| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "gc_map.h" |
| #include "verifier/dex_gc_map.h" |
| #include "verifier/method_verifier.h" |
| |
| namespace art { |
| |
| void setMemRefType(LIR* lir, bool isLoad, int memType) |
| { |
| u8 *maskPtr; |
| u8 mask = ENCODE_MEM;; |
| DCHECK(EncodingMap[lir->opcode].flags & (IS_LOAD | IS_STORE)); |
| if (isLoad) { |
| maskPtr = &lir->useMask; |
| } else { |
| maskPtr = &lir->defMask; |
| } |
| /* Clear out the memref flags */ |
| *maskPtr &= ~mask; |
| /* ..and then add back the one we need */ |
| switch (memType) { |
| case kLiteral: |
| DCHECK(isLoad); |
| *maskPtr |= ENCODE_LITERAL; |
| break; |
| case kDalvikReg: |
| *maskPtr |= ENCODE_DALVIK_REG; |
| break; |
| case kHeapRef: |
| *maskPtr |= ENCODE_HEAP_REF; |
| break; |
| case kMustNotAlias: |
| /* Currently only loads can be marked as kMustNotAlias */ |
| DCHECK(!(EncodingMap[lir->opcode].flags & IS_STORE)); |
| *maskPtr |= ENCODE_MUST_NOT_ALIAS; |
| break; |
| default: |
| LOG(FATAL) << "Oat: invalid memref kind - " << memType; |
| } |
| } |
| |
| /* |
| * Mark load/store instructions that access Dalvik registers through the stack. |
| */ |
| void annotateDalvikRegAccess(LIR* lir, int regId, bool isLoad, bool is64bit) |
| { |
| setMemRefType(lir, isLoad, kDalvikReg); |
| |
| /* |
| * Store the Dalvik register id in aliasInfo. Mark the MSB if it is a 64-bit |
| * access. |
| */ |
| lir->aliasInfo = regId; |
| if (is64bit) { |
| lir->aliasInfo |= 0x80000000; |
| } |
| } |
| |
| /* |
| * Decode the register id. |
| */ |
| inline u8 getRegMaskCommon(int reg) |
| { |
| u8 seed; |
| int shift; |
| |
| #if defined(TARGET_X86) |
| int regId = reg & 0xf; |
| /* |
| * Double registers in x86 are just a single FP register |
| */ |
| seed = 1; |
| #else |
| int regId = reg & 0x1f; |
| /* |
| * Each double register is equal to a pair of single-precision FP registers |
| */ |
| seed = DOUBLEREG(reg) ? 3 : 1; |
| #endif |
| /* FP register starts at bit position 16 */ |
| shift = FPREG(reg) ? kFPReg0 : 0; |
| /* Expand the double register id into single offset */ |
| shift += regId; |
| return (seed << shift); |
| } |
| |
| /* |
| * Mark the corresponding bit(s). |
| */ |
| inline void setupRegMask(u8* mask, int reg) |
| { |
| *mask |= getRegMaskCommon(reg); |
| } |
| |
| /* |
| * Set up the proper fields in the resource mask |
| */ |
| void setupResourceMasks(LIR* lir) |
| { |
| int opcode = lir->opcode; |
| int flags; |
| |
| if (opcode <= 0) { |
| lir->useMask = lir->defMask = 0; |
| return; |
| } |
| |
| flags = EncodingMap[lir->opcode].flags; |
| |
| if (flags & NEEDS_FIXUP) { |
| lir->flags.pcRelFixup = true; |
| } |
| |
| /* Get the starting size of the instruction's template */ |
| lir->flags.size = oatGetInsnSize(lir); |
| |
| /* Set up the mask for resources that are updated */ |
| if (flags & (IS_LOAD | IS_STORE)) { |
| /* Default to heap - will catch specialized classes later */ |
| setMemRefType(lir, flags & IS_LOAD, kHeapRef); |
| } |
| |
| /* |
| * Conservatively assume the branch here will call out a function that in |
| * turn will trash everything. |
| */ |
| if (flags & IS_BRANCH) { |
| lir->defMask = lir->useMask = ENCODE_ALL; |
| return; |
| } |
| |
| if (flags & REG_DEF0) { |
| setupRegMask(&lir->defMask, lir->operands[0]); |
| } |
| |
| if (flags & REG_DEF1) { |
| setupRegMask(&lir->defMask, lir->operands[1]); |
| } |
| |
| #if defined(TARGET_X86) |
| if (flags & REG_DEFA) { |
| setupRegMask(&lir->defMask, rAX); |
| } |
| |
| if (flags & REG_DEFD) { |
| setupRegMask(&lir->defMask, rDX); |
| } |
| #endif |
| |
| if (flags & REG_DEF_SP) { |
| lir->defMask |= ENCODE_REG_SP; |
| } |
| |
| #if !defined(TARGET_X86) |
| if (flags & REG_DEF_LR) { |
| lir->defMask |= ENCODE_REG_LR; |
| } |
| #endif |
| |
| #if defined(TARGET_ARM) |
| if (flags & REG_DEF_LIST0) { |
| lir->defMask |= ENCODE_REG_LIST(lir->operands[0]); |
| } |
| |
| if (flags & REG_DEF_LIST1) { |
| lir->defMask |= ENCODE_REG_LIST(lir->operands[1]); |
| } |
| |
| if (flags & REG_DEF_FPCS_LIST0) { |
| lir->defMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]); |
| } |
| |
| if (flags & REG_DEF_FPCS_LIST2) { |
| for (int i = 0; i < lir->operands[2]; i++) { |
| setupRegMask(&lir->defMask, lir->operands[1] + i); |
| } |
| } |
| #endif |
| |
| if (flags & SETS_CCODES) { |
| lir->defMask |= ENCODE_CCODE; |
| } |
| |
| #if defined(TARGET_ARM) |
| /* Conservatively treat the IT block */ |
| if (flags & IS_IT) { |
| lir->defMask = ENCODE_ALL; |
| } |
| #endif |
| |
