| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_ATOMIC_H_ |
| #define ART_RUNTIME_ATOMIC_H_ |
| |
| #include <stdint.h> |
| #include <atomic> |
| #include <limits> |
| #include <vector> |
| |
| #include <android-base/logging.h> |
| |
| #include "arch/instruction_set.h" |
| #include "base/macros.h" |
| |
| namespace art { |
| |
| class Mutex; |
| |
| // QuasiAtomic encapsulates two separate facilities that we are |
| // trying to move away from: "quasiatomic" 64 bit operations |
| // and custom memory fences. For the time being, they remain |
| // exposed. Clients should be converted to use either class Atomic |
| // below whenever possible, and should eventually use C++11 atomics. |
| // The two facilities that do not have a good C++11 analog are |
| // ThreadFenceForConstructor and Atomic::*JavaData. |
| // |
| // NOTE: Two "quasiatomic" operations on the exact same memory address |
| // are guaranteed to operate atomically with respect to each other, |
| // but no guarantees are made about quasiatomic operations mixed with |
| // non-quasiatomic operations on the same address, nor about |
| // quasiatomic operations that are performed on partially-overlapping |
| // memory. |
| class QuasiAtomic { |
| static constexpr bool NeedSwapMutexes(InstructionSet isa) { |
| // TODO - mips64 still need this for Cas64 ??? |
| return (isa == InstructionSet::kMips) || (isa == InstructionSet::kMips64); |
| } |
| |
| public: |
| static void Startup(); |
| |
| static void Shutdown(); |
| |
| // Reads the 64-bit value at "addr" without tearing. |
| static int64_t Read64(volatile const int64_t* addr) { |
| if (!NeedSwapMutexes(kRuntimeISA)) { |
| int64_t value; |
| #if defined(__LP64__) |
| value = *addr; |
| #else |
| #if defined(__arm__) |
| #if defined(__ARM_FEATURE_LPAE) |
| // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear. |
| __asm__ __volatile__("@ QuasiAtomic::Read64\n" |
| "ldrd %0, %H0, %1" |
| : "=r" (value) |
| : "m" (*addr)); |
| #else |
| // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary. |
| __asm__ __volatile__("@ QuasiAtomic::Read64\n" |
| "ldrexd %0, %H0, %1" |
| : "=r" (value) |
| : "Q" (*addr)); |
| #endif |
| #elif defined(__i386__) |
| __asm__ __volatile__( |
| "movq %1, %0\n" |
| : "=x" (value) |
| : "m" (*addr)); |
| #else |
| LOG(FATAL) << "Unsupported architecture"; |
| #endif |
| #endif // defined(__LP64__) |
| return value; |
| } else { |
| return SwapMutexRead64(addr); |
| } |
| } |
| |
| // Writes to the 64-bit value at "addr" without tearing. |
| static void Write64(volatile int64_t* addr, int64_t value) { |
| if (!NeedSwapMutexes(kRuntimeISA)) { |
| #if defined(__LP64__) |
| *addr = value; |
| #else |
| #if defined(__arm__) |
| #if defined(__ARM_FEATURE_LPAE) |
| // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear. |
| __asm__ __volatile__("@ QuasiAtomic::Write64\n" |
| "strd %1, %H1, %0" |
| : "=m"(*addr) |
| : "r" (value)); |
| #else |
| // The write is done as a swap so that the cache-line is in the exclusive state for the store. |
| int64_t prev; |
| int status; |
| do { |
| __asm__ __volatile__("@ QuasiAtomic::Write64\n" |
| "ldrexd %0, %H0, %2\n" |
| "strexd %1, %3, %H3, %2" |
| : "=&r" (prev), "=&r" (status), "+Q"(*addr) |
| : "r" (value) |
| : "cc"); |
| } while (UNLIKELY(status != 0)); |
| #endif |
| #elif defined(__i386__) |
| __asm__ __volatile__( |
| "movq %1, %0" |
| : "=m" (*addr) |
| : "x" (value)); |
| #else |
| LOG(FATAL) << "Unsupported architecture"; |
| #endif |
| #endif // defined(__LP64__) |
| } else { |
| SwapMutexWrite64(addr, value); |
| } |
| } |
| |
| // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value" |
| // and return true. Otherwise, don't swap, and return false. |
| // This is fully ordered, i.e. it has C++11 memory_order_seq_cst |
| // semantics (assuming all other accesses use a mutex if this one does). |
| // This has "strong" semantics; if it fails then it is guaranteed that |
| // at some point during the execution of Cas64, *addr was not equal to |
| // old_value. |
| static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) { |
| if (!NeedSwapMutexes(kRuntimeISA)) { |
| return __sync_bool_compare_and_swap(addr, old_value, new_value); |
| } else { |
| return SwapMutexCas64(old_value, new_value, addr); |
| } |
| } |
| |
| // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes? |
| static bool LongAtomicsUseMutexes(InstructionSet isa) { |
| return NeedSwapMutexes(isa); |
| } |
| |
| static void ThreadFenceAcquire() { |
| std::atomic_thread_fence(std::memory_order_acquire); |
| } |
| |
| static void ThreadFenceRelease() { |
| std::atomic_thread_fence(std::memory_order_release); |
| } |
| |
| static void ThreadFenceForConstructor() { |
