blob: 4c0bd8378b887c2355b412d5effb7f3f8f0717b7 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_mips.h"
#include <inttypes.h>
#include <string>
#include "arch/mips/instruction_set_features_mips.h"
#include "backend_mips.h"
#include "base/logging.h"
#include "dex/compiler_ir.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "driver/compiler_driver.h"
#include "mips_lir.h"
namespace art {
static constexpr RegStorage core_regs_arr_32[] =
{rs_rZERO, rs_rAT, rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rT0_32, rs_rT1_32,
rs_rT2_32, rs_rT3_32, rs_rT4_32, rs_rT5_32, rs_rT6_32, rs_rT7_32, rs_rS0, rs_rS1, rs_rS2,
rs_rS3, rs_rS4, rs_rS5, rs_rS6, rs_rS7, rs_rT8, rs_rT9, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rFP,
rs_rRA};
static constexpr RegStorage sp_regs_arr_32[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15};
static constexpr RegStorage dp_fr0_regs_arr_32[] =
{rs_rD0_fr0, rs_rD1_fr0, rs_rD2_fr0, rs_rD3_fr0, rs_rD4_fr0, rs_rD5_fr0, rs_rD6_fr0,
rs_rD7_fr0};
static constexpr RegStorage dp_fr1_regs_arr_32[] =
{rs_rD0_fr1, rs_rD1_fr1, rs_rD2_fr1, rs_rD3_fr1, rs_rD4_fr1, rs_rD5_fr1, rs_rD6_fr1,
rs_rD7_fr1};
static constexpr RegStorage reserved_regs_arr_32[] =
{rs_rZERO, rs_rAT, rs_rS0, rs_rS1, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rRA};
static constexpr RegStorage core_temps_arr_32[] =
{rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rT0_32, rs_rT1_32, rs_rT2_32, rs_rT3_32,
rs_rT4_32, rs_rT5_32, rs_rT6_32, rs_rT7_32, rs_rT8};
static constexpr RegStorage sp_temps_arr_32[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15};
static constexpr RegStorage dp_fr0_temps_arr_32[] =
{rs_rD0_fr0, rs_rD1_fr0, rs_rD2_fr0, rs_rD3_fr0, rs_rD4_fr0, rs_rD5_fr0, rs_rD6_fr0,
rs_rD7_fr0};
static constexpr RegStorage dp_fr1_temps_arr_32[] =
{rs_rD0_fr1, rs_rD1_fr1, rs_rD2_fr1, rs_rD3_fr1, rs_rD4_fr1, rs_rD5_fr1, rs_rD6_fr1,
rs_rD7_fr1};
static constexpr RegStorage core_regs_arr_64[] =
{rs_rZERO, rs_rAT, rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rA4, rs_rA5, rs_rA6,
rs_rA7, rs_rT0, rs_rT1, rs_rT2, rs_rT3, rs_rS0, rs_rS1, rs_rS2, rs_rS3, rs_rS4, rs_rS5, rs_rS6,
rs_rS7, rs_rT8, rs_rT9, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rFP, rs_rRA};
static constexpr RegStorage core_regs_arr_64d[] =
{rs_rZEROd, rs_rATd, rs_rV0d, rs_rV1d, rs_rA0d, rs_rA1d, rs_rA2d, rs_rA3d, rs_rA4d, rs_rA5d,
rs_rA6d, rs_rA7d, rs_rT0d, rs_rT1d, rs_rT2d, rs_rT3d, rs_rS0d, rs_rS1d, rs_rS2d, rs_rS3d,
rs_rS4d, rs_rS5d, rs_rS6d, rs_rS7d, rs_rT8d, rs_rT9d, rs_rK0d, rs_rK1d, rs_rGPd, rs_rSPd,
rs_rFPd, rs_rRAd};
#if 0
// TODO: f24-f31 must be saved before calls and restored after.