| if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) { |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| if (flags & (1 << (kRegUse0 + i))) { |
| setupRegMask(&lir->useMask, lir->operands[i]); |
| } |
| } |
| } |
| |
| #if defined(TARGET_X86) |
| if (flags & REG_USEA) { |
| setupRegMask(&lir->useMask, rAX); |
| } |
| |
| if (flags & REG_USEC) { |
| setupRegMask(&lir->useMask, rCX); |
| } |
| |
| if (flags & REG_USED) { |
| setupRegMask(&lir->useMask, rDX); |
| } |
| #endif |
| |
| #if defined(TARGET_ARM) |
| if (flags & REG_USE_PC) { |
| lir->useMask |= ENCODE_REG_PC; |
| } |
| #endif |
| |
| if (flags & REG_USE_SP) { |
| lir->useMask |= ENCODE_REG_SP; |
| } |
| |
| #if defined(TARGET_ARM) |
| if (flags & REG_USE_LIST0) { |
| lir->useMask |= ENCODE_REG_LIST(lir->operands[0]); |
| } |
| |
| if (flags & REG_USE_LIST1) { |
| lir->useMask |= ENCODE_REG_LIST(lir->operands[1]); |
| } |
| |
| if (flags & REG_USE_FPCS_LIST0) { |
| lir->useMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]); |
| } |
| |
| if (flags & REG_USE_FPCS_LIST2) { |
| for (int i = 0; i < lir->operands[2]; i++) { |
| setupRegMask(&lir->useMask, lir->operands[1] + i); |
| } |
| } |
| #endif |
| |
| if (flags & USES_CCODES) { |
| lir->useMask |= ENCODE_CCODE; |
| } |
| |
| #if defined(TARGET_ARM) |
| /* Fixup for kThumbPush/lr and kThumbPop/pc */ |
| if (opcode == kThumbPush || opcode == kThumbPop) { |
| u8 r8Mask = getRegMaskCommon(r8); |
| if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) { |
| lir->useMask &= ~r8Mask; |
| lir->useMask |= ENCODE_REG_LR; |
| } else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) { |
| lir->defMask &= ~r8Mask; |
| lir->defMask |= ENCODE_REG_PC; |
| } |
| } |
| #endif |
| } |
| |
| /* |
| * Debugging macros |
| */ |
| #define DUMP_RESOURCE_MASK(X) |
| #define DUMP_SSA_REP(X) |
| |
| /* Pretty-print a LIR instruction */ |
| void oatDumpLIRInsn(CompilationUnit* cUnit, LIR* arg, unsigned char* baseAddr) |
| { |
| LIR* lir = (LIR*) arg; |
| int offset = lir->offset; |
| int dest = lir->operands[0]; |
| const bool dumpNop = (cUnit->enableDebug & (1 << kDebugShowNops)); |
| |
| /* Handle pseudo-ops individually, and all regular insns as a group */ |
| switch (lir->opcode) { |
| case kPseudoMethodEntry: |
| LOG(INFO) << "-------- method entry " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file); |
| break; |
| case kPseudoMethodExit: |
| LOG(INFO) << "-------- Method_Exit"; |
| break; |
| case kPseudoBarrier: |
| LOG(INFO) << "-------- BARRIER"; |
| break; |
| case kPseudoExtended: |
| LOG(INFO) << "-------- " << (char* ) dest; |
| break; |
| case kPseudoSSARep: |
| DUMP_SSA_REP(LOG(INFO) << "-------- kMirOpPhi: " << (char* ) dest); |
| break; |
| case kPseudoEntryBlock: |
| LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoDalvikByteCodeBoundary: |
| LOG(INFO) << "-------- dalvik offset: 0x" << std::hex |
| << lir->dalvikOffset << " @ " << (char* )lir->operands[0]; |
| break; |
| case kPseudoExitBlock: |
| LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoPseudoAlign4: |
| LOG(INFO) << (intptr_t)baseAddr + offset << " (0x" << std::hex |
| << offset << "): .align4"; |
| break; |
| case kPseudoEHBlockLabel: |
| LOG(INFO) << "Exception_Handling:"; |
| break; |
| case kPseudoTargetLabel: |
| case kPseudoNormalBlockLabel: |
| LOG(INFO) << "L" << (void*)lir << ":"; |
| break; |
| case kPseudoThrowTarget: |
| LOG(INFO) << "LT" << (void*)lir << ":"; |
| break; |
| case kPseudoIntrinsicRetry: |
| LOG(INFO) << "IR" << (void*)lir << ":"; |
| break; |
| case kPseudoSuspendTarget: |
| LOG(INFO) << "LS" << (void*)lir << ":"; |
| break; |
| case kPseudoSafepointPC: |
| LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvikOffset << ":"; |
| break; |
| case kPseudoExportedPC: |
| LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvikOffset << ":"; |
| break; |
| case kPseudoCaseLabel: |
| LOG(INFO) << "LC" << (void*)lir << ": Case target 0x" |
| << std::hex << lir->operands[0] << "|" << std::dec << |
| lir->operands[0]; |
| break; |
| default: |
| if (lir->flags.isNop && !dumpNop) { |
| break; |
| } else { |
| std::string op_name(buildInsnString(EncodingMap[lir->opcode].name, |
| lir, baseAddr)); |
| std::string op_operands(buildInsnString(EncodingMap[lir->opcode].fmt |
| , lir, baseAddr)); |
| LOG(INFO) << StringPrintf("%05x: %-9s%s%s", |
| (unsigned int)(baseAddr + offset), |
| op_name.c_str(), op_operands.c_str(), |
| lir->flags.isNop ? "(nop)" : ""); |
| } |
| break; |
| } |
| |
| if (lir->useMask && (!lir->flags.isNop || dumpNop)) { |
| DUMP_RESOURCE_MASK(oatDumpResourceMask((LIR* ) lir, lir->useMask, "use")); |
| } |
