blob: 9dbfb56c790e12105ff8239f664de538d26fe2d6 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_
#define ART_RUNTIME_MIRROR_OBJECT_INL_H_
#include "object.h"
#include "art_field.h"
#include "art_method.h"
#include "atomic.h"
#include "array-inl.h"
#include "class.h"
#include "lock_word-inl.h"
#include "monitor.h"
#include "object_array-inl.h"
#include "read_barrier-inl.h"
#include "runtime.h"
#include "reference.h"
#include "throwable.h"
namespace art {
namespace mirror {
inline uint32_t Object::ClassSize() {
uint32_t vtable_entries = kVTableLength;
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline Class* Object::GetClass() {
return GetFieldObject<Class, kVerifyFlags, kReadBarrierOption>(
OFFSET_OF_OBJECT_MEMBER(Object, klass_));
}
template<VerifyObjectFlags kVerifyFlags>
inline void Object::SetClass(Class* new_klass) {
// new_klass may be NULL prior to class linker initialization.
// We don't mark the card as this occurs as part of object allocation. Not all objects have
// backing cards, such as large objects.
// We use non transactional version since we can't undo this write. We also disable checking as
// we may run in transaction mode here.
SetFieldObjectWithoutWriteBarrier<false, false,
static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(
OFFSET_OF_OBJECT_MEMBER(Object, klass_), new_klass);
}
inline LockWord Object::GetLockWord(bool as_volatile) {
if (as_volatile) {
return LockWord(GetField32Volatile(OFFSET_OF_OBJECT_MEMBER(Object, monitor_)));
}
return LockWord(GetField32(OFFSET_OF_OBJECT_MEMBER(Object, monitor_)));
}
inline void Object::SetLockWord(LockWord new_val, bool as_volatile) {
// Force use of non-transactional mode and do not check.
if (as_volatile) {
SetField32Volatile<false, false>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue());
} else {
SetField32<false, false>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue());
}
}
inline bool Object::CasLockWordWeakSequentiallyConsistent(LockWord old_val, LockWord new_val) {
// Force use of non-transactional mode and do not check.
return CasFieldWeakSequentiallyConsistent32<false, false>(
OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue());
}
inline bool Object::CasLockWordWeakRelaxed(LockWord old_val, LockWord new_val) {
// Force use of non-transactional mode and do not check.
return CasFieldWeakRelaxed32<false, false>(
OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue());
}
inline uint32_t Object::GetLockOwnerThreadId() {
return Monitor::GetLockOwnerThreadId(this);
}
inline mirror::Object* Object::MonitorEnter(Thread* self) {
return Monitor::MonitorEnter(self, this);
}
inline bool Object::MonitorExit(Thread* self) {
return Monitor::MonitorExit(self, this);
}
inline void Object::Notify(Thread* self) {
Monitor::Notify(self, this);
}
inline void Object::NotifyAll(Thread* self) {
Monitor::NotifyAll(self, this);
}
inline void Object::Wait(Thread* self) {
Monitor::Wait(self, this, 0, 0, true, kWaiting);
}
inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) {
Monitor::Wait(self, this, ms, ns, true, kTimedWaiting);
}
inline Object* Object::GetReadBarrierPointer() {
#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
DCHECK(kUseBakerOrBrooksReadBarrier);
return GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(
OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_));
#else
LOG(FATAL) << "Unreachable";
return nullptr;
#endif
}
inline void Object::SetReadBarrierPointer(Object* rb_ptr) {
#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
DCHECK(kUseBakerOrBrooksReadBarrier);
// We don't mark the card as this occurs as part of object allocation. Not all objects have
// backing cards, such as large objects.
SetFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_), rb_ptr);
#else
LOG(FATAL) << "Unreachable";
#endif
}
inline bool Object::AtomicSetReadBarrierPointer(Object* expected_rb_ptr, Object* rb_ptr) {
#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
DCHECK(kUseBakerOrBrooksReadBarrier);
MemberOffset offset = OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_);
byte* raw_addr = reinterpret_cast<byte*>(this) + offset.SizeValue();
Atomic<uint32_t>* atomic_rb_ptr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
HeapReference<Object> expected_ref(HeapReference<Object>::FromMirrorPtr(expected_rb_ptr));
HeapReference<Object> new_ref(HeapReference<Object>::FromMirrorPtr(rb_ptr));
do {
if (UNLIKELY(atomic_rb_ptr->LoadRelaxed() != expected_ref.reference_)) {
// Lost the race.
return false;
}
} while (!atomic_rb_ptr->CompareExchangeWeakSequentiallyConsistent(expected_ref.reference_,
new_ref.reference_));
DCHECK_EQ(new_ref.reference_, atomic_rb_ptr->LoadRelaxed());
return true;
#else
LOG(FATAL) << "Unreachable";
return false;
#endif
}
inline void Object::AssertReadBarrierPointer() const {
if (kUseBakerReadBarrier) {
Object* obj = const_cast<Object*>(this);
DCHECK(obj->GetReadBarrierPointer() == nullptr)
<< "Bad Baker pointer: obj=" << reinterpret_cast<void*>(obj)
<< " ptr=" << reinterpret_cast<void*>(obj->GetReadBarrierPointer());
} else if (kUseBrooksReadBarrier) {
Object* obj = const_cast<Object*>(this);
DCHECK_EQ(obj, obj->GetReadBarrierPointer())
<< "Bad Brooks pointer: obj=" << reinterpret_cast<void*>(obj)
<< " ptr=" << reinterpret_cast<void*>(obj->GetReadBarrierPointer());
} else {
LOG(FATAL) << "Unreachable";
}
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::VerifierInstanceOf(Class* klass) {
DCHECK(klass != NULL);
DCHECK(GetClass<kVerifyFlags>() != NULL);
return klass->IsInterface() || InstanceOf(klass);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::InstanceOf(Class* klass) {
DCHECK(klass != NULL);
DCHECK(GetClass<kVerifyNone>() != NULL);
return klass->IsAssignableFrom(GetClass<kVerifyFlags>());
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsClass() {
Class* java_lang_Class = GetClass<kVerifyFlags, kReadBarrierOption>()->
template GetClass<kVerifyFlags, kReadBarrierOption>();
return GetClass<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis),
kReadBarrierOption>() == java_lang_Class;
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline Class* Object::AsClass() {
DCHECK((IsClass<kVerifyFlags, kReadBarrierOption>()));
return down_cast<Class*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsObjectArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
return IsArrayInstance<kVerifyFlags>() &&
!GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitive();
}
template<class T, VerifyObjectFlags kVerifyFlags>
inline ObjectArray<T>* Object::AsObjectArray() {
DCHECK(IsObjectArray<kVerifyFlags>());
return down_cast<ObjectArray<T>*>(this);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsArrayInstance() {
return GetClass<kVerifyFlags, kReadBarrierOption>()->
template IsArrayClass<kVerifyFlags, kReadBarrierOption>();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsArtField() {
return GetClass<kVerifyFlags, kReadBarrierOption>()->
template IsArtFieldClass<kReadBarrierOption>();
}
template<VerifyObjectFlags kVerifyFlags>
inline ArtField* Object::AsArtField() {
DCHECK(IsArtField<kVerifyFlags>());
return down_cast<ArtField*>(this);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Object::IsArtMethod() {
return GetClass<kVerifyFlags, kReadBarrierOption>()->
template IsArtMethodClass<kReadBarrierOption>();
}
template<VerifyObjectFlags kVerifyFlags>
inline ArtMethod* Object::AsArtMethod() {
DCHECK(IsArtMethod<kVerifyFlags>());
return down_cast<ArtMethod*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsReferenceInstance() {
return GetClass<kVerifyFlags>()->IsTypeOfReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline Reference* Object::AsReference() {
DCHECK(IsReferenceInstance<kVerifyFlags>());
return down_cast<Reference*>(this);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline Array* Object::AsArray() {
DCHECK((IsArrayInstance<kVerifyFlags, kReadBarrierOption>()));
return down_cast<Array*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline BooleanArray* Object::AsBooleanArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->GetComponentType()->IsPrimitiveBoolean());
return down_cast<BooleanArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline ByteArray* Object::AsByteArray() {
static const VerifyObjectFlags kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveByte());
return down_cast<ByteArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline ByteArray* Object::AsByteSizedArray() {
constexpr VerifyObjectFlags kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveByte() ||
GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveBoolean());
