| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "ssa_builder.h" |
| |
| #include "nodes.h" |
| #include "primitive_type_propagation.h" |
| #include "ssa_phi_elimination.h" |
| |
| namespace art { |
| |
| /** |
| * A debuggable application may require to reviving phis, to ensure their |
| * associated DEX register is available to a debugger. This class implements |
| * the logic for statement (c) of the SsaBuilder (see ssa_builder.h). It |
| * also makes sure that phis with incompatible input types are not revived |
| * (statement (b) of the SsaBuilder). |
| * |
| * This phase must be run after detecting dead phis through the |
| * DeadPhiElimination phase, and before deleting the dead phis. |
| */ |
| class DeadPhiHandling : public ValueObject { |
| public: |
| explicit DeadPhiHandling(HGraph* graph) |
| : graph_(graph), worklist_(graph->GetArena(), kDefaultWorklistSize) {} |
| |
| void Run(); |
| |
| private: |
| void VisitBasicBlock(HBasicBlock* block); |
| void ProcessWorklist(); |
| void AddToWorklist(HPhi* phi); |
| void AddDependentInstructionsToWorklist(HPhi* phi); |
| bool UpdateType(HPhi* phi); |
| |
| HGraph* const graph_; |
| GrowableArray<HPhi*> worklist_; |
| |
| static constexpr size_t kDefaultWorklistSize = 8; |
| |
| DISALLOW_COPY_AND_ASSIGN(DeadPhiHandling); |
| }; |
| |
| bool DeadPhiHandling::UpdateType(HPhi* phi) { |
| Primitive::Type existing = phi->GetType(); |
| DCHECK(phi->IsLive()); |
| |
| bool conflict = false; |
| Primitive::Type new_type = existing; |
| for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { |
| HInstruction* input = phi->InputAt(i); |
| if (input->IsPhi() && input->AsPhi()->IsDead()) { |
| // We are doing a reverse post order visit of the graph, reviving |
| // phis that have environment uses and updating their types. If an |
| // input is a phi, and it is dead (because its input types are |
| // conflicting), this phi must be marked dead as well. |
| conflict = true; |
| break; |
| } |
| Primitive::Type input_type = HPhi::ToPhiType(input->GetType()); |
| |
| // The only acceptable transitions are: |
| // - From void to typed: first time we update the type of this phi. |
| // - From int to reference (or reference to int): the phi has to change |
| // to reference type. If the integer input cannot be converted to a |
| // reference input, the phi will remain dead. |
| if (new_type == Primitive::kPrimVoid) { |
| new_type = input_type; |
| } else if (new_type == Primitive::kPrimNot && input_type == Primitive::kPrimInt) { |
| HInstruction* equivalent = SsaBuilder::GetReferenceTypeEquivalent(input); |
| if (equivalent == nullptr) { |
| conflict = true; |
| break; |
| } else { |
| phi->ReplaceInput(equivalent, i); |
| if (equivalent->IsPhi()) { |
| DCHECK_EQ(equivalent->GetType(), Primitive::kPrimNot); |
| // We created a new phi, but that phi has the same inputs as the old phi. We |
| // add it to the worklist to ensure its inputs can also be converted to reference. |
| // If not, it will remain dead, and the algorithm will make the current phi dead |
| // as well. |
| equivalent->AsPhi()->SetLive(); |
| AddToWorklist(equivalent->AsPhi()); |
| } |
| } |
| } else if (new_type == Primitive::kPrimInt && input_type == Primitive::kPrimNot) { |
| new_type = Primitive::kPrimNot; |
| // Start over, we may request reference equivalents for the inputs of the phi. |
| i = -1; |
| } else if (new_type != input_type) { |
| conflict = true; |
| break; |
| } |
| } |
| |
| if (conflict) { |
| phi->SetType(Primitive::kPrimVoid); |
| phi->SetDead(); |
| return true; |
| } else { |
| DCHECK(phi->IsLive()); |
| phi->SetType(new_type); |
| return existing != new_type; |
| } |
| } |
| |
| void DeadPhiHandling::VisitBasicBlock(HBasicBlock* block) { |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| if (phi->IsDead() && phi->HasEnvironmentUses()) { |
| phi->SetLive(); |
| if (block->IsLoopHeader()) { |
| // Give a type to the loop phi, to guarantee convergence of the algorithm. |
| phi->SetType(phi->InputAt(0)->GetType()); |
| AddToWorklist(phi); |
| } else { |
| // Because we are doing a reverse post order visit, all inputs of |
| // this phi have been visited and therefore had their (initial) type set. |
| UpdateType(phi); |
| } |
| } |
| } |
| } |
| |
| void DeadPhiHandling::ProcessWorklist() { |
| while (!worklist_.IsEmpty()) { |
| HPhi* instruction = worklist_.Pop(); |
| // Note that the same equivalent phi can be added multiple times in the work list, if |
| // used by multiple phis. The first call to `UpdateType` will know whether the phi is |
| // dead or live. |
| if (instruction->IsLive() && UpdateType(instruction)) { |
