is_exact_; }
bool IsTop() const { return is_top_; }
Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (IsTop()) {
// Top (equivalent for java.lang.Object) is supertype of anything.
return true;
}
if (rti.IsTop()) {
// If we get here `this` is not Top() so it can't be a supertype.
return false;
}
return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
}
// Returns true if the type information provide the same amount of details.
// Note that it does not mean that the instructions have the same actual type
// (e.g. tops are equal but they can be the result of a merge).
bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (IsExact() != rti.IsExact()) {
return false;
}
if (IsTop() && rti.IsTop()) {
// `Top` means java.lang.Object, so the types are equivalent.
return true;
}
if (IsTop() || rti.IsTop()) {
// If only one is top or object than they are not equivalent.
// NB: We need this extra check because the type_handle of `Top` is invalid
// and we cannot inspect its reference.
return false;
}
// Finally check the types.
return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
}
private:
ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
: type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
// The class of the object.
TypeHandle type_handle_;
// Whether or not the type is exact or a superclass of the actual type.
// Whether or not we have any information about this type.
bool is_exact_;
// A true value here means that the object type should be java.lang.Object.
// We don't have access to the corresponding mirror object every time so this
// flag acts as a substitute. When true, the TypeHandle refers to a null
// pointer and should not be used.
bool is_top_;
};
std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
class HInstruction : public ArenaObject<kArenaAllocMisc> {
public:
explicit HInstruction(SideEffects side_effects)
: previous_(nullptr),
next_(nullptr),
block_(nullptr),
id_(-1),
ssa_index_(-1),
environment_(nullptr),
locations_(nullptr),
live_interval_(nullptr),
lifetime_position_(kNoLifetime),
side_effects_(side_effects),
reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
virtual ~HInstruction() {}
#define DECLARE_KIND(type, super) k##type,
enum InstructionKind {
FOR_EACH_INSTRUCTION(DECLARE_KIND)
};
#undef DECLARE_KIND
HInstruction* GetNext() const { return next_; }
HInstruction* GetPrevious() const { return previous_; }
HInstruction* GetNextDisregardingMoves() const;
HInstruction* GetPreviousDisregardingMoves() const;
HBasicBlock* GetBlock() const { return block_; }
void SetBlock(HBasicBlock* block) { block_ = block; }
bool IsInBlock() const { return block_ != nullptr; }
bool IsInLoop() const { return block_->IsInLoop(); }
bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
virtual size_t InputCount() const = 0;
HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
virtual void Accept(HGraphVisitor* visitor) = 0;
virtual const char* DebugName() const = 0;
virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
void SetRawInputAt(size_t index, HInstruction* input) {
SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
}
virtual bool NeedsEnvironment() const { return false; }
virtual uint32_t GetDexPc() const {
LOG(FATAL) << "GetDexPc() cannot be called on an instruction that"
" does not need an environment";
UNREACHABLE();
}
virtual bool IsControlFlow() const { return false; }
virtual bool CanThrow() const { return false; }
bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
// Does not apply for all instructions, but having this at top level greatly
// simplifies the null check elimination.
virtual bool CanBeNull() const {
DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
return true;
}
virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
UNUSED(obj);
return false;
}
void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
DCHECK_EQ(GetType(), Primitive::kPrimNot);
reference_type_info_ = reference_type_info;
}
ReferenceTypeInfo GetReferenceTypeInfo() const {
DCHECK_EQ(GetType(), Primitive::kPrimNot);
return reference_type_info_;
}
void AddUseAt(HInstruction* user, size_t index) {
DCHECK(user != nullptr);
HUseListNode<HInstruction*>* use =
uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
}
void AddEnvUseAt(HEnvironment* user, size_t index) {
DCHECK(user != nullptr);
HUseListNode<HEnvironment*>* env_use =
env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
user->RecordEnvUse(env_use);
}
void RemoveAsUserOfInput(size_t input) {
HUserRecord<HInstruction*> input_use = InputRecordAt(input);
input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
}
const HUseList<HInstruction*>& GetUses() const { return uses_; }
const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
bool HasOnlyOneNonEnvironmentUse() const {
return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
}
// Does this instruction strictly dominate `other_instruction`?
// Returns false if this instruction and `other_instruction` are the same.
// Aborts if this instruction and `other_instruction` are both phis.
bool StrictlyDominates(HInstruction* other_instruction) const;
int GetId() const { return id_; }
void SetId(int id) { id_ = id; }
int GetSsaIndex() const { return ssa_index_; }
void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
bool HasSsaIndex() const { return ssa_index_ != -1; }
bool HasEnvironment() const { return environment_ != nullptr; }
HEnvironment* GetEnvironment() const { return environment_; }
// Set the `environment_` field. Raw because this method does not
// update the uses lists.
void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
// Set the environment of this instruction, copying it from `environment`. While
// copying, the uses lists are being updated.
void CopyEnvironmentFrom(HEnvironment* environment) {
ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
environment_ = new (allocator) HEnvironment(
allocator,
environment->Size(),
environment->GetDexFile(),
environment->GetMethodIdx(),
environment->GetDexPc());
environment_->CopyFrom(environment);
if (environment->GetParent() != nullptr) {
environment_->SetAndCopyParentChain(allocator, environment->GetParent());
}
}
void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
HBasicBlock* block) {
ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
environment_ = new (allocator) HEnvironment(
allocator,
environment->Size(),
environment->GetDexFile(),
environment->GetMethodIdx(),
environment->GetDexPc());
if (environment->GetParent() != nullptr) {
environment_->SetAndCopyParentChain(allocator, environment->GetParent());
}
environment_->CopyFromWithLoopPhiAdjustment(environment, block);
}
// Returns the number of entries in the environment. Typically, that is the
// number of dex registers in a method. It could be more in case of inlining.
size_t EnvironmentSize() const;
LocationSummary* GetLocations() const { return locations_; }
void SetLocations(LocationSummary* locations) { locations_ = locations; }
void ReplaceWith(HInstruction* instruction);
void ReplaceInput(HInstruction* replacement, size_t index);
// This is almost the same as doing `ReplaceWith()`. But in this helper, the
// uses of this instruction by `other` are *not* updated.
void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
ReplaceWith(other);
other->ReplaceInput(this, use_index);
}
// Move `this` instruction before `cursor`.
void MoveBefore(HInstruction* cursor);
#define INSTRUCTION_TYPE_CHECK(type, super) \
bool Is##type() const { return (As##type() != nullptr); } \
virtual const H##type* As##type() const { return nullptr; } \
virtual H##type* As##type() { return nullptr; }
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
#undef INSTRUCTION_TYPE_CHECK
// Returns whether the instruction can be moved within the graph.
virtual bool CanBeMoved() const { return false; }
// Returns whether the two instructions are of the same kind.
virtual bool InstructionTypeEquals(HInstruction* other) const {
UNUSED(other);
return false;
}
// Returns whether any data encoded in the two instructions is equal.
// This method does not look at the inputs. Both instructions must be
// of the same type, otherwise the method has undefined behavior.
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return false;
}
// Returns whether two instructions are equal, that is:
// 1) They have the same type and contain the same data (InstructionDataEquals).