static constexpr RegStorage sp_regs_arr_64[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15, rs_rF16, rs_rF17, rs_rF18, rs_rF19, rs_rF20,
rs_rF21, rs_rF22, rs_rF23, rs_rF24, rs_rF25, rs_rF26, rs_rF27, rs_rF28, rs_rF29, rs_rF30,
rs_rF31};
static constexpr RegStorage dp_regs_arr_64[] =
{rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7, rs_rD8, rs_rD9, rs_rD10,
rs_rD11, rs_rD12, rs_rD13, rs_rD14, rs_rD15, rs_rD16, rs_rD17, rs_rD18, rs_rD19, rs_rD20,
rs_rD21, rs_rD22, rs_rD23, rs_rD24, rs_rD25, rs_rD26, rs_rD27, rs_rD28, rs_rD29, rs_rD30,
rs_rD31};
#else
static constexpr RegStorage sp_regs_arr_64[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15, rs_rF16, rs_rF17, rs_rF18, rs_rF19, rs_rF20,
rs_rF21, rs_rF22, rs_rF23};
static constexpr RegStorage dp_regs_arr_64[] =
{rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7, rs_rD8, rs_rD9, rs_rD10,
rs_rD11, rs_rD12, rs_rD13, rs_rD14, rs_rD15, rs_rD16, rs_rD17, rs_rD18, rs_rD19, rs_rD20,
rs_rD21, rs_rD22, rs_rD23};
#endif
static constexpr RegStorage reserved_regs_arr_64[] =
{rs_rZERO, rs_rAT, rs_rS0, rs_rS1, rs_rT9, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rRA};
static constexpr RegStorage reserved_regs_arr_64d[] =
{rs_rZEROd, rs_rATd, rs_rS0d, rs_rS1d, rs_rT9d, rs_rK0d, rs_rK1d, rs_rGPd, rs_rSPd, rs_rRAd};
static constexpr RegStorage core_temps_arr_64[] =
{rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rA4, rs_rA5, rs_rA6, rs_rA7, rs_rT0, rs_rT1,
rs_rT2, rs_rT3, rs_rT8};
static constexpr RegStorage core_temps_arr_64d[] =
{rs_rV0d, rs_rV1d, rs_rA0d, rs_rA1d, rs_rA2d, rs_rA3d, rs_rA4d, rs_rA5d, rs_rA6d, rs_rA7d,
rs_rT0d, rs_rT1d, rs_rT2d, rs_rT3d, rs_rT8d};
#if 0
// TODO: f24-f31 must be saved before calls and restored after.
static constexpr RegStorage sp_temps_arr_64[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15, rs_rF16, rs_rF17, rs_rF18, rs_rF19, rs_rF20,
rs_rF21, rs_rF22, rs_rF23, rs_rF24, rs_rF25, rs_rF26, rs_rF27, rs_rF28, rs_rF29, rs_rF30,
rs_rF31};
static constexpr RegStorage dp_temps_arr_64[] =
{rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7, rs_rD8, rs_rD9, rs_rD10,
rs_rD11, rs_rD12, rs_rD13, rs_rD14, rs_rD15, rs_rD16, rs_rD17, rs_rD18, rs_rD19, rs_rD20,
rs_rD21, rs_rD22, rs_rD23, rs_rD24, rs_rD25, rs_rD26, rs_rD27, rs_rD28, rs_rD29, rs_rD30,
rs_rD31};
#else
static constexpr RegStorage sp_temps_arr_64[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15, rs_rF16, rs_rF17, rs_rF18, rs_rF19, rs_rF20,
rs_rF21, rs_rF22, rs_rF23};
static constexpr RegStorage dp_temps_arr_64[] =
{rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7, rs_rD8, rs_rD9, rs_rD10,
rs_rD11, rs_rD12, rs_rD13, rs_rD14, rs_rD15, rs_rD16, rs_rD17, rs_rD18, rs_rD19, rs_rD20,
rs_rD21, rs_rD22, rs_rD23};
#endif
static constexpr ArrayRef<const RegStorage> empty_pool;
static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
static constexpr ArrayRef<const RegStorage> dp_fr0_regs_32(dp_fr0_regs_arr_32);
static constexpr ArrayRef<const RegStorage> dp_fr1_regs_32(dp_fr1_regs_arr_32);
static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
static constexpr ArrayRef<const RegStorage> dp_fr0_temps_32(dp_fr0_temps_arr_32);
static constexpr ArrayRef<const RegStorage> dp_fr1_temps_32(dp_fr1_temps_arr_32);
static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
static constexpr ArrayRef<const RegStorage> core_regs_64d(core_regs_arr_64d);
static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
static constexpr ArrayRef<const RegStorage> reserved_regs_64d(reserved_regs_arr_64d);
static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
static constexpr ArrayRef<const RegStorage> core_temps_64d(core_temps_arr_64d);
static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
RegLocation MipsMir2Lir::LocCReturn() {
return mips_loc_c_return;
}
RegLocation MipsMir2Lir::LocCReturnRef() {
return cu_->target64 ? mips64_loc_c_return_ref : mips_loc_c_return;
}
RegLocation MipsMir2Lir::LocCReturnWide() {
return cu_->target64 ? mips64_loc_c_return_wide : mips_loc_c_return_wide;
}
RegLocation MipsMir2Lir::LocCReturnFloat() {
return mips_loc_c_return_float;
}
RegLocation MipsMir2Lir::LocCReturnDouble() {
if (cu_->target64) {
return mips64_loc_c_return_double;
} else if (fpuIs32Bit_) {
return mips_loc_c_return_double_fr0;
} else {
return mips_loc_c_return_double_fr1;
}
}
// Convert k64BitSolo into k64BitPair.
