blob: 0a7ffda3b4651630d4e527ab3385d880675223fc [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "patchoat.h"
#include <stdio.h>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string>
#include <vector>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/dumpable.h"
#include "base/scoped_flock.h"
#include "base/stringpiece.h"
#include "base/stringprintf.h"
#include "base/unix_file/fd_file.h"
#include "elf_utils.h"
#include "elf_file.h"
#include "elf_file_impl.h"
#include "gc/space/image_space.h"
#include "image-inl.h"
#include "mirror/abstract_method.h"
#include "mirror/object-inl.h"
#include "mirror/method.h"
#include "mirror/reference.h"
#include "noop_compiler_callbacks.h"
#include "offsets.h"
#include "os.h"
#include "runtime.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
#include "utils.h"
namespace art {
static bool LocationToFilename(const std::string& location, InstructionSet isa,
std::string* filename) {
bool has_system = false;
bool has_cache = false;
// image_location = /system/framework/boot.art
// system_image_filename = /system/framework/<image_isa>/boot.art
std::string system_filename(GetSystemImageFilename(location.c_str(), isa));
if (OS::FileExists(system_filename.c_str())) {
has_system = true;
}
bool have_android_data = false;
bool dalvik_cache_exists = false;
bool is_global_cache = false;
std::string dalvik_cache;
GetDalvikCache(GetInstructionSetString(isa), false, &dalvik_cache,
&have_android_data, &dalvik_cache_exists, &is_global_cache);
std::string cache_filename;
if (have_android_data && dalvik_cache_exists) {
// Always set output location even if it does not exist,
// so that the caller knows where to create the image.
//
// image_location = /system/framework/boot.art
// *image_filename = /data/dalvik-cache/<image_isa>/boot.art
std::string error_msg;
if (GetDalvikCacheFilename(location.c_str(), dalvik_cache.c_str(),
&cache_filename, &error_msg)) {
has_cache = true;
}
}
if (has_system) {
*filename = system_filename;
return true;
} else if (has_cache) {
*filename = cache_filename;
return true;
} else {
return false;
}
}
static const OatHeader* GetOatHeader(const ElfFile* elf_file) {
uint64_t off = 0;
if (!elf_file->GetSectionOffsetAndSize(".rodata", &off, nullptr)) {
return nullptr;
}
OatHeader* oat_header = reinterpret_cast<OatHeader*>(elf_file->Begin() + off);
return oat_header;
}
// This function takes an elf file and reads the current patch delta value
// encoded in its oat header value
static bool ReadOatPatchDelta(const ElfFile* elf_file, off_t* delta, std::string* error_msg) {
const OatHeader* oat_header = GetOatHeader(elf_file);
if (oat_header == nullptr) {
*error_msg = "Unable to get oat header from elf file.";
return false;
}
if (!oat_header->IsValid()) {
*error_msg = "Elf file has an invalid oat header";
return false;
}
*delta = oat_header->GetImagePatchDelta();
return true;
}
static File* CreateOrOpen(const char* name, bool* created) {
if (OS::FileExists(name)) {
*created = false;
return OS::OpenFileReadWrite(name);
} else {
*created = true;
std::unique_ptr<File> f(OS::CreateEmptyFile(name));
if (f.get() != nullptr) {
if (fchmod(f->Fd(), 0644) != 0) {
PLOG(ERROR) << "Unable to make " << name << " world readable";
unlink(name);
return nullptr;
}
}
return f.release();
}
}
// Either try to close the file (close=true), or erase it.
static bool FinishFile(File* file, bool close) {
if (close) {
if (file->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close file.";
return false;
}
return true;
} else {
file->Erase();
return false;
}
}
bool PatchOat::Patch(const std::string& image_location,
off_t delta,
const std::string& output_directory,
InstructionSet isa,
TimingLogger* timings) {
CHECK(Runtime::Current() == nullptr);
CHECK(!image_location.empty()) << "image file must have a filename.";
TimingLogger::ScopedTiming t("Runtime Setup", timings);
CHECK_NE(isa, kNone);
const char* isa_name = GetInstructionSetString(isa);
// Set up the runtime
RuntimeOptions options;
NoopCompilerCallbacks callbacks;
options.push_back(std::make_pair("compilercallbacks", &callbacks));
std::string img = "-Ximage:" + image_location;
options.push_back(std::make_pair(img.c_str(), nullptr));
options.push_back(std::make_pair("imageinstructionset", reinterpret_cast<const void*>(isa_name)));
options.push_back(std::make_pair("-Xno-sig-chain", nullptr));
if (!Runtime::Create(options, false)) {
LOG(ERROR) << "Unable to initialize runtime";
return false;
}
// Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start,
// give it away now and then switch to a more manageable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
ScopedObjectAccess soa(Thread::Current());
t.NewTiming("Image and oat Patching setup");
std::vector<gc::space::ImageSpace*> spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces();
std::map<gc::space::ImageSpace*, std::unique_ptr<File>> space_to_file_map;
std::map<gc::space::ImageSpace*, std::unique_ptr<MemMap>> space_to_memmap_map;
std::map<gc::space::ImageSpace*, PatchOat> space_to_patchoat_map;
std::map<gc::space::ImageSpace*, bool> space_to_skip_patching_map;
for (size_t i = 0; i < spaces.size(); ++i) {
gc::space::ImageSpace* space = spaces[i];
std::string input_image_filename = space->GetImageFilename();
std::unique_ptr<File> input_image(OS::OpenFileForReading(input_image_filename.c_str()));
if (input_image.get() == nullptr) {
LOG(ERROR) << "Unable to open input image file at " << input_image_filename;
return false;
}
int64_t image_len = input_image->GetLength();
if (image_len < 0) {
LOG(ERROR) << "Error while getting image length";
return false;
}
ImageHeader image_header;
if (sizeof(image_header) != input_image->Read(reinterpret_cast<char*>(&image_header),
sizeof(image_header), 0)) {
LOG(ERROR) << "Unable to read image header from image file " << input_image->GetPath();
}
/*bool is_image_pic = */IsImagePic(image_header, input_image->GetPath());
// Nothing special to do right now since the image always needs to get patched.