// 2) Their inputs are identical.
bool Equals(HInstruction* other) const;
virtual InstructionKind GetKind() const = 0;
virtual size_t ComputeHashCode() const {
size_t result = GetKind();
for (size_t i = 0, e = InputCount(); i < e; ++i) {
result = (result * 31) + InputAt(i)->GetId();
}
return result;
}
SideEffects GetSideEffects() const { return side_effects_; }
size_t GetLifetimePosition() const { return lifetime_position_; }
void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
LiveInterval* GetLiveInterval() const { return live_interval_; }
void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
bool HasLiveInterval() const { return live_interval_ != nullptr; }
bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
// Returns whether the code generation of the instruction will require to have access
// to the current method. Such instructions are:
// (1): Instructions that require an environment, as calling the runtime requires
// to walk the stack and have the current method stored at a specific stack address.
// (2): Object literals like classes and strings, that are loaded from the dex cache
// fields of the current method.
bool NeedsCurrentMethod() const {
return NeedsEnvironment() || IsLoadClass() || IsLoadString();
}
virtual bool NeedsDexCache() const { return false; }
protected:
virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
private:
void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
HInstruction* previous_;
HInstruction* next_;
HBasicBlock* block_;
// An instruction gets an id when it is added to the graph.
// It reflects creation order. A negative id means the instruction
// has not been added to the graph.
int id_;
// When doing liveness analysis, instructions that have uses get an SSA index.
int ssa_index_;
// List of instructions that have this instruction as input.
HUseList<HInstruction*> uses_;
// List of environments that contain this instruction.
HUseList<HEnvironment*> env_uses_;
// The environment associated with this instruction. Not null if the instruction
// might jump out of the method.
HEnvironment* environment_;
// Set by the code generator.
LocationSummary* locations_;
// Set by the liveness analysis.
LiveInterval* live_interval_;
// Set by the liveness analysis, this is the position in a linear
// order of blocks where this instruction's live interval start.
size_t lifetime_position_;
const SideEffects side_effects_;
// TODO: for primitive types this should be marked as invalid.
ReferenceTypeInfo reference_type_info_;
friend class GraphChecker;
friend class HBasicBlock;
friend class HEnvironment;
friend class HGraph;
friend class HInstructionList;
DISALLOW_COPY_AND_ASSIGN(HInstruction);
};
std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
class HInputIterator : public ValueObject {
public:
explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
bool Done() const { return index_ == instruction_->InputCount(); }
HInstruction* Current() const { return instruction_->InputAt(index_); }
void Advance() { index_++; }
private:
HInstruction* instruction_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HInputIterator);
};
class HInstructionIterator : public ValueObject {
public:
explicit HInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.first_instruction_) {
next_ = Done() ? nullptr : instruction_->GetNext();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetNext();
}
private:
HInstruction* instruction_;
HInstruction* next_;
DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
};
class HBackwardInstructionIterator : public ValueObject {
public:
explicit HBackwardInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.last_instruction_) {
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
private:
HInstruction* instruction_;
HInstruction* next_;
DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
};
// An embedded container with N elements of type T. Used (with partial
// specialization for N=0) because embedded arrays cannot have size 0.
template<typename T, intptr_t N>
class EmbeddedArray {
public:
EmbeddedArray() : elements_() {}
intptr_t GetLength() const { return N; }
const T& operator[](intptr_t i) const {
DCHECK_LT(i, GetLength());
return elements_[i];
}
T& operator[](intptr_t i) {
DCHECK_LT(i, GetLength());
return elements_[i];
}
const T& At(intptr_t i) const {
return (*this)[i];
}
void SetAt(intptr_t i, const T& val) {
(*this)[i] = val;
}
private:
T elements_[N];
};
template<typename T>
class EmbeddedArray<T, 0> {
public:
intptr_t length() const { return 0; }
const T& operator[](intptr_t i) const {
UNUSED(i);
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
T& operator[](intptr_t i) {
UNUSED(i);
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
};
template<intptr_t N>
class HTemplateInstruction: public HInstruction {
public:
HTemplateInstruction<N>(SideEffects side_effects)
: HInstruction(side_effects), inputs_() {}
virtual ~HTemplateInstruction() {}
size_t InputCount() const OVERRIDE { return N; }
protected:
const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
inputs_[i] = input;
}
private:
EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
friend class SsaBuilder;
};
template<intptr_t N>
class HExpression : public HTemplateInstruction<N> {
public:
HExpression<N>(Primitive::Type type, SideEffects side_effects)
: HTemplateInstruction<N>(side_effects), type_(type) {}
virtual ~HExpression() {}
Primitive::Type GetType() const OVERRIDE { return type_; }
protected:
Primitive::Type type_;
};
// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
// instruction that branches to the exit block.
class HReturnVoid : public HTemplateInstruction<0> {
public:
HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
bool IsControlFlow() const OVERRIDE { return true; }
DECLARE_INSTRUCTION(ReturnVoid);
private:
DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
};
// Represents dex's RETURN opcodes. A HReturn is a control flow
// instruction that branches to the exit block.
class HReturn : public HTemplateInstruction<1> {
public:
explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, value);
}
bool IsControlFlow() const OVERRIDE { return true; }
DECLARE_INSTRUCTION(Return);
private:
DISALLOW_COPY_AND_ASSIGN(HReturn);
};
// The exit instruction is the only instruction of the exit block.
// Instructions aborting the method (HThrow and HReturn) must branch to the
// exit block.
class HExit : public HTemplateInstruction<0> {
public:
HExit() : HTemplateInstruction(SideEffects::None()) {}
bool IsControlFlow() const OVERRIDE { return true; }
DECLARE_INSTRUCTION(Exit);
private:
DISALLOW_COPY_AND_ASSIGN(HExit);
};
// Jumps from one block to another.
class HGoto : public HTemplateInstruction<0> {
public:
HGoto() : HTemplateInstruction(SideEffects::None()) {}
bool IsControlFlow() const OVERRIDE { return true; }
HBasicBlock* GetSuccessor() const {
return GetBlock()->GetSuccessors().Get(0);
}
DECLARE_INSTRUCTION(Goto);
private:
DISALLOW_COPY_AND_ASSIGN(HGoto);
};
// Conditional branch. A block ending with an HIf instruction must have
// two successors.
class HIf : public HTemplateInstruction<1> {
public:
explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, input);
}
bool IsControlFlow() const OVERRIDE { return true; }
HBasicBlock* IfTrueSuccessor() const {
return GetBlock()->GetSuccessors().Get(0);
}
HBasicBlock* IfFalseSuccessor() const {
return GetBlock()->GetSuccessors().Get(1);
}
DECLARE_INSTRUCTION(If);
private:
DISALLOW_COPY_AND_ASSIGN(HIf);
};
// Deoptimize to interpreter, upon checking a condition.
class HDeoptimize : public HTemplateInstruction<1> {
public:
HDeoptimize(HInstruction* cond, uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()),
dex_pc_(dex_pc) {
SetRawInputAt(0, cond);
}
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
DECLARE_INSTRUCTION(Deoptimize);
private:
uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
};
class HUnaryOperation : public HExpression<1> {
public:
HUnaryOperation(Primitive::Type result_type, HInstruction* input)
: HExpression(result_type, SideEffects::None()) {
SetRawInputAt(0, input);
}
HInstruction* GetInput() const { return InputAt(0); }
Primitive::Type GetResultType() const { return GetType(); }
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
// Try to statically evaluate `operation` and return a HConstant
// containing the result of this evaluation. If `operation` cannot
// be evaluated as a constant, return null.