RegStorage MipsMir2Lir::Solo64ToPair64(RegStorage reg) {
DCHECK(reg.IsDouble());
DCHECK_EQ(reg.GetRegNum() & 1, 0);
int reg_num = (reg.GetRegNum() & ~1) | RegStorage::kFloatingPoint;
return RegStorage(RegStorage::k64BitPair, reg_num, reg_num + 1);
}
// Convert 64bit FP (k64BitSolo or k64BitPair) into k32BitSolo.
// This routine is only used to allow a 64bit FPU to access FP registers 32bits at a time.
RegStorage MipsMir2Lir::Fp64ToSolo32(RegStorage reg) {
DCHECK(!fpuIs32Bit_);
DCHECK(reg.IsDouble());
DCHECK(!reg.IsPair());
int reg_num = reg.GetRegNum() | RegStorage::kFloatingPoint;
return RegStorage(RegStorage::k32BitSolo, reg_num);
}
// Return a target-dependent special register.
RegStorage MipsMir2Lir::TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
if (!cu_->target64 && wide_kind == kWide) {
DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg15) || (kRet0 == reg));
RegStorage ret_reg = RegStorage::MakeRegPair(TargetReg(reg),
TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
if (!fpuIs32Bit_ && ret_reg.IsFloat()) {
// convert 64BitPair to 64BitSolo for 64bit FPUs.
RegStorage low = ret_reg.GetLow();
ret_reg = RegStorage::FloatSolo64(low.GetRegNum());
}
return ret_reg;
} else if (cu_->target64 && (wide_kind == kWide || wide_kind == kRef)) {
return As64BitReg(TargetReg(reg));
} else {
return TargetReg(reg);
}
}
// Return a target-dependent special register.
RegStorage MipsMir2Lir::TargetReg(SpecialTargetRegister reg) {
RegStorage res_reg;
switch (reg) {
case kSelf: res_reg = rs_rS1; break;
case kSuspend: res_reg = rs_rS0; break;
case kLr: res_reg = rs_rRA; break;
case kPc: res_reg = RegStorage::InvalidReg(); break;
case kSp: res_reg = rs_rSP; break;
case kArg0: res_reg = rs_rA0; break;
case kArg1: res_reg = rs_rA1; break;
case kArg2: res_reg = rs_rA2; break;
case kArg3: res_reg = rs_rA3; break;
case kArg4: res_reg = cu_->target64 ? rs_rA4 : RegStorage::InvalidReg(); break;
case kArg5: res_reg = cu_->target64 ? rs_rA5 : RegStorage::InvalidReg(); break;
case kArg6: res_reg = cu_->target64 ? rs_rA6 : RegStorage::InvalidReg(); break;
case kArg7: res_reg = cu_->target64 ? rs_rA7 : RegStorage::InvalidReg(); break;
case kFArg0: res_reg = rs_rF12; break;
case kFArg1: res_reg = rs_rF13; break;
case kFArg2: res_reg = rs_rF14; break;
case kFArg3: res_reg = rs_rF15; break;
case kFArg4: res_reg = cu_->target64 ? rs_rF16 : RegStorage::InvalidReg(); break;
case kFArg5: res_reg = cu_->target64 ? rs_rF17 : RegStorage::InvalidReg(); break;
case kFArg6: res_reg = cu_->target64 ? rs_rF18 : RegStorage::InvalidReg(); break;
case kFArg7: res_reg = cu_->target64 ? rs_rF19 : RegStorage::InvalidReg(); break;
case kRet0: res_reg = rs_rV0; break;
case kRet1: res_reg = rs_rV1; break;
case kInvokeTgt: res_reg = rs_rT9; break;
case kHiddenArg: res_reg = cu_->target64 ? rs_rT0 : rs_rT0_32; break;
case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
case kCount: res_reg = RegStorage::InvalidReg(); break;
default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
RegStorage MipsMir2Lir::InToRegStorageMipsMapper::GetNextReg(ShortyArg arg) {