// Perhaps in some far-off future we may have images with relative addresses that are true-PIC.
// Create the map where we will write the image patches to.
std::string error_msg;
std::unique_ptr<MemMap> image(MemMap::MapFile(image_len,
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
input_image->Fd(),
0,
/*low_4gb*/false,
input_image->GetPath().c_str(),
&error_msg));
if (image.get() == nullptr) {
LOG(ERROR) << "Unable to map image file " << input_image->GetPath() << " : " << error_msg;
return false;
}
space_to_file_map.emplace(space, std::move(input_image));
space_to_memmap_map.emplace(space, std::move(image));
}
for (size_t i = 0; i < spaces.size(); ++i) {
gc::space::ImageSpace* space = spaces[i];
std::string input_image_filename = space->GetImageFilename();
std::string input_oat_filename =
ImageHeader::GetOatLocationFromImageLocation(input_image_filename);
std::unique_ptr<File> input_oat_file(OS::OpenFileForReading(input_oat_filename.c_str()));
if (input_oat_file.get() == nullptr) {
LOG(ERROR) << "Unable to open input oat file at " << input_oat_filename;
return false;
}
std::string error_msg;
std::unique_ptr<ElfFile> elf(ElfFile::Open(input_oat_file.get(),
PROT_READ | PROT_WRITE, MAP_PRIVATE, &error_msg));
if (elf.get() == nullptr) {
LOG(ERROR) << "Unable to open oat file " << input_oat_file->GetPath() << " : " << error_msg;
return false;
}
bool skip_patching_oat = false;
MaybePic is_oat_pic = IsOatPic(elf.get());
if (is_oat_pic >= ERROR_FIRST) {
// Error logged by IsOatPic
return false;
} else if (is_oat_pic == PIC) {
// Do not need to do ELF-file patching. Create a symlink and skip the ELF patching.
std::string converted_image_filename = space->GetImageLocation();
std::replace(converted_image_filename.begin() + 1, converted_image_filename.end(), '/', '@');
std::string output_image_filename = output_directory +
(StartsWith(converted_image_filename, "/") ? "" : "/") +
converted_image_filename;
std::string output_oat_filename =
ImageHeader::GetOatLocationFromImageLocation(output_image_filename);
if (!ReplaceOatFileWithSymlink(input_oat_file->GetPath(),
output_oat_filename,
false,
true)) {
// Errors already logged by above call.
return false;
}
// Don't patch the OAT, since we just symlinked it. Image still needs patching.
skip_patching_oat = true;
} else {
CHECK(is_oat_pic == NOT_PIC);
}
PatchOat& p = space_to_patchoat_map.emplace(space,
PatchOat(
isa,
elf.release(),
space_to_memmap_map.find(space)->second.get(),
space->GetLiveBitmap(),
space->GetMemMap(),
delta,
&space_to_memmap_map,
timings)).first->second;
t.NewTiming("Patching files");
if (!skip_patching_oat && !p.PatchElf()) {
LOG(ERROR) << "Failed to patch oat file " << input_oat_file->GetPath();
return false;
}
if (!p.PatchImage(i == 0)) {
LOG(ERROR) << "Failed to patch image file " << input_image_filename;
return false;
}
space_to_skip_patching_map.emplace(space, skip_patching_oat);
}
for (size_t i = 0; i < spaces.size(); ++i) {
gc::space::ImageSpace* space = spaces[i];
std::string input_image_filename = space->GetImageFilename();
t.NewTiming("Writing files");
std::string converted_image_filename = space->GetImageLocation();
std::replace(converted_image_filename.begin() + 1, converted_image_filename.end(), '/', '@');
std::string output_image_filename = output_directory +
(StartsWith(converted_image_filename, "/") ? "" : "/") +
converted_image_filename;
bool new_oat_out;
std::unique_ptr<File>
output_image_file(CreateOrOpen(output_image_filename.c_str(), &new_oat_out));
if (output_image_file.get() == nullptr) {
LOG(ERROR) << "Failed to open output image file at " << output_image_filename;
return false;
}
PatchOat& p = space_to_patchoat_map.find(space)->second;
bool success = p.WriteImage(output_image_file.get());
success = FinishFile(output_image_file.get(), success);
if (!success) {
return false;
}
bool skip_patching_oat = space_to_skip_patching_map.find(space)->second;
if (!skip_patching_oat) {
std::string output_oat_filename =
ImageHeader::GetOatLocationFromImageLocation(output_image_filename);
std::unique_ptr<File>
output_oat_file(CreateOrOpen(output_oat_filename.c_str(), &new_oat_out));
if (output_oat_file.get() == nullptr) {
LOG(ERROR) << "Failed to open output oat file at " << output_oat_filename;
return false;
}
success = p.WriteElf(output_oat_file.get());
success = FinishFile(output_oat_file.get(), success);
if (!success) {
return false;
}
}
}
return true;
}
bool PatchOat::WriteElf(File* out) {
TimingLogger::ScopedTiming t("Writing Elf File", timings_);
CHECK(oat_file_.get() != nullptr);
CHECK(out != nullptr);
size_t expect = oat_file_->Size();
if (out->WriteFully(reinterpret_cast<char*>(oat_file_->Begin()), expect) &&
out->SetLength(expect) == 0) {
return true;
} else {
LOG(ERROR) << "Writing to oat file " << out->GetPath() << " failed.";
return false;
}
}
bool PatchOat::WriteImage(File* out) {
TimingLogger::ScopedTiming t("Writing image File", timings_);
std::string error_msg;
ScopedFlock img_flock;
img_flock.Init(out, &error_msg);