HConstant* TryStaticEvaluation() const;
// Apply this operation to `x`.
virtual int32_t Evaluate(int32_t x) const = 0;
virtual int64_t Evaluate(int64_t x) const = 0;
DECLARE_INSTRUCTION(UnaryOperation);
private:
DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
};
class HBinaryOperation : public HExpression<2> {
public:
HBinaryOperation(Primitive::Type result_type,
HInstruction* left,
HInstruction* right) : HExpression(result_type, SideEffects::None()) {
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
HInstruction* GetLeft() const { return InputAt(0); }
HInstruction* GetRight() const { return InputAt(1); }
Primitive::Type GetResultType() const { return GetType(); }
virtual bool IsCommutative() const { return false; }
// Put constant on the right.
// Returns whether order is changed.
bool OrderInputsWithConstantOnTheRight() {
HInstruction* left = InputAt(0);
HInstruction* right = InputAt(1);
if (left->IsConstant() && !right->IsConstant()) {
ReplaceInput(right, 0);
ReplaceInput(left, 1);
return true;
}
return false;
}
// Order inputs by instruction id, but favor constant on the right side.
// This helps GVN for commutative ops.
void OrderInputs() {
DCHECK(IsCommutative());
HInstruction* left = InputAt(0);
HInstruction* right = InputAt(1);
if (left == right || (!left->IsConstant() && right->IsConstant())) {
return;
}
if (OrderInputsWithConstantOnTheRight()) {
return;
}
// Order according to instruction id.
if (left->GetId() > right->GetId()) {
ReplaceInput(right, 0);
ReplaceInput(left, 1);
}
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
// Try to statically evaluate `operation` and return a HConstant
// containing the result of this evaluation. If `operation` cannot
// be evaluated as a constant, return null.
HConstant* TryStaticEvaluation() const;
// Apply this operation to `x` and `y`.
virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
// Returns an input that can legally be used as the right input and is
// constant, or null.
HConstant* GetConstantRight() const;
// If `GetConstantRight()` returns one of the input, this returns the other
// one. Otherwise it returns null.
HInstruction* GetLeastConstantLeft() const;
DECLARE_INSTRUCTION(BinaryOperation);
private:
DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
};
class HCondition : public HBinaryOperation {
public:
HCondition(HInstruction* first, HInstruction* second)
: HBinaryOperation(Primitive::kPrimBoolean, first, second),
needs_materialization_(true) {}
bool NeedsMaterialization() const { return needs_materialization_; }
void ClearNeedsMaterialization() { needs_materialization_ = false; }
// For code generation purposes, returns whether this instruction is just before
// `instruction`, and disregard moves in between.
bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
DECLARE_INSTRUCTION(Condition);
virtual IfCondition GetCondition() const = 0;
private:
// For register allocation purposes, returns whether this instruction needs to be
// materialized (that is, not just be in the processor flags).
bool needs_materialization_;
DISALLOW_COPY_AND_ASSIGN(HCondition);
};
// Instruction to check if two inputs are equal to each other.
class HEqual : public HCondition {
public:
HEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
bool IsCommutative() const OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x == y ? 1 : 0;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x == y ? 1 : 0;
}
DECLARE_INSTRUCTION(Equal);
IfCondition GetCondition() const OVERRIDE {
return kCondEQ;
}
private:
DISALLOW_COPY_AND_ASSIGN(HEqual);
};
class HNotEqual : public HCondition {
public:
HNotEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
bool IsCommutative() const OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x != y ? 1 : 0;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x != y ? 1 : 0;
}
DECLARE_INSTRUCTION(NotEqual);
IfCondition GetCondition() const OVERRIDE {
return kCondNE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HNotEqual);
};
class HLessThan : public HCondition {
public:
HLessThan(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x < y ? 1 : 0;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x < y ? 1 : 0;
}
DECLARE_INSTRUCTION(LessThan);
IfCondition GetCondition() const OVERRIDE {
return kCondLT;
}
private:
DISALLOW_COPY_AND_ASSIGN(HLessThan);
};
class HLessThanOrEqual : public HCondition {
public:
HLessThanOrEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x <= y ? 1 : 0;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x <= y ? 1 : 0;
}
DECLARE_INSTRUCTION(LessThanOrEqual);
IfCondition GetCondition() const OVERRIDE {
return kCondLE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
};
class HGreaterThan : public HCondition {
public:
HGreaterThan(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x > y ? 1 : 0;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x > y ? 1 : 0;
}
DECLARE_INSTRUCTION(GreaterThan);
IfCondition GetCondition() const OVERRIDE {
return kCondGT;
}
private:
DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
};
class HGreaterThanOrEqual : public HCondition {
public:
HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x >= y ? 1 : 0;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x >= y ? 1 : 0;
}
DECLARE_INSTRUCTION(GreaterThanOrEqual);
IfCondition GetCondition() const OVERRIDE {
return kCondGE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
};
// Instruction to check how two inputs compare to each other.
// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
class HCompare : public HBinaryOperation {
public:
// The bias applies for floating point operations and indicates how NaN
// comparisons are treated:
enum Bias {
kNoBias, // bias is not applicable (i.e. for long operation)
kGtBias, // return 1 for NaN comparisons
kLtBias, // return -1 for NaN comparisons
};
HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
: HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
DCHECK_EQ(type, first->GetType());
DCHECK_EQ(type, second->GetType());
}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return
x == y ? 0 :
x > y ? 1 :
-1;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return
x == y ? 0 :
x > y ? 1 :
-1;
}
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return bias_ == other->AsCompare()->bias_;
}
bool IsGtBias() { return bias_ == kGtBias; }
DECLARE_INSTRUCTION(Compare);
private:
const Bias bias_;
DISALLOW_COPY_AND_ASSIGN(HCompare);
};
// A local in the graph. Corresponds to a Dex register.
class HLocal : public HTemplateInstruction<0> {
public:
explicit HLocal(uint16_t reg_number)
: HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
DECLARE_INSTRUCTION(Local);
uint16_t GetRegNumber() const { return reg_number_; }
private:
// The Dex register number.
const uint16_t reg_number_;
DISALLOW_COPY_AND_ASSIGN(HLocal);
};
// Load a given local. The local is an input of this instruction.
class HLoadLocal : public HExpression<1> {
public:
HLoadLocal(HLocal* local, Primitive::Type type)
: HExpression(type, SideEffects::None()) {
SetRawInputAt(0, local);
}
HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
DECLARE_INSTRUCTION(LoadLocal);
private:
DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
};
// Store a value in a given local. This instruction has two inputs: the value
// and the local.
class HStoreLocal : public HTemplateInstruction<2> {
public:
HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, local);
SetRawInputAt(1, value);
}
HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
DECLARE_INSTRUCTION(StoreLocal);
private:
DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
};
class HConstant : public HExpression<0> {
public:
explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
bool CanBeMoved() const OVERRIDE { return true; }
virtual bool IsMinusOne() const { return false; }
virtual bool IsZero() const { return false; }
virtual bool IsOne() const { return false; }
DECLARE_INSTRUCTION(Constant);
private:
DISALLOW_COPY_AND_ASSIGN(HConstant);
};
class HFloatConstant : public HConstant {
public:
float GetValue() const { return value_; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
bit_cast<uint32_t, float>(value_);
}
size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
bool IsMinusOne() const OVERRIDE {
return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
bit_cast<uint32_t, float>((-1.0f));
}
bool IsZero() const OVERRIDE {
return AsFloatConstant()->GetValue() == 0.0f;
}
bool IsOne() const OVERRIDE {
return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
bit_cast<uint32_t, float>(1.0f);
}
DECLARE_INSTRUCTION(FloatConstant);
private:
explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
explicit HFloatConstant(int32_t value)
: HConstant(Primitive::kPrimFloat), value_(bit_cast<float, int32_t>(value)) {}
const float value_;
// Only the SsaBuilder and HGraph can create floating-point constants.
