| /* | 
 |  * Copyright (C) 2015 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "induction_var_range.h" | 
 |  | 
 | #include <limits> | 
 |  | 
 | namespace art { | 
 |  | 
 | /** Returns true if 64-bit constant fits in 32-bit constant. */ | 
 | static bool CanLongValueFitIntoInt(int64_t c) { | 
 |   return std::numeric_limits<int32_t>::min() <= c && c <= std::numeric_limits<int32_t>::max(); | 
 | } | 
 |  | 
 | /** Returns true if 32-bit addition can be done safely. */ | 
 | static bool IsSafeAdd(int32_t c1, int32_t c2) { | 
 |   return CanLongValueFitIntoInt(static_cast<int64_t>(c1) + static_cast<int64_t>(c2)); | 
 | } | 
 |  | 
 | /** Returns true if 32-bit subtraction can be done safely. */ | 
 | static bool IsSafeSub(int32_t c1, int32_t c2) { | 
 |   return CanLongValueFitIntoInt(static_cast<int64_t>(c1) - static_cast<int64_t>(c2)); | 
 | } | 
 |  | 
 | /** Returns true if 32-bit multiplication can be done safely. */ | 
 | static bool IsSafeMul(int32_t c1, int32_t c2) { | 
 |   return CanLongValueFitIntoInt(static_cast<int64_t>(c1) * static_cast<int64_t>(c2)); | 
 | } | 
 |  | 
 | /** Returns true if 32-bit division can be done safely. */ | 
 | static bool IsSafeDiv(int32_t c1, int32_t c2) { | 
 |   return c2 != 0 && CanLongValueFitIntoInt(static_cast<int64_t>(c1) / static_cast<int64_t>(c2)); | 
 | } | 
 |  | 
 | /** Computes a * b for a,b > 0 (at least until first overflow happens). */ | 
 | static int64_t SafeMul(int64_t a, int64_t b, /*out*/ bool* overflow) { | 
 |   if (a > 0 && b > 0 && a > (std::numeric_limits<int64_t>::max() / b)) { | 
 |     *overflow = true; | 
 |   } | 
 |   return a * b; | 
 | } | 
 |  | 
 | /** Returns b^e for b,e > 0. Sets overflow if arithmetic wrap-around occurred. */ | 
 | static int64_t IntPow(int64_t b, int64_t e, /*out*/ bool* overflow) { | 
 |   DCHECK_LT(0, b); | 
 |   DCHECK_LT(0, e); | 
 |   int64_t pow = 1; | 
 |   while (e) { | 
 |     if (e & 1) { | 
 |       pow = SafeMul(pow, b, overflow); | 
 |     } | 
 |     e >>= 1; | 
 |     if (e) { | 
 |       b = SafeMul(b, b, overflow); | 
 |     } | 
 |   } | 
 |   return pow; | 
 | } | 
 |  | 
 | /** | 
 |  * Detects an instruction that is >= 0. As long as the value is carried by | 
 |  * a single instruction, arithmetic wrap-around cannot occur. | 
 |  */ | 
 | static bool IsGEZero(HInstruction* instruction) { | 
 |   DCHECK(instruction != nullptr); | 
 |   if (instruction->IsArrayLength()) { | 
 |     return true; | 
 |   } else if (instruction->IsMin()) { | 
 |     // Instruction MIN(>=0, >=0) is >= 0. | 
 |     return IsGEZero(instruction->InputAt(0)) && | 
 |            IsGEZero(instruction->InputAt(1)); | 
 |   } else if (instruction->IsAbs()) { | 
 |     // Instruction ABS(>=0) is >= 0. | 
 |     // NOTE: ABS(minint) = minint prevents assuming | 
 |     //       >= 0 without looking at the argument. | 
 |     return IsGEZero(instruction->InputAt(0)); | 
 |   } | 
 |   int64_t value = -1; | 
 |   return IsInt64AndGet(instruction, &value) && value >= 0; | 
 | } | 
 |  | 
 | /** Hunts "under the hood" for a suitable instruction at the hint. */ | 
 | static bool IsMaxAtHint( | 
 |     HInstruction* instruction, HInstruction* hint, /*out*/HInstruction** suitable) { | 
 |   if (instruction->IsMin()) { | 
 |     // For MIN(x, y), return most suitable x or y as maximum. | 
 |     return IsMaxAtHint(instruction->InputAt(0), hint, suitable) || | 
 |            IsMaxAtHint(instruction->InputAt(1), hint, suitable); | 
 |   } else { | 
 |     *suitable = instruction; | 
 |     return HuntForDeclaration(instruction) == hint; | 
 |   } | 
 | } | 
 |  | 
 | /** Post-analysis simplification of a minimum value that makes the bound more useful to clients. */ | 
 | static InductionVarRange::Value SimplifyMin(InductionVarRange::Value v) { | 
 |   if (v.is_known && v.a_constant == 1 && v.b_constant <= 0) { | 
 |     // If a == 1,  instruction >= 0 and b <= 0, just return the constant b. | 
 |     // No arithmetic wrap-around can occur. | 
 |     if (IsGEZero(v.instruction)) { | 
 |       return InductionVarRange::Value(v.b_constant); | 
 |     } | 
 |   } | 
 |   return v; | 
 | } | 
 |  | 
 | /** Post-analysis simplification of a maximum value that makes the bound more useful to clients. */ | 
 | static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v, HInstruction* hint) { | 
 |   if (v.is_known && v.a_constant >= 1) { | 
 |     // An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as | 
 |     // length + b because length >= 0 is true. | 
 |     int64_t value; | 
 |     if (v.instruction->IsDiv() && | 
 |         v.instruction->InputAt(0)->IsArrayLength() && | 
 |         IsInt64AndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) { | 
 |       return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant); | 
 |     } | 
 |     // If a == 1, the most suitable one suffices as maximum value. | 
 |     HInstruction* suitable = nullptr; | 
 |     if (v.a_constant == 1 && IsMaxAtHint(v.instruction, hint, &suitable)) { | 
 |       return InductionVarRange::Value(suitable, 1, v.b_constant); | 
 |     } | 
 |   } | 
 |   return v; | 
 | } | 
 |  | 
 | /** Tests for a constant value. */ | 
 | static bool IsConstantValue(InductionVarRange::Value v) { | 
 |   return v.is_known && v.a_constant == 0; | 
 | } | 
 |  | 
 | /** Corrects a value for type to account for arithmetic wrap-around in lower precision. */ | 
 | static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, DataType::Type type) { | 
 |   switch (type) { | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: { | 
 |       // Constants within range only. | 
 |       // TODO: maybe some room for improvement, like allowing widening conversions | 
 |       int32_t min = DataType::MinValueOfIntegralType(type); | 
 |       int32_t max = DataType::MaxValueOfIntegralType(type); | 
 |       return (IsConstantValue(v) && min <= v.b_constant && v.b_constant <= max) | 
 |           ? v | 
 |           : InductionVarRange::Value(); | 
 |     } | 
 |     default: | 
 |       return v; | 
 |   } | 
 | } | 
 |  | 
 | /** Inserts an instruction. */ | 
 | static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) { | 
 |   DCHECK(block != nullptr); | 
 |   DCHECK(block->GetLastInstruction() != nullptr) << block->GetBlockId(); | 
 |   DCHECK(instruction != nullptr); | 
 |   block->InsertInstructionBefore(instruction, block->GetLastInstruction()); | 
 |   return instruction; | 
 | } | 
 |  | 
 | /** Obtains loop's control instruction. */ | 
 | static HInstruction* GetLoopControl(HLoopInformation* loop) { | 
 |   DCHECK(loop != nullptr); | 
 |   return loop->GetHeader()->GetLastInstruction(); | 
 | } | 
 |  | 
 | // | 
 | // Public class methods. | 
 | // | 
 |  | 
 | InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis) | 
 |     : induction_analysis_(induction_analysis), | 
 |       chase_hint_(nullptr) { | 
 |   DCHECK(induction_analysis != nullptr); | 
 | } | 
 |  | 
 | bool InductionVarRange::GetInductionRange(HInstruction* context, | 
 |                                           HInstruction* instruction, | 
 |                                           HInstruction* chase_hint, | 
 |                                           /*out*/Value* min_val, | 
 |                                           /*out*/Value* max_val, | 
 |                                           /*out*/bool* needs_finite_test) { | 
 |   HLoopInformation* loop = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* info = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* trip = nullptr; | 
 |   if (!HasInductionInfo(context, instruction, &loop, &info, &trip)) { | 
 |     return false; | 
 |   } | 
 |   // Type int or lower (this is not too restrictive since intended clients, like | 
 |   // bounds check elimination, will have truncated higher precision induction | 
 |   // at their use point already). | 
 |   switch (info->type) { | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kInt32: | 
 |       break; | 
 |     default: | 
 |       return false; | 
 |   } | 
 |   // Find range. | 
 |   chase_hint_ = chase_hint; | 
 |   bool in_body = context->GetBlock() != loop->GetHeader(); | 