| if (lir->defMask && (!lir->flags.isNop || dumpNop)) { |
| DUMP_RESOURCE_MASK(oatDumpResourceMask((LIR* ) lir, lir->defMask, "def")); |
| } |
| } |
| |
| void oatDumpPromotionMap(CompilationUnit *cUnit) |
| { |
| int numRegs = cUnit->numDalvikRegisters + cUnit->numCompilerTemps + 1; |
| for (int i = 0; i < numRegs; i++) { |
| PromotionMap vRegMap = cUnit->promotionMap[i]; |
| std::string buf; |
| if (vRegMap.fpLocation == kLocPhysReg) { |
| StringAppendF(&buf, " : s%d", vRegMap.fpReg & FP_REG_MASK); |
| } |
| |
| std::string buf3; |
| if (i < cUnit->numDalvikRegisters) { |
| StringAppendF(&buf3, "%02d", i); |
| } else if (i == cUnit->methodSReg) { |
| buf3 = "Method*"; |
| } else { |
| StringAppendF(&buf3, "ct%d", i - cUnit->numDalvikRegisters); |
| } |
| |
| LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(), |
| vRegMap.coreLocation == kLocPhysReg ? |
| "r" : "SP+", vRegMap.coreLocation == kLocPhysReg ? |
| vRegMap.coreReg : oatSRegOffset(cUnit, i), |
| buf.c_str()); |
| } |
| } |
| |
| /* Dump a mapping table */ |
| void dumpMappingTable(const char* table_name, const std::string& descriptor, |
| const std::string& name, const std::string& signature, |
| const std::vector<uint32_t>& v) { |
| if (v.size() > 0) { |
| std::string line(StringPrintf("\n %s %s%s_%s_table[%zu] = {", table_name, |
| descriptor.c_str(), name.c_str(), signature.c_str(), v.size())); |
| std::replace(line.begin(), line.end(), ';', '_'); |
| LOG(INFO) << line; |
| for (uint32_t i = 0; i < v.size(); i+=2) { |
| line = StringPrintf(" {0x%05x, 0x%04x},", v[i], v[i+1]); |
| LOG(INFO) << line; |
| } |
| LOG(INFO) <<" };\n\n"; |
| } |
| } |
| |
| /* Dump instructions and constant pool contents */ |
| void oatCodegenDump(CompilationUnit* cUnit) |
| { |
| LOG(INFO) << "Dumping LIR insns for " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file); |
| LIR* lirInsn; |
| LIR* thisLIR; |
| int insnsSize = cUnit->insnsSize; |
| |
| LOG(INFO) << "Regs (excluding ins) : " << cUnit->numRegs; |
| LOG(INFO) << "Ins : " << cUnit->numIns; |
| LOG(INFO) << "Outs : " << cUnit->numOuts; |
| LOG(INFO) << "CoreSpills : " << cUnit->numCoreSpills; |
| LOG(INFO) << "FPSpills : " << cUnit->numFPSpills; |
| LOG(INFO) << "CompilerTemps : " << cUnit->numCompilerTemps; |
| LOG(INFO) << "Frame size : " << cUnit->frameSize; |
| LOG(INFO) << "code size is " << cUnit->totalSize << |
| " bytes, Dalvik size is " << insnsSize * 2; |
| LOG(INFO) << "expansion factor: " |
| << (float)cUnit->totalSize / (float)(insnsSize * 2); |
| oatDumpPromotionMap(cUnit); |
| for (lirInsn = cUnit->firstLIRInsn; lirInsn; lirInsn = lirInsn->next) { |
| oatDumpLIRInsn(cUnit, lirInsn, 0); |
| } |
| for (lirInsn = cUnit->literalList; lirInsn; lirInsn = lirInsn->next) { |
| thisLIR = (LIR*) lirInsn; |
| LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", |
| thisLIR->offset, thisLIR->offset, |
| thisLIR->operands[0]); |
| } |
| |
| const DexFile::MethodId& method_id = |
| cUnit->dex_file->GetMethodId(cUnit->method_idx); |
| std::string signature(cUnit->dex_file->GetMethodSignature(method_id)); |
| std::string name(cUnit->dex_file->GetMethodName(method_id)); |
| std::string descriptor(cUnit->dex_file->GetMethodDeclaringClassDescriptor(method_id)); |
| |
| // Dump mapping tables |
| dumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, cUnit->pc2dexMappingTable); |
| dumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, cUnit->dex2pcMappingTable); |
| } |
| |
| |
| LIR* rawLIR(CompilationUnit* cUnit, int dalvikOffset, int opcode, int op0, |
| int op1, int op2, int op3, int op4, LIR* target) |
| { |
| LIR* insn = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocLIR); |
| insn->dalvikOffset = dalvikOffset; |
| insn->opcode = opcode; |
| insn->operands[0] = op0; |
| insn->operands[1] = op1; |
| insn->operands[2] = op2; |
| insn->operands[3] = op3; |
| insn->operands[4] = op4; |
| insn->target = target; |
| oatSetupResourceMasks(insn); |
| if ((opcode == kPseudoTargetLabel) || (opcode == kPseudoSafepointPC) || |
| (opcode == kPseudoExportedPC)) { |
| // Always make labels scheduling barriers |
| insn->useMask = insn->defMask = ENCODE_ALL; |
| } |
| return insn; |
| } |
| |
| /* |
| * The following are building blocks to construct low-level IRs with 0 - 4 |
| * operands. |
| */ |
| LIR* newLIR0(CompilationUnit* cUnit, int opcode) |
| { |
| DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & NO_OPERAND)) |
| << EncodingMap[opcode].name << " " << (int)opcode << " " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " |
| << cUnit->currentDalvikOffset; |