| #if defined(__aarch64__) |
| __asm__ __volatile__("dmb ishst" : : : "memory"); |
| #else |
| std::atomic_thread_fence(std::memory_order_release); |
| #endif |
| } |
| |
| static void ThreadFenceSequentiallyConsistent() { |
| std::atomic_thread_fence(std::memory_order_seq_cst); |
| } |
| |
| private: |
| static Mutex* GetSwapMutex(const volatile int64_t* addr); |
| static int64_t SwapMutexRead64(volatile const int64_t* addr); |
| static void SwapMutexWrite64(volatile int64_t* addr, int64_t val); |
| static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr); |
| |
| // We stripe across a bunch of different mutexes to reduce contention. |
| static constexpr size_t kSwapMutexCount = 32; |
| static std::vector<Mutex*>* gSwapMutexes; |
| |
| DISALLOW_COPY_AND_ASSIGN(QuasiAtomic); |
| }; |
| |
| template<typename T> |
| class PACKED(sizeof(T)) Atomic : public std::atomic<T> { |
| public: |
| Atomic<T>() : std::atomic<T>(T()) { } |
| |
| explicit Atomic<T>(T value) : std::atomic<T>(value) { } |
| |
| // Load from memory without ordering or synchronization constraints. |
| T LoadRelaxed() const { |
| return this->load(std::memory_order_relaxed); |
| } |
| |
| // Load from memory with acquire ordering. |
| T LoadAcquire() const { |
| return this->load(std::memory_order_acquire); |
| } |
| |
| // Word tearing allowed, but may race. |
| // TODO: Optimize? |
| // There has been some discussion of eventually disallowing word |
| // tearing for Java data loads. |
| T LoadJavaData() const { |
| return this->load(std::memory_order_relaxed); |
| } |
| |
| // Load from memory with a total ordering. |
| // Corresponds exactly to a Java volatile load. |
| T LoadSequentiallyConsistent() const { |
| return this->load(std::memory_order_seq_cst); |
| } |
| |
| // Store to memory without ordering or synchronization constraints. |
| void StoreRelaxed(T desired_value) { |
| this->store(desired_value, std::memory_order_relaxed); |
| } |
| |
| // Word tearing allowed, but may race. |
| void StoreJavaData(T desired_value) { |
| this->store(desired_value, std::memory_order_relaxed); |
| } |
| |
| // Store to memory with release ordering. |
| void StoreRelease(T desired_value) { |
| this->store(desired_value, std::memory_order_release); |
| } |
| |
| // Store to memory with a total ordering. |
| void StoreSequentiallyConsistent(T desired_value) { |
| this->store(desired_value, std::memory_order_seq_cst); |
| } |
| |
| // Atomically replace the value with desired_value. |
| T ExchangeRelaxed(T desired_value) { |
| return this->exchange(desired_value, std::memory_order_relaxed); |
| } |
| |
| // Atomically replace the value with desired_value. |
| T ExchangeSequentiallyConsistent(T desired_value) { |
| return this->exchange(desired_value, std::memory_order_seq_cst); |
| } |
| |
| // Atomically replace the value with desired_value. |
| T ExchangeAcquire(T desired_value) { |
| return this->exchange(desired_value, std::memory_order_acquire); |
| } |
| |
| // Atomically replace the value with desired_value. |
| T ExchangeRelease(T desired_value) { |
| return this->exchange(desired_value, std::memory_order_release); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. |
| // Participates in total ordering of atomic operations. Returns true on success, false otherwise. |
| // If the value does not match, updates the expected_value argument with the value that was |
| // atomically read for the failed comparison. |
| bool CompareAndExchangeStrongSequentiallyConsistent(T* expected_value, T desired_value) { |
| return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_seq_cst); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. |
| // Participates in total ordering of atomic operations. Returns true on success, false otherwise. |
| // If the value does not match, updates the expected_value argument with the value that was |
| // atomically read for the failed comparison. |
| bool CompareAndExchangeStrongAcquire(T* expected_value, T desired_value) { |
| return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_acquire); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. |
| // Participates in total ordering of atomic operations. Returns true on success, false otherwise. |
| // If the value does not match, updates the expected_value argument with the value that was |
| // atomically read for the failed comparison. |
| bool CompareAndExchangeStrongRelease(T* expected_value, T desired_value) { |
| return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_release); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. |
| // Participates in total ordering of atomic operations. |
