blob: f86e13016d6ed93993b0852212c1538ab0abd46d [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
#define ART_COMPILER_DEX_MIR_GRAPH_H_
#include "dex_file.h"
#include "dex_instruction.h"
#include "compiler_ir.h"
#include "arena_bit_vector.h"
#include "growable_array.h"
namespace art {
enum DataFlowAttributePos {
kUA = 0,
kUB,
kUC,
kAWide,
kBWide,
kCWide,
kDA,
kIsMove,
kSetsConst,
kFormat35c,
kFormat3rc,
kNullCheckSrc0, // Null check of uses[0].
kNullCheckSrc1, // Null check of uses[1].
kNullCheckSrc2, // Null check of uses[2].
kNullCheckOut0, // Null check out outgoing arg0.
kDstNonNull, // May assume dst is non-null.
kRetNonNull, // May assume retval is non-null.
kNullTransferSrc0, // Object copy src[0] -> dst.
kNullTransferSrcN, // Phi null check state transfer.
kRangeCheckSrc1, // Range check of uses[1].
kRangeCheckSrc2, // Range check of uses[2].
kRangeCheckSrc3, // Range check of uses[3].
kFPA,
kFPB,
kFPC,
kCoreA,
kCoreB,
kCoreC,
kRefA,
kRefB,
kRefC,
kUsesMethodStar, // Implicit use of Method*.
};
#define DF_NOP 0
#define DF_UA (1 << kUA)
#define DF_UB (1 << kUB)
#define DF_UC (1 << kUC)
#define DF_A_WIDE (1 << kAWide)
#define DF_B_WIDE (1 << kBWide)
#define DF_C_WIDE (1 << kCWide)
#define DF_DA (1 << kDA)
#define DF_IS_MOVE (1 << kIsMove)
#define DF_SETS_CONST (1 << kSetsConst)
#define DF_FORMAT_35C (1 << kFormat35c)
#define DF_FORMAT_3RC (1 << kFormat3rc)
#define DF_NULL_CHK_0 (1 << kNullCheckSrc0)
#define DF_NULL_CHK_1 (1 << kNullCheckSrc1)
#define DF_NULL_CHK_2 (1 << kNullCheckSrc2)
#define DF_NULL_CHK_OUT0 (1 << kNullCheckOut0)
#define DF_NON_NULL_DST (1 << kDstNonNull)
#define DF_NON_NULL_RET (1 << kRetNonNull)
#define DF_NULL_TRANSFER_0 (1 << kNullTransferSrc0)
#define DF_NULL_TRANSFER_N (1 << kNullTransferSrcN)
#define DF_RANGE_CHK_1 (1 << kRangeCheckSrc1)
#define DF_RANGE_CHK_2 (1 << kRangeCheckSrc2)
#define DF_RANGE_CHK_3 (1 << kRangeCheckSrc3)
#define DF_FP_A (1 << kFPA)
#define DF_FP_B (1 << kFPB)
#define DF_FP_C (1 << kFPC)
#define DF_CORE_A (1 << kCoreA)
#define DF_CORE_B (1 << kCoreB)
#define DF_CORE_C (1 << kCoreC)
#define DF_REF_A (1 << kRefA)
#define DF_REF_B (1 << kRefB)
#define DF_REF_C (1 << kRefC)
#define DF_UMS (1 << kUsesMethodStar)
#define DF_HAS_USES (DF_UA | DF_UB | DF_UC)
#define DF_HAS_DEFS (DF_DA)
#define DF_HAS_NULL_CHKS (DF_NULL_CHK_0 | \
DF_NULL_CHK_1 | \
DF_NULL_CHK_2 | \
DF_NULL_CHK_OUT0)
#define DF_HAS_RANGE_CHKS (DF_RANGE_CHK_1 | \
DF_RANGE_CHK_2 | \
DF_RANGE_CHK_3)
#define DF_HAS_NR_CHKS (DF_HAS_NULL_CHKS | \
DF_HAS_RANGE_CHKS)
#define DF_A_IS_REG (DF_UA | DF_DA)
#define DF_B_IS_REG (DF_UB)
#define DF_C_IS_REG (DF_UC)
#define DF_IS_GETTER_OR_SETTER (DF_IS_GETTER | DF_IS_SETTER)
#define DF_USES_FP (DF_FP_A | DF_FP_B | DF_FP_C)
enum OatMethodAttributes {
kIsLeaf, // Method is leaf.
kHasLoop, // Method contains simple loop.