| LIR* insn = rawLIR(cUnit, cUnit->currentDalvikOffset, opcode); |
| oatAppendLIR(cUnit, (LIR*) insn); |
| return insn; |
| } |
| |
| LIR* newLIR1(CompilationUnit* cUnit, int opcode, |
| int dest) |
| { |
| DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_UNARY_OP)) |
| << EncodingMap[opcode].name << " " << (int)opcode << " " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " |
| << cUnit->currentDalvikOffset; |
| LIR* insn = rawLIR(cUnit, cUnit->currentDalvikOffset, opcode, dest); |
| oatAppendLIR(cUnit, (LIR*) insn); |
| return insn; |
| } |
| |
| LIR* newLIR2(CompilationUnit* cUnit, int opcode, |
| int dest, int src1) |
| { |
| DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_BINARY_OP)) |
| << EncodingMap[opcode].name << " " << (int)opcode << " " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " |
| << cUnit->currentDalvikOffset; |
| LIR* insn = rawLIR(cUnit, cUnit->currentDalvikOffset, opcode, dest, src1); |
| oatAppendLIR(cUnit, (LIR*) insn); |
| return insn; |
| } |
| |
| LIR* newLIR3(CompilationUnit* cUnit, int opcode, |
| int dest, int src1, int src2) |
| { |
| DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_TERTIARY_OP)) |
| << EncodingMap[opcode].name << " " << (int)opcode << " " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " |
| << cUnit->currentDalvikOffset; |
| LIR* insn = rawLIR(cUnit, cUnit->currentDalvikOffset, opcode, dest, src1, |
| src2); |
| oatAppendLIR(cUnit, (LIR*) insn); |
| return insn; |
| } |
| |
| LIR* newLIR4(CompilationUnit* cUnit, int opcode, |
| int dest, int src1, int src2, int info) |
| { |
| DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_QUAD_OP)) |
| << EncodingMap[opcode].name << " " << (int)opcode << " " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " |
| << cUnit->currentDalvikOffset; |
| LIR* insn = rawLIR(cUnit, cUnit->currentDalvikOffset, opcode, dest, src1, |
| src2, info); |
| oatAppendLIR(cUnit, (LIR*) insn); |
| return insn; |
| } |
| |
| LIR* newLIR5(CompilationUnit* cUnit, int opcode, |
| int dest, int src1, int src2, int info1, int info2) |
| { |
| DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_QUIN_OP)) |
| << EncodingMap[opcode].name << " " << (int)opcode << " " |
| << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " |
| << cUnit->currentDalvikOffset; |
| LIR* insn = rawLIR(cUnit, cUnit->currentDalvikOffset, opcode, dest, src1, |
| src2, info1, info2); |
| oatAppendLIR(cUnit, (LIR*) insn); |
| return insn; |
| } |
| |
| /* |
| * Search the existing constants in the literal pool for an exact or close match |
| * within specified delta (greater or equal to 0). |
| */ |
| LIR* scanLiteralPool(LIR* dataTarget, int value, unsigned int delta) |
| { |
| while (dataTarget) { |
| if (((unsigned) (value - ((LIR* ) dataTarget)->operands[0])) <= delta) |
| return (LIR* ) dataTarget; |
| dataTarget = dataTarget->next; |
| } |
| return NULL; |
| } |
| |
| /* Search the existing constants in the literal pool for an exact wide match */ |
| LIR* scanLiteralPoolWide(LIR* dataTarget, int valLo, int valHi) |
| { |
| bool loMatch = false; |
| LIR* loTarget = NULL; |
| while (dataTarget) { |
| if (loMatch && (((LIR*)dataTarget)->operands[0] == valHi)) { |
| return (LIR*)loTarget; |
| } |
| loMatch = false; |
| if (((LIR*)dataTarget)->operands[0] == valLo) { |
| loMatch = true; |
| loTarget = dataTarget; |
| } |
| dataTarget = dataTarget->next; |
| } |
| return NULL; |
| } |
| |
| /* |
| * The following are building blocks to insert constants into the pool or |
| * instruction streams. |
| */ |
| |
| /* Add a 32-bit constant either in the constant pool */ |
| LIR* addWordData(CompilationUnit* cUnit, LIR* *constantListP, int value) |
| { |
| /* Add the constant to the literal pool */ |
| if (constantListP) { |
| LIR* newValue = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocData); |
| newValue->operands[0] = value; |
| newValue->next = *constantListP; |
| *constantListP = (LIR*) newValue; |
| return newValue; |
| } |
| return NULL; |
| } |
| |
| /* Add a 64-bit constant to the constant pool or mixed with code */ |
| LIR* addWideData(CompilationUnit* cUnit, LIR* *constantListP, |
| int valLo, int valHi) |
| { |
| //FIXME: hard-coded little endian, need BE variant |
| // Insert high word into list first |
| addWordData(cUnit, constantListP, valHi); |
| return addWordData(cUnit, constantListP, valLo); |
| } |
| |
| void pushWord(std::vector<uint8_t>&buf, int data) { |
| buf.push_back( data & 0xff); |
| buf.push_back( (data >> 8) & 0xff); |
| buf.push_back( (data >> 16) & 0xff); |
| buf.push_back( (data >> 24) & 0xff); |
| } |
| |