friend class SsaBuilder;
friend class HGraph;
DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
};
class HDoubleConstant : public HConstant {
public:
double GetValue() const { return value_; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
bit_cast<uint64_t, double>(value_);
}
size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
bool IsMinusOne() const OVERRIDE {
return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
bit_cast<uint64_t, double>((-1.0));
}
bool IsZero() const OVERRIDE {
return AsDoubleConstant()->GetValue() == 0.0;
}
bool IsOne() const OVERRIDE {
return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
bit_cast<uint64_t, double>(1.0);
}
DECLARE_INSTRUCTION(DoubleConstant);
private:
explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
explicit HDoubleConstant(int64_t value)
: HConstant(Primitive::kPrimDouble), value_(bit_cast<double, int64_t>(value)) {}
const double value_;
// Only the SsaBuilder and HGraph can create floating-point constants.
friend class SsaBuilder;
friend class HGraph;
DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
};
class HNullConstant : public HConstant {
public:
bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
return true;
}
size_t ComputeHashCode() const OVERRIDE { return 0; }
DECLARE_INSTRUCTION(NullConstant);
private:
HNullConstant() : HConstant(Primitive::kPrimNot) {}
friend class HGraph;
DISALLOW_COPY_AND_ASSIGN(HNullConstant);
};
// Constants of the type int. Those can be from Dex instructions, or
// synthesized (for example with the if-eqz instruction).
class HIntConstant : public HConstant {
public:
int32_t GetValue() const { return value_; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return other->AsIntConstant()->value_ == value_;
}
size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
bool IsZero() const OVERRIDE { return GetValue() == 0; }
bool IsOne() const OVERRIDE { return GetValue() == 1; }
DECLARE_INSTRUCTION(IntConstant);
private:
explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
const int32_t value_;
friend class HGraph;
ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
DISALLOW_COPY_AND_ASSIGN(HIntConstant);
};
class HLongConstant : public HConstant {
public:
int64_t GetValue() const { return value_; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return other->AsLongConstant()->value_ == value_;
}
size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
bool IsZero() const OVERRIDE { return GetValue() == 0; }
bool IsOne() const OVERRIDE { return GetValue() == 1; }
DECLARE_INSTRUCTION(LongConstant);
private:
explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
const int64_t value_;
friend class HGraph;
DISALLOW_COPY_AND_ASSIGN(HLongConstant);
};
enum class Intrinsics {
#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
#include "intrinsics_list.h"
kNone,
INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
#undef INTRINSICS_LIST
#undef OPTIMIZING_INTRINSICS
};
std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
class HInvoke : public HInstruction {
public:
size_t InputCount() const OVERRIDE { return inputs_.Size(); }
// Runtime needs to walk the stack, so Dex -> Dex calls need to
// know their environment.
bool NeedsEnvironment() const OVERRIDE { return true; }
void SetArgumentAt(size_t index, HInstruction* argument) {
SetRawInputAt(index, argument);
}
// Return the number of arguments. This number can be lower than
// the number of inputs returned by InputCount(), as some invoke
// instructions (e.g. HInvokeStaticOrDirect) can have non-argument
// inputs at the end of their list of inputs.
uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
Primitive::Type GetType() const OVERRIDE { return return_type_; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
uint32_t GetDexMethodIndex() const { return dex_method_index_; }
Intrinsics GetIntrinsic() const {
return intrinsic_;
}
void SetIntrinsic(Intrinsics intrinsic) {
intrinsic_ = intrinsic;
}
DECLARE_INSTRUCTION(Invoke);
protected:
HInvoke(ArenaAllocator* arena,
uint32_t number_of_arguments,
uint32_t number_of_other_inputs,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index)
: HInstruction(SideEffects::All()),
number_of_arguments_(number_of_arguments),
inputs_(arena, number_of_arguments),
return_type_(return_type),
dex_pc_(dex_pc),
dex_method_index_(dex_method_index),
intrinsic_(Intrinsics::kNone) {
uint32_t number_of_inputs = number_of_arguments + number_of_other_inputs;
inputs_.SetSize(number_of_inputs);
}
const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
inputs_.Put(index, input);
}
uint32_t number_of_arguments_;
GrowableArray<HUserRecord<HInstruction*> > inputs_;
const Primitive::Type return_type_;
const uint32_t dex_pc_;
const uint32_t dex_method_index_;
Intrinsics intrinsic_;
private:
DISALLOW_COPY_AND_ASSIGN(HInvoke);
};
class HInvokeStaticOrDirect : public HInvoke {
public:
// Requirements of this method call regarding the class
// initialization (clinit) check of its declaring class.
enum class ClinitCheckRequirement {
kNone, // Class already initialized.
kExplicit, // Static call having explicit clinit check as last input.
kImplicit, // Static call implicitly requiring a clinit check.
};
HInvokeStaticOrDirect(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index,
bool is_recursive,
int32_t string_init_offset,
InvokeType original_invoke_type,
InvokeType invoke_type,
ClinitCheckRequirement clinit_check_requirement)
: HInvoke(arena,
number_of_arguments,
clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u,
return_type,
dex_pc,
dex_method_index),
original_invoke_type_(original_invoke_type),
invoke_type_(invoke_type),
is_recursive_(is_recursive),
clinit_check_requirement_(clinit_check_requirement),
string_init_offset_(string_init_offset) {}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
UNUSED(obj);
// We access the method via the dex cache so we can't do an implicit null check.
// TODO: for intrinsics we can generate implicit null checks.
return false;
}
InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
InvokeType GetInvokeType() const { return invoke_type_; }
bool IsRecursive() const { return is_recursive_; }
bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
bool IsStringInit() const { return string_init_offset_ != 0; }
int32_t GetStringInitOffset() const { return string_init_offset_; }
// Is this instruction a call to a static method?
bool IsStatic() const {
return GetInvokeType() == kStatic;
}
// Remove the art::HLoadClass instruction set as last input by
// art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
// the initial art::HClinitCheck instruction (only relevant for
// static calls with explicit clinit check).
void RemoveLoadClassAsLastInput() {
DCHECK(IsStaticWithExplicitClinitCheck());
size_t last_input_index = InputCount() - 1;
HInstruction* last_input = InputAt(last_input_index);
DCHECK(last_input != nullptr);
DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
RemoveAsUserOfInput(last_input_index);
inputs_.DeleteAt(last_input_index);
clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
DCHECK(IsStaticWithImplicitClinitCheck());
}
// Is this a call to a static method whose declaring class has an
// explicit intialization check in the graph?
bool IsStaticWithExplicitClinitCheck() const {
return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
}
// Is this a call to a static method whose declaring class has an
// implicit intialization check requirement?
bool IsStaticWithImplicitClinitCheck() const {
return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
}
DECLARE_INSTRUCTION(InvokeStaticOrDirect);
protected:
const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
HInstruction* input = input_record.GetInstruction();
// `input` is the last input of a static invoke marked as having
// an explicit clinit check. It must either be:
// - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
// - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
DCHECK(input != nullptr);
DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
}
return input_record;
}
private:
const InvokeType original_invoke_type_;
const InvokeType invoke_type_;
const bool is_recursive_;
ClinitCheckRequirement clinit_check_requirement_;
// Thread entrypoint offset for string init method if this is a string init invoke.