const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3};
const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
RegStorage result = RegStorage::InvalidReg();
if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
result = m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
arg.IsRef() ? kRef : kNotWide);
if (arg.IsWide() && cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
result = RegStorage::MakeRegPair(
result, m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], kNotWide));
}
}
return result;
}
RegStorage MipsMir2Lir::InToRegStorageMips64Mapper::GetNextReg(ShortyArg arg) {
const SpecialTargetRegister coreArgMappingToPhysicalReg[] =
{kArg1, kArg2, kArg3, kArg4, kArg5, kArg6, kArg7};
const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
const SpecialTargetRegister fpArgMappingToPhysicalReg[] =
{kFArg1, kFArg2, kFArg3, kFArg4, kFArg5, kFArg6, kFArg7};
const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
RegStorage result = RegStorage::InvalidReg();
if (arg.IsFP()) {
if (cur_arg_reg_ < fpArgMappingToPhysicalRegSize) {
DCHECK(!arg.IsRef());
result = m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_arg_reg_++],
arg.IsWide() ? kWide : kNotWide);
}
} else {
if (cur_arg_reg_ < coreArgMappingToPhysicalRegSize) {
DCHECK(!(arg.IsWide() && arg.IsRef()));
result = m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_arg_reg_++],
arg.IsRef() ? kRef : (arg.IsWide() ? kWide : kNotWide));
}
}
return result;
}
/*
* Decode the register id.
*/
ResourceMask MipsMir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
if (cu_->target64) {
return ResourceMask::Bit((reg.IsFloat() ? kMipsFPReg0 : 0) + reg.GetRegNum());
} else {
if (reg.IsDouble()) {
return ResourceMask::TwoBits((reg.GetRegNum() & ~1) + kMipsFPReg0);
} else if (reg.IsSingle()) {
return ResourceMask::Bit(reg.GetRegNum() + kMipsFPReg0);
} else {
return ResourceMask::Bit(reg.GetRegNum());
}
}
}
ResourceMask MipsMir2Lir::GetPCUseDefEncoding() const {
return cu_->target64 ? ResourceMask::Bit(kMips64RegPC) : ResourceMask::Bit(kMipsRegPC);
}
void MipsMir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags, ResourceMask* use_mask,
ResourceMask* def_mask) {
DCHECK(!lir->flags.use_def_invalid);
// Mips-specific resource map setup here.
if (flags & REG_DEF_SP) {
def_mask->SetBit(kMipsRegSP);
}
if (flags & REG_USE_SP) {
use_mask->SetBit(kMipsRegSP);
}
if (flags & REG_DEF_LR) {
def_mask->SetBit(kMipsRegLR);
}
if (!cu_->target64) {
if (flags & REG_DEF_HI) {
def_mask->SetBit(kMipsRegHI);
}
if (flags & REG_DEF_LO) {
def_mask->SetBit(kMipsRegLO);
}
if (flags & REG_USE_HI) {
use_mask->SetBit(kMipsRegHI);
}
if (flags & REG_USE_LO) {
use_mask->SetBit(kMipsRegLO);
}
}
}
/* For dumping instructions */
#define MIPS_REG_COUNT 32
static const char *mips_reg_name[MIPS_REG_COUNT] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"
};
static const char *mips64_reg_name[MIPS_REG_COUNT] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"
};
/*
* Interpret a format string and build a string no longer than size
* See format key in assemble_mips.cc.