CHECK(image_ != nullptr);
CHECK(out != nullptr);
size_t expect = image_->Size();
if (out->WriteFully(reinterpret_cast<char*>(image_->Begin()), expect) &&
out->SetLength(expect) == 0) {
return true;
} else {
LOG(ERROR) << "Writing to image file " << out->GetPath() << " failed.";
return false;
}
}
bool PatchOat::IsImagePic(const ImageHeader& image_header, const std::string& image_path) {
if (!image_header.CompilePic()) {
if (kIsDebugBuild) {
LOG(INFO) << "image at location " << image_path << " was *not* compiled pic";
}
return false;
}
if (kIsDebugBuild) {
LOG(INFO) << "image at location " << image_path << " was compiled PIC";
}
return true;
}
PatchOat::MaybePic PatchOat::IsOatPic(const ElfFile* oat_in) {
if (oat_in == nullptr) {
LOG(ERROR) << "No ELF input oat fie available";
return ERROR_OAT_FILE;
}
const std::string& file_path = oat_in->GetFile().GetPath();
const OatHeader* oat_header = GetOatHeader(oat_in);
if (oat_header == nullptr) {
LOG(ERROR) << "Failed to find oat header in oat file " << file_path;
return ERROR_OAT_FILE;
}
if (!oat_header->IsValid()) {
LOG(ERROR) << "Elf file " << file_path << " has an invalid oat header";
return ERROR_OAT_FILE;
}
bool is_pic = oat_header->IsPic();
if (kIsDebugBuild) {
LOG(INFO) << "Oat file at " << file_path << " is " << (is_pic ? "PIC" : "not pic");
}
return is_pic ? PIC : NOT_PIC;
}
bool PatchOat::ReplaceOatFileWithSymlink(const std::string& input_oat_filename,
const std::string& output_oat_filename,
bool output_oat_opened_from_fd,
bool new_oat_out) {
// Need a file when we are PIC, since we symlink over it. Refusing to symlink into FD.
if (output_oat_opened_from_fd) {
// TODO: installd uses --output-oat-fd. Should we change class linking logic for PIC?
LOG(ERROR) << "No output oat filename specified, needs filename for when we are PIC";
return false;
}
// Image was PIC. Create symlink where the oat is supposed to go.
if (!new_oat_out) {
LOG(ERROR) << "Oat file " << output_oat_filename << " already exists, refusing to overwrite";
return false;
}
// Delete the original file, since we won't need it.
unlink(output_oat_filename.c_str());
// Create a symlink from the old oat to the new oat
if (symlink(input_oat_filename.c_str(), output_oat_filename.c_str()) < 0) {
int err = errno;
LOG(ERROR) << "Failed to create symlink at " << output_oat_filename
<< " error(" << err << "): " << strerror(err);
return false;
}
if (kIsDebugBuild) {
LOG(INFO) << "Created symlink " << output_oat_filename << " -> " << input_oat_filename;
}
return true;
}
class PatchOatArtFieldVisitor : public ArtFieldVisitor {
public:
explicit PatchOatArtFieldVisitor(PatchOat* patch_oat) : patch_oat_(patch_oat) {}
void Visit(ArtField* field) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
ArtField* const dest = patch_oat_->RelocatedCopyOf(field);
dest->SetDeclaringClass(patch_oat_->RelocatedAddressOfPointer(field->GetDeclaringClass()));
}
private:
PatchOat* const patch_oat_;
};
void PatchOat::PatchArtFields(const ImageHeader* image_header) {
PatchOatArtFieldVisitor visitor(this);
image_header->VisitPackedArtFields(&visitor, heap_->Begin());
}
class PatchOatArtMethodVisitor : public ArtMethodVisitor {
public:
explicit PatchOatArtMethodVisitor(PatchOat* patch_oat) : patch_oat_(patch_oat) {}
void Visit(ArtMethod* method) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
ArtMethod* const dest = patch_oat_->RelocatedCopyOf(method);
patch_oat_->FixupMethod(method, dest);
}
private:
PatchOat* const patch_oat_;
};
void PatchOat::PatchArtMethods(const ImageHeader* image_header) {
const size_t pointer_size = InstructionSetPointerSize(isa_);
PatchOatArtMethodVisitor visitor(this);
image_header->VisitPackedArtMethods(&visitor, heap_->Begin(), pointer_size);
}
void PatchOat::PatchImtConflictTables(const ImageHeader* image_header) {
const size_t pointer_size = InstructionSetPointerSize(isa_);
// We can safely walk target image since the conflict tables are independent.
image_header->VisitPackedImtConflictTables(
[this](ArtMethod* method) {
return RelocatedAddressOfPointer(method);
},
image_->Begin(),
pointer_size);
}
class FixupRootVisitor : public RootVisitor {
public:
explicit FixupRootVisitor(const PatchOat* patch_oat) : patch_oat_(patch_oat) {
}
void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
for (size_t i = 0; i < count; ++i) {
*roots[i] = patch_oat_->RelocatedAddressOfPointer(*roots[i]);
}
}
void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
const RootInfo& info ATTRIBUTE_UNUSED)
OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
for (size_t i = 0; i < count; ++i) {
roots[i]->Assign(patch_oat_->RelocatedAddressOfPointer(roots[i]->AsMirrorPtr()));
}
}
private:
const PatchOat* const patch_oat_;
};
void PatchOat::PatchInternedStrings(const ImageHeader* image_header) {
const auto& section = image_header->GetImageSection(ImageHeader::kSectionInternedStrings);
InternTable temp_table;
// Note that we require that ReadFromMemory does not make an internal copy of the elements.