 |   int64_t stride_value = 0; | 
 |   *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min */ true)); | 
 |   *max_val = SimplifyMax(GetVal(info, trip, in_body, /* is_min */ false), chase_hint); | 
 |   *needs_finite_test = NeedsTripCount(info, &stride_value) && IsUnsafeTripCount(trip); | 
 |   chase_hint_ = nullptr; | 
 |   // Retry chasing constants for wrap-around (merge sensitive). | 
 |   if (!min_val->is_known && info->induction_class == HInductionVarAnalysis::kWrapAround) { | 
 |     *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min */ true)); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool InductionVarRange::CanGenerateRange(HInstruction* context, | 
 |                                          HInstruction* instruction, | 
 |                                          /*out*/bool* needs_finite_test, | 
 |                                          /*out*/bool* needs_taken_test) { | 
 |   bool is_last_value = false; | 
 |   int64_t stride_value = 0; | 
 |   return GenerateRangeOrLastValue(context, | 
 |                                   instruction, | 
 |                                   is_last_value, | 
 |                                   nullptr, | 
 |                                   nullptr, | 
 |                                   nullptr, | 
 |                                   nullptr, | 
 |                                   nullptr,  // nothing generated yet | 
 |                                   &stride_value, | 
 |                                   needs_finite_test, | 
 |                                   needs_taken_test) | 
 |       && (stride_value == -1 || | 
 |           stride_value == 0 || | 
 |           stride_value == 1);  // avoid arithmetic wrap-around anomalies. | 
 | } | 
 |  | 
 | void InductionVarRange::GenerateRange(HInstruction* context, | 
 |                                       HInstruction* instruction, | 
 |                                       HGraph* graph, | 
 |                                       HBasicBlock* block, | 
 |                                       /*out*/HInstruction** lower, | 
 |                                       /*out*/HInstruction** upper) { | 
 |   bool is_last_value = false; | 
 |   int64_t stride_value = 0; | 
 |   bool b1, b2;  // unused | 
 |   if (!GenerateRangeOrLastValue(context, | 
 |                                 instruction, | 
 |                                 is_last_value, | 
 |                                 graph, | 
 |                                 block, | 
 |                                 lower, | 
 |                                 upper, | 
 |                                 nullptr, | 
 |                                 &stride_value, | 
 |                                 &b1, | 
 |                                 &b2)) { | 
 |     LOG(FATAL) << "Failed precondition: CanGenerateRange()"; | 
 |   } | 
 | } | 
 |  | 
 | HInstruction* InductionVarRange::GenerateTakenTest(HInstruction* context, | 
 |                                                    HGraph* graph, | 
 |                                                    HBasicBlock* block) { | 
 |   HInstruction* taken_test = nullptr; | 
 |   bool is_last_value = false; | 
 |   int64_t stride_value = 0; | 
 |   bool b1, b2;  // unused | 
 |   if (!GenerateRangeOrLastValue(context, | 
 |                                 context, | 
 |                                 is_last_value, | 
 |                                 graph, | 
 |                                 block, | 
 |                                 nullptr, | 
 |                                 nullptr, | 
 |                                 &taken_test, | 
 |                                 &stride_value, | 
 |                                 &b1, | 
 |                                 &b2)) { | 
 |     LOG(FATAL) << "Failed precondition: CanGenerateRange()"; | 
 |   } | 
 |   return taken_test; | 
 | } | 
 |  | 
 | bool InductionVarRange::CanGenerateLastValue(HInstruction* instruction) { | 
 |   bool is_last_value = true; | 
 |   int64_t stride_value = 0; | 
 |   bool needs_finite_test = false; | 
 |   bool needs_taken_test = false; | 
 |   return GenerateRangeOrLastValue(instruction, | 
 |                                   instruction, | 
 |                                   is_last_value, | 
 |                                   nullptr, | 
 |                                   nullptr, | 
 |                                   nullptr, | 
 |                                   nullptr, | 
 |                                   nullptr,  // nothing generated yet | 
 |                                   &stride_value, | 
 |                                   &needs_finite_test, | 
 |                                   &needs_taken_test) | 
 |       && !needs_finite_test && !needs_taken_test; | 
 | } | 
 |  | 
 | HInstruction* InductionVarRange::GenerateLastValue(HInstruction* instruction, | 
 |                                                    HGraph* graph, | 
 |                                                    HBasicBlock* block) { | 
 |   HInstruction* last_value = nullptr; | 
 |   bool is_last_value = true; | 
 |   int64_t stride_value = 0; | 
 |   bool b1, b2;  // unused | 
 |   if (!GenerateRangeOrLastValue(instruction, | 
 |                                 instruction, | 
 |                                 is_last_value, | 
 |                                 graph, | 
 |                                 block, | 
 |                                 &last_value, | 
 |                                 &last_value, | 
 |                                 nullptr, | 
 |                                 &stride_value, | 
 |                                 &b1, | 
 |                                 &b2)) { | 
 |     LOG(FATAL) << "Failed precondition: CanGenerateLastValue()"; | 
 |   } | 
 |   return last_value; | 
 | } | 
 |  | 
 | void InductionVarRange::Replace(HInstruction* instruction, | 
 |                                 HInstruction* fetch, | 
 |                                 HInstruction* replacement) { | 
 |   for (HLoopInformation* lp = instruction->GetBlock()->GetLoopInformation();  // closest enveloping loop | 
 |        lp != nullptr; | 
 |        lp = lp->GetPreHeader()->GetLoopInformation()) { | 
 |     // Update instruction's information. | 
 |     ReplaceInduction(induction_analysis_->LookupInfo(lp, instruction), fetch, replacement); | 
 |     // Update loop's trip-count information. | 
 |     ReplaceInduction(induction_analysis_->LookupInfo(lp, GetLoopControl(lp)), fetch, replacement); | 
 |   } | 
 | } | 
 |  | 
 | bool InductionVarRange::IsFinite(HLoopInformation* loop, /*out*/ int64_t* trip_count) const { | 
 |   bool is_constant_unused = false; | 
 |   return CheckForFiniteAndConstantProps(loop, &is_constant_unused, trip_count); | 
 | } | 
 |  | 
 | bool InductionVarRange::HasKnownTripCount(HLoopInformation* loop, | 
 |                                           /*out*/ int64_t* trip_count) const { | 
 |   bool is_constant = false; | 
 |   CheckForFiniteAndConstantProps(loop, &is_constant, trip_count); | 
 |   return is_constant; | 
 | } | 
 |  | 
 | bool InductionVarRange::IsUnitStride(HInstruction* context, | 
 |                                      HInstruction* instruction, | 
 |                                      HGraph* graph, | 
 |                                      /*out*/ HInstruction** offset) const { | 
 |   HLoopInformation* loop = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* info = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* trip = nullptr; | 
 |   if (HasInductionInfo(context, instruction, &loop, &info, &trip)) { | 
 |     if (info->induction_class == HInductionVarAnalysis::kLinear && | 
 |         !HInductionVarAnalysis::IsNarrowingLinear(info)) { | 
 |       int64_t stride_value = 0; | 
 |       if (IsConstant(info->op_a, kExact, &stride_value) && stride_value == 1) { | 
 |         int64_t off_value = 0; | 
 |         if (IsConstant(info->op_b, kExact, &off_value)) { | 
 |           *offset = graph->GetConstant(info->op_b->type, off_value); | 
 |         } else if (info->op_b->operation == HInductionVarAnalysis::kFetch) { | 