};
#define METHOD_IS_LEAF (1 << kIsLeaf)
#define METHOD_HAS_LOOP (1 << kHasLoop)
// Minimum field size to contain Dalvik v_reg number.
#define VREG_NUM_WIDTH 16
#define INVALID_SREG (-1)
#define INVALID_VREG (0xFFFFU)
#define INVALID_REG (0xFF)
#define INVALID_OFFSET (0xDEADF00FU)
/* SSA encodings for special registers */
#define SSA_METHOD_BASEREG (-2)
/* First compiler temp basereg, grows smaller */
#define SSA_CTEMP_BASEREG (SSA_METHOD_BASEREG - 1)
#define MIR_IGNORE_NULL_CHECK (1 << kMIRIgnoreNullCheck)
#define MIR_NULL_CHECK_ONLY (1 << kMIRNullCheckOnly)
#define MIR_IGNORE_RANGE_CHECK (1 << kMIRIgnoreRangeCheck)
#define MIR_RANGE_CHECK_ONLY (1 << kMIRRangeCheckOnly)
#define MIR_INLINED (1 << kMIRInlined)
#define MIR_INLINED_PRED (1 << kMIRInlinedPred)
#define MIR_CALLEE (1 << kMIRCallee)
#define MIR_IGNORE_SUSPEND_CHECK (1 << kMIRIgnoreSuspendCheck)
#define MIR_DUP (1 << kMIRDup)
#define BLOCK_NAME_LEN 80
/*
* In general, vreg/sreg describe Dalvik registers that originated with dx. However,
* it is useful to have compiler-generated temporary registers and have them treated
* in the same manner as dx-generated virtual registers. This struct records the SSA
* name of compiler-introduced temporaries.
*/
struct CompilerTemp {
int s_reg;
};
// When debug option enabled, records effectiveness of null and range check elimination.
struct Checkstats {
int null_checks;
int null_checks_eliminated;
int range_checks;
int range_checks_eliminated;
};
// Dataflow attributes of a basic block.
struct BasicBlockDataFlow {
ArenaBitVector* use_v;
ArenaBitVector* def_v;
ArenaBitVector* live_in_v;
ArenaBitVector* phi_v;
int* vreg_to_ssa_map;
ArenaBitVector* ending_null_check_v;
};
/*
* Normalized use/def for a MIR operation using SSA names rather than vregs. Note that
* uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
* vregs. For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
* Following SSA renaming, this is the primary struct used by code generators to locate
* operand and result registers. This is a somewhat confusing and unhelpful convention that
* we may want to revisit in the future.
*/
struct SSARepresentation {
int num_uses;
int* uses;
bool* fp_use;
int num_defs;
int* defs;
bool* fp_def;
};
/*
* The Midlevel Intermediate Representation node, which may be largely considered a
* wrapper around a Dalvik byte code.
*/
struct MIR {
DecodedInstruction dalvikInsn;
unsigned int width;
unsigned int offset;
int m_unit_index; // From which method was this MIR included
MIR* prev;
MIR* next;
SSARepresentation* ssa_rep;
int optimization_flags;
union {
// Establish link between two halves of throwing instructions.
MIR* throw_insn;
// Saved opcode for NOP'd MIRs
Instruction::Code original_opcode;
} meta;
};
struct SuccessorBlockInfo;
struct BasicBlock {
int id;
int dfs_id;
bool visited;
bool hidden;
bool catch_entry;
bool explicit_throw;
bool conditional_branch;
bool terminated_by_return; // Block ends with a Dalvik return opcode.
bool dominates_return; // Is a member of return extended basic block.
uint16_t start_offset;
uint16_t nesting_depth;
BBType block_type;
MIR* first_mir_insn;
MIR* last_mir_insn;
BasicBlock* fall_through;
BasicBlock* taken;
BasicBlock* i_dom; // Immediate dominator.
BasicBlockDataFlow* data_flow_info;
GrowableArray<BasicBlock*>* predecessors;
ArenaBitVector* dominators;
ArenaBitVector* i_dominated; // Set nodes being immediately dominated.
ArenaBitVector* dom_frontier; // Dominance frontier.
struct { // For one-to-many successors like.
BlockListType block_list_type; // switch and exception handling.
GrowableArray<SuccessorBlockInfo*>* blocks;
} successor_block_list;
};
/*
* The "blocks" field in "successor_block_list" points to an array of elements with the type
* "SuccessorBlockInfo". For catch blocks, key is type index for the exception. For swtich
* blocks, key is the case value.