// This also relies on visit roots not doing any verification which could fail after we update
// the roots to be the image addresses.
temp_table.AddTableFromMemory(image_->Begin() + section.Offset());
FixupRootVisitor visitor(this);
temp_table.VisitRoots(&visitor, kVisitRootFlagAllRoots);
}
void PatchOat::PatchClassTable(const ImageHeader* image_header) {
const auto& section = image_header->GetImageSection(ImageHeader::kSectionClassTable);
if (section.Size() == 0) {
return;
}
// Note that we require that ReadFromMemory does not make an internal copy of the elements.
// This also relies on visit roots not doing any verification which could fail after we update
// the roots to be the image addresses.
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
ClassTable temp_table;
temp_table.ReadFromMemory(image_->Begin() + section.Offset());
FixupRootVisitor visitor(this);
BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&visitor, RootInfo(kRootUnknown));
temp_table.VisitRoots(buffered_visitor);
}
class RelocatedPointerVisitor {
public:
explicit RelocatedPointerVisitor(PatchOat* patch_oat) : patch_oat_(patch_oat) {}
template <typename T>
T* operator()(T* ptr) const {
return patch_oat_->RelocatedAddressOfPointer(ptr);
}
private:
PatchOat* const patch_oat_;
};
void PatchOat::PatchDexFileArrays(mirror::ObjectArray<mirror::Object>* img_roots) {
auto* dex_caches = down_cast<mirror::ObjectArray<mirror::DexCache>*>(
img_roots->Get(ImageHeader::kDexCaches));
const size_t pointer_size = InstructionSetPointerSize(isa_);
for (size_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
auto* orig_dex_cache = dex_caches->GetWithoutChecks(i);
auto* copy_dex_cache = RelocatedCopyOf(orig_dex_cache);
// Though the DexCache array fields are usually treated as native pointers, we set the full
// 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
// done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
// static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
GcRoot<mirror::String>* relocated_strings = RelocatedAddressOfPointer(orig_strings);
copy_dex_cache->SetField64<false>(
mirror::DexCache::StringsOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_strings)));
if (orig_strings != nullptr) {
orig_dex_cache->FixupStrings(RelocatedCopyOf(orig_strings), RelocatedPointerVisitor(this));
}
GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
GcRoot<mirror::Class>* relocated_types = RelocatedAddressOfPointer(orig_types);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedTypesOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_types)));
if (orig_types != nullptr) {
orig_dex_cache->FixupResolvedTypes(RelocatedCopyOf(orig_types),
RelocatedPointerVisitor(this));
}
ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
ArtMethod** relocated_methods = RelocatedAddressOfPointer(orig_methods);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedMethodsOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_methods)));
if (orig_methods != nullptr) {
ArtMethod** copy_methods = RelocatedCopyOf(orig_methods);
for (size_t j = 0, num = orig_dex_cache->NumResolvedMethods(); j != num; ++j) {
ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, j, pointer_size);
ArtMethod* copy = RelocatedAddressOfPointer(orig);
mirror::DexCache::SetElementPtrSize(copy_methods, j, copy, pointer_size);
}
}
ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
ArtField** relocated_fields = RelocatedAddressOfPointer(orig_fields);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedFieldsOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_fields)));
if (orig_fields != nullptr) {
ArtField** copy_fields = RelocatedCopyOf(orig_fields);
for (size_t j = 0, num = orig_dex_cache->NumResolvedFields(); j != num; ++j) {
ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, j, pointer_size);
ArtField* copy = RelocatedAddressOfPointer(orig);
mirror::DexCache::SetElementPtrSize(copy_fields, j, copy, pointer_size);
}
}
}
}
bool PatchOat::PatchImage(bool primary_image) {
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
CHECK_GT(image_->Size(), sizeof(ImageHeader));
// These are the roots from the original file.
auto* img_roots = image_header->GetImageRoots();
image_header->RelocateImage(delta_);
PatchArtFields(image_header);
PatchArtMethods(image_header);
PatchImtConflictTables(image_header);
PatchInternedStrings(image_header);
PatchClassTable(image_header);
// Patch dex file int/long arrays which point to ArtFields.
PatchDexFileArrays(img_roots);
if (primary_image) {
VisitObject(img_roots);
}
if (!image_header->IsValid()) {
LOG(ERROR) << "relocation renders image header invalid";
return false;
}
{
TimingLogger::ScopedTiming t("Walk Bitmap", timings_);
// Walk the bitmap.
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
bitmap_->Walk(PatchOat::BitmapCallback, this);
}
return true;
}
void PatchOat::PatchVisitor::operator() (mirror::Object* obj, MemberOffset off,
bool is_static_unused ATTRIBUTE_UNUSED) const {
mirror::Object* referent = obj->GetFieldObject<mirror::Object, kVerifyNone>(off);
mirror::Object* moved_object = patcher_->RelocatedAddressOfPointer(referent);
copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(off, moved_object);
}
void PatchOat::PatchVisitor::operator() (mirror::Class* cls ATTRIBUTE_UNUSED,
mirror::Reference* ref) const {
MemberOffset off = mirror::Reference::ReferentOffset();
mirror::Object* referent = ref->GetReferent();
DCHECK(referent == nullptr ||
Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(referent)) << referent;
mirror::Object* moved_object = patcher_->RelocatedAddressOfPointer(referent);
copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(off, moved_object);
}
// Called by BitmapCallback
void PatchOat::VisitObject(mirror::Object* object) {
mirror::Object* copy = RelocatedCopyOf(object);
CHECK(copy != nullptr);
if (kUseBakerOrBrooksReadBarrier) {
object->AssertReadBarrierPointer();
if (kUseBrooksReadBarrier) {
mirror::Object* moved_to = RelocatedAddressOfPointer(object);
copy->SetReadBarrierPointer(moved_to);
DCHECK_EQ(copy->GetReadBarrierPointer(), moved_to);
}
}
PatchOat::PatchVisitor visitor(this, copy);
object->VisitReferences<kVerifyNone>(visitor, visitor);
if (object->IsClass<kVerifyNone>()) {
const size_t pointer_size = InstructionSetPointerSize(isa_);
mirror::Class* klass = object->AsClass();
mirror::Class* copy_klass = down_cast<mirror::Class*>(copy);
RelocatedPointerVisitor native_visitor(this);
klass->FixupNativePointers(copy_klass, pointer_size, native_visitor);
auto* vtable = klass->GetVTable();
if (vtable != nullptr) {
vtable->Fixup(RelocatedCopyOfFollowImages(vtable), pointer_size, native_visitor);
}
auto* iftable = klass->GetIfTable();
if (iftable != nullptr) {
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
if (iftable->GetMethodArrayCount(i) > 0) {
auto* method_array = iftable->GetMethodArray(i);
CHECK(method_array != nullptr);
method_array->Fixup(RelocatedCopyOfFollowImages(method_array),
pointer_size,
native_visitor);
}
}
}
} else if (object->GetClass() == mirror::Method::StaticClass() ||
object->GetClass() == mirror::Constructor::StaticClass()) {
// Need to go update the ArtMethod.