return down_cast<ByteArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline CharArray* Object::AsCharArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveChar());
return down_cast<CharArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline ShortArray* Object::AsShortArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveShort());
return down_cast<ShortArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline ShortArray* Object::AsShortSizedArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveShort() ||
GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveChar());
return down_cast<ShortArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline IntArray* Object::AsIntArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveInt() ||
GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveFloat());
return down_cast<IntArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline LongArray* Object::AsLongArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveLong() ||
GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveDouble());
return down_cast<LongArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline FloatArray* Object::AsFloatArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveFloat());
return down_cast<FloatArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline DoubleArray* Object::AsDoubleArray() {
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
DCHECK(GetClass<kVerifyFlags>()->IsArrayClass());
DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveDouble());
return down_cast<DoubleArray*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline String* Object::AsString() {
DCHECK(GetClass<kVerifyFlags>()->IsStringClass());
return down_cast<String*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline Throwable* Object::AsThrowable() {
DCHECK(GetClass<kVerifyFlags>()->IsThrowableClass());
return down_cast<Throwable*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsWeakReferenceInstance() {
return GetClass<kVerifyFlags>()->IsWeakReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsSoftReferenceInstance() {
return GetClass<kVerifyFlags>()->IsSoftReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsFinalizerReferenceInstance() {
return GetClass<kVerifyFlags>()->IsFinalizerReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags>
inline FinalizerReference* Object::AsFinalizerReference() {
DCHECK(IsFinalizerReferenceInstance<kVerifyFlags>());
return down_cast<FinalizerReference*>(this);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Object::IsPhantomReferenceInstance() {
return GetClass<kVerifyFlags>()->IsPhantomReferenceClass();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline size_t Object::SizeOf() {
size_t result;
constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis);
if (IsArrayInstance<kVerifyFlags, kReadBarrierOption>()) {
result = AsArray<kNewFlags, kReadBarrierOption>()->
template SizeOf<kNewFlags, kReadBarrierOption>();
} else if (IsClass<kNewFlags, kReadBarrierOption>()) {
result = AsClass<kNewFlags, kReadBarrierOption>()->
template SizeOf<kNewFlags, kReadBarrierOption>();
} else {
result = GetClass<kNewFlags, kReadBarrierOption>()->
template GetObjectSize<kNewFlags, kReadBarrierOption>();
}
DCHECK_GE(result, sizeof(Object))
<< " class=" << PrettyTypeOf(GetClass<kNewFlags, kReadBarrierOption>());
DCHECK(!(IsArtField<kNewFlags, kReadBarrierOption>()) || result == sizeof(ArtField));
DCHECK(!(IsArtMethod<kNewFlags, kReadBarrierOption>()) || result == sizeof(ArtMethod));
return result;
}
template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline int32_t Object::GetField32(MemberOffset field_offset) {
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
const byte* raw_addr = reinterpret_cast<const byte*>(this) + field_offset.Int32Value();
const int32_t* word_addr = reinterpret_cast<const int32_t*>(raw_addr);
if (UNLIKELY(kIsVolatile)) {
return reinterpret_cast<const Atomic<int32_t>*>(word_addr)->LoadSequentiallyConsistent();
} else {
return reinterpret_cast<const Atomic<int32_t>*>(word_addr)->LoadJavaData();
}
}
template<VerifyObjectFlags kVerifyFlags>
inline int32_t Object::GetField32Volatile(MemberOffset field_offset) {
return GetField32<kVerifyFlags, true>(field_offset);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteField32(this, field_offset,
GetField32<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
int32_t* word_addr = reinterpret_cast<int32_t*>(raw_addr);
if (kIsVolatile) {
reinterpret_cast<Atomic<int32_t>*>(word_addr)->StoreSequentiallyConsistent(new_value);
} else {
reinterpret_cast<Atomic<int32_t>*>(word_addr)->StoreJavaData(new_value);
}
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) {
SetField32<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value);
}
// TODO: Pass memory_order_ and strong/weak as arguments to avoid code duplication?