 |           *offset = info->op_b->fetch; | 
 |         } else { | 
 |           return false; | 
 |         } | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | HInstruction* InductionVarRange::GenerateTripCount(HLoopInformation* loop, | 
 |                                                    HGraph* graph, | 
 |                                                    HBasicBlock* block) { | 
 |   HInductionVarAnalysis::InductionInfo *trip = | 
 |       induction_analysis_->LookupInfo(loop, GetLoopControl(loop)); | 
 |   if (trip != nullptr && !IsUnsafeTripCount(trip)) { | 
 |     HInstruction* taken_test = nullptr; | 
 |     HInstruction* trip_expr = nullptr; | 
 |     if (IsBodyTripCount(trip)) { | 
 |       if (!GenerateCode(trip->op_b, nullptr, graph, block, &taken_test, false, false)) { | 
 |         return nullptr; | 
 |       } | 
 |     } | 
 |     if (GenerateCode(trip->op_a, nullptr, graph, block, &trip_expr, false, false)) { | 
 |       if (taken_test != nullptr) { | 
 |         HInstruction* zero = graph->GetConstant(trip->type, 0); | 
 |         ArenaAllocator* allocator = graph->GetAllocator(); | 
 |         trip_expr = Insert(block, new (allocator) HSelect(taken_test, trip_expr, zero, kNoDexPc)); | 
 |       } | 
 |       return trip_expr; | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // | 
 | // Private class methods. | 
 | // | 
 |  | 
 | bool InductionVarRange::CheckForFiniteAndConstantProps(HLoopInformation* loop, | 
 |                                                        /*out*/ bool* is_constant, | 
 |                                                        /*out*/ int64_t* trip_count) const { | 
 |   HInductionVarAnalysis::InductionInfo *trip = | 
 |       induction_analysis_->LookupInfo(loop, GetLoopControl(loop)); | 
 |   if (trip != nullptr && !IsUnsafeTripCount(trip)) { | 
 |     *is_constant = IsConstant(trip->op_a, kExact, trip_count); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::IsConstant(HInductionVarAnalysis::InductionInfo* info, | 
 |                                    ConstantRequest request, | 
 |                                    /*out*/ int64_t* value) const { | 
 |   if (info != nullptr) { | 
 |     // A direct 32-bit or 64-bit constant fetch. This immediately satisfies | 
 |     // any of the three requests (kExact, kAtMost, and KAtLeast). | 
 |     if (info->induction_class == HInductionVarAnalysis::kInvariant && | 
 |         info->operation == HInductionVarAnalysis::kFetch) { | 
 |       if (IsInt64AndGet(info->fetch, value)) { | 
 |         return true; | 
 |       } | 
 |     } | 
 |     // Try range analysis on the invariant, only accept a proper range | 
 |     // to avoid arithmetic wrap-around anomalies. | 
 |     Value min_val = GetVal(info, nullptr, /* in_body */ true, /* is_min */ true); | 
 |     Value max_val = GetVal(info, nullptr, /* in_body */ true, /* is_min */ false); | 
 |     if (IsConstantValue(min_val) && | 
 |         IsConstantValue(max_val) && min_val.b_constant <= max_val.b_constant) { | 
 |       if ((request == kExact && min_val.b_constant == max_val.b_constant) || request == kAtMost) { | 
 |         *value = max_val.b_constant; | 
 |         return true; | 
 |       } else if (request == kAtLeast) { | 
 |         *value = min_val.b_constant; | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::HasInductionInfo( | 
 |     HInstruction* context, | 
 |     HInstruction* instruction, | 
 |     /*out*/ HLoopInformation** loop, | 
 |     /*out*/ HInductionVarAnalysis::InductionInfo** info, | 
 |     /*out*/ HInductionVarAnalysis::InductionInfo** trip) const { | 
 |   DCHECK(context != nullptr); | 
 |   DCHECK(context->GetBlock() != nullptr); | 
 |   HLoopInformation* lp = context->GetBlock()->GetLoopInformation();  // closest enveloping loop | 
 |   if (lp != nullptr) { | 
 |     HInductionVarAnalysis::InductionInfo* i = induction_analysis_->LookupInfo(lp, instruction); | 
 |     if (i != nullptr) { | 
 |       *loop = lp; | 
 |       *info = i; | 
 |       *trip = induction_analysis_->LookupInfo(lp, GetLoopControl(lp)); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::IsWellBehavedTripCount(HInductionVarAnalysis::InductionInfo* trip) const { | 
 |   if (trip != nullptr) { | 
 |     // Both bounds that define a trip-count are well-behaved if they either are not defined | 
 |     // in any loop, or are contained in a proper interval. This allows finding the min/max | 
 |     // of an expression by chasing outward. | 
 |     InductionVarRange range(induction_analysis_); | 
 |     HInductionVarAnalysis::InductionInfo* lower = trip->op_b->op_a; | 
 |     HInductionVarAnalysis::InductionInfo* upper = trip->op_b->op_b; | 
 |     int64_t not_used = 0; | 
 |     return (!HasFetchInLoop(lower) || range.IsConstant(lower, kAtLeast, ¬_used)) && | 
 |            (!HasFetchInLoop(upper) || range.IsConstant(upper, kAtLeast, ¬_used)); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool InductionVarRange::HasFetchInLoop(HInductionVarAnalysis::InductionInfo* info) const { | 
 |   if (info != nullptr) { | 
 |     if (info->induction_class == HInductionVarAnalysis::kInvariant && | 
 |         info->operation == HInductionVarAnalysis::kFetch) { | 
 |       return info->fetch->GetBlock()->GetLoopInformation() != nullptr; | 
 |     } | 
 |     return HasFetchInLoop(info->op_a) || HasFetchInLoop(info->op_b); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::NeedsTripCount(HInductionVarAnalysis::InductionInfo* info, | 
 |                                        int64_t* stride_value) const { | 
 |   if (info != nullptr) { | 
 |     if (info->induction_class == HInductionVarAnalysis::kLinear) { | 
 |       return IsConstant(info->op_a, kExact, stride_value); | 
 |     } else if (info->induction_class == HInductionVarAnalysis::kPolynomial) { | 
 |       return NeedsTripCount(info->op_a, stride_value); | 
 |     } else if (info->induction_class == HInductionVarAnalysis::kWrapAround) { | 
 |       return NeedsTripCount(info->op_b, stride_value); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const { | 
 |   if (trip != nullptr) { | 
 |     if (trip->induction_class == HInductionVarAnalysis::kInvariant) { | 
 |       return trip->operation == HInductionVarAnalysis::kTripCountInBody || | 
 |              trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const { | 
 |   if (trip != nullptr) { | 
 |     if (trip->induction_class == HInductionVarAnalysis::kInvariant) { | 
 |       return trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe || | 
 |              trip->operation == HInductionVarAnalysis::kTripCountInLoopUnsafe; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                       HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                       bool in_body, | 
 |                                                       bool is_min) const { | 
 |   DCHECK(info != nullptr); | 
 |   DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kLinear); | 
 |   // Detect common situation where an offset inside the trip-count cancels out during range | 
 |   // analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding | 
 |   // min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information | 
 |   // with intermediate results that only incorporate single instructions. | 
 |   if (trip != nullptr) { | 
 |     HInductionVarAnalysis::InductionInfo* trip_expr = trip->op_a; | 
 |     if (trip_expr->type == info->type && trip_expr->operation == HInductionVarAnalysis::kSub) { | 
 |       int64_t stride_value = 0; | 
 |       if (IsConstant(info->op_a, kExact, &stride_value)) { | 
 |         if (!is_min && stride_value == 1) { | 
 |           // Test original trip's negative operand (trip_expr->op_b) against offset of induction. | 
 |           if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) { | 
 |             // Analyze cancelled trip with just the positive operand (trip_expr->op_a). | 
 |             HInductionVarAnalysis::InductionInfo cancelled_trip( | 
 |                 trip->induction_class, | 
 |                 trip->operation, | 