auto* dest = down_cast<mirror::AbstractMethod*>(copy);
auto* src = down_cast<mirror::AbstractMethod*>(object);
dest->SetArtMethod(RelocatedAddressOfPointer(src->GetArtMethod()));
}
}
void PatchOat::FixupMethod(ArtMethod* object, ArtMethod* copy) {
const size_t pointer_size = InstructionSetPointerSize(isa_);
copy->CopyFrom(object, pointer_size);
// Just update the entry points if it looks like we should.
// TODO: sanity check all the pointers' values
copy->SetDeclaringClass(RelocatedAddressOfPointer(object->GetDeclaringClass()));
copy->SetDexCacheResolvedMethods(
RelocatedAddressOfPointer(object->GetDexCacheResolvedMethods(pointer_size)), pointer_size);
copy->SetDexCacheResolvedTypes(
RelocatedAddressOfPointer(object->GetDexCacheResolvedTypes(pointer_size)), pointer_size);
copy->SetEntryPointFromQuickCompiledCodePtrSize(RelocatedAddressOfPointer(
object->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size)), pointer_size);
// No special handling for IMT conflict table since all pointers are moved by the same offset.
copy->SetEntryPointFromJniPtrSize(RelocatedAddressOfPointer(
object->GetEntryPointFromJniPtrSize(pointer_size)), pointer_size);
}
bool PatchOat::Patch(File* input_oat, off_t delta, File* output_oat, TimingLogger* timings,
bool output_oat_opened_from_fd, bool new_oat_out) {
CHECK(input_oat != nullptr);
CHECK(output_oat != nullptr);
CHECK_GE(input_oat->Fd(), 0);
CHECK_GE(output_oat->Fd(), 0);
TimingLogger::ScopedTiming t("Setup Oat File Patching", timings);
std::string error_msg;
std::unique_ptr<ElfFile> elf(ElfFile::Open(input_oat,
PROT_READ | PROT_WRITE, MAP_PRIVATE, &error_msg));
if (elf.get() == nullptr) {
LOG(ERROR) << "unable to open oat file " << input_oat->GetPath() << " : " << error_msg;
return false;
}
MaybePic is_oat_pic = IsOatPic(elf.get());
if (is_oat_pic >= ERROR_FIRST) {
// Error logged by IsOatPic
return false;
} else if (is_oat_pic == PIC) {
// Do not need to do ELF-file patching. Create a symlink and skip the rest.
// Any errors will be logged by the function call.
return ReplaceOatFileWithSymlink(input_oat->GetPath(),
output_oat->GetPath(),
output_oat_opened_from_fd,
new_oat_out);
} else {
CHECK(is_oat_pic == NOT_PIC);
}
PatchOat p(elf.release(), delta, timings);
t.NewTiming("Patch Oat file");
if (!p.PatchElf()) {
return false;
}
t.NewTiming("Writing oat file");
if (!p.WriteElf(output_oat)) {
return false;
}
return true;
}
template <typename ElfFileImpl>
bool PatchOat::PatchOatHeader(ElfFileImpl* oat_file) {
auto rodata_sec = oat_file->FindSectionByName(".rodata");
if (rodata_sec == nullptr) {
return false;
}
OatHeader* oat_header = reinterpret_cast<OatHeader*>(oat_file->Begin() + rodata_sec->sh_offset);
if (!oat_header->IsValid()) {
LOG(ERROR) << "Elf file " << oat_file->GetFile().GetPath() << " has an invalid oat header";
return false;
}
oat_header->RelocateOat(delta_);
return true;
}
bool PatchOat::PatchElf() {
if (oat_file_->Is64Bit())
return PatchElf<ElfFileImpl64>(oat_file_->GetImpl64());
else
return PatchElf<ElfFileImpl32>(oat_file_->GetImpl32());
}
template <typename ElfFileImpl>
bool PatchOat::PatchElf(ElfFileImpl* oat_file) {
TimingLogger::ScopedTiming t("Fixup Elf Text Section", timings_);
// Fix up absolute references to locations within the boot image.
if (!oat_file->ApplyOatPatchesTo(".text", delta_)) {
return false;
}
// Update the OatHeader fields referencing the boot image.
if (!PatchOatHeader<ElfFileImpl>(oat_file)) {
return false;
}
bool need_boot_oat_fixup = true;
for (unsigned int i = 0; i < oat_file->GetProgramHeaderNum(); ++i) {
auto hdr = oat_file->GetProgramHeader(i);
if (hdr->p_type == PT_LOAD && hdr->p_vaddr == 0u) {
need_boot_oat_fixup = false;
break;
}
}
if (!need_boot_oat_fixup) {
// This is an app oat file that can be loaded at an arbitrary address in memory.