| AddDependentInstructionsToWorklist(instruction); |
| } |
| } |
| } |
| |
| void DeadPhiHandling::AddToWorklist(HPhi* instruction) { |
| DCHECK(instruction->IsLive()); |
| worklist_.Add(instruction); |
| } |
| |
| void DeadPhiHandling::AddDependentInstructionsToWorklist(HPhi* instruction) { |
| for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->GetUser()->AsPhi(); |
| if (phi != nullptr && !phi->IsDead()) { |
| AddToWorklist(phi); |
| } |
| } |
| } |
| |
| void DeadPhiHandling::Run() { |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| VisitBasicBlock(it.Current()); |
| } |
| ProcessWorklist(); |
| } |
| |
| static bool IsPhiEquivalentOf(HInstruction* instruction, HPhi* phi) { |
| return instruction != nullptr |
| && instruction->IsPhi() |
| && instruction->AsPhi()->GetRegNumber() == phi->GetRegNumber(); |
| } |
| |
| void SsaBuilder::FixNullConstantType() { |
| // The order doesn't matter here. |
| for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { |
| for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* equality_instr = it.Current(); |
| if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) { |
| continue; |
| } |
| HInstruction* left = equality_instr->InputAt(0); |
| HInstruction* right = equality_instr->InputAt(1); |
| HInstruction* int_operand = nullptr; |
| |
| if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) { |
| int_operand = right; |
| } else if ((right->GetType() == Primitive::kPrimNot) |
| && (left->GetType() == Primitive::kPrimInt)) { |
| int_operand = left; |
| } else { |
| continue; |
| } |
| |
| // If we got here, we are comparing against a reference and the int constant |
| // should be replaced with a null constant. |
| // Both type propagation and redundant phi elimination ensure `int_operand` |
| // can only be the 0 constant. |
| DCHECK(int_operand->IsIntConstant()); |
| DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue()); |
| equality_instr->ReplaceInput(GetGraph()->GetNullConstant(), int_operand == right ? 1 : 0); |
| } |
| } |
| } |
| |
| void SsaBuilder::EquivalentPhisCleanup() { |
| // The order doesn't matter here. |
| for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { |
| for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| HPhi* next = phi->GetNextEquivalentPhiWithSameType(); |
| if (next != nullptr) { |
| // Make sure we do not replace a live phi with a dead phi. A live phi has been |
| // handled by the type propagation phase, unlike a dead phi. |
| if (next->IsLive()) { |
| phi->ReplaceWith(next); |
| } else { |
| next->ReplaceWith(phi); |
| } |
| DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr) |
| << "More then one phi equivalent with type " << phi->GetType() |
| << " found for phi" << phi->GetId(); |
| } |
| } |
| } |
| } |
| |
| void SsaBuilder::BuildSsa() { |
| // 1) Visit in reverse post order. We need to have all predecessors of a block visited |
| // (with the exception of loops) in order to create the right environment for that |
| // block. For loops, we create phis whose inputs will be set in 2). |
| for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { |
| VisitBasicBlock(it.Current()); |
| } |
| |
| // 2) Set inputs of loop phis. |
| for (size_t i = 0; i < loop_headers_.Size(); i++) { |
| HBasicBlock* block = loop_headers_.Get(i); |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* phi = it.Current()->AsPhi(); |
| for (size_t pred = 0; pred < block->GetPredecessors().Size(); pred++) { |
| HInstruction* input = ValueOfLocal(block->GetPredecessors().Get(pred), phi->GetRegNumber()); |
| phi->AddInput(input); |
| } |
| } |
| } |
| |
| // 3) Mark dead phis. This will mark phis that are only used by environments: |
| // at the DEX level, the type of these phis does not need to be consistent, but |
| // our code generator will complain if the inputs of a phi do not have the same |
| // type. The marking allows the type propagation to know which phis it needs |
| // to handle. We mark but do not eliminate: the elimination will be done in |
| // step 9). |
| SsaDeadPhiElimination dead_phis_for_type_propagation(GetGraph()); |
| dead_phis_for_type_propagation.MarkDeadPhis(); |
| |
| // 4) Propagate types of phis. At this point, phis are typed void in the general |
| // case, or float/double/reference when we created an equivalent phi. So we |
| // need to propagate the types across phis to give them a correct type. |
| PrimitiveTypePropagation type_propagation(GetGraph()); |
| type_propagation.Run(); |
| |
| // 5) When creating equivalent phis we copy the inputs of the original phi which |