*/
// TODO: make class with placement new.
struct SuccessorBlockInfo {
BasicBlock* block;
int key;
};
/*
* Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
* the type of an SSA name (and, can also be used by code generators to record where the
* value is located (i.e. - physical register, frame, spill, etc.). For each SSA name (SReg)
* there is a RegLocation.
* FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation. With
* the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
*/
struct RegLocation {
RegLocationType location:3;
unsigned wide:1;
unsigned defined:1; // Do we know the type?
unsigned is_const:1; // Constant, value in mir_graph->constant_values[].
unsigned fp:1; // Floating point?
unsigned core:1; // Non-floating point?
unsigned ref:1; // Something GC cares about.
unsigned high_word:1; // High word of pair?
unsigned home:1; // Does this represent the home location?
uint8_t low_reg; // First physical register.
uint8_t high_reg; // 2nd physical register (if wide).
int32_t s_reg_low; // SSA name for low Dalvik word.
int32_t orig_sreg; // TODO: remove after Bitcode gen complete
// and consolodate usage w/ s_reg_low.
};
/*
* Collection of information describing an invoke, and the destination of
* the subsequent MOVE_RESULT (if applicable). Collected as a unit to enable
* more efficient invoke code generation.
*/
struct CallInfo {
int num_arg_words; // Note: word count, not arg count.
RegLocation* args; // One for each word of arguments.
RegLocation result; // Eventual target of MOVE_RESULT.
int opt_flags;
InvokeType type;
uint32_t dex_idx;
uint32_t index; // Method idx for invokes, type idx for FilledNewArray.
uintptr_t direct_code;
uintptr_t direct_method;
RegLocation target; // Target of following move_result.
bool skip_this;
bool is_range;
int offset; // Dalvik offset.
};
const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0,
INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG};
class MIRGraph {
public:
MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
~MIRGraph();
/*
* Parse dex method and add MIR at current insert point. Returns id (which is
* actually the index of the method in the m_units_ array).
*/
void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
InvokeType invoke_type, uint32_t class_def_idx,
uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
/* Find existing block */
BasicBlock* FindBlock(unsigned int code_offset) {
return FindBlock(code_offset, false, false, NULL);
}
const uint16_t* GetCurrentInsns() const {
return current_code_item_->insns_;
}
const uint16_t* GetInsns(int m_unit_index) const {
return m_units_[m_unit_index]->GetCodeItem()->insns_;
}
int GetNumBlocks() const {
return num_blocks_;
}
ArenaBitVector* GetTryBlockAddr() const {
return try_block_addr_;
}
BasicBlock* GetEntryBlock() const {
return entry_block_;
}
BasicBlock* GetExitBlock() const {
return exit_block_;
}
BasicBlock* GetBasicBlock(int block_id) const {
return block_list_.Get(block_id);
}
size_t GetBasicBlockListCount() const {
return block_list_.Size();
}
GrowableArray<BasicBlock*>* GetBlockList() {
return &block_list_;
}
GrowableArray<int>* GetDfsOrder() {
return dfs_order_;
}
GrowableArray<int>* GetDfsPostOrder() {
return dfs_post_order_;
}
GrowableArray<int>* GetDomPostOrder() {
return dom_post_order_traversal_;
}
int GetDefCount() const {
return def_count_;
}
ArenaAllocator* GetArena() {
return arena_;
}
void EnableOpcodeCounting() {
opcode_count_ = static_cast<int*>(arena_->NewMem(kNumPackedOpcodes * sizeof(int), true,
ArenaAllocator::kAllocMisc));
}
void ShowOpcodeStats();
DexCompilationUnit* GetCurrentDexCompilationUnit() const {
return m_units_[current_method_];
}