// Boot image references were patched above and there's nothing else to do.
return true;
}
// This is a boot oat file that's loaded at a particular address and we need
// to patch all absolute addresses, starting with ELF program headers.
t.NewTiming("Fixup Elf Headers");
// Fixup Phdr's
oat_file->FixupProgramHeaders(delta_);
t.NewTiming("Fixup Section Headers");
// Fixup Shdr's
oat_file->FixupSectionHeaders(delta_);
t.NewTiming("Fixup Dynamics");
oat_file->FixupDynamic(delta_);
t.NewTiming("Fixup Elf Symbols");
// Fixup dynsym
if (!oat_file->FixupSymbols(delta_, true)) {
return false;
}
// Fixup symtab
if (!oat_file->FixupSymbols(delta_, false)) {
return false;
}
t.NewTiming("Fixup Debug Sections");
if (!oat_file->FixupDebugSections(delta_)) {
return false;
}
return true;
}
static int orig_argc;
static char** orig_argv;
static std::string CommandLine() {
std::vector<std::string> command;
for (int i = 0; i < orig_argc; ++i) {
command.push_back(orig_argv[i]);
}
return Join(command, ' ');
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: patchoat [options]...");
UsageError("");
UsageError(" --instruction-set=<isa>: Specifies the instruction set the patched code is");
UsageError(" compiled for. Required if you use --input-oat-location");
UsageError("");
UsageError(" --input-oat-file=<file.oat>: Specifies the exact filename of the oat file to be");
UsageError(" patched.");
UsageError("");
UsageError(" --input-oat-fd=<file-descriptor>: Specifies the file-descriptor of the oat file");
UsageError(" to be patched.");
UsageError("");
UsageError(" --input-oat-location=<file.oat>: Specifies the 'location' to read the patched");
UsageError(" oat file from. If used one must also supply the --instruction-set");
UsageError("");
UsageError(" --input-image-location=<file.art>: Specifies the 'location' of the image file to");
UsageError(" be patched. If --instruction-set is not given it will use the instruction set");
UsageError(" extracted from the --input-oat-file.");
UsageError("");
UsageError(" --output-oat-file=<file.oat>: Specifies the exact file to write the patched oat");
UsageError(" file to.");
UsageError("");
UsageError(" --output-oat-fd=<file-descriptor>: Specifies the file-descriptor to write the");
UsageError(" the patched oat file to.");
UsageError("");
UsageError(" --output-image-file=<file.art>: Specifies the exact file to write the patched");
UsageError(" image file to.");
UsageError("");
UsageError(" --base-offset-delta=<delta>: Specify the amount to change the old base-offset by.");
UsageError(" This value may be negative.");
UsageError("");
UsageError(" --patched-image-location=<file.art>: Relocate the oat file to be the same as the");
UsageError(" image at the given location. If used one must also specify the");
UsageError(" --instruction-set flag. It will search for this image in the same way that");
UsageError(" is done when loading one.");
UsageError("");
UsageError(" --lock-output: Obtain a flock on output oat file before starting.");
UsageError("");
UsageError(" --no-lock-output: Do not attempt to obtain a flock on output oat file.");
UsageError("");
UsageError(" --dump-timings: dump out patch timing information");
UsageError("");
UsageError(" --no-dump-timings: do not dump out patch timing information");
UsageError("");
exit(EXIT_FAILURE);
}
static bool ReadBaseDelta(const char* name, off_t* delta, std::string* error_msg) {
CHECK(name != nullptr);
CHECK(delta != nullptr);
std::unique_ptr<File> file;
if (OS::FileExists(name)) {
file.reset(OS::OpenFileForReading(name));
if (file.get() == nullptr) {
*error_msg = "Failed to open file %s for reading";
return false;
}
} else {
*error_msg = "File %s does not exist";
return false;
}
CHECK(file.get() != nullptr);
ImageHeader hdr;
if (sizeof(hdr) != file->Read(reinterpret_cast<char*>(&hdr), sizeof(hdr), 0)) {
*error_msg = "Failed to read file %s";
return false;
}
if (!hdr.IsValid()) {
*error_msg = "%s does not contain a valid image header.";
return false;
}
*delta = hdr.GetPatchDelta();
return true;
}
static int patchoat_image(TimingLogger& timings,
InstructionSet isa,
const std::string& input_image_location,
const std::string& output_image_filename,
off_t base_delta,
bool base_delta_set,
bool debug) {
CHECK(!input_image_location.empty());
if (output_image_filename.empty()) {
Usage("Image patching requires --output-image-file");
}
if (!base_delta_set) {
Usage("Must supply a desired new offset or delta.");
}
if (!IsAligned<kPageSize>(base_delta)) {
Usage("Base offset/delta must be aligned to a pagesize (0x%08x) boundary.", kPageSize);
}
if (debug) {
LOG(INFO) << "moving offset by " << base_delta
<< " (0x" << std::hex << base_delta << ") bytes or "
<< std::dec << (base_delta/kPageSize) << " pages.";
}
TimingLogger::ScopedTiming pt("patch image and oat", &timings);
std::string output_directory =
output_image_filename.substr(0, output_image_filename.find_last_of("/"));
bool ret = PatchOat::Patch(input_image_location, base_delta, output_directory, isa, &timings);
if (kIsDebugBuild) {
LOG(INFO) << "Exiting with return ... " << ret;
}
return ret ? EXIT_SUCCESS : EXIT_FAILURE;
}
static int patchoat_oat(TimingLogger& timings,
InstructionSet isa,
const std::string& patched_image_location,
off_t base_delta,
bool base_delta_set,
int input_oat_fd,
const std::string& input_oat_location,
std::string input_oat_filename,
bool have_input_oat,
int output_oat_fd,
std::string output_oat_filename,
bool have_output_oat,
bool lock_output,
bool debug) {
{
// Only 1 of these may be set.