| // may be improperly typed. This was fixed during the type propagation in 4) but |
| // as a result we may end up with two equivalent phis with the same type for |
| // the same dex register. This pass cleans them up. |
| EquivalentPhisCleanup(); |
| |
| // 6) Mark dead phis again. Step 4) may have introduced new phis. |
| // Step 5) might enable the death of new phis. |
| SsaDeadPhiElimination dead_phis(GetGraph()); |
| dead_phis.MarkDeadPhis(); |
| |
| // 7) Now that the graph is correctly typed, we can get rid of redundant phis. |
| // Note that we cannot do this phase before type propagation, otherwise |
| // we could get rid of phi equivalents, whose presence is a requirement for the |
| // type propagation phase. Note that this is to satisfy statement (a) of the |
| // SsaBuilder (see ssa_builder.h). |
| SsaRedundantPhiElimination redundant_phi(GetGraph()); |
| redundant_phi.Run(); |
| |
| // 8) Fix the type for null constants which are part of an equality comparison. |
| // We need to do this after redundant phi elimination, to ensure the only cases |
| // that we can see are reference comparison against 0. The redundant phi |
| // elimination ensures we do not see a phi taking two 0 constants in a HEqual |
| // or HNotEqual. |
| FixNullConstantType(); |
| |
| // 9) Make sure environments use the right phi "equivalent": a phi marked dead |
| // can have a phi equivalent that is not dead. We must therefore update |
| // all environment uses of the dead phi to use its equivalent. Note that there |
| // can be multiple phis for the same Dex register that are live (for example |
| // when merging constants), in which case it is OK for the environments |
| // to just reference one. |
| for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) { |
| HPhi* phi = it_phis.Current()->AsPhi(); |
| // If the phi is not dead, or has no environment uses, there is nothing to do. |
| if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue; |
| HInstruction* next = phi->GetNext(); |
| if (!IsPhiEquivalentOf(next, phi)) continue; |
| if (next->AsPhi()->IsDead()) { |
| // If the phi equivalent is dead, check if there is another one. |
| next = next->GetNext(); |
| if (!IsPhiEquivalentOf(next, phi)) continue; |
| // There can be at most two phi equivalents. |
| DCHECK(!IsPhiEquivalentOf(next->GetNext(), phi)); |
| if (next->AsPhi()->IsDead()) continue; |
| } |
| // We found a live phi equivalent. Update the environment uses of `phi` with it. |
| phi->ReplaceWith(next); |
| } |
| } |
| |
| // 10) Deal with phis to guarantee liveness of phis in case of a debuggable |
| // application. This is for satisfying statement (c) of the SsaBuilder |
| // (see ssa_builder.h). |
| if (GetGraph()->IsDebuggable()) { |
| DeadPhiHandling dead_phi_handler(GetGraph()); |
| dead_phi_handler.Run(); |
| } |
| |
| // 11) Now that the right phis are used for the environments, and we |
| // have potentially revive dead phis in case of a debuggable application, |
| // we can eliminate phis we do not need. Regardless of the debuggable status, |
| // this phase is necessary for statement (b) of the SsaBuilder (see ssa_builder.h), |
| // as well as for the code generation, which does not deal with phis of conflicting |
| // input types. |
| dead_phis.EliminateDeadPhis(); |
| |
| // 12) Clear locals. |
| for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions()); |
| !it.Done(); |
| it.Advance()) { |
| HInstruction* current = it.Current(); |
| if (current->IsLocal()) { |
| current->GetBlock()->RemoveInstruction(current); |
| } |
| } |
| } |
| |
| HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) { |
| return GetLocalsFor(block)->Get(local); |
| } |
| |
| void SsaBuilder::VisitBasicBlock(HBasicBlock* block) { |
| current_locals_ = GetLocalsFor(block); |
| |
| if (block->IsCatchBlock()) { |
| // Catch phis were already created and inputs collected from throwing sites. |
| } else if (block->IsLoopHeader()) { |
| // If the block is a loop header, we know we only have visited the pre header |
| // because we are visiting in reverse post order. We create phis for all initialized |
| // locals from the pre header. Their inputs will be populated at the end of |
| // the analysis. |
| for (size_t local = 0; local < current_locals_->Size(); local++) { |
| HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local); |
| if (incoming != nullptr) { |
| HPhi* phi = new (GetGraph()->GetArena()) HPhi( |
| GetGraph()->GetArena(), local, 0, Primitive::kPrimVoid); |
| block->AddPhi(phi); |
| current_locals_->Put(local, phi); |
| } |
| } |
| // Save the loop header so that the last phase of the analysis knows which |