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldWeakSequentiallyConsistent32(MemberOffset field_offset,
int32_t old_value, int32_t new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr);
return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldWeakRelaxed32(MemberOffset field_offset,
int32_t old_value, int32_t new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr);
return atomic_addr->CompareExchangeWeakRelaxed(old_value, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldStrongSequentiallyConsistent32(MemberOffset field_offset,
int32_t old_value, int32_t new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr);
return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value);
}
template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile>
inline int64_t Object::GetField64(MemberOffset field_offset) {
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
const byte* raw_addr = reinterpret_cast<const byte*>(this) + field_offset.Int32Value();
const int64_t* addr = reinterpret_cast<const int64_t*>(raw_addr);
if (kIsVolatile) {
return reinterpret_cast<const Atomic<int64_t>*>(addr)->LoadSequentiallyConsistent();
} else {
return reinterpret_cast<const Atomic<int64_t>*>(addr)->LoadJavaData();
}
}
template<VerifyObjectFlags kVerifyFlags>
inline int64_t Object::GetField64Volatile(MemberOffset field_offset) {
return GetField64<kVerifyFlags, true>(field_offset);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteField64(this, field_offset,
GetField64<kVerifyFlags, kIsVolatile>(field_offset),
kIsVolatile);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
int64_t* addr = reinterpret_cast<int64_t*>(raw_addr);
if (kIsVolatile) {
reinterpret_cast<Atomic<int64_t>*>(addr)->StoreSequentiallyConsistent(new_value);
} else {
reinterpret_cast<Atomic<int64_t>*>(addr)->StoreJavaData(new_value);
}
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) {
return SetField64<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset,
new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldWeakSequentiallyConsistent64(MemberOffset field_offset,
int64_t old_value, int64_t new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr);
return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldStrongSequentiallyConsistent64(MemberOffset field_offset,
int64_t old_value, int64_t new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr);
return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value);
}
template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption,
bool kIsVolatile>
inline T* Object::GetFieldObject(MemberOffset field_offset) {
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
HeapReference<T>* objref_addr = reinterpret_cast<HeapReference<T>*>(raw_addr);
T* result = ReadBarrier::Barrier<T, kReadBarrierOption>(this, field_offset, objref_addr);
if (kIsVolatile) {
// TODO: Refactor to use a SequentiallyConsistent load instead.
QuasiAtomic::ThreadFenceAcquire(); // Ensure visibility of operations preceding store.
}
if (kVerifyFlags & kVerifyReads) {
VerifyObject(result);
}
return result;
}
template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline T* Object::GetFieldObjectVolatile(MemberOffset field_offset) {
return GetFieldObject<T, kVerifyFlags, kReadBarrierOption, true>(field_offset);
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldObjectWithoutWriteBarrier(MemberOffset field_offset,
Object* new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
mirror::Object* obj;
if (kIsVolatile) {
obj = GetFieldObjectVolatile<Object>(field_offset);
} else {
obj = GetFieldObject<Object>(field_offset);
}
Runtime::Current()->RecordWriteFieldReference(this, field_offset, obj, true);
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
if (kVerifyFlags & kVerifyWrites) {
VerifyObject(new_value);
}
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
HeapReference<Object>* objref_addr = reinterpret_cast<HeapReference<Object>*>(raw_addr);
if (kIsVolatile) {
// TODO: Refactor to use a SequentiallyConsistent store instead.
QuasiAtomic::ThreadFenceRelease(); // Ensure that prior accesses are visible before store.
objref_addr->Assign(new_value);
QuasiAtomic::ThreadFenceSequentiallyConsistent();
// Ensure this store occurs before any volatile loads.
} else {
objref_addr->Assign(new_value);
}
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags,
bool kIsVolatile>
inline void Object::SetFieldObject(MemberOffset field_offset, Object* new_value) {
SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags,
kIsVolatile>(field_offset, new_value);
if (new_value != nullptr) {
Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value);
// TODO: Check field assignment could theoretically cause thread suspension, TODO: fix this.