uint32_t cnt = 0;
cnt += (base_delta_set) ? 1 : 0;
cnt += (!patched_image_location.empty()) ? 1 : 0;
if (cnt > 1) {
Usage("Only one of --base-offset-delta or --patched-image-location may be used.");
} else if (cnt == 0) {
Usage("Must specify --base-offset-delta or --patched-image-location.");
}
}
if (!have_input_oat || !have_output_oat) {
Usage("Both input and output oat must be supplied to patch an app odex.");
}
if (!input_oat_location.empty()) {
if (!LocationToFilename(input_oat_location, isa, &input_oat_filename)) {
Usage("Unable to find filename for input oat location %s", input_oat_location.c_str());
}
if (debug) {
LOG(INFO) << "Using input-oat-file " << input_oat_filename;
}
}
bool match_delta = false;
if (!patched_image_location.empty()) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool has_android_data_unused = false;
bool is_global_cache = false;
if (!gc::space::ImageSpace::FindImageFilename(patched_image_location.c_str(), isa,
&system_filename, &has_system, &cache_filename,
&has_android_data_unused, &has_cache,
&is_global_cache)) {
Usage("Unable to determine image file for location %s", patched_image_location.c_str());
}
std::string patched_image_filename;
if (has_cache) {
patched_image_filename = cache_filename;
} else if (has_system) {
LOG(WARNING) << "Only image file found was in /system for image location "
<< patched_image_location;
patched_image_filename = system_filename;
} else {
Usage("Unable to determine image file for location %s", patched_image_location.c_str());
}
if (debug) {
LOG(INFO) << "Using patched-image-file " << patched_image_filename;
}
base_delta_set = true;
match_delta = true;
std::string error_msg;
if (!ReadBaseDelta(patched_image_filename.c_str(), &base_delta, &error_msg)) {
Usage(error_msg.c_str(), patched_image_filename.c_str());
}
}
if (!IsAligned<kPageSize>(base_delta)) {
Usage("Base offset/delta must be alligned to a pagesize (0x%08x) boundary.", kPageSize);
}
// Do we need to cleanup output files if we fail?
bool new_oat_out = false;
std::unique_ptr<File> input_oat;
std::unique_ptr<File> output_oat;
if (input_oat_fd != -1) {
if (input_oat_filename.empty()) {
input_oat_filename = "input-oat-file";
}
input_oat.reset(new File(input_oat_fd, input_oat_filename, false));
if (input_oat_fd == output_oat_fd) {
input_oat.get()->DisableAutoClose();
}
if (input_oat == nullptr) {
// Unlikely, but ensure exhaustive logging in non-0 exit code case
LOG(ERROR) << "Failed to open input oat file by its FD" << input_oat_fd;
return EXIT_FAILURE;
}
} else {
CHECK(!input_oat_filename.empty());
input_oat.reset(OS::OpenFileForReading(input_oat_filename.c_str()));
if (input_oat == nullptr) {
int err = errno;
LOG(ERROR) << "Failed to open input oat file " << input_oat_filename
<< ": " << strerror(err) << "(" << err << ")";
return EXIT_FAILURE;
}
}
std::string error_msg;
std::unique_ptr<ElfFile> elf(ElfFile::Open(input_oat.get(), PROT_READ, MAP_PRIVATE, &error_msg));
if (elf.get() == nullptr) {
LOG(ERROR) << "unable to open oat file " << input_oat->GetPath() << " : " << error_msg;
return EXIT_FAILURE;
}
if (!elf->HasSection(".text.oat_patches")) {
LOG(ERROR) << "missing oat patch section in input oat file " << input_oat->GetPath();
return EXIT_FAILURE;
}
if (output_oat_fd != -1) {
if (output_oat_filename.empty()) {
output_oat_filename = "output-oat-file";
}
output_oat.reset(new File(output_oat_fd, output_oat_filename, true));
if (output_oat == nullptr) {
// Unlikely, but ensure exhaustive logging in non-0 exit code case
LOG(ERROR) << "Failed to open output oat file by its FD" << output_oat_fd;
}
} else {
CHECK(!output_oat_filename.empty());
output_oat.reset(CreateOrOpen(output_oat_filename.c_str(), &new_oat_out));
if (output_oat == nullptr) {
int err = errno;
LOG(ERROR) << "Failed to open output oat file " << output_oat_filename
<< ": " << strerror(err) << "(" << err << ")";
}
}
// TODO: get rid of this.
auto cleanup = [&output_oat_filename, &new_oat_out](bool success) {
if (!success) {
if (new_oat_out) {
CHECK(!output_oat_filename.empty());
unlink(output_oat_filename.c_str());
}
}
if (kIsDebugBuild) {
LOG(INFO) << "Cleaning up.. success? " << success;
}
};
if (output_oat.get() == nullptr) {
cleanup(false);
return EXIT_FAILURE;
}
if (match_delta) {
// Figure out what the current delta is so we can match it to the desired delta.
off_t current_delta = 0;
if (!ReadOatPatchDelta(elf.get(), &current_delta, &error_msg)) {
LOG(ERROR) << "Unable to get current delta: " << error_msg;
cleanup(false);
return EXIT_FAILURE;
}
// Before this line base_delta is the desired final delta. We need it to be the actual amount to
// change everything by. We subtract the current delta from it to make it this.
base_delta -= current_delta;
if (!IsAligned<kPageSize>(base_delta)) {
LOG(ERROR) << "Given image file was relocated by an illegal delta";
cleanup(false);
return false;
}
}
if (debug) {
LOG(INFO) << "moving offset by " << base_delta
<< " (0x" << std::hex << base_delta << ") bytes or "
<< std::dec << (base_delta/kPageSize) << " pages.";
}
ScopedFlock output_oat_lock;
if (lock_output) {
if (!output_oat_lock.Init(output_oat.get(), &error_msg)) {
LOG(ERROR) << "Unable to lock output oat " << output_oat->GetPath() << ": " << error_msg;
cleanup(false);
return EXIT_FAILURE;
}
}
TimingLogger::ScopedTiming pt("patch oat", &timings);
bool ret = PatchOat::Patch(input_oat.get(), base_delta, output_oat.get(), &timings,
output_oat_fd >= 0, // was it opened from FD?