| void alignBuffer(std::vector<uint8_t>&buf, size_t offset) { |
| while (buf.size() < offset) { |
| buf.push_back(0); |
| } |
| } |
| |
| bool IsDirect(int invokeType) { |
| InvokeType type = static_cast<InvokeType>(invokeType); |
| return type == kStatic || type == kDirect; |
| } |
| |
| /* Write the literal pool to the output stream */ |
| void installLiteralPools(CompilationUnit* cUnit) |
| { |
| alignBuffer(cUnit->codeBuffer, cUnit->dataOffset); |
| LIR* dataLIR = cUnit->literalList; |
| while (dataLIR != NULL) { |
| pushWord(cUnit->codeBuffer, dataLIR->operands[0]); |
| dataLIR = NEXT_LIR(dataLIR); |
| } |
| // Push code and method literals, record offsets for the compiler to patch. |
| dataLIR = cUnit->codeLiteralList; |
| while (dataLIR != NULL) { |
| uint32_t target = dataLIR->operands[0]; |
| cUnit->compiler->AddCodePatch(cUnit->dex_file, |
| cUnit->method_idx, |
| cUnit->invoke_type, |
| target, |
| static_cast<InvokeType>(dataLIR->operands[1]), |
| cUnit->codeBuffer.size()); |
| const DexFile::MethodId& id = cUnit->dex_file->GetMethodId(target); |
| // unique based on target to ensure code deduplication works |
| uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id); |
| pushWord(cUnit->codeBuffer, unique_patch_value); |
| dataLIR = NEXT_LIR(dataLIR); |
| } |
| dataLIR = cUnit->methodLiteralList; |
| while (dataLIR != NULL) { |
| uint32_t target = dataLIR->operands[0]; |
| cUnit->compiler->AddMethodPatch(cUnit->dex_file, |
| cUnit->method_idx, |
| cUnit->invoke_type, |
| target, |
| static_cast<InvokeType>(dataLIR->operands[1]), |
| cUnit->codeBuffer.size()); |
| const DexFile::MethodId& id = cUnit->dex_file->GetMethodId(target); |
| // unique based on target to ensure code deduplication works |
| uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id); |
| pushWord(cUnit->codeBuffer, unique_patch_value); |
| dataLIR = NEXT_LIR(dataLIR); |
| } |
| } |
| |
| /* Write the switch tables to the output stream */ |
| void installSwitchTables(CompilationUnit* cUnit) |
| { |
| GrowableListIterator iterator; |
| oatGrowableListIteratorInit(&cUnit->switchTables, &iterator); |
| while (true) { |
| SwitchTable* tabRec = (SwitchTable *) oatGrowableListIteratorNext( |
| &iterator); |
| if (tabRec == NULL) break; |
| alignBuffer(cUnit->codeBuffer, tabRec->offset); |
| /* |
| * For Arm, our reference point is the address of the bx |
| * instruction that does the launch, so we have to subtract |
| * the auto pc-advance. For other targets the reference point |
| * is a label, so we can use the offset as-is. |
| */ |
| #if defined(TARGET_ARM) |
| int bxOffset = tabRec->anchor->offset + 4; |
| #elif defined(TARGET_X86) |
| int bxOffset = 0; |
| #else |
| int bxOffset = tabRec->anchor->offset; |
| #endif |
| if (cUnit->printMe) { |
| LOG(INFO) << "Switch table for offset 0x" << std::hex << bxOffset; |
| } |
| if (tabRec->table[0] == Instruction::kSparseSwitchSignature) { |
| int* keys = (int*)&(tabRec->table[2]); |
| for (int elems = 0; elems < tabRec->table[1]; elems++) { |
| int disp = tabRec->targets[elems]->offset - bxOffset; |
| if (cUnit->printMe) { |
| LOG(INFO) << " Case[" << elems << "] key: 0x" |
| << std::hex << keys[elems] << ", disp: 0x" |
| << std::hex << disp; |
| } |
| pushWord(cUnit->codeBuffer, keys[elems]); |
| pushWord(cUnit->codeBuffer, |
| tabRec->targets[elems]->offset - bxOffset); |
| } |
| } else { |
| DCHECK_EQ(static_cast<int>(tabRec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| for (int elems = 0; elems < tabRec->table[1]; elems++) { |
| int disp = tabRec->targets[elems]->offset - bxOffset; |
| if (cUnit->printMe) { |
| LOG(INFO) << " Case[" << elems << "] disp: 0x" |
| << std::hex << disp; |
| } |
| pushWord(cUnit->codeBuffer, tabRec->targets[elems]->offset - bxOffset); |
| } |
| } |
| } |
| } |
| |
| /* Write the fill array dta to the output stream */ |
| void installFillArrayData(CompilationUnit* cUnit) |
| { |
| GrowableListIterator iterator; |
| oatGrowableListIteratorInit(&cUnit->fillArrayData, &iterator); |
| while (true) { |
| FillArrayData *tabRec = (FillArrayData *) oatGrowableListIteratorNext( |
| &iterator); |
| if (tabRec == NULL) break; |
| alignBuffer(cUnit->codeBuffer, tabRec->offset); |
| for (int i = 0; i < (tabRec->size + 1) / 2; i++) { |
| cUnit->codeBuffer.push_back( tabRec->table[i] & 0xFF); |
| cUnit->codeBuffer.push_back( (tabRec->table[i] >> 8) & 0xFF); |
| } |
| } |
| } |
| |
| int assignLiteralOffsetCommon(LIR* lir, int offset) |
| { |
| for (;lir != NULL; lir = lir->next) { |
| lir->offset = offset; |
| offset += 4; |
| } |
| return offset; |
| } |