| bool CompareAndSetStrongSequentiallyConsistent(T expected_value, T desired_value) { |
| return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst); |
| } |
| |
| // The same, except it may fail spuriously. |
| bool CompareAndSetWeakSequentiallyConsistent(T expected_value, T desired_value) { |
| return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. Doesn't |
| // imply ordering or synchronization constraints. |
| bool CompareAndSetStrongRelaxed(T expected_value, T desired_value) { |
| return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. Prior writes |
| // to other memory locations become visible to the threads that do a consume or an acquire on the |
| // same location. |
| bool CompareAndSetStrongRelease(T expected_value, T desired_value) { |
| return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_release); |
| } |
| |
| // The same, except it may fail spuriously. |
| bool CompareAndSetWeakRelaxed(T expected_value, T desired_value) { |
| return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. Prior writes |
| // made to other memory locations by the thread that did the release become visible in this |
| // thread. |
| bool CompareAndSetWeakAcquire(T expected_value, T desired_value) { |
| return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire); |
| } |
| |
| // Atomically replace the value with desired_value if it matches the expected_value. Prior writes |
| // to other memory locations become visible to the threads that do a consume or an acquire on the |
| // same location. |
| bool CompareAndSetWeakRelease(T expected_value, T desired_value) { |
| return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release); |
| } |
| |
| T FetchAndAddSequentiallyConsistent(const T value) { |
| return this->fetch_add(value, std::memory_order_seq_cst); // Return old_value. |
| } |
| |
| T FetchAndAddRelaxed(const T value) { |
| return this->fetch_add(value, std::memory_order_relaxed); // Return old_value. |
| } |
| |
| T FetchAndAddAcquire(const T value) { |
| return this->fetch_add(value, std::memory_order_acquire); // Return old_value. |
| } |
| |
| T FetchAndAddRelease(const T value) { |
| return this->fetch_add(value, std::memory_order_acquire); // Return old_value. |
| } |
| |
| T FetchAndSubSequentiallyConsistent(const T value) { |
| return this->fetch_sub(value, std::memory_order_seq_cst); // Return old value. |
| } |
| |
| T FetchAndSubRelaxed(const T value) { |
| return this->fetch_sub(value, std::memory_order_relaxed); // Return old value. |
| } |
| |
| T FetchAndBitwiseAndSequentiallyConsistent(const T value) { |
| return this->fetch_and(value, std::memory_order_seq_cst); // Return old_value. |
| } |
| |
| T FetchAndBitwiseAndAcquire(const T value) { |
| return this->fetch_and(value, std::memory_order_acquire); // Return old_value. |
| } |
| |
| T FetchAndBitwiseAndRelease(const T value) { |
| return this->fetch_and(value, std::memory_order_release); // Return old_value. |
| } |
| |
| T FetchAndBitwiseOrSequentiallyConsistent(const T value) { |
| return this->fetch_or(value, std::memory_order_seq_cst); // Return old_value. |
| } |
| |
| T FetchAndBitwiseOrAcquire(const T value) { |
| return this->fetch_or(value, std::memory_order_acquire); // Return old_value. |
| } |
| |
| T FetchAndBitwiseOrRelease(const T value) { |
| return this->fetch_or(value, std::memory_order_release); // Return old_value. |
| } |
| |
| T FetchAndBitwiseXorSequentiallyConsistent(const T value) { |
| return this->fetch_xor(value, std::memory_order_seq_cst); // Return old_value. |
| } |
| |
| T FetchAndBitwiseXorAcquire(const T value) { |
| return this->fetch_xor(value, std::memory_order_acquire); // Return old_value. |
| } |
| |
| T FetchAndBitwiseXorRelease(const T value) { |
| return this->fetch_xor(value, std::memory_order_release); // Return old_value. |
| } |
| |
| volatile T* Address() { |
| return reinterpret_cast<T*>(this); |
| } |
| |
| static T MaxValue() { |
| return std::numeric_limits<T>::max(); |
| } |
| }; |
| |
| typedef Atomic<int32_t> AtomicInteger; |
| |
| static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size"); |
| static_assert(alignof(AtomicInteger) == alignof(int32_t), |
| "AtomicInteger alignment differs from that of underlyingtype"); |
| static_assert(sizeof(Atomic<int64_t>) == sizeof(int64_t), "Weird Atomic<int64> size"); |
| |
| // Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit |
| // architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte |
| // aligned. |
| #if defined(__LP64__) |
| static_assert(alignof(Atomic<int64_t>) == alignof(int64_t), |
| "Atomic<int64> alignment differs from that of underlying type"); |
| #endif |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_ATOMIC_H_ |