| // blocks need to be updated. |
| loop_headers_.Add(block); |
| } else if (block->GetPredecessors().Size() > 0) { |
| // All predecessors have already been visited because we are visiting in reverse post order. |
| // We merge the values of all locals, creating phis if those values differ. |
| for (size_t local = 0; local < current_locals_->Size(); local++) { |
| bool one_predecessor_has_no_value = false; |
| bool is_different = false; |
| HInstruction* value = ValueOfLocal(block->GetPredecessors().Get(0), local); |
| |
| for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) { |
| HInstruction* current = ValueOfLocal(block->GetPredecessors().Get(i), local); |
| if (current == nullptr) { |
| one_predecessor_has_no_value = true; |
| break; |
| } else if (current != value) { |
| is_different = true; |
| } |
| } |
| |
| if (one_predecessor_has_no_value) { |
| // If one predecessor has no value for this local, we trust the verifier has |
| // successfully checked that there is a store dominating any read after this block. |
| continue; |
| } |
| |
| if (is_different) { |
| HPhi* phi = new (GetGraph()->GetArena()) HPhi( |
| GetGraph()->GetArena(), local, block->GetPredecessors().Size(), Primitive::kPrimVoid); |
| for (size_t i = 0; i < block->GetPredecessors().Size(); i++) { |
| HInstruction* pred_value = ValueOfLocal(block->GetPredecessors().Get(i), local); |
| phi->SetRawInputAt(i, pred_value); |
| } |
| block->AddPhi(phi); |
| value = phi; |
| } |
| current_locals_->Put(local, value); |
| } |
| } |
| |
| // Visit all instructions. The instructions of interest are: |
| // - HLoadLocal: replace them with the current value of the local. |
| // - HStoreLocal: update current value of the local and remove the instruction. |
| // - Instructions that require an environment: populate their environment |
| // with the current values of the locals. |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| } |
| |
| /** |
| * Constants in the Dex format are not typed. So the builder types them as |
| * integers, but when doing the SSA form, we might realize the constant |
| * is used for floating point operations. We create a floating-point equivalent |
| * constant to make the operations correctly typed. |
| */ |
| HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) { |
| // We place the floating point constant next to this constant. |
| HFloatConstant* result = constant->GetNext()->AsFloatConstant(); |
| if (result == nullptr) { |
| HGraph* graph = constant->GetBlock()->GetGraph(); |
| ArenaAllocator* allocator = graph->GetArena(); |
| result = new (allocator) HFloatConstant(bit_cast<float, int32_t>(constant->GetValue())); |
| constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); |
| graph->CacheFloatConstant(result); |
| } else { |
| // If there is already a constant with the expected type, we know it is |
| // the floating point equivalent of this constant. |
| DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue()); |
| } |
| return result; |
| } |
| |
| /** |
| * Wide constants in the Dex format are not typed. So the builder types them as |
| * longs, but when doing the SSA form, we might realize the constant |
| * is used for floating point operations. We create a floating-point equivalent |
| * constant to make the operations correctly typed. |
| */ |
| HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) { |
| // We place the floating point constant next to this constant. |
| HDoubleConstant* result = constant->GetNext()->AsDoubleConstant(); |
| if (result == nullptr) { |
| HGraph* graph = constant->GetBlock()->GetGraph(); |
| ArenaAllocator* allocator = graph->GetArena(); |
| result = new (allocator) HDoubleConstant(bit_cast<double, int64_t>(constant->GetValue())); |
| constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); |
| graph->CacheDoubleConstant(result); |
| } else { |
| // If there is already a constant with the expected type, we know it is |
| // the floating point equivalent of this constant. |
| DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue()); |
| } |
| return result; |
| } |
| |
| /** |
| * Because of Dex format, we might end up having the same phi being |
| * used for non floating point operations and floating point / reference operations. |
| * Because we want the graph to be correctly typed (and thereafter avoid moves between |
| * floating point registers and core registers), we need to create a copy of the |
| * phi with a floating point / reference type. |
| */ |
| HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) { |
| // We place the floating point /reference phi next to this phi. |