| |
| // Make sure we have a code address for every declared catch entry |
| bool verifyCatchEntries(CompilationUnit* cUnit) |
| { |
| bool success = true; |
| for (std::set<uint32_t>::const_iterator it = cUnit->catches.begin(); it != cUnit->catches.end(); ++it) { |
| uint32_t dexPc = *it; |
| bool found = false; |
| for (size_t i = 0; i < cUnit->dex2pcMappingTable.size(); i += 2) { |
| if (dexPc == cUnit->dex2pcMappingTable[i+1]) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dexPc; |
| success = false; |
| } |
| } |
| // Now, try in the other direction |
| for (size_t i = 0; i < cUnit->dex2pcMappingTable.size(); i += 2) { |
| uint32_t dexPc = cUnit->dex2pcMappingTable[i+1]; |
| if (cUnit->catches.find(dexPc) == cUnit->catches.end()) { |
| LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << dexPc; |
| success = false; |
| } |
| } |
| if (!success) { |
| LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cUnit->method_idx, *cUnit->dex_file); |
| LOG(INFO) << "Entries @ decode: " << cUnit->catches.size() << ", Entries in table: " |
| << cUnit->dex2pcMappingTable.size()/2; |
| } |
| return success; |
| } |
| |
| void createMappingTables(CompilationUnit* cUnit) |
| { |
| for (LIR* tgtLIR = (LIR *) cUnit->firstLIRInsn; tgtLIR != NULL; tgtLIR = NEXT_LIR(tgtLIR)) { |
| if (!tgtLIR->flags.isNop && (tgtLIR->opcode == kPseudoSafepointPC)) { |
| cUnit->pc2dexMappingTable.push_back(tgtLIR->offset); |
| cUnit->pc2dexMappingTable.push_back(tgtLIR->dalvikOffset); |
| } |
| if (!tgtLIR->flags.isNop && (tgtLIR->opcode == kPseudoExportedPC)) { |
| cUnit->dex2pcMappingTable.push_back(tgtLIR->offset); |
| cUnit->dex2pcMappingTable.push_back(tgtLIR->dalvikOffset); |
| } |
| } |
| DCHECK(verifyCatchEntries(cUnit)); |
| cUnit->combinedMappingTable.push_back(cUnit->pc2dexMappingTable.size() + |
| cUnit->dex2pcMappingTable.size()); |
| cUnit->combinedMappingTable.push_back(cUnit->pc2dexMappingTable.size()); |
| cUnit->combinedMappingTable.insert(cUnit->combinedMappingTable.end(), |
| cUnit->pc2dexMappingTable.begin(), |
| cUnit->pc2dexMappingTable.end()); |
| cUnit->combinedMappingTable.insert(cUnit->combinedMappingTable.end(), |
| cUnit->dex2pcMappingTable.begin(), |
| cUnit->dex2pcMappingTable.end()); |
| } |
| |
| class NativePcToReferenceMapBuilder { |
| public: |
| NativePcToReferenceMapBuilder(std::vector<uint8_t>* table, |
| size_t entries, uint32_t max_native_offset, |
| size_t references_width) : entries_(entries), |
| references_width_(references_width), in_use_(entries), |
| table_(table) { |
| // Compute width in bytes needed to hold max_native_offset. |
| native_offset_width_ = 0; |
| while (max_native_offset != 0) { |
| native_offset_width_++; |
| max_native_offset >>= 8; |
| } |
| // Resize table and set up header. |
| table->resize((EntryWidth() * entries) + sizeof(uint32_t)); |
| CHECK_LT(native_offset_width_, 1U << 3); |
| (*table)[0] = native_offset_width_ & 7; |
| CHECK_LT(references_width_, 1U << 13); |
| (*table)[0] |= (references_width_ << 3) & 0xFF; |
| (*table)[1] = (references_width_ >> 5) & 0xFF; |
| CHECK_LT(entries, 1U << 16); |
| (*table)[2] = entries & 0xFF; |
| (*table)[3] = (entries >> 8) & 0xFF; |
| } |
| |
| void AddEntry(uint32_t native_offset, const uint8_t* references) { |
| size_t table_index = TableIndex(native_offset); |
| while (in_use_[table_index]) { |
| table_index = (table_index + 1) % entries_; |
| } |
| in_use_[table_index] = true; |
| SetNativeOffset(table_index, native_offset); |
| DCHECK_EQ(native_offset, GetNativeOffset(table_index)); |
| SetReferences(table_index, references); |
| } |
| |
| private: |
| size_t TableIndex(uint32_t native_offset) { |
| return NativePcOffsetToReferenceMap::Hash(native_offset) % entries_; |
| } |
| |
| uint32_t GetNativeOffset(size_t table_index) { |
| uint32_t native_offset = 0; |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| for (size_t i = 0; i < native_offset_width_; i++) { |
| native_offset |= (*table_)[table_offset + i] << (i * 8); |
| } |
| return native_offset; |
| } |
| |
| void SetNativeOffset(size_t table_index, uint32_t native_offset) { |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| for (size_t i = 0; i < native_offset_width_; i++) { |
| (*table_)[table_offset + i] = (native_offset >> (i * 8)) & 0xFF; |
| } |
| } |
| |
| void SetReferences(size_t table_index, const uint8_t* references) { |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| memcpy(&(*table_)[table_offset + native_offset_width_], references, references_width_); |
| } |
| |
| size_t EntryWidth() const { |