 |                 trip_expr->op_a, | 
 |                 trip->op_b, | 
 |                 nullptr, | 
 |                 trip->type); | 
 |             return GetVal(&cancelled_trip, trip, in_body, is_min); | 
 |           } | 
 |         } else if (is_min && stride_value == -1) { | 
 |           // Test original trip's positive operand (trip_expr->op_a) against offset of induction. | 
 |           if (HInductionVarAnalysis::InductionEqual(trip_expr->op_a, info->op_b)) { | 
 |             // Analyze cancelled trip with just the negative operand (trip_expr->op_b). | 
 |             HInductionVarAnalysis::InductionInfo neg( | 
 |                 HInductionVarAnalysis::kInvariant, | 
 |                 HInductionVarAnalysis::kNeg, | 
 |                 nullptr, | 
 |                 trip_expr->op_b, | 
 |                 nullptr, | 
 |                 trip->type); | 
 |             HInductionVarAnalysis::InductionInfo cancelled_trip( | 
 |                 trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type); | 
 |             return SubValue(Value(0), GetVal(&cancelled_trip, trip, in_body, !is_min)); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   // General rule of linear induction a * i + b, for normalized 0 <= i < TC. | 
 |   return AddValue(GetMul(info->op_a, trip, trip, in_body, is_min), | 
 |                   GetVal(info->op_b, trip, in_body, is_min)); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetPolynomial(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                           HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                           bool in_body, | 
 |                                                           bool is_min) const { | 
 |   DCHECK(info != nullptr); | 
 |   DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial); | 
 |   int64_t a = 0; | 
 |   int64_t b = 0; | 
 |   if (IsConstant(info->op_a->op_a, kExact, &a) && CanLongValueFitIntoInt(a) && a >= 0 && | 
 |       IsConstant(info->op_a->op_b, kExact, &b) && CanLongValueFitIntoInt(b) && b >= 0) { | 
 |     // Evaluate bounds on sum_i=0^m-1(a * i + b) + c with a,b >= 0 for | 
 |     // maximum index value m as a * (m * (m-1)) / 2 + b * m + c. | 
 |     Value c = GetVal(info->op_b, trip, in_body, is_min); | 
 |     if (is_min) { | 
 |       return c; | 
 |     } else { | 
 |       Value m = GetVal(trip, trip, in_body, is_min); | 
 |       Value t = DivValue(MulValue(m, SubValue(m, Value(1))), Value(2)); | 
 |       Value x = MulValue(Value(a), t); | 
 |       Value y = MulValue(Value(b), m); | 
 |       return AddValue(AddValue(x, y), c); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetGeometric(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                          HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                          bool in_body, | 
 |                                                          bool is_min) const { | 
 |   DCHECK(info != nullptr); | 
 |   DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric); | 
 |   int64_t a = 0; | 
 |   int64_t f = 0; | 
 |   if (IsConstant(info->op_a, kExact, &a) && | 
 |       CanLongValueFitIntoInt(a) && | 
 |       IsInt64AndGet(info->fetch, &f) && f >= 1) { | 
 |     // Conservative bounds on a * f^-i + b with f >= 1 can be computed without | 
 |     // trip count. Other forms would require a much more elaborate evaluation. | 
 |     const bool is_min_a = a >= 0 ? is_min : !is_min; | 
 |     if (info->operation == HInductionVarAnalysis::kDiv) { | 
 |       Value b = GetVal(info->op_b, trip, in_body, is_min); | 
 |       return is_min_a ? b : AddValue(Value(a), b); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction, | 
 |                                                      HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                      bool in_body, | 
 |                                                      bool is_min) const { | 
 |   // Special case when chasing constants: single instruction that denotes trip count in the | 
 |   // loop-body is minimal 1 and maximal, with safe trip-count, max int, | 
 |   if (chase_hint_ == nullptr && in_body && trip != nullptr && instruction == trip->op_a->fetch) { | 
 |     if (is_min) { | 
 |       return Value(1); | 
 |     } else if (!instruction->IsConstant() && !IsUnsafeTripCount(trip)) { | 
 |       return Value(std::numeric_limits<int32_t>::max()); | 
 |     } | 
 |   } | 
 |   // Unless at a constant or hint, chase the instruction a bit deeper into the HIR tree, so that | 
 |   // it becomes more likely range analysis will compare the same instructions as terminal nodes. | 
 |   int64_t value; | 
 |   if (IsInt64AndGet(instruction, &value) && CanLongValueFitIntoInt(value)) { | 
 |     // Proper constant reveals best information. | 
 |     return Value(static_cast<int32_t>(value)); | 
 |   } else if (instruction == chase_hint_) { | 
 |     // At hint, fetch is represented by itself. | 
 |     return Value(instruction, 1, 0); | 
 |   } else if (instruction->IsAdd()) { | 
 |     // Incorporate suitable constants in the chased value. | 
 |     if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) { | 
 |       return AddValue(Value(static_cast<int32_t>(value)), | 
 |                       GetFetch(instruction->InputAt(1), trip, in_body, is_min)); | 
 |     } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) { | 
 |       return AddValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min), | 
 |                       Value(static_cast<int32_t>(value))); | 
 |     } | 
 |   } else if (instruction->IsSub()) { | 
 |     // Incorporate suitable constants in the chased value. | 
 |     if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) { | 
 |       return SubValue(Value(static_cast<int32_t>(value)), | 
 |                       GetFetch(instruction->InputAt(1), trip, in_body, !is_min)); | 
 |     } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) { | 
 |       return SubValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min), | 
 |                       Value(static_cast<int32_t>(value))); | 
 |     } | 
 |   } else if (instruction->IsArrayLength()) { | 
 |     // Exploit length properties when chasing constants or chase into a new array declaration. | 
 |     if (chase_hint_ == nullptr) { | 
 |       return is_min ? Value(0) : Value(std::numeric_limits<int32_t>::max()); | 
 |     } else if (instruction->InputAt(0)->IsNewArray()) { | 
 |       return GetFetch(instruction->InputAt(0)->AsNewArray()->GetLength(), trip, in_body, is_min); | 
 |     } | 
 |   } else if (instruction->IsTypeConversion()) { | 
 |     // Since analysis is 32-bit (or narrower), chase beyond widening along the path. | 
 |     // For example, this discovers the length in: for (long i = 0; i < a.length; i++); | 
 |     if (instruction->AsTypeConversion()->GetInputType() == DataType::Type::kInt32 && | 
 |         instruction->AsTypeConversion()->GetResultType() == DataType::Type::kInt64) { | 
 |       return GetFetch(instruction->InputAt(0), trip, in_body, is_min); | 
 |     } | 
 |   } | 
 |   // Chase an invariant fetch that is defined by an outer loop if the trip-count used | 
 |   // so far is well-behaved in both bounds and the next trip-count is safe. | 
 |   // Example: | 
 |   //   for (int i = 0; i <= 100; i++)  // safe | 
 |   //     for (int j = 0; j <= i; j++)  // well-behaved | 
 |   //       j is in range [0, i  ] (if i is chase hint) | 
 |   //         or in range [0, 100] (otherwise) | 
 |   HLoopInformation* next_loop = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* next_info = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* next_trip = nullptr; | 
 |   bool next_in_body = true;  // inner loop is always in body of outer loop | 
 |   if (HasInductionInfo(instruction, instruction, &next_loop, &next_info, &next_trip) && | 
 |       IsWellBehavedTripCount(trip) && | 
 |       !IsUnsafeTripCount(next_trip)) { | 
 |     return GetVal(next_info, next_trip, next_in_body, is_min); | 
 |   } | 
 |   // Fetch is represented by itself. | 