// Note that there are multiple string init methods, each having its own offset.
int32_t string_init_offset_;
DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
};
class HInvokeVirtual : public HInvoke {
public:
HInvokeVirtual(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index,
uint32_t vtable_index)
: HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
vtable_index_(vtable_index) {}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
// TODO: Add implicit null checks in intrinsics.
return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
}
uint32_t GetVTableIndex() const { return vtable_index_; }
DECLARE_INSTRUCTION(InvokeVirtual);
private:
const uint32_t vtable_index_;
DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
};
class HInvokeInterface : public HInvoke {
public:
HInvokeInterface(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index,
uint32_t imt_index)
: HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
imt_index_(imt_index) {}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
// TODO: Add implicit null checks in intrinsics.
return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
}
uint32_t GetImtIndex() const { return imt_index_; }
uint32_t GetDexMethodIndex() const { return dex_method_index_; }
DECLARE_INSTRUCTION(InvokeInterface);
private:
const uint32_t imt_index_;
DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
};
class HNewInstance : public HExpression<0> {
public:
HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
dex_pc_(dex_pc),
type_index_(type_index),
entrypoint_(entrypoint) {}
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
uint16_t GetTypeIndex() const { return type_index_; }
// Calls runtime so needs an environment.
bool NeedsEnvironment() const OVERRIDE { return true; }
// It may throw when called on:
// - interfaces
// - abstract/innaccessible/unknown classes
// TODO: optimize when possible.
bool CanThrow() const OVERRIDE { return true; }
bool CanBeNull() const OVERRIDE { return false; }
QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
DECLARE_INSTRUCTION(NewInstance);
private:
const uint32_t dex_pc_;
const uint16_t type_index_;
const QuickEntrypointEnum entrypoint_;
DISALLOW_COPY_AND_ASSIGN(HNewInstance);
};
class HNeg : public HUnaryOperation {
public:
explicit HNeg(Primitive::Type result_type, HInstruction* input)
: HUnaryOperation(result_type, input) {}
int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
DECLARE_INSTRUCTION(Neg);
private:
DISALLOW_COPY_AND_ASSIGN(HNeg);
};
class HNewArray : public HExpression<1> {
public:
HNewArray(HInstruction* length,
uint32_t dex_pc,
uint16_t type_index,
QuickEntrypointEnum entrypoint)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
dex_pc_(dex_pc),
type_index_(type_index),
entrypoint_(entrypoint) {
SetRawInputAt(0, length);
}
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
uint16_t GetTypeIndex() const { return type_index_; }
// Calls runtime so needs an environment.
bool NeedsEnvironment() const OVERRIDE { return true; }
// May throw NegativeArraySizeException, OutOfMemoryError, etc.
bool CanThrow() const OVERRIDE { return true; }
bool CanBeNull() const OVERRIDE { return false; }
QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
DECLARE_INSTRUCTION(NewArray);
private:
const uint32_t dex_pc_;
const uint16_t type_index_;
const QuickEntrypointEnum entrypoint_;
DISALLOW_COPY_AND_ASSIGN(HNewArray);
};
class HAdd : public HBinaryOperation {
public:
HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() const OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x + y;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x + y;
}
DECLARE_INSTRUCTION(Add);
private:
DISALLOW_COPY_AND_ASSIGN(HAdd);
};
class HSub : public HBinaryOperation {
public:
HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x - y;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x - y;
}
DECLARE_INSTRUCTION(Sub);
private:
DISALLOW_COPY_AND_ASSIGN(HSub);
};
class HMul : public HBinaryOperation {
public:
HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() const OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
DECLARE_INSTRUCTION(Mul);
private:
DISALLOW_COPY_AND_ASSIGN(HMul);
};
class HDiv : public HBinaryOperation {
public:
HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
: HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
// Our graph structure ensures we never have 0 for `y` during constant folding.
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? -x : x / y;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? -x : x / y;
}
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
DECLARE_INSTRUCTION(Div);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HDiv);
};
class HRem : public HBinaryOperation {
public:
HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
: HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? 0 : x % y;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? 0 : x % y;
}
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
DECLARE_INSTRUCTION(Rem);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HRem);
};
class HDivZeroCheck : public HExpression<1> {
public:
HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
: HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, value);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
DECLARE_INSTRUCTION(DivZeroCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
};
class HShl : public HBinaryOperation {
public:
HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
DECLARE_INSTRUCTION(Shl);
private:
DISALLOW_COPY_AND_ASSIGN(HShl);
};
class HShr : public HBinaryOperation {
public:
HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
DECLARE_INSTRUCTION(Shr);
private:
DISALLOW_COPY_AND_ASSIGN(HShr);
};
class HUShr : public HBinaryOperation {
public:
HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
uint32_t ux = static_cast<uint32_t>(x);
uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
return static_cast<int32_t>(ux >> uy);
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
uint64_t ux = static_cast<uint64_t>(x);
uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
return static_cast<int64_t>(ux >> uy);
}
DECLARE_INSTRUCTION(UShr);
private:
DISALLOW_COPY_AND_ASSIGN(HUShr);
};
class HAnd : public HBinaryOperation {
public:
HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() const OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
DECLARE_INSTRUCTION(And);
private:
DISALLOW_COPY_AND_ASSIGN(HAnd);
};
class HOr : public HBinaryOperation {
public:
HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() const OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
DECLARE_INSTRUCTION(Or);
private:
DISALLOW_COPY_AND_ASSIGN(HOr);
};
class HXor : public HBinaryOperation {
public:
HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() const OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
DECLARE_INSTRUCTION(Xor);
private:
DISALLOW_COPY_AND_ASSIGN(HXor);
};
// The value of a parameter in this method. Its location depends on
// the calling convention.
class HParameterValue : public HExpression<0> {
public:
HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
: HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
uint8_t GetIndex() const { return index_; }
bool CanBeNull() const OVERRIDE { return !is_this_; }
DECLARE_INSTRUCTION(ParameterValue);
private:
// The index of this parameter in the parameters list. Must be less
// than HGraph::number_of_in_vregs_.
const uint8_t index_;
// Whether or not the parameter value corresponds to 'this' argument.
const bool is_this_;
DISALLOW_COPY_AND_ASSIGN(HParameterValue);
};
class HNot : public HUnaryOperation {
public:
explicit HNot(Primitive::Type result_type, HInstruction* input)
: HUnaryOperation(result_type, input) {}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
DECLARE_INSTRUCTION(Not);
private:
DISALLOW_COPY_AND_ASSIGN(HNot);
};
class HBooleanNot : public HUnaryOperation {
public:
explicit HBooleanNot(HInstruction* input)
: HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
int32_t Evaluate(int32_t x) const OVERRIDE {
DCHECK(IsUint<1>(x));
return !x;
}
int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(BooleanNot);
private:
DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
};
class HTypeConversion : public HExpression<1> {
public:
// Instantiate a type conversion of `input` to `result_type`.
HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
: HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, input);
DCHECK_NE(input->GetType(), result_type);
}
HInstruction* GetInput() const { return InputAt(0); }
Primitive::Type GetInputType() const { return GetInput()->GetType(); }
Primitive::Type GetResultType() const { return GetType(); }
// Required by the x86 and ARM code generators when producing calls
// to the runtime.
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
DECLARE_INSTRUCTION(TypeConversion);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
};
static constexpr uint32_t kNoRegNumber = -1;
class HPhi : public HInstruction {
public:
HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
: HInstruction(SideEffects::None()),
inputs_(arena, number_of_inputs),
reg_number_(reg_number),
type_(type),
is_live_(false),
can_be_null_(true) {
inputs_.SetSize(number_of_inputs);
}
// Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
static Primitive::Type ToPhiType(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
return Primitive::kPrimInt;
default:
return type;
}
}
size_t InputCount() const OVERRIDE { return inputs_.Size(); }
void AddInput(HInstruction* input);
void RemoveInputAt(size_t index);
Primitive::Type GetType() const OVERRIDE { return type_; }
void SetType(Primitive::Type type) { type_ = type; }
bool CanBeNull() const OVERRIDE { return can_be_null_; }
void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
uint32_t GetRegNumber() const { return reg_number_; }
void SetDead() { is_live_ = false; }
void SetLive() { is_live_ = true; }
bool IsDead() const { return !is_live_; }
bool IsLive() const { return is_live_; }
// Returns the next equivalent phi (starting from the current one) or null if there is none.
// An equivalent phi is a phi having the same dex register and type.
// It assumes that phis with the same dex register are adjacent.
HPhi* GetNextEquivalentPhiWithSameType() {
HInstruction* next = GetNext();
while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
if (next->GetType() == GetType()) {
return next->AsPhi();
}
next = next->GetNext();
}
return nullptr;
}
DECLARE_INSTRUCTION(Phi);
protected:
const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
inputs_.Put(index, input);
}
private:
GrowableArray<HUserRecord<HInstruction*> > inputs_;
const uint32_t reg_number_;
Primitive::Type type_;
bool is_live_;
bool can_be_null_;
DISALLOW_COPY_AND_ASSIGN(HPhi);
};
class HNullCheck : public HExpression<1> {
public:
HNullCheck(HInstruction* value, uint32_t dex_pc)
: HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, value);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
bool CanBeNull() const OVERRIDE { return false; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
DECLARE_INSTRUCTION(NullCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HNullCheck);
};
class FieldInfo : public ValueObject {
public:
FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
: field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
MemberOffset GetFieldOffset() const { return field_offset_; }
Primitive::Type GetFieldType() const { return field_type_; }
bool IsVolatile() const { return is_volatile_; }
private:
const MemberOffset field_offset_;
const Primitive::Type field_type_;
const bool is_volatile_;
};
class HInstanceFieldGet : public HExpression<1> {
public:
HInstanceFieldGet(HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HExpression(field_type, SideEffects::DependsOnSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, value);
}
bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
}
size_t ComputeHashCode() const OVERRIDE {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
DECLARE_INSTRUCTION(InstanceFieldGet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
};
class HInstanceFieldSet : public HTemplateInstruction<2> {
public:
HInstanceFieldSet(HInstruction* object,
HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HTemplateInstruction(SideEffects::ChangesSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, object);
SetRawInputAt(1, value);
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
HInstruction* GetValue() const { return InputAt(1); }
DECLARE_INSTRUCTION(InstanceFieldSet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
};
class HArrayGet : public HExpression<2> {
public:
HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
: HExpression(type, SideEffects::DependsOnSomething()) {
SetRawInputAt(0, array);
SetRawInputAt(1, index);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
UNUSED(obj);
// TODO: We can be smarter here.
// Currently, the array access is always preceded by an ArrayLength or a NullCheck
// which generates the implicit null check. There are cases when these can be removed
// to produce better code. If we ever add optimizations to do so we should allow an
// implicit check here (as long as the address falls in the first page).
return false;
}
void SetType(Primitive::Type type) { type_ = type; }
HInstruction* GetArray() const { return InputAt(0); }
HInstruction* GetIndex() const { return InputAt(1); }
DECLARE_INSTRUCTION(ArrayGet);
private:
DISALLOW_COPY_AND_ASSIGN(HArrayGet);
};
class HArraySet : public HTemplateInstruction<3> {
public:
HArraySet(HInstruction* array,
HInstruction* index,
HInstruction* value,
Primitive::Type expected_component_type,
uint32_t dex_pc)
: HTemplateInstruction(SideEffects::ChangesSomething()),
dex_pc_(dex_pc),
expected_component_type_(expected_component_type),
needs_type_check_(value->GetType() == Primitive::kPrimNot) {
SetRawInputAt(0, array);
SetRawInputAt(1, index);
SetRawInputAt(2, value);
}
bool NeedsEnvironment() const OVERRIDE {
// We currently always call a runtime method to catch array store
// exceptions.
return needs_type_check_;
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
UNUSED(obj);
// TODO: Same as for ArrayGet.
return false;
}
void ClearNeedsTypeCheck() {
needs_type_check_ = false;
}
bool NeedsTypeCheck() const { return needs_type_check_; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
HInstruction* GetArray() const { return InputAt(0); }
HInstruction* GetIndex() const { return InputAt(1); }
HInstruction* GetValue() const { return InputAt(2); }
Primitive::Type GetComponentType() const {
// The Dex format does not type floating point index operations. Since the
// `expected_component_type_` is set during building and can therefore not
// be correct, we also check what is the value type. If it is a floating
// point type, we must use that type.
Primitive::Type value_type = GetValue()->GetType();
return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
? value_type
: expected_component_type_;
}
DECLARE_INSTRUCTION(ArraySet);
private:
const uint32_t dex_pc_;
const Primitive::Type expected_component_type_;
bool needs_type_check_;
DISALLOW_COPY_AND_ASSIGN(HArraySet);
};
class HArrayLength : public HExpression<1> {
public:
explicit HArrayLength(HInstruction* array)
: HExpression(Primitive::kPrimInt, SideEffects::None()) {
// Note that arrays do not change length, so the instruction does not
// depend on any write.
SetRawInputAt(0, array);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
return obj == InputAt(0);
}
DECLARE_INSTRUCTION(ArrayLength);
private:
DISALLOW_COPY_AND_ASSIGN(HArrayLength);
};
class HBoundsCheck : public HExpression<2> {
public:
HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
: HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
DCHECK(index->GetType() == Primitive::kPrimInt);
SetRawInputAt(0, index);
SetRawInputAt(1, length);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
DECLARE_INSTRUCTION(BoundsCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
};
/**
* Some DEX instructions are folded into multiple HInstructions that need
* to stay live until the last HInstruction. This class
* is used as a marker for the baseline compiler to ensure its preceding
* HInstruction stays live. `index` represents the stack location index of the
* instruction (the actual offset is computed as index * vreg_size).
*/
class HTemporary : public HTemplateInstruction<0> {
public:
explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
size_t GetIndex() const { return index_; }
Primitive::Type GetType() const OVERRIDE {
// The previous instruction is the one that will be stored in the temporary location.