*/
std::string MipsMir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
std::string buf;
int i;
const char *fmt_end = &fmt[strlen(fmt)];
char tbuf[256];
char nc;
while (fmt < fmt_end) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmt_end);
nc = *fmt++;
if (nc == '!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmt_end);
DCHECK_LT(static_cast<unsigned>(nc-'0'), 4u);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'b':
strcpy(tbuf, "0000");
for (i = 3; i >= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 's':
snprintf(tbuf, arraysize(tbuf), "$f%d", RegStorage::RegNum(operand));
break;
case 'S':
DCHECK_EQ(RegStorage::RegNum(operand) & 1, 0);
snprintf(tbuf, arraysize(tbuf), "$f%d", RegStorage::RegNum(operand));
break;
case 'h':
snprintf(tbuf, arraysize(tbuf), "%04x", operand);
break;
case 'M':
case 'd':
snprintf(tbuf, arraysize(tbuf), "%d", operand);
break;
case 'D':
snprintf(tbuf, arraysize(tbuf), "%d", operand+1);
break;
case 'E':
snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
break;
case 'F':
snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
break;
case 't':
snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 + (operand << 1),
lir->target);
break;
case 'T':
snprintf(tbuf, arraysize(tbuf), "0x%08x", operand << 2);
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
uintptr_t target =
(((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) & ~3) +
(offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc;
snprintf(tbuf, arraysize(tbuf), "%p", reinterpret_cast<void*>(target));
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'r':
DCHECK(operand >= 0 && operand < MIPS_REG_COUNT);
if (cu_->target64) {
strcpy(tbuf, mips64_reg_name[operand]);
} else {
strcpy(tbuf, mips_reg_name[operand]);
}
break;
case 'N':
// Placeholder for delay slot handling
strcpy(tbuf, "; nop");
break;
default:
strcpy(tbuf, "DecodeError");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
return buf;
}
// FIXME: need to redo resource maps for MIPS - fix this at that time.
void MipsMir2Lir::DumpResourceMask(LIR *mips_lir, const ResourceMask& mask, const char *prefix) {
char buf[256];
buf[0] = 0;
if (mask.Equals(kEncodeAll)) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < (cu_->target64 ? kMips64RegEnd : kMipsRegEnd); i++) {
if (mask.HasBit(i)) {
snprintf(num, arraysize(num), "%d ", i);
strcat(buf, num);
}
}
if (mask.HasBit(ResourceMask::kCCode)) {
strcat(buf, "cc ");
}
if (mask.HasBit(ResourceMask::kFPStatus)) {
strcat(buf, "fpcc ");
}
// Memory bits.
if (mips_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
DECODE_ALIAS_INFO_REG(mips_lir->flags.alias_info),
DECODE_ALIAS_INFO_WIDE(mips_lir->flags.alias_info) ? "(+1)" : "");
}
if (mask.HasBit(ResourceMask::kLiteral)) {
strcat(buf, "lit ");
}
if (mask.HasBit(ResourceMask::kHeapRef)) {
strcat(buf, "heap ");
}
if (mask.HasBit(ResourceMask::kMustNotAlias)) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
/*
* TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void MipsMir2Lir::AdjustSpillMask() {
core_spill_mask_ |= (1 << rs_rRA.GetRegNum());
num_core_spills_++;
}
/* Clobber all regs that might be used by an external C call */
void MipsMir2Lir::ClobberCallerSave() {
if (cu_->target64) {
Clobber(rs_rZEROd);
Clobber(rs_rATd);
Clobber(rs_rV0d);
Clobber(rs_rV1d);
Clobber(rs_rA0d);
Clobber(rs_rA1d);
Clobber(rs_rA2d);
Clobber(rs_rA3d);
Clobber(rs_rA4d);
Clobber(rs_rA5d);
Clobber(rs_rA6d);
Clobber(rs_rA7d);
Clobber(rs_rT0d);
Clobber(rs_rT1d);
Clobber(rs_rT2d);
Clobber(rs_rT3d);