 |   return Value(instruction, 1, 0); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                    HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                    bool in_body, | 
 |                                                    bool is_min) const { | 
 |   if (info != nullptr) { | 
 |     switch (info->induction_class) { | 
 |       case HInductionVarAnalysis::kInvariant: | 
 |         // Invariants. | 
 |         switch (info->operation) { | 
 |           case HInductionVarAnalysis::kAdd: | 
 |             return AddValue(GetVal(info->op_a, trip, in_body, is_min), | 
 |                             GetVal(info->op_b, trip, in_body, is_min)); | 
 |           case HInductionVarAnalysis::kSub:  // second reversed! | 
 |             return SubValue(GetVal(info->op_a, trip, in_body, is_min), | 
 |                             GetVal(info->op_b, trip, in_body, !is_min)); | 
 |           case HInductionVarAnalysis::kNeg:  // second reversed! | 
 |             return SubValue(Value(0), | 
 |                             GetVal(info->op_b, trip, in_body, !is_min)); | 
 |           case HInductionVarAnalysis::kMul: | 
 |             return GetMul(info->op_a, info->op_b, trip, in_body, is_min); | 
 |           case HInductionVarAnalysis::kDiv: | 
 |             return GetDiv(info->op_a, info->op_b, trip, in_body, is_min); | 
 |           case HInductionVarAnalysis::kRem: | 
 |             return GetRem(info->op_a, info->op_b); | 
 |           case HInductionVarAnalysis::kXor: | 
 |             return GetXor(info->op_a, info->op_b); | 
 |           case HInductionVarAnalysis::kFetch: | 
 |             return GetFetch(info->fetch, trip, in_body, is_min); | 
 |           case HInductionVarAnalysis::kTripCountInLoop: | 
 |           case HInductionVarAnalysis::kTripCountInLoopUnsafe: | 
 |             if (!in_body && !is_min) {  // one extra! | 
 |               return GetVal(info->op_a, trip, in_body, is_min); | 
 |             } | 
 |             FALLTHROUGH_INTENDED; | 
 |           case HInductionVarAnalysis::kTripCountInBody: | 
 |           case HInductionVarAnalysis::kTripCountInBodyUnsafe: | 
 |             if (is_min) { | 
 |               return Value(0); | 
 |             } else if (in_body) { | 
 |               return SubValue(GetVal(info->op_a, trip, in_body, is_min), Value(1)); | 
 |             } | 
 |             break; | 
 |           default: | 
 |             break; | 
 |         } | 
 |         break; | 
 |       case HInductionVarAnalysis::kLinear: | 
 |         return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type); | 
 |       case HInductionVarAnalysis::kPolynomial: | 
 |         return GetPolynomial(info, trip, in_body, is_min); | 
 |       case HInductionVarAnalysis::kGeometric: | 
 |         return GetGeometric(info, trip, in_body, is_min); | 
 |       case HInductionVarAnalysis::kWrapAround: | 
 |       case HInductionVarAnalysis::kPeriodic: | 
 |         return MergeVal(GetVal(info->op_a, trip, in_body, is_min), | 
 |                         GetVal(info->op_b, trip, in_body, is_min), is_min); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1, | 
 |                                                    HInductionVarAnalysis::InductionInfo* info2, | 
 |                                                    HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                    bool in_body, | 
 |                                                    bool is_min) const { | 
 |   // Constant times range. | 
 |   int64_t value = 0; | 
 |   if (IsConstant(info1, kExact, &value)) { | 
 |     return MulRangeAndConstant(value, info2, trip, in_body, is_min); | 
 |   } else if (IsConstant(info2, kExact, &value)) { | 
 |     return MulRangeAndConstant(value, info1, trip, in_body, is_min); | 
 |   } | 
 |   // Interval ranges. | 
 |   Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true); | 
 |   Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false); | 
 |   Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true); | 
 |   Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false); | 
 |   // Positive range vs. positive or negative range. | 
 |   if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) { | 
 |     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { | 
 |       return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max); | 
 |     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { | 
 |       return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max); | 
 |     } | 
 |   } | 
 |   // Negative range vs. positive or negative range. | 
 |   if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) { | 
 |     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { | 
 |       return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min); | 
 |     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { | 
 |       return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1, | 
 |                                                    HInductionVarAnalysis::InductionInfo* info2, | 
 |                                                    HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                    bool in_body, | 
 |                                                    bool is_min) const { | 
 |   // Range divided by constant. | 
 |   int64_t value = 0; | 
 |   if (IsConstant(info2, kExact, &value)) { | 
 |     return DivRangeAndConstant(value, info1, trip, in_body, is_min); | 
 |   } | 
 |   // Interval ranges. | 
 |   Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true); | 
 |   Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false); | 
 |   Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true); | 
 |   Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false); | 
 |   // Positive range vs. positive or negative range. | 
 |   if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) { | 
 |     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { | 
 |       return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min); | 
 |     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { | 
 |       return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min); | 
 |     } | 
 |   } | 
 |   // Negative range vs. positive or negative range. | 
 |   if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) { | 
 |     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { | 
 |       return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max); | 
 |     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { | 
 |       return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetRem( | 
 |     HInductionVarAnalysis::InductionInfo* info1, | 
 |     HInductionVarAnalysis::InductionInfo* info2) const { | 
 |   int64_t v1 = 0; | 
 |   int64_t v2 = 0; | 
 |   // Only accept exact values. | 
 |   if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2) && v2 != 0) { | 
 |     int64_t value = v1 % v2; | 
 |     if (CanLongValueFitIntoInt(value)) { | 
 |       return Value(static_cast<int32_t>(value)); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::GetXor( | 
 |     HInductionVarAnalysis::InductionInfo* info1, | 
 |     HInductionVarAnalysis::InductionInfo* info2) const { | 
 |   int64_t v1 = 0; | 
 |   int64_t v2 = 0; | 
 |   // Only accept exact values. | 
 |   if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2)) { | 
 |     int64_t value = v1 ^ v2; | 
 |     if (CanLongValueFitIntoInt(value)) { | 
 |       return Value(static_cast<int32_t>(value)); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::MulRangeAndConstant( | 
 |     int64_t value, | 
 |     HInductionVarAnalysis::InductionInfo* info, | 
 |     HInductionVarAnalysis::InductionInfo* trip, | 
 |     bool in_body, | 
 |     bool is_min) const { | 
 |   if (CanLongValueFitIntoInt(value)) { | 
 |     Value c(static_cast<int32_t>(value)); | 
 |     return MulValue(GetVal(info, trip, in_body, is_min == value >= 0), c); | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::DivRangeAndConstant( | 
 |     int64_t value, | 
 |     HInductionVarAnalysis::InductionInfo* info, | 
 |     HInductionVarAnalysis::InductionInfo* trip, | 
 |     bool in_body, | 
 |     bool is_min) const { | 
 |   if (CanLongValueFitIntoInt(value)) { | 