DCHECK(GetPrevious() != nullptr);
return GetPrevious()->GetType();
}
DECLARE_INSTRUCTION(Temporary);
private:
const size_t index_;
DISALLOW_COPY_AND_ASSIGN(HTemporary);
};
class HSuspendCheck : public HTemplateInstruction<0> {
public:
explicit HSuspendCheck(uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc), slow_path_(nullptr) {}
bool NeedsEnvironment() const OVERRIDE {
return true;
}
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
SlowPathCode* GetSlowPath() const { return slow_path_; }
DECLARE_INSTRUCTION(SuspendCheck);
private:
const uint32_t dex_pc_;
// Only used for code generation, in order to share the same slow path between back edges
// of a same loop.
SlowPathCode* slow_path_;
DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
};
/**
* Instruction to load a Class object.
*/
class HLoadClass : public HExpression<0> {
public:
HLoadClass(uint16_t type_index,
bool is_referrers_class,
uint32_t dex_pc)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
type_index_(type_index),
is_referrers_class_(is_referrers_class),
dex_pc_(dex_pc),
generate_clinit_check_(false),
loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return other->AsLoadClass()->type_index_ == type_index_;
}
size_t ComputeHashCode() const OVERRIDE { return type_index_; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
uint16_t GetTypeIndex() const { return type_index_; }
bool IsReferrersClass() const { return is_referrers_class_; }
bool NeedsEnvironment() const OVERRIDE {
// Will call runtime and load the class if the class is not loaded yet.
// TODO: finer grain decision.
return !is_referrers_class_;
}
bool MustGenerateClinitCheck() const {
return generate_clinit_check_;
}
void SetMustGenerateClinitCheck() {
generate_clinit_check_ = true;
}
bool CanCallRuntime() const {
return MustGenerateClinitCheck() || !is_referrers_class_;
}
bool CanThrow() const OVERRIDE {
// May call runtime and and therefore can throw.
// TODO: finer grain decision.
return !is_referrers_class_;
}
ReferenceTypeInfo GetLoadedClassRTI() {
return loaded_class_rti_;
}
void SetLoadedClassRTI(ReferenceTypeInfo rti) {
// Make sure we only set exact types (the loaded class should never be merged).
DCHECK(rti.IsExact());
loaded_class_rti_ = rti;
}
bool IsResolved() {
return loaded_class_rti_.IsExact();
}
bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
DECLARE_INSTRUCTION(LoadClass);
private:
const uint16_t type_index_;
const bool is_referrers_class_;
const uint32_t dex_pc_;
// Whether this instruction must generate the initialization check.
// Used for code generation.
bool generate_clinit_check_;
ReferenceTypeInfo loaded_class_rti_;
DISALLOW_COPY_AND_ASSIGN(HLoadClass);
};
class HLoadString : public HExpression<0> {
public:
HLoadString(uint32_t string_index, uint32_t dex_pc)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
string_index_(string_index),
dex_pc_(dex_pc) {}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return other->AsLoadString()->string_index_ == string_index_;
}
size_t ComputeHashCode() const OVERRIDE { return string_index_; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
uint32_t GetStringIndex() const { return string_index_; }
// TODO: Can we deopt or debug when we resolve a string?
bool NeedsEnvironment() const OVERRIDE { return false; }
bool NeedsDexCache() const OVERRIDE { return true; }
DECLARE_INSTRUCTION(LoadString);
private:
const uint32_t string_index_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HLoadString);
};
/**
* Performs an initialization check on its Class object input.
*/
class HClinitCheck : public HExpression<1> {
public:
explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
: HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
dex_pc_(dex_pc) {
SetRawInputAt(0, constant);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool NeedsEnvironment() const OVERRIDE {
// May call runtime to initialize the class.
return true;
}
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
DECLARE_INSTRUCTION(ClinitCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
};
class HStaticFieldGet : public HExpression<1> {
public:
HStaticFieldGet(HInstruction* cls,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HExpression(field_type, SideEffects::DependsOnSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, cls);
}
bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
HStaticFieldGet* other_get = other->AsStaticFieldGet();
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
}
size_t ComputeHashCode() const OVERRIDE {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
DECLARE_INSTRUCTION(StaticFieldGet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
};
class HStaticFieldSet : public HTemplateInstruction<2> {
public:
HStaticFieldSet(HInstruction* cls,
HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HTemplateInstruction(SideEffects::ChangesSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, cls);
SetRawInputAt(1, value);
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
HInstruction* GetValue() const { return InputAt(1); }
DECLARE_INSTRUCTION(StaticFieldSet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
};
// Implement the move-exception DEX instruction.
class HLoadException : public HExpression<0> {
public:
HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
DECLARE_INSTRUCTION(LoadException);
private:
DISALLOW_COPY_AND_ASSIGN(HLoadException);
};
class HThrow : public HTemplateInstruction<1> {
public:
HThrow(HInstruction* exception, uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, exception);
}
bool IsControlFlow() const OVERRIDE { return true; }
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
DECLARE_INSTRUCTION(Throw);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HThrow);
};
class HInstanceOf : public HExpression<2> {
public:
HInstanceOf(HInstruction* object,
HLoadClass* constant,
bool class_is_final,
uint32_t dex_pc)
: HExpression(Primitive::kPrimBoolean, SideEffects::None()),
class_is_final_(class_is_final),
must_do_null_check_(true),
dex_pc_(dex_pc) {
SetRawInputAt(0, object);
SetRawInputAt(1, constant);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
return true;
}
bool NeedsEnvironment() const OVERRIDE {
return false;
}
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
bool IsClassFinal() const { return class_is_final_; }
// Used only in code generation.
bool MustDoNullCheck() const { return must_do_null_check_; }
void ClearMustDoNullCheck() { must_do_null_check_ = false; }
DECLARE_INSTRUCTION(InstanceOf);
private:
const bool class_is_final_;
bool must_do_null_check_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
};
class HBoundType : public HExpression<1> {
public:
HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
bound_type_(bound_type) {
DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
SetRawInputAt(0, input);
}
const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
bool CanBeNull() const OVERRIDE {
// `null instanceof ClassX` always return false so we can't be null.
return false;
}
DECLARE_INSTRUCTION(BoundType);
private:
// Encodes the most upper class that this instruction can have. In other words
// it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
// It is used to bound the type in cases like `if (x instanceof ClassX) {}`
const ReferenceTypeInfo bound_type_;
DISALLOW_COPY_AND_ASSIGN(HBoundType);
};
class HCheckCast : public HTemplateInstruction<2> {
public:
HCheckCast(HInstruction* object,
HLoadClass* constant,
bool class_is_final,
uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()),
class_is_final_(class_is_final),
must_do_null_check_(true),
dex_pc_(dex_pc) {
SetRawInputAt(0, object);
SetRawInputAt(1, constant);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
return true;
}
bool NeedsEnvironment() const OVERRIDE {
// Instruction may throw a CheckCastError.
return true;
}
bool CanThrow() const OVERRIDE { return true; }
bool MustDoNullCheck() const { return must_do_null_check_; }
void ClearMustDoNullCheck() { must_do_null_check_ = false; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
bool IsClassFinal() const { return class_is_final_; }
DECLARE_INSTRUCTION(CheckCast);
private:
const bool class_is_final_;
bool must_do_null_check_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HCheckCast);
};
class HMemoryBarrier : public HTemplateInstruction<0> {
public:
explicit HMemoryBarrier(MemBarrierKind barrier_kind)
: HTemplateInstruction(SideEffects::None()),
barrier_kind_(barrier_kind) {}
MemBarrierKind GetBarrierKind() { return barrier_kind_; }
DECLARE_INSTRUCTION(MemoryBarrier);
private:
const MemBarrierKind barrier_kind_;
DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
};
class HMonitorOperation : public HTemplateInstruction<1> {
public:
enum OperationKind {
kEnter,
kExit,
};
HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
SetRawInputAt(0, object);
}
// Instruction may throw a Java exception, so we need an environment.