CheckFieldAssignment(field_offset, new_value);
}
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void Object::SetFieldObjectVolatile(MemberOffset field_offset, Object* new_value) {
SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset,
new_value);
}
template <VerifyObjectFlags kVerifyFlags>
inline HeapReference<Object>* Object::GetFieldObjectReferenceAddr(MemberOffset field_offset) {
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
return reinterpret_cast<HeapReference<Object>*>(reinterpret_cast<byte*>(this) +
field_offset.Int32Value());
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldWeakSequentiallyConsistentObject(MemberOffset field_offset,
Object* old_value, Object* new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
if (kVerifyFlags & kVerifyWrites) {
VerifyObject(new_value);
}
if (kVerifyFlags & kVerifyReads) {
VerifyObject(old_value);
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true);
}
HeapReference<Object> old_ref(HeapReference<Object>::FromMirrorPtr(old_value));
HeapReference<Object> new_ref(HeapReference<Object>::FromMirrorPtr(new_value));
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
bool success = atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_ref.reference_,
new_ref.reference_);
if (success) {
Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value);
}
return success;
}
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline bool Object::CasFieldStrongSequentiallyConsistentObject(MemberOffset field_offset,
Object* old_value, Object* new_value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kVerifyFlags & kVerifyThis) {
VerifyObject(this);
}
if (kVerifyFlags & kVerifyWrites) {
VerifyObject(new_value);
}
if (kVerifyFlags & kVerifyReads) {
VerifyObject(old_value);
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true);
}
HeapReference<Object> old_ref(HeapReference<Object>::FromMirrorPtr(old_value));
HeapReference<Object> new_ref(HeapReference<Object>::FromMirrorPtr(new_value));
byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value();
Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr);
bool success = atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_ref.reference_,
new_ref.reference_);
if (success) {
Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value);
}
return success;
}
template<bool kVisitClass, bool kIsStatic, typename Visitor>
inline void Object::VisitFieldsReferences(uint32_t ref_offsets, const Visitor& visitor) {
if (LIKELY(ref_offsets != CLASS_WALK_SUPER)) {
if (!kVisitClass) {
// Mask out the class from the reference offsets.
ref_offsets ^= kWordHighBitMask;
}
DCHECK_EQ(ClassOffset().Uint32Value(), 0U);
// Found a reference offset bitmap. Visit the specified offsets.
while (ref_offsets != 0) {
size_t right_shift = CLZ(ref_offsets);
MemberOffset field_offset = CLASS_OFFSET_FROM_CLZ(right_shift);
visitor(this, field_offset, kIsStatic);
ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift);
}
} else {
// There is no reference offset bitmap. In the non-static case, walk up the class
// inheritance hierarchy and find reference offsets the hard way. In the static case, just
// consider this class.
for (mirror::Class* klass = kIsStatic ? AsClass() : GetClass(); klass != nullptr;
klass = kIsStatic ? nullptr : klass->GetSuperClass()) {
size_t num_reference_fields =
kIsStatic ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields();
for (size_t i = 0; i < num_reference_fields; ++i) {
mirror::ArtField* field = kIsStatic ? klass->GetStaticField(i) : klass->GetInstanceField(i);
MemberOffset field_offset = field->GetOffset();
// TODO: Do a simpler check?
if (kVisitClass || field_offset.Uint32Value() != ClassOffset().Uint32Value()) {
visitor(this, field_offset, kIsStatic);
}
}
}
}
}
template<bool kVisitClass, typename Visitor>
inline void Object::VisitInstanceFieldsReferences(mirror::Class* klass, const Visitor& visitor) {
VisitFieldsReferences<kVisitClass, false>(
klass->GetReferenceInstanceOffsets<kVerifyNone>(), visitor);
}
template<bool kVisitClass, typename Visitor>
inline void Object::VisitStaticFieldsReferences(mirror::Class* klass, const Visitor& visitor) {
DCHECK(!klass->IsTemp());
klass->VisitFieldsReferences<kVisitClass, true>(
klass->GetReferenceStaticOffsets<kVerifyNone>(), visitor);
}
template <const bool kVisitClass, VerifyObjectFlags kVerifyFlags, typename Visitor,
typename JavaLangRefVisitor>
inline void Object::VisitReferences(const Visitor& visitor,
const JavaLangRefVisitor& ref_visitor) {
mirror::Class* klass = GetClass<kVerifyFlags>();
if (klass == Class::GetJavaLangClass()) {
AsClass<kVerifyNone>()->VisitReferences<kVisitClass>(klass, visitor);
} else if (klass->IsArrayClass()) {
if (klass->IsObjectArrayClass<kVerifyNone>()) {
AsObjectArray<mirror::Object, kVerifyNone>()->VisitReferences<kVisitClass