| return native_offset_width_ + references_width_; |
| } |
| |
| // Number of entries in the table. |
| const size_t entries_; |
| // Number of bytes used to encode the reference bitmap. |
| const size_t references_width_; |
| // Number of bytes used to encode a native offset. |
| size_t native_offset_width_; |
| // Entries that are in use. |
| std::vector<bool> in_use_; |
| // The table we're building. |
| std::vector<uint8_t>* const table_; |
| }; |
| |
| static void createNativeGcMap(CompilationUnit* cUnit) { |
| const std::vector<uint32_t>& mapping_table = cUnit->pc2dexMappingTable; |
| uint32_t max_native_offset = 0; |
| for (size_t i = 0; i < mapping_table.size(); i += 2) { |
| uint32_t native_offset = mapping_table[i + 0]; |
| if (native_offset > max_native_offset) { |
| max_native_offset = native_offset; |
| } |
| } |
| Compiler::MethodReference method_ref(cUnit->dex_file, cUnit->method_idx); |
| const std::vector<uint8_t>* gc_map_raw = verifier::MethodVerifier::GetDexGcMap(method_ref); |
| verifier::DexPcToReferenceMap dex_gc_map(&(*gc_map_raw)[4], gc_map_raw->size() - 4); |
| // Compute native offset to references size. |
| NativePcToReferenceMapBuilder native_gc_map_builder(&cUnit->nativeGcMap, |
| mapping_table.size() / 2, max_native_offset, |
| dex_gc_map.RegWidth()); |
| |
| for (size_t i = 0; i < mapping_table.size(); i += 2) { |
| uint32_t native_offset = mapping_table[i + 0]; |
| uint32_t dex_pc = mapping_table[i + 1]; |
| const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); |
| CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc; |
| native_gc_map_builder.AddEntry(native_offset, references); |
| } |
| } |
| |
| /* Determine the offset of each literal field */ |
| int assignLiteralOffset(CompilationUnit* cUnit, int offset) |
| { |
| offset = assignLiteralOffsetCommon(cUnit->literalList, offset); |
| offset = assignLiteralOffsetCommon(cUnit->codeLiteralList, offset); |
| offset = assignLiteralOffsetCommon(cUnit->methodLiteralList, offset); |
| return offset; |
| } |
| |
| int assignSwitchTablesOffset(CompilationUnit* cUnit, int offset) |
| { |
| GrowableListIterator iterator; |
| oatGrowableListIteratorInit(&cUnit->switchTables, &iterator); |
| while (true) { |
| SwitchTable *tabRec = (SwitchTable *) oatGrowableListIteratorNext( |
| &iterator); |
| if (tabRec == NULL) break; |
| tabRec->offset = offset; |
| if (tabRec->table[0] == Instruction::kSparseSwitchSignature) { |
| offset += tabRec->table[1] * (sizeof(int) * 2); |
| } else { |
| DCHECK_EQ(static_cast<int>(tabRec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| offset += tabRec->table[1] * sizeof(int); |
| } |
| } |
| return offset; |
| } |
| |
| int assignFillArrayDataOffset(CompilationUnit* cUnit, int offset) |
| { |
| GrowableListIterator iterator; |
| oatGrowableListIteratorInit(&cUnit->fillArrayData, &iterator); |
| while (true) { |
| FillArrayData *tabRec = (FillArrayData *) oatGrowableListIteratorNext( |
| &iterator); |
| if (tabRec == NULL) break; |
| tabRec->offset = offset; |
| offset += tabRec->size; |
| // word align |
| offset = (offset + 3) & ~3; |
| } |
| return offset; |
| } |
| |
| /* |
| * Walk the compilation unit and assign offsets to instructions |
| * and literals and compute the total size of the compiled unit. |
| */ |
| void oatAssignOffsets(CompilationUnit* cUnit) |
| { |
| int offset = oatAssignInsnOffsets(cUnit); |
| |
| /* Const values have to be word aligned */ |
| offset = (offset + 3) & ~3; |
| |
| /* Set up offsets for literals */ |
| cUnit->dataOffset = offset; |
| |
| offset = assignLiteralOffset(cUnit, offset); |
| |
| offset = assignSwitchTablesOffset(cUnit, offset); |
| |
| offset = assignFillArrayDataOffset(cUnit, offset); |
| |
| cUnit->totalSize = offset; |
| } |
| |
| /* |
| * Go over each instruction in the list and calculate the offset from the top |
| * before sending them off to the assembler. If out-of-range branch distance is |
| * seen rearrange the instructions a bit to correct it. |
| */ |
| void oatAssembleLIR(CompilationUnit* cUnit) |
| { |
| oatAssignOffsets(cUnit); |
| /* |
| * Assemble here. Note that we generate code with optimistic assumptions |
| * and if found now to work, we'll have to redo the sequence and retry. |
| */ |
| |
| while (true) { |
| AssemblerStatus res = oatAssembleInstructions(cUnit, 0); |
| if (res == kSuccess) { |
| break; |
| } else { |
| cUnit->assemblerRetries++; |
| if (cUnit->assemblerRetries > MAX_ASSEMBLER_RETRIES) { |
| oatCodegenDump(cUnit); |
| LOG(FATAL) << "Assembler error - too many retries"; |
| } |
| // Redo offsets and try again |