void DumpCFG(const char* dir_prefix, bool all_blocks);
void BuildRegLocations();
void DumpRegLocTable(RegLocation* table, int count);
void BasicBlockOptimization();
bool IsConst(int32_t s_reg) const {
return is_constant_v_->IsBitSet(s_reg);
}
bool IsConst(RegLocation loc) const {
return (IsConst(loc.orig_sreg));
}
int32_t ConstantValue(RegLocation loc) const {
DCHECK(IsConst(loc));
return constant_values_[loc.orig_sreg];
}
int32_t ConstantValue(int32_t s_reg) const {
DCHECK(IsConst(s_reg));
return constant_values_[s_reg];
}
int64_t ConstantValueWide(RegLocation loc) const {
DCHECK(IsConst(loc));
return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
}
bool IsConstantNullRef(RegLocation loc) const {
return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
}
int GetNumSSARegs() const {
return num_ssa_regs_;
}
void SetNumSSARegs(int new_num) {
num_ssa_regs_ = new_num;
}
unsigned int GetNumReachableBlocks() const {
return num_reachable_blocks_;
}
int GetUseCount(int vreg) const {
return use_counts_.Get(vreg);
}
int GetRawUseCount(int vreg) const {
return raw_use_counts_.Get(vreg);
}
int GetSSASubscript(int ssa_reg) const {
return ssa_subscripts_->Get(ssa_reg);
}
RegLocation GetRawSrc(MIR* mir, int num) {
DCHECK(num < mir->ssa_rep->num_uses);
RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
return res;
}
RegLocation GetRawDest(MIR* mir) {
DCHECK_GT(mir->ssa_rep->num_defs, 0);
RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
return res;
}
RegLocation GetDest(MIR* mir) {
RegLocation res = GetRawDest(mir);
DCHECK(!res.wide);
return res;
}
RegLocation GetSrc(MIR* mir, int num) {
RegLocation res = GetRawSrc(mir, num);
DCHECK(!res.wide);
return res;
}
RegLocation GetDestWide(MIR* mir) {
RegLocation res = GetRawDest(mir);
DCHECK(res.wide);
return res;
}
RegLocation GetSrcWide(MIR* mir, int low) {
RegLocation res = GetRawSrc(mir, low);
DCHECK(res.wide);
return res;
}
RegLocation GetBadLoc() {
return bad_loc;
}
int GetMethodSReg() {
return method_sreg_;
}
bool MethodIsLeaf() {
return attributes_ & METHOD_IS_LEAF;
}
RegLocation GetRegLocation(int index) {
DCHECK((index >= 0) && (index > num_ssa_regs_));
return reg_location_[index];
}
RegLocation GetMethodLoc() {
return reg_location_[method_sreg_];
}
void BasicBlockCombine();
void CodeLayout();
void DumpCheckStats();
void PropagateConstants();
MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
int SRegToVReg(int ssa_reg) const;
void VerifyDataflow();
void MethodUseCount();
void SSATransformation();
void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
void NullCheckElimination();
bool SetFp(int index, bool is_fp);
bool SetCore(int index, bool is_core);
bool SetRef(int index, bool is_ref);
bool SetWide(int index, bool is_wide);
bool SetHigh(int index, bool is_high);
void AppendMIR(BasicBlock* bb, MIR* mir);
void PrependMIR(BasicBlock* bb, MIR* mir);
void InsertMIRAfter(BasicBlock* bb, MIR* current_mir, MIR* new_mir);
char* GetDalvikDisassembly(const MIR* mir);
void ReplaceSpecialChars(std::string& str);
std::string GetSSAName(int ssa_reg);
std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
void GetBlockName(BasicBlock* bb, char* name);
const char* GetShortyFromTargetIdx(int);
void DumpMIRGraph();
CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
BasicBlock* NewMemBB(BBType block_type, int block_id);
/*
* IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
* we can verify that all catch entries have native PC entries.
*/
std::set<uint32_t> catches_;
// TODO: make these private.
RegLocation* reg_location_; // Map SSA names to location.
GrowableArray<CompilerTemp*> compiler_temps_;
SafeMap<unsigned int, unsigned int> block_id_map_; // Block collapse lookup cache.