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
bool IsEnter() const { return kind_ == kEnter; }
DECLARE_INSTRUCTION(MonitorOperation);
private:
const OperationKind kind_;
const uint32_t dex_pc_;
private:
DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
};
class MoveOperands : public ArenaObject<kArenaAllocMisc> {
public:
MoveOperands(Location source,
Location destination,
Primitive::Type type,
HInstruction* instruction)
: source_(source), destination_(destination), type_(type), instruction_(instruction) {}
Location GetSource() const { return source_; }
Location GetDestination() const { return destination_; }
void SetSource(Location value) { source_ = value; }
void SetDestination(Location value) { destination_ = value; }
// The parallel move resolver marks moves as "in-progress" by clearing the
// destination (but not the source).
Location MarkPending() {
DCHECK(!IsPending());
Location dest = destination_;
destination_ = Location::NoLocation();
return dest;
}
void ClearPending(Location dest) {
DCHECK(IsPending());
destination_ = dest;
}
bool IsPending() const {
DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
return destination_.IsInvalid() && !source_.IsInvalid();
}
// True if this blocks a move from the given location.
bool Blocks(Location loc) const {
return !IsEliminated() && source_.OverlapsWith(loc);
}
// A move is redundant if it's been eliminated, if its source and
// destination are the same, or if its destination is unneeded.
bool IsRedundant() const {
return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
}
// We clear both operands to indicate move that's been eliminated.
void Eliminate() {
source_ = destination_ = Location::NoLocation();
}
bool IsEliminated() const {
DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
return source_.IsInvalid();
}
bool Is64BitMove() const {
return Primitive::Is64BitType(type_);
}
HInstruction* GetInstruction() const { return instruction_; }
private:
Location source_;
Location destination_;
// The type this move is for.
Primitive::Type type_;
// The instruction this move is assocatied with. Null when this move is
// for moving an input in the expected locations of user (including a phi user).
// This is only used in debug mode, to ensure we do not connect interval siblings
// in the same parallel move.
HInstruction* instruction_;
};
static constexpr size_t kDefaultNumberOfMoves = 4;
class HParallelMove : public HTemplateInstruction<0> {
public:
explicit HParallelMove(ArenaAllocator* arena)
: HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
void AddMove(Location source,
Location destination,
Primitive::Type type,
HInstruction* instruction) {
DCHECK(source.IsValid());
DCHECK(destination.IsValid());
if (kIsDebugBuild) {
if (instruction != nullptr) {
for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
if (moves_.Get(i).GetInstruction() == instruction) {
// Special case the situation where the move is for the spill slot
// of the instruction.
if ((GetPrevious() == instruction)
|| ((GetPrevious() == nullptr)
&& instruction->IsPhi()
&& instruction->GetBlock() == GetBlock())) {
DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
<< "Doing parallel moves for the same instruction.";
} else {
DCHECK(false) << "Doing parallel moves for the same instruction.";
}
}
}
}
for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
<< "Overlapped destination for two moves in a parallel move.";
}
}
moves_.Add(MoveOperands(source, destination, type, instruction));
}
MoveOperands* MoveOperandsAt(size_t index) const {
return moves_.GetRawStorage() + index;
}
size_t NumMoves() const { return moves_.Size(); }
DECLARE_INSTRUCTION(ParallelMove);
private:
GrowableArray<MoveOperands> moves_;
DISALLOW_COPY_AND_ASSIGN(HParallelMove);
};
class HGraphVisitor : public ValueObject {
public:
explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
virtual ~HGraphVisitor() {}
virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
virtual void VisitBasicBlock(HBasicBlock* block);
// Visit the graph following basic block insertion order.
void VisitInsertionOrder();
// Visit the graph following dominator tree reverse post-order.
void VisitReversePostOrder();
HGraph* GetGraph() const { return graph_; }
// Visit functions for instruction classes.
#define DECLARE_VISIT_INSTRUCTION(name, super) \
virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
private:
HGraph* const graph_;
DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
};
class HGraphDelegateVisitor : public HGraphVisitor {
public:
explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
virtual ~HGraphDelegateVisitor() {}
// Visit functions that delegate to to super class.
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
private:
DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
};
class HInsertionOrderIterator : public ValueObject {
public:
explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
bool Done() const { return index_ == graph_.GetBlocks().Size(); }
HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
void Advance() { ++index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
};
class HReversePostOrderIterator : public ValueObject {
public:
explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
// Check that reverse post order of the graph has been built.
DCHECK(!graph.GetReversePostOrder().IsEmpty());
}
bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
void Advance() { ++index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
};
class HPostOrderIterator : public ValueObject {
public:
explicit HPostOrderIterator(const HGraph& graph)
: graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
// Check that reverse post order of the graph has been built.
DCHECK(!graph.GetReversePostOrder().IsEmpty());
}
bool Done() const { return index_ == 0; }
HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
void Advance() { --index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
};
class HLinearPostOrderIterator : public ValueObject {
public:
explicit HLinearPostOrderIterator(const HGraph& graph)
: order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
bool Done() const { return index_ == 0; }
HBasicBlock* Current() const { return order_.Get(index_ -1); }
void Advance() {
--index_;
DCHECK_GE(index_, 0U);
}
private:
const GrowableArray<HBasicBlock*>& order_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
};
class HLinearOrderIterator : public ValueObject {
public:
explicit HLinearOrderIterator(const HGraph& graph)
: order_(graph.GetLinearOrder()), index_(0) {}
bool Done() const { return index_ == order_.Size(); }
HBasicBlock* Current() const { return order_.Get(index_); }
void Advance() { ++index_; }
private:
const GrowableArray<HBasicBlock*>& order_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
};
// Iterator over the blocks that art part of the loop. Includes blocks part
// of an inner loop. The order in which the blocks are iterated is on their
// block id.
class HBlocksInLoopIterator : public ValueObject {
public:
explicit HBlocksInLoopIterator(const HLoopInformation& info)
: blocks_in_loop_(info.GetBlocks()),
blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
index_(0) {
if (!blocks_in_loop_.IsBitSet(index_)) {
Advance();
}
}
bool Done() const { return index_ == blocks_.Size(); }
HBasicBlock* Current() const { return blocks_.Get(index_); }
void Advance() {
++index_;
for (size_t e = blocks_.Size(); index_ < e; ++index_) {
if (blocks_in_loop_.IsBitSet(index_)) {
break;
}
}
}
private:
const BitVector& blocks_in_loop_;
const GrowableArray<HBasicBlock*>& blocks_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
};
inline int64_t Int64FromConstant(HConstant* constant) {
DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
: constant->AsLongConstant()->GetValue();
}
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_NODES_H_