 |     Value c(static_cast<int32_t>(value)); | 
 |     return DivValue(GetVal(info, trip, in_body, is_min == value >= 0), c); | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) const { | 
 |   if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) { | 
 |     int32_t b = v1.b_constant + v2.b_constant; | 
 |     if (v1.a_constant == 0) { | 
 |       return Value(v2.instruction, v2.a_constant, b); | 
 |     } else if (v2.a_constant == 0) { | 
 |       return Value(v1.instruction, v1.a_constant, b); | 
 |     } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) { | 
 |       return Value(v1.instruction, v1.a_constant + v2.a_constant, b); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) const { | 
 |   if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) { | 
 |     int32_t b = v1.b_constant - v2.b_constant; | 
 |     if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) { | 
 |       return Value(v2.instruction, -v2.a_constant, b); | 
 |     } else if (v2.a_constant == 0) { | 
 |       return Value(v1.instruction, v1.a_constant, b); | 
 |     } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) { | 
 |       return Value(v1.instruction, v1.a_constant - v2.a_constant, b); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) const { | 
 |   if (v1.is_known && v2.is_known) { | 
 |     if (v1.a_constant == 0) { | 
 |       if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { | 
 |         return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant); | 
 |       } | 
 |     } else if (v2.a_constant == 0) { | 
 |       if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { | 
 |         return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant); | 
 |       } | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) const { | 
 |   if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) { | 
 |     if (IsSafeDiv(v1.b_constant, v2.b_constant)) { | 
 |       return Value(v1.b_constant / v2.b_constant); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) const { | 
 |   if (v1.is_known && v2.is_known) { | 
 |     if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) { | 
 |       return Value(v1.instruction, v1.a_constant, | 
 |                    is_min ? std::min(v1.b_constant, v2.b_constant) | 
 |                           : std::max(v1.b_constant, v2.b_constant)); | 
 |     } | 
 |   } | 
 |   return Value(); | 
 | } | 
 |  | 
 | bool InductionVarRange::GenerateRangeOrLastValue(HInstruction* context, | 
 |                                                  HInstruction* instruction, | 
 |                                                  bool is_last_value, | 
 |                                                  HGraph* graph, | 
 |                                                  HBasicBlock* block, | 
 |                                                  /*out*/HInstruction** lower, | 
 |                                                  /*out*/HInstruction** upper, | 
 |                                                  /*out*/HInstruction** taken_test, | 
 |                                                  /*out*/int64_t* stride_value, | 
 |                                                  /*out*/bool* needs_finite_test, | 
 |                                                  /*out*/bool* needs_taken_test) const { | 
 |   HLoopInformation* loop = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* info = nullptr; | 
 |   HInductionVarAnalysis::InductionInfo* trip = nullptr; | 
 |   if (!HasInductionInfo(context, instruction, &loop, &info, &trip) || trip == nullptr) { | 
 |     return false;  // codegen needs all information, including tripcount | 
 |   } | 
 |   // Determine what tests are needed. A finite test is needed if the evaluation code uses the | 
 |   // trip-count and the loop maybe unsafe (because in such cases, the index could "overshoot" | 
 |   // the computed range). A taken test is needed for any unknown trip-count, even if evaluation | 
 |   // code does not use the trip-count explicitly (since there could be an implicit relation | 
 |   // between e.g. an invariant subscript and a not-taken condition). | 
 |   bool in_body = context->GetBlock() != loop->GetHeader(); | 
 |   *stride_value = 0; | 
 |   *needs_finite_test = NeedsTripCount(info, stride_value) && IsUnsafeTripCount(trip); | 
 |   *needs_taken_test = IsBodyTripCount(trip); | 
 |   // Handle last value request. | 
 |   if (is_last_value) { | 
 |     DCHECK(!in_body); | 
 |     switch (info->induction_class) { | 
 |       case HInductionVarAnalysis::kLinear: | 
 |         if (*stride_value > 0) { | 
 |           lower = nullptr; | 
 |         } else { | 
 |           upper = nullptr; | 
 |         } | 
 |         break; | 
 |       case HInductionVarAnalysis::kPolynomial: | 
 |         return GenerateLastValuePolynomial(info, trip, graph, block, lower); | 
 |       case HInductionVarAnalysis::kGeometric: | 
 |         return GenerateLastValueGeometric(info, trip, graph, block, lower); | 
 |       case HInductionVarAnalysis::kWrapAround: | 
 |         return GenerateLastValueWrapAround(info, trip, graph, block, lower); | 
 |       case HInductionVarAnalysis::kPeriodic: | 
 |         return GenerateLastValuePeriodic(info, trip, graph, block, lower, needs_taken_test); | 
 |       default: | 
 |         return false; | 
 |     } | 
 |   } | 
 |   // Code generation for taken test: generate the code when requested or otherwise analyze | 
 |   // if code generation is feasible when taken test is needed. | 
 |   if (taken_test != nullptr) { | 
 |     return GenerateCode(trip->op_b, nullptr, graph, block, taken_test, in_body, /* is_min */ false); | 
 |   } else if (*needs_taken_test) { | 
 |     if (!GenerateCode( | 
 |         trip->op_b, nullptr, nullptr, nullptr, nullptr, in_body, /* is_min */ false)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   // Code generation for lower and upper. | 
 |   return | 
 |       // Success on lower if invariant (not set), or code can be generated. | 
 |       ((info->induction_class == HInductionVarAnalysis::kInvariant) || | 
 |           GenerateCode(info, trip, graph, block, lower, in_body, /* is_min */ true)) && | 
 |       // And success on upper. | 
 |       GenerateCode(info, trip, graph, block, upper, in_body, /* is_min */ false); | 
 | } | 
 |  | 
 | bool InductionVarRange::GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                     HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                     HGraph* graph, | 
 |                                                     HBasicBlock* block, | 
 |                                                     /*out*/HInstruction** result) const { | 
 |   DCHECK(info != nullptr); | 
 |   DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial); | 
 |   // Detect known coefficients and trip count (always taken). | 
 |   int64_t a = 0; | 
 |   int64_t b = 0; | 
 |   int64_t m = 0; | 
 |   if (IsConstant(info->op_a->op_a, kExact, &a) && | 
 |       IsConstant(info->op_a->op_b, kExact, &b) && | 
 |       IsConstant(trip->op_a, kExact, &m) && m >= 1) { | 
 |     // Evaluate bounds on sum_i=0^m-1(a * i + b) + c for known | 
 |     // maximum index value m as a * (m * (m-1)) / 2 + b * m + c. | 
 |     HInstruction* c = nullptr; | 
 |     if (GenerateCode(info->op_b, nullptr, graph, block, graph ? &c : nullptr, false, false)) { | 
 |       if (graph != nullptr) { | 
 |         DataType::Type type = info->type; | 
 |         int64_t sum = a * ((m * (m - 1)) / 2) + b * m; | 
 |         if (type != DataType::Type::kInt64) { | 
 |           sum = static_cast<int32_t>(sum);  // okay to truncate | 
 |         } | 
 |         *result = | 
 |             Insert(block, new (graph->GetAllocator()) HAdd(type, graph->GetConstant(type, sum), c)); | 
 |       } | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                    HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                    HGraph* graph, | 
 |                                                    HBasicBlock* block, | 
 |                                                    /*out*/HInstruction** result) const { | 