static const int oat_data_flow_attributes_[kMirOpLast];
static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
private:
int FindCommonParent(int block1, int block2);
void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
const ArenaBitVector* src2);
void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
ArenaBitVector* live_in_v, int dalvik_reg_id);
void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
void CompilerInitializeSSAConversion();
bool DoSSAConversion(BasicBlock* bb);
bool InvokeUsesMethodStar(MIR* mir);
int ParseInsn(const uint16_t* code_ptr, DecodedInstruction* decoded_instruction);
bool ContentIsInsn(const uint16_t* code_ptr);
BasicBlock* SplitBlock(unsigned int code_offset, BasicBlock* orig_block,
BasicBlock** immed_pred_block_p);
BasicBlock* FindBlock(unsigned int code_offset, bool split, bool create,
BasicBlock** immed_pred_block_p);
void ProcessTryCatchBlocks();
BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, int cur_offset, int width,
int flags, const uint16_t* code_ptr, const uint16_t* code_end);
void ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, int cur_offset, int width, int flags);
BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, int cur_offset, int width,
int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
const uint16_t* code_end);
int AddNewSReg(int v_reg);
void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
void DataFlowSSAFormat35C(MIR* mir);
void DataFlowSSAFormat3RC(MIR* mir);
bool FindLocalLiveIn(BasicBlock* bb);
void ClearAllVisitedFlags();
bool CountUses(struct BasicBlock* bb);
bool InferTypeAndSize(BasicBlock* bb);
bool VerifyPredInfo(BasicBlock* bb);
BasicBlock* NeedsVisit(BasicBlock* bb);
BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
void MarkPreOrder(BasicBlock* bb);
void RecordDFSOrders(BasicBlock* bb);
void ComputeDFSOrders();
void ComputeDefBlockMatrix();
void ComputeDomPostOrderTraversal(BasicBlock* bb);
void ComputeDominators();
void InsertPhiNodes();
void DoDFSPreOrderSSARename(BasicBlock* block);
void SetConstant(int32_t ssa_reg, int value);
void SetConstantWide(int ssa_reg, int64_t value);
int GetSSAUseCount(int s_reg);
bool BasicBlockOpt(BasicBlock* bb);
bool EliminateNullChecks(BasicBlock* bb);
void NullCheckEliminationInit(BasicBlock* bb);
bool BuildExtendedBBList(struct BasicBlock* bb);
bool FillDefBlockMatrix(BasicBlock* bb);
void InitializeDominationInfo(BasicBlock* bb);
bool ComputeblockIDom(BasicBlock* bb);
bool ComputeBlockDominators(BasicBlock* bb);
bool SetDominators(BasicBlock* bb);
bool ComputeBlockLiveIns(BasicBlock* bb);
bool InsertPhiNodeOperands(BasicBlock* bb);
bool ComputeDominanceFrontier(BasicBlock* bb);
void DoConstantPropogation(BasicBlock* bb);
void CountChecks(BasicBlock* bb);
bool CombineBlocks(BasicBlock* bb);
CompilationUnit* const cu_;
GrowableArray<int>* ssa_base_vregs_;
GrowableArray<int>* ssa_subscripts_;
// Map original Dalvik virtual reg i to the current SSA name.
int* vreg_to_ssa_map_; // length == method->registers_size
int* ssa_last_defs_; // length == method->registers_size
ArenaBitVector* is_constant_v_; // length == num_ssa_reg
int* constant_values_; // length == num_ssa_reg
// Use counts of ssa names.
GrowableArray<uint32_t> use_counts_; // Weighted by nesting depth
GrowableArray<uint32_t> raw_use_counts_; // Not weighted
unsigned int num_reachable_blocks_;
GrowableArray<int>* dfs_order_;
GrowableArray<int>* dfs_post_order_;
GrowableArray<int>* dom_post_order_traversal_;
int* i_dom_list_;
ArenaBitVector** def_block_matrix_; // num_dalvik_register x num_blocks.
ArenaBitVector* temp_block_v_;
ArenaBitVector* temp_dalvik_register_v_;
ArenaBitVector* temp_ssa_register_v_; // num_ssa_regs.
static const int kInvalidEntry = -1;
GrowableArray<BasicBlock*> block_list_;
ArenaBitVector* try_block_addr_;
BasicBlock* entry_block_;
BasicBlock* exit_block_;
BasicBlock* cur_block_;
int num_blocks_;
const DexFile::CodeItem* current_code_item_;
SafeMap<unsigned int, BasicBlock*> block_map_; // FindBlock lookup cache.
std::vector<DexCompilationUnit*> m_units_; // List of methods included in this graph
typedef std::pair<int, int> MIRLocation; // Insert point, (m_unit_ index, offset)
std::vector<MIRLocation> method_stack_; // Include stack
int current_method_;
int current_offset_;
int def_count_; // Used to estimate size of ssa name storage.
int* opcode_count_; // Dex opcode coverage stats.
int num_ssa_regs_; // Number of names following SSA transformation.
std::vector<BasicBlock*> extended_basic_blocks_; // Heads of block "traces".
int method_sreg_;
unsigned int attributes_;
Checkstats* checkstats_;
ArenaAllocator* arena_;
};
} // namespace art
#endif // ART_COMPILER_DEX_MIR_GRAPH_H_