| oatAssignOffsets(cUnit); |
| cUnit->codeBuffer.clear(); |
| } |
| } |
| |
| // Install literals |
| installLiteralPools(cUnit); |
| |
| // Install switch tables |
| installSwitchTables(cUnit); |
| |
| // Install fill array data |
| installFillArrayData(cUnit); |
| |
| // Create the mapping table and native offset to reference map. |
| createMappingTables(cUnit); |
| |
| createNativeGcMap(cUnit); |
| } |
| |
| /* |
| * Insert a kPseudoCaseLabel at the beginning of the Dalvik |
| * offset vaddr. This label will be used to fix up the case |
| * branch table during the assembly phase. Be sure to set |
| * all resource flags on this to prevent code motion across |
| * target boundaries. KeyVal is just there for debugging. |
| */ |
| LIR* insertCaseLabel(CompilationUnit* cUnit, int vaddr, int keyVal) |
| { |
| SafeMap<unsigned int, LIR*>::iterator it; |
| it = cUnit->boundaryMap.find(vaddr); |
| if (it == cUnit->boundaryMap.end()) { |
| LOG(FATAL) << "Error: didn't find vaddr 0x" << std::hex << vaddr; |
| } |
| LIR* newLabel = (LIR*)oatNew(cUnit, sizeof(LIR), true, kAllocLIR); |
| newLabel->dalvikOffset = vaddr; |
| newLabel->opcode = kPseudoCaseLabel; |
| newLabel->operands[0] = keyVal; |
| oatInsertLIRAfter(it->second, (LIR*)newLabel); |
| return newLabel; |
| } |
| |
| void markPackedCaseLabels(CompilationUnit* cUnit, SwitchTable *tabRec) |
| { |
| const u2* table = tabRec->table; |
| int baseVaddr = tabRec->vaddr; |
| int *targets = (int*)&table[4]; |
| int entries = table[1]; |
| int lowKey = s4FromSwitchData(&table[2]); |
| for (int i = 0; i < entries; i++) { |
| tabRec->targets[i] = insertCaseLabel(cUnit, baseVaddr + targets[i], |
| i + lowKey); |
| } |
| } |
| |
| void markSparseCaseLabels(CompilationUnit* cUnit, SwitchTable *tabRec) |
| { |
| const u2* table = tabRec->table; |
| int baseVaddr = tabRec->vaddr; |
| int entries = table[1]; |
| int* keys = (int*)&table[2]; |
| int* targets = &keys[entries]; |
| for (int i = 0; i < entries; i++) { |
| tabRec->targets[i] = insertCaseLabel(cUnit, baseVaddr + targets[i], |
| keys[i]); |
| } |
| } |
| |
| void oatProcessSwitchTables(CompilationUnit* cUnit) |
| { |
| GrowableListIterator iterator; |
| oatGrowableListIteratorInit(&cUnit->switchTables, &iterator); |
| while (true) { |
| SwitchTable *tabRec = |
| (SwitchTable *) oatGrowableListIteratorNext(&iterator); |
| if (tabRec == NULL) break; |
| if (tabRec->table[0] == Instruction::kPackedSwitchSignature) { |
| markPackedCaseLabels(cUnit, tabRec); |
| } else if (tabRec->table[0] == Instruction::kSparseSwitchSignature) { |
| markSparseCaseLabels(cUnit, tabRec); |
| } else { |
| LOG(FATAL) << "Invalid switch table"; |
| } |
| } |
| } |
| |
| //FIXME: Do we have endian issues here? |
| |
| void dumpSparseSwitchTable(const u2* table) |
| /* |
| * Sparse switch data format: |
| * ushort ident = 0x0200 magic value |
| * ushort size number of entries in the table; > 0 |
| * int keys[size] keys, sorted low-to-high; 32-bit aligned |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (2+size*4) 16-bit code units. |
| */ |
| { |
| u2 ident = table[0]; |
| int entries = table[1]; |
| int* keys = (int*)&table[2]; |
| int* targets = &keys[entries]; |
| LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i]; |
| } |
| } |
| |
| void dumpPackedSwitchTable(const u2* table) |
| /* |
| * Packed switch data format: |
| * ushort ident = 0x0100 magic value |
| * ushort size number of entries in the table |
| * int first_key first (and lowest) switch case value |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (4+size*2) 16-bit code units. |
| */ |
| { |
| u2 ident = table[0]; |
| int* targets = (int*)&table[4]; |
| int entries = table[1]; |
| int lowKey = s4FromSwitchData(&table[2]); |
| LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries << ", lowKey: " << lowKey; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << (i + lowKey) << "] -> 0x" << std::hex |
| << targets[i]; |
| } |
| } |
| |
| /* |
| * Set up special LIR to mark a Dalvik byte-code instruction start and |
| * record it in the boundaryMap. NOTE: in cases such as kMirOpCheck in |
| * which we split a single Dalvik instruction, only the first MIR op |
| * associated with a Dalvik PC should be entered into the map. |
| */ |
| LIR* markBoundary(CompilationUnit* cUnit, int offset, const char* instStr) |
| { |
| LIR* res = newLIR1(cUnit, kPseudoDalvikByteCodeBoundary, (intptr_t) instStr); |
| if (cUnit->boundaryMap.find(offset) == cUnit->boundaryMap.end()) { |
| cUnit->boundaryMap.Put(offset, res); |
| } |
| return res; |
| } |
| |
| } |
| // namespace art |