Clobber(rs_rT8d);
Clobber(rs_rT9d);
Clobber(rs_rK0d);
Clobber(rs_rK1d);
Clobber(rs_rGPd);
Clobber(rs_rFPd);
Clobber(rs_rRAd);
Clobber(rs_rF0);
Clobber(rs_rF1);
Clobber(rs_rF2);
Clobber(rs_rF3);
Clobber(rs_rF4);
Clobber(rs_rF5);
Clobber(rs_rF6);
Clobber(rs_rF7);
Clobber(rs_rF8);
Clobber(rs_rF9);
Clobber(rs_rF10);
Clobber(rs_rF11);
Clobber(rs_rF12);
Clobber(rs_rF13);
Clobber(rs_rF14);
Clobber(rs_rF15);
Clobber(rs_rD0);
Clobber(rs_rD1);
Clobber(rs_rD2);
Clobber(rs_rD3);
Clobber(rs_rD4);
Clobber(rs_rD5);
Clobber(rs_rD6);
Clobber(rs_rD7);
} else {
Clobber(rs_rZERO);
Clobber(rs_rAT);
Clobber(rs_rV0);
Clobber(rs_rV1);
Clobber(rs_rA0);
Clobber(rs_rA1);
Clobber(rs_rA2);
Clobber(rs_rA3);
Clobber(rs_rT0_32);
Clobber(rs_rT1_32);
Clobber(rs_rT2_32);
Clobber(rs_rT3_32);
Clobber(rs_rT4_32);
Clobber(rs_rT5_32);
Clobber(rs_rT6_32);
Clobber(rs_rT7_32);
Clobber(rs_rT8);
Clobber(rs_rT9);
Clobber(rs_rK0);
Clobber(rs_rK1);
Clobber(rs_rGP);
Clobber(rs_rFP);
Clobber(rs_rRA);
Clobber(rs_rF0);
Clobber(rs_rF1);
Clobber(rs_rF2);
Clobber(rs_rF3);
Clobber(rs_rF4);
Clobber(rs_rF5);
Clobber(rs_rF6);
Clobber(rs_rF7);
Clobber(rs_rF8);
Clobber(rs_rF9);
Clobber(rs_rF10);
Clobber(rs_rF11);
Clobber(rs_rF12);
Clobber(rs_rF13);
Clobber(rs_rF14);
Clobber(rs_rF15);
if (fpuIs32Bit_) {
Clobber(rs_rD0_fr0);
Clobber(rs_rD1_fr0);
Clobber(rs_rD2_fr0);
Clobber(rs_rD3_fr0);
Clobber(rs_rD4_fr0);
Clobber(rs_rD5_fr0);
Clobber(rs_rD6_fr0);
Clobber(rs_rD7_fr0);
} else {
Clobber(rs_rD0_fr1);
Clobber(rs_rD1_fr1);
Clobber(rs_rD2_fr1);
Clobber(rs_rD3_fr1);
Clobber(rs_rD4_fr1);
Clobber(rs_rD5_fr1);
Clobber(rs_rD6_fr1);
Clobber(rs_rD7_fr1);
}
}
}
RegLocation MipsMir2Lir::GetReturnWideAlt() {
UNIMPLEMENTED(FATAL) << "No GetReturnWideAlt for MIPS";
RegLocation res = LocCReturnWide();
return res;
}
RegLocation MipsMir2Lir::GetReturnAlt() {
UNIMPLEMENTED(FATAL) << "No GetReturnAlt for MIPS";
RegLocation res = LocCReturn();
return res;
}
/* To be used when explicitly managing register use */
void MipsMir2Lir::LockCallTemps() {
LockTemp(TargetReg(kArg0));
LockTemp(TargetReg(kArg1));
LockTemp(TargetReg(kArg2));
LockTemp(TargetReg(kArg3));
if (cu_->target64) {
LockTemp(TargetReg(kArg4));
LockTemp(TargetReg(kArg5));
LockTemp(TargetReg(kArg6));
LockTemp(TargetReg(kArg7));
}
}
/* To be used when explicitly managing register use */
void MipsMir2Lir::FreeCallTemps() {
FreeTemp(TargetReg(kArg0));
FreeTemp(TargetReg(kArg1));
FreeTemp(TargetReg(kArg2));
FreeTemp(TargetReg(kArg3));
if (cu_->target64) {
FreeTemp(TargetReg(kArg4));
FreeTemp(TargetReg(kArg5));
FreeTemp(TargetReg(kArg6));
FreeTemp(TargetReg(kArg7));
}
FreeTemp(TargetReg(kHiddenArg));
}
bool MipsMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind ATTRIBUTE_UNUSED) {
if (cu_->compiler_driver->GetInstructionSetFeatures()->IsSmp()) {
NewLIR1(kMipsSync, 0 /* Only stype currently supported */);
return true;
} else {
return false;
}
}
void MipsMir2Lir::CompilerInitializeRegAlloc() {
if (cu_->target64) {
reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64d, sp_regs_64,
dp_regs_64, reserved_regs_64, reserved_regs_64d,
core_temps_64, core_temps_64d, sp_temps_64,
dp_temps_64));
// Alias single precision floats to appropriate half of overlapping double.
for (RegisterInfo* info : reg_pool_->sp_regs_) {
int sp_reg_num = info->GetReg().GetRegNum();
int dp_reg_num = sp_reg_num;
RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | dp_reg_num);
RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
// Double precision register's master storage should refer to itself.
DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
// Redirect single precision's master storage to master.
info->SetMaster(dp_reg_info);
// Singles should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
}
// Alias 32bit W registers to corresponding 64bit X registers.
for (RegisterInfo* info : reg_pool_->core_regs_) {
int d_reg_num = info->GetReg().GetRegNum();
RegStorage d_reg = RegStorage::Solo64(d_reg_num);
RegisterInfo* d_reg_info = GetRegInfo(d_reg);
// 64bit D register's master storage should refer to itself.
DCHECK_EQ(d_reg_info, d_reg_info->Master());
// Redirect 32bit master storage to 64bit D.
info->SetMaster(d_reg_info);
// 32bit should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
}
} else {
reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, // core64
sp_regs_32,
fpuIs32Bit_ ? dp_fr0_regs_32 : dp_fr1_regs_32,
reserved_regs_32, empty_pool, // reserved64
core_temps_32, empty_pool, // core64_temps
sp_temps_32,
fpuIs32Bit_ ? dp_fr0_temps_32 : dp_fr1_temps_32));
// Alias single precision floats to appropriate half of overlapping double.
for (RegisterInfo* info : reg_pool_->sp_regs_) {
int sp_reg_num = info->GetReg().GetRegNum();
int dp_reg_num = sp_reg_num & ~1;
RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | dp_reg_num);
RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
// Double precision register's master storage should refer to itself.
DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
// Redirect single precision's master storage to master.
info->SetMaster(dp_reg_info);
// Singles should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
if (sp_reg_num & 1) {
// For odd singles, change to user the high word of the backing double.
info->SetStorageMask(0x2);
}
}
}
// Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
// TODO: adjust when we roll to hard float calling convention.
reg_pool_->next_core_reg_ = 2;
reg_pool_->next_sp_reg_ = 2;
if (cu_->target64) {
reg_pool_->next_dp_reg_ = 1;
} else {
reg_pool_->next_dp_reg_ = 2;
}
}
/*
* In the Arm code a it is typical to use the link register
* to hold the target address. However, for Mips we must
* ensure that all branch instructions can be restarted if
* there is a trap in the shadow. Allocate a temp register.
*/
RegStorage MipsMir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
// NOTE: native pointer.
if (cu_->target64) {
LoadWordDisp(TargetPtrReg(kSelf), GetThreadOffset<8>(trampoline).Int32Value(),
TargetPtrReg(kInvokeTgt));
} else {
LoadWordDisp(TargetPtrReg(kSelf), GetThreadOffset<4>(trampoline).Int32Value(),
TargetPtrReg(kInvokeTgt));
}
return TargetPtrReg(kInvokeTgt);
}
LIR* MipsMir2Lir::CheckSuspendUsingLoad() {
RegStorage tmp = AllocTemp();
// NOTE: native pointer.
if (cu_->target64) {
LoadWordDisp(TargetPtrReg(kSelf), Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
} else {
LoadWordDisp(TargetPtrReg(kSelf), Thread::ThreadSuspendTriggerOffset<4>().Int32Value(), tmp);
}
LIR *inst = LoadWordDisp(tmp, 0, tmp);
FreeTemp(tmp);
return inst;
}
LIR* MipsMir2Lir::GenAtomic64Load(RegStorage r_base, int displacement, RegStorage r_dest) {
DCHECK(!r_dest.IsFloat()); // See RegClassForFieldLoadStore().
if (!cu_->target64) {
DCHECK(r_dest.IsPair());
}
ClobberCallerSave();
LockCallTemps(); // Using fixed registers.