 |   DCHECK(info != nullptr); | 
 |   DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric); | 
 |   // Detect known base and trip count (always taken). | 
 |   int64_t f = 0; | 
 |   int64_t m = 0; | 
 |   if (IsInt64AndGet(info->fetch, &f) && f >= 1 && IsConstant(trip->op_a, kExact, &m) && m >= 1) { | 
 |     HInstruction* opa = nullptr; | 
 |     HInstruction* opb = nullptr; | 
 |     if (GenerateCode(info->op_a, nullptr, graph, block, &opa, false, false) && | 
 |         GenerateCode(info->op_b, nullptr, graph, block, &opb, false, false)) { | 
 |       if (graph != nullptr) { | 
 |         DataType::Type type = info->type; | 
 |         // Compute f ^ m for known maximum index value m. | 
 |         bool overflow = false; | 
 |         int64_t fpow = IntPow(f, m, &overflow); | 
 |         if (info->operation == HInductionVarAnalysis::kDiv) { | 
 |           // For division, any overflow truncates to zero. | 
 |           if (overflow || (type != DataType::Type::kInt64 && !CanLongValueFitIntoInt(fpow))) { | 
 |             fpow = 0; | 
 |           } | 
 |         } else if (type != DataType::Type::kInt64) { | 
 |           // For multiplication, okay to truncate to required precision. | 
 |           DCHECK(info->operation == HInductionVarAnalysis::kMul); | 
 |           fpow = static_cast<int32_t>(fpow); | 
 |         } | 
 |         // Generate code. | 
 |         if (fpow == 0) { | 
 |           // Special case: repeated mul/div always yields zero. | 
 |           *result = graph->GetConstant(type, 0); | 
 |         } else { | 
 |           // Last value: a * f ^ m + b or a * f ^ -m + b. | 
 |           HInstruction* e = nullptr; | 
 |           ArenaAllocator* allocator = graph->GetAllocator(); | 
 |           if (info->operation == HInductionVarAnalysis::kMul) { | 
 |             e = new (allocator) HMul(type, opa, graph->GetConstant(type, fpow)); | 
 |           } else { | 
 |             e = new (allocator) HDiv(type, opa, graph->GetConstant(type, fpow), kNoDexPc); | 
 |           } | 
 |           *result = Insert(block, new (allocator) HAdd(type, Insert(block, e), opb)); | 
 |         } | 
 |       } | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                     HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                     HGraph* graph, | 
 |                                                     HBasicBlock* block, | 
 |                                                     /*out*/HInstruction** result) const { | 
 |   DCHECK(info != nullptr); | 
 |   DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kWrapAround); | 
 |   // Count depth. | 
 |   int32_t depth = 0; | 
 |   for (; info->induction_class == HInductionVarAnalysis::kWrapAround; | 
 |        info = info->op_b, ++depth) {} | 
 |   // Handle wrap(x, wrap(.., y)) if trip count reaches an invariant at end. | 
 |   // TODO: generalize, but be careful to adjust the terminal. | 
 |   int64_t m = 0; | 
 |   if (info->induction_class == HInductionVarAnalysis::kInvariant && | 
 |       IsConstant(trip->op_a, kExact, &m) && m >= depth) { | 
 |     return GenerateCode(info, nullptr, graph, block, result, false, false); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo* info, | 
 |                                                   HInductionVarAnalysis::InductionInfo* trip, | 
 |                                                   HGraph* graph, | 
 |                                                   HBasicBlock* block, | 
 |                                                   /*out*/HInstruction** result, | 
 |                                                   /*out*/bool* needs_taken_test) const { | 
 |   DCHECK(info != nullptr); | 
 |   DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPeriodic); | 
 |   // Count period and detect all-invariants. | 
 |   int64_t period = 1; | 
 |   bool all_invariants = true; | 
 |   HInductionVarAnalysis::InductionInfo* p = info; | 
 |   for (; p->induction_class == HInductionVarAnalysis::kPeriodic; p = p->op_b, ++period) { | 
 |     DCHECK_EQ(p->op_a->induction_class, HInductionVarAnalysis::kInvariant); | 
 |     if (p->op_a->operation != HInductionVarAnalysis::kFetch) { | 
 |       all_invariants = false; | 
 |     } | 
 |   } | 
 |   DCHECK_EQ(p->induction_class, HInductionVarAnalysis::kInvariant); | 
 |   if (p->operation != HInductionVarAnalysis::kFetch) { | 
 |     all_invariants = false; | 
 |   } | 
 |   // Don't rely on FP arithmetic to be precise, unless the full period | 
 |   // consist of pre-computed expressions only. | 
 |   if (info->type == DataType::Type::kFloat32 || info->type == DataType::Type::kFloat64) { | 
 |     if (!all_invariants) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   // Handle any periodic(x, periodic(.., y)) for known maximum index value m. | 
 |   int64_t m = 0; | 
 |   if (IsConstant(trip->op_a, kExact, &m) && m >= 1) { | 
 |     int64_t li = m % period; | 
 |     for (int64_t i = 0; i < li; info = info->op_b, i++) {} | 
 |     if (info->induction_class == HInductionVarAnalysis::kPeriodic) { | 
 |       info = info->op_a; | 
 |     } | 
 |     return GenerateCode(info, nullptr, graph, block, result, false, false); | 
 |   } | 
 |   // Handle periodic(x, y) using even/odd-select on trip count. Enter trip count expression | 
 |   // directly to obtain the maximum index value t even if taken test is needed. | 
 |   HInstruction* x = nullptr; | 
 |   HInstruction* y = nullptr; | 
 |   HInstruction* t = nullptr; | 
 |   if (period == 2 && | 
 |       GenerateCode(info->op_a, nullptr, graph, block, graph ? &x : nullptr, false, false) && | 
 |       GenerateCode(info->op_b, nullptr, graph, block, graph ? &y : nullptr, false, false) && | 
 |       GenerateCode(trip->op_a, nullptr, graph, block, graph ? &t : nullptr, false, false)) { | 
 |     // During actual code generation (graph != nullptr), generate is_even ? x : y. | 
 |     if (graph != nullptr) { | 
 |       DataType::Type type = trip->type; | 
 |       ArenaAllocator* allocator = graph->GetAllocator(); | 
 |       HInstruction* msk = | 
 |           Insert(block, new (allocator) HAnd(type, t, graph->GetConstant(type, 1))); | 
 |       HInstruction* is_even = | 
 |           Insert(block, new (allocator) HEqual(msk, graph->GetConstant(type, 0), kNoDexPc)); | 
 |       *result = Insert(block, new (graph->GetAllocator()) HSelect(is_even, x, y, kNoDexPc)); | 
 |     } | 
 |     // Guard select with taken test if needed. | 
 |     if (*needs_taken_test) { | 
 |       HInstruction* is_taken = nullptr; | 
 |       if (GenerateCode(trip->op_b, nullptr, graph, block, graph ? &is_taken : nullptr, false, false)) { | 
 |         if (graph != nullptr) { | 
 |           ArenaAllocator* allocator = graph->GetAllocator(); | 
 |           *result = Insert(block, new (allocator) HSelect(is_taken, *result, x, kNoDexPc)); | 
 |         } | 
 |         *needs_taken_test = false;  // taken care of | 
 |       } else { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info, | 
 |                                      HInductionVarAnalysis::InductionInfo* trip, | 
 |                                      HGraph* graph,  // when set, code is generated | 
 |                                      HBasicBlock* block, | 
 |                                      /*out*/HInstruction** result, | 
 |                                      bool in_body, | 
 |                                      bool is_min) const { | 
 |   if (info != nullptr) { | 
 |     // If during codegen, the result is not needed (nullptr), simply return success. | 
 |     if (graph != nullptr && result == nullptr) { | 
 |       return true; | 
 |     } | 
 |     // Handle current operation. | 
 |     DataType::Type type = info->type; | 
 |     HInstruction* opa = nullptr; | 
 |     HInstruction* opb = nullptr; | 
 |     switch (info->induction_class) { | 
 |       case HInductionVarAnalysis::kInvariant: | 
 |         // Invariants (note that since invariants only have other invariants as | 
 |         // sub expressions, viz. no induction, there is no need to adjust is_min). | 
 |         switch (info->operation) { | 