| HInstruction* next = phi->GetNext(); |
| if (next != nullptr |
| && next->AsPhi()->GetRegNumber() == phi->GetRegNumber() |
| && next->GetType() != type) { |
| // Move to the next phi to see if it is the one we are looking for. |
| next = next->GetNext(); |
| } |
| |
| if (next == nullptr |
| || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber()) |
| || (next->GetType() != type)) { |
| ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena(); |
| HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type); |
| for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { |
| // Copy the inputs. Note that the graph may not be correctly typed by doing this copy, |
| // but the type propagation phase will fix it. |
| new_phi->SetRawInputAt(i, phi->InputAt(i)); |
| } |
| phi->GetBlock()->InsertPhiAfter(new_phi, phi); |
| return new_phi; |
| } else { |
| DCHECK_EQ(next->GetType(), type); |
| return next->AsPhi(); |
| } |
| } |
| |
| HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user, |
| HInstruction* value, |
| Primitive::Type type) { |
| if (value->IsArrayGet()) { |
| // The verifier has checked that values in arrays cannot be used for both |
| // floating point and non-floating point operations. It is therefore safe to just |
| // change the type of the operation. |
| value->AsArrayGet()->SetType(type); |
| return value; |
| } else if (value->IsLongConstant()) { |
| return GetDoubleEquivalent(value->AsLongConstant()); |
| } else if (value->IsIntConstant()) { |
| return GetFloatEquivalent(value->AsIntConstant()); |
| } else if (value->IsPhi()) { |
| return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); |
| } else { |
| // For other instructions, we assume the verifier has checked that the dex format is correctly |
| // typed and the value in a dex register will not be used for both floating point and |
| // non-floating point operations. So the only reason an instruction would want a floating |
| // point equivalent is for an unused phi that will be removed by the dead phi elimination phase. |
| DCHECK(user->IsPhi()) << "is actually " << user->DebugName() << " (" << user->GetId() << ")"; |
| return value; |
| } |
| } |
| |
| HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { |
| if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) { |
| return value->GetBlock()->GetGraph()->GetNullConstant(); |
| } else if (value->IsPhi()) { |
| return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| void SsaBuilder::VisitLoadLocal(HLoadLocal* load) { |
| HInstruction* value = current_locals_->Get(load->GetLocal()->GetRegNumber()); |
| // If the operation requests a specific type, we make sure its input is of that type. |
| if (load->GetType() != value->GetType()) { |
| if (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble) { |
| value = GetFloatOrDoubleEquivalent(load, value, load->GetType()); |
| } else if (load->GetType() == Primitive::kPrimNot) { |
| value = GetReferenceTypeEquivalent(value); |
| } |
| } |
| load->ReplaceWith(value); |
| load->GetBlock()->RemoveInstruction(load); |
| } |
| |
| void SsaBuilder::VisitStoreLocal(HStoreLocal* store) { |
| current_locals_->Put(store->GetLocal()->GetRegNumber(), store->InputAt(1)); |
| store->GetBlock()->RemoveInstruction(store); |
| } |
| |
| void SsaBuilder::VisitInstruction(HInstruction* instruction) { |
| if (instruction->NeedsEnvironment()) { |
| HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment( |
| GetGraph()->GetArena(), |
| current_locals_->Size(), |
| GetGraph()->GetDexFile(), |
| GetGraph()->GetMethodIdx(), |
| instruction->GetDexPc(), |
| GetGraph()->GetInvokeType(), |
| instruction); |
| environment->CopyFrom(*current_locals_); |
| instruction->SetRawEnvironment(environment); |
| } |
| |
| // If in a try block, propagate values of locals into catch blocks. |
| if (instruction->CanThrowIntoCatchBlock()) { |
| const HTryBoundary& try_entry = |
| instruction->GetBlock()->GetTryCatchInformation()->GetTryEntry(); |
| for (HExceptionHandlerIterator it(try_entry); !it.Done(); it.Advance()) { |
| GrowableArray<HInstruction*>* handler_locals = GetLocalsFor(it.Current()); |
| for (size_t i = 0, e = current_locals_->Size(); i < e; ++i) { |
| HInstruction* local_value = current_locals_->Get(i); |
| if (local_value != nullptr) { |
| handler_locals->Get(i)->AsPhi()->AddInput(local_value); |
| } |
| } |
| } |
| } |
| } |
| |
| void SsaBuilder::VisitTemporary(HTemporary* temp) { |
| // Temporaries are only used by the baseline register allocator. |
| temp->GetBlock()->RemoveInstruction(temp); |
| } |
| |
| } // namespace art |