RegStorage reg_ptr = TargetReg(kArg0);
OpRegRegImm(kOpAdd, reg_ptr, r_base, displacement);
RegStorage r_tgt = LoadHelper(kQuickA64Load);
LIR *ret = OpReg(kOpBlx, r_tgt);
RegStorage reg_ret;
if (cu_->target64) {
OpRegCopy(r_dest, TargetReg(kRet0));
} else {
reg_ret = RegStorage::MakeRegPair(TargetReg(kRet0), TargetReg(kRet1));
OpRegCopyWide(r_dest, reg_ret);
}
return ret;
}
LIR* MipsMir2Lir::GenAtomic64Store(RegStorage r_base, int displacement, RegStorage r_src) {
DCHECK(!r_src.IsFloat()); // See RegClassForFieldLoadStore().
if (cu_->target64) {
DCHECK(!r_src.IsPair());
} else {
DCHECK(r_src.IsPair());
}
ClobberCallerSave();
LockCallTemps(); // Using fixed registers.
RegStorage temp_ptr = AllocTemp();
OpRegRegImm(kOpAdd, temp_ptr, r_base, displacement);
RegStorage temp_value = AllocTempWide();
OpRegCopyWide(temp_value, r_src);
if (cu_->target64) {
OpRegCopyWide(TargetReg(kArg0, kWide), temp_ptr);
OpRegCopyWide(TargetReg(kArg1, kWide), temp_value);
} else {
RegStorage reg_ptr = TargetReg(kArg0);
OpRegCopy(reg_ptr, temp_ptr);
RegStorage reg_value = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3));
OpRegCopyWide(reg_value, temp_value);
}
FreeTemp(temp_ptr);
FreeTemp(temp_value);
RegStorage r_tgt = LoadHelper(kQuickA64Store);
return OpReg(kOpBlx, r_tgt);
}
static dwarf::Reg DwarfCoreReg(int num) {
return dwarf::Reg::MipsCore(num);
}
void MipsMir2Lir::SpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
uint32_t mask = core_spill_mask_;
int ptr_size = cu_->target64 ? 8 : 4;
int offset = num_core_spills_ * ptr_size;
const RegStorage rs_sp = TargetPtrReg(kSp);
OpRegImm(kOpSub, rs_sp, offset);
cfi_.AdjustCFAOffset(offset);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= ptr_size;
StoreWordDisp(rs_sp, offset,
cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg));
cfi_.RelOffset(DwarfCoreReg(reg), offset);
}
}
}
void MipsMir2Lir::UnSpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
uint32_t mask = core_spill_mask_;
int offset = frame_size_;
int ptr_size = cu_->target64 ? 8 : 4;
const RegStorage rs_sp = TargetPtrReg(kSp);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= ptr_size;
LoadWordDisp(rs_sp, offset,
cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg));
cfi_.Restore(DwarfCoreReg(reg));
}
}
OpRegImm(kOpAdd, rs_sp, frame_size_);
cfi_.AdjustCFAOffset(-frame_size_);
}
bool MipsMir2Lir::IsUnconditionalBranch(LIR* lir) {
return (lir->opcode == kMipsB);
}
RegisterClass MipsMir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
if (UNLIKELY(is_volatile)) {
// On Mips, atomic 64-bit load/store requires a core register.
// Smaller aligned load/store is atomic for both core and fp registers.
if (size == k64 || size == kDouble) {
return kCoreReg;
}
}
// TODO: Verify that both core and fp registers are suitable for smaller sizes.
return RegClassBySize(size);
}
MipsMir2Lir::MipsMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena), in_to_reg_storage_mips64_mapper_(this),
in_to_reg_storage_mips_mapper_(this),
isaIsR6_(cu_->target64 ? true : cu->compiler_driver->GetInstructionSetFeatures()
->AsMipsInstructionSetFeatures()->IsR6()),
fpuIs32Bit_(cu_->target64 ? false : cu->compiler_driver->GetInstructionSetFeatures()
->AsMipsInstructionSetFeatures()->Is32BitFloatingPoint()) {
for (int i = 0; i < kMipsLast; i++) {
DCHECK_EQ(MipsMir2Lir::EncodingMap[i].opcode, i)
<< "Encoding order for " << MipsMir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(MipsMir2Lir::EncodingMap[i].opcode);
}
}
Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new MipsMir2Lir(cu, mir_graph, arena);
}
uint64_t MipsMir2Lir::GetTargetInstFlags(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return MipsMir2Lir::EncodingMap[opcode].flags;
}
const char* MipsMir2Lir::GetTargetInstName(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return MipsMir2Lir::EncodingMap[opcode].name;
}
const char* MipsMir2Lir::GetTargetInstFmt(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return MipsMir2Lir::EncodingMap[opcode].fmt;
}
} // namespace art