 |           case HInductionVarAnalysis::kAdd: | 
 |           case HInductionVarAnalysis::kSub: | 
 |           case HInductionVarAnalysis::kMul: | 
 |           case HInductionVarAnalysis::kDiv: | 
 |           case HInductionVarAnalysis::kRem: | 
 |           case HInductionVarAnalysis::kXor: | 
 |           case HInductionVarAnalysis::kLT: | 
 |           case HInductionVarAnalysis::kLE: | 
 |           case HInductionVarAnalysis::kGT: | 
 |           case HInductionVarAnalysis::kGE: | 
 |             if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) && | 
 |                 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) { | 
 |               if (graph != nullptr) { | 
 |                 HInstruction* operation = nullptr; | 
 |                 switch (info->operation) { | 
 |                   case HInductionVarAnalysis::kAdd: | 
 |                     operation = new (graph->GetAllocator()) HAdd(type, opa, opb); break; | 
 |                   case HInductionVarAnalysis::kSub: | 
 |                     operation = new (graph->GetAllocator()) HSub(type, opa, opb); break; | 
 |                   case HInductionVarAnalysis::kMul: | 
 |                     operation = new (graph->GetAllocator()) HMul(type, opa, opb, kNoDexPc); break; | 
 |                   case HInductionVarAnalysis::kDiv: | 
 |                     operation = new (graph->GetAllocator()) HDiv(type, opa, opb, kNoDexPc); break; | 
 |                   case HInductionVarAnalysis::kRem: | 
 |                     operation = new (graph->GetAllocator()) HRem(type, opa, opb, kNoDexPc); break; | 
 |                   case HInductionVarAnalysis::kXor: | 
 |                     operation = new (graph->GetAllocator()) HXor(type, opa, opb); break; | 
 |                   case HInductionVarAnalysis::kLT: | 
 |                     operation = new (graph->GetAllocator()) HLessThan(opa, opb); break; | 
 |                   case HInductionVarAnalysis::kLE: | 
 |                     operation = new (graph->GetAllocator()) HLessThanOrEqual(opa, opb); break; | 
 |                   case HInductionVarAnalysis::kGT: | 
 |                     operation = new (graph->GetAllocator()) HGreaterThan(opa, opb); break; | 
 |                   case HInductionVarAnalysis::kGE: | 
 |                     operation = new (graph->GetAllocator()) HGreaterThanOrEqual(opa, opb); break; | 
 |                   default: | 
 |                     LOG(FATAL) << "unknown operation"; | 
 |                 } | 
 |                 *result = Insert(block, operation); | 
 |               } | 
 |               return true; | 
 |             } | 
 |             break; | 
 |           case HInductionVarAnalysis::kNeg: | 
 |             if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) { | 
 |               if (graph != nullptr) { | 
 |                 *result = Insert(block, new (graph->GetAllocator()) HNeg(type, opb)); | 
 |               } | 
 |               return true; | 
 |             } | 
 |             break; | 
 |           case HInductionVarAnalysis::kFetch: | 
 |             if (graph != nullptr) { | 
 |               *result = info->fetch;  // already in HIR | 
 |             } | 
 |             return true; | 
 |           case HInductionVarAnalysis::kTripCountInLoop: | 
 |           case HInductionVarAnalysis::kTripCountInLoopUnsafe: | 
 |             if (!in_body && !is_min) {  // one extra! | 
 |               return GenerateCode(info->op_a, trip, graph, block, result, in_body, is_min); | 
 |             } | 
 |             FALLTHROUGH_INTENDED; | 
 |           case HInductionVarAnalysis::kTripCountInBody: | 
 |           case HInductionVarAnalysis::kTripCountInBodyUnsafe: | 
 |             if (is_min) { | 
 |               if (graph != nullptr) { | 
 |                 *result = graph->GetConstant(type, 0); | 
 |               } | 
 |               return true; | 
 |             } else if (in_body) { | 
 |               if (GenerateCode(info->op_a, trip, graph, block, &opb, in_body, is_min)) { | 
 |                 if (graph != nullptr) { | 
 |                   ArenaAllocator* allocator = graph->GetAllocator(); | 
 |                   *result = | 
 |                       Insert(block, new (allocator) HSub(type, opb, graph->GetConstant(type, 1))); | 
 |                 } | 
 |                 return true; | 
 |               } | 
 |             } | 
 |             break; | 
 |           case HInductionVarAnalysis::kNop: | 
 |             LOG(FATAL) << "unexpected invariant nop"; | 
 |         }  // switch invariant operation | 
 |         break; | 
 |       case HInductionVarAnalysis::kLinear: { | 
 |         // Linear induction a * i + b, for normalized 0 <= i < TC. For ranges, this should | 
 |         // be restricted to a unit stride to avoid arithmetic wrap-around situations that | 
 |         // are harder to guard against. For a last value, requesting min/max based on any | 
 |         // known stride yields right value. Always avoid any narrowing linear induction or | 
 |         // any type mismatch between the linear induction and the trip count expression. | 
 |         // TODO: careful runtime type conversions could generalize this latter restriction. | 
 |         if (!HInductionVarAnalysis::IsNarrowingLinear(info) && trip->type == type) { | 
 |           int64_t stride_value = 0; | 
 |           if (IsConstant(info->op_a, kExact, &stride_value) && | 
 |               CanLongValueFitIntoInt(stride_value)) { | 
 |             const bool is_min_a = stride_value >= 0 ? is_min : !is_min; | 
 |             if (GenerateCode(trip,       trip, graph, block, &opa, in_body, is_min_a) && | 
 |                 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) { | 
 |               if (graph != nullptr) { | 
 |                 ArenaAllocator* allocator = graph->GetAllocator(); | 
 |                 HInstruction* oper; | 
 |                 if (stride_value == 1) { | 
 |                   oper = new (allocator) HAdd(type, opa, opb); | 
 |                 } else if (stride_value == -1) { | 
 |                   oper = new (graph->GetAllocator()) HSub(type, opb, opa); | 
 |                 } else { | 
 |                   HInstruction* mul = | 
 |                       new (allocator) HMul(type, graph->GetConstant(type, stride_value), opa); | 
 |                   oper = new (allocator) HAdd(type, Insert(block, mul), opb); | 
 |                 } | 
 |                 *result = Insert(block, oper); | 
 |               } | 
 |               return true; | 
 |             } | 
 |           } | 
 |         } | 
 |         break; | 
 |       } | 
 |       case HInductionVarAnalysis::kPolynomial: | 
 |       case HInductionVarAnalysis::kGeometric: | 
 |         break; | 
 |       case HInductionVarAnalysis::kWrapAround: | 
 |       case HInductionVarAnalysis::kPeriodic: { | 
 |         // Wrap-around and periodic inductions are restricted to constants only, so that extreme | 
 |         // values are easy to test at runtime without complications of arithmetic wrap-around. | 
 |         Value extreme = GetVal(info, trip, in_body, is_min); | 
 |         if (IsConstantValue(extreme)) { | 
 |           if (graph != nullptr) { | 
 |             *result = graph->GetConstant(type, extreme.b_constant); | 
 |           } | 
 |           return true; | 
 |         } | 
 |         break; | 
 |       } | 
 |     }  // switch induction class | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void InductionVarRange::ReplaceInduction(HInductionVarAnalysis::InductionInfo* info, | 
 |                                          HInstruction* fetch, | 
 |                                          HInstruction* replacement) { | 
 |   if (info != nullptr) { | 
 |     if (info->induction_class == HInductionVarAnalysis::kInvariant && | 
 |         info->operation == HInductionVarAnalysis::kFetch && | 
 |         info->fetch == fetch) { | 
 |       info->fetch = replacement; | 
 |     } | 
 |     ReplaceInduction(info->op_a, fetch, replacement); | 
 |     ReplaceInduction(info->op_b, fetch, replacement); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace art |