new_oat_out);
ret = FinishFile(output_oat.get(), ret);
if (kIsDebugBuild) {
LOG(INFO) << "Exiting with return ... " << ret;
}
cleanup(ret);
return ret ? EXIT_SUCCESS : EXIT_FAILURE;
}
static int patchoat(int argc, char **argv) {
InitLogging(argv);
MemMap::Init();
const bool debug = kIsDebugBuild;
orig_argc = argc;
orig_argv = argv;
TimingLogger timings("patcher", false, false);
InitLogging(argv);
// Skip over the command name.
argv++;
argc--;
if (argc == 0) {
Usage("No arguments specified");
}
timings.StartTiming("Patchoat");
// cmd line args
bool isa_set = false;
InstructionSet isa = kNone;
std::string input_oat_filename;
std::string input_oat_location;
int input_oat_fd = -1;
bool have_input_oat = false;
std::string input_image_location;
std::string output_oat_filename;
int output_oat_fd = -1;
bool have_output_oat = false;
std::string output_image_filename;
off_t base_delta = 0;
bool base_delta_set = false;
std::string patched_image_filename;
std::string patched_image_location;
bool dump_timings = kIsDebugBuild;
bool lock_output = true;
for (int i = 0; i < argc; ++i) {
const StringPiece option(argv[i]);
const bool log_options = false;
if (log_options) {
LOG(INFO) << "patchoat: option[" << i << "]=" << argv[i];
}
if (option.starts_with("--instruction-set=")) {
isa_set = true;
const char* isa_str = option.substr(strlen("--instruction-set=")).data();
isa = GetInstructionSetFromString(isa_str);
if (isa == kNone) {
Usage("Unknown or invalid instruction set %s", isa_str);
}
} else if (option.starts_with("--input-oat-location=")) {
if (have_input_oat) {
Usage("Only one of --input-oat-file, --input-oat-location and --input-oat-fd may be used.");
}
have_input_oat = true;
input_oat_location = option.substr(strlen("--input-oat-location=")).data();
} else if (option.starts_with("--input-oat-file=")) {
if (have_input_oat) {
Usage("Only one of --input-oat-file, --input-oat-location and --input-oat-fd may be used.");
}
have_input_oat = true;
input_oat_filename = option.substr(strlen("--input-oat-file=")).data();
} else if (option.starts_with("--input-oat-fd=")) {
if (have_input_oat) {
Usage("Only one of --input-oat-file, --input-oat-location and --input-oat-fd may be used.");
}
have_input_oat = true;
const char* oat_fd_str = option.substr(strlen("--input-oat-fd=")).data();
if (!ParseInt(oat_fd_str, &input_oat_fd)) {
Usage("Failed to parse --input-oat-fd argument '%s' as an integer", oat_fd_str);
}
if (input_oat_fd < 0) {
Usage("--input-oat-fd pass a negative value %d", input_oat_fd);
}
} else if (option.starts_with("--input-image-location=")) {
input_image_location = option.substr(strlen("--input-image-location=")).data();
} else if (option.starts_with("--output-oat-file=")) {
if (have_output_oat) {
Usage("Only one of --output-oat-file, and --output-oat-fd may be used.");
}
have_output_oat = true;
output_oat_filename = option.substr(strlen("--output-oat-file=")).data();
} else if (option.starts_with("--output-oat-fd=")) {
if (have_output_oat) {
Usage("Only one of --output-oat-file, --output-oat-fd may be used.");
}
have_output_oat = true;
const char* oat_fd_str = option.substr(strlen("--output-oat-fd=")).data();
if (!ParseInt(oat_fd_str, &output_oat_fd)) {
Usage("Failed to parse --output-oat-fd argument '%s' as an integer", oat_fd_str);
}
if (output_oat_fd < 0) {
Usage("--output-oat-fd pass a negative value %d", output_oat_fd);
}
} else if (option.starts_with("--output-image-file=")) {
output_image_filename = option.substr(strlen("--output-image-file=")).data();
} else if (option.starts_with("--base-offset-delta=")) {
const char* base_delta_str = option.substr(strlen("--base-offset-delta=")).data();
base_delta_set = true;
if (!ParseInt(base_delta_str, &base_delta)) {
Usage("Failed to parse --base-offset-delta argument '%s' as an off_t", base_delta_str);
}
} else if (option.starts_with("--patched-image-location=")) {
patched_image_location = option.substr(strlen("--patched-image-location=")).data();
} else if (option == "--lock-output") {
lock_output = true;
} else if (option == "--no-lock-output") {
lock_output = false;
} else if (option == "--dump-timings") {
dump_timings = true;
} else if (option == "--no-dump-timings") {
dump_timings = false;
} else {
Usage("Unknown argument %s", option.data());
}
}
// The instruction set is mandatory. This simplifies things...
if (!isa_set) {
Usage("Instruction set must be set.");
}
int ret;
if (!input_image_location.empty()) {
ret = patchoat_image(timings,
isa,
input_image_location,
output_image_filename,
base_delta,
base_delta_set,
debug);
} else {
ret = patchoat_oat(timings,
isa,
patched_image_location,
base_delta,
base_delta_set,
input_oat_fd,
input_oat_location,
input_oat_filename,
have_input_oat,
output_oat_fd,
output_oat_filename,
have_output_oat,
lock_output,
debug);
}
timings.EndTiming();
if (dump_timings) {
LOG(INFO) << Dumpable<TimingLogger>(timings);
}
return ret;
}
} // namespace art
int main(int argc, char **argv) {
return art::patchoat(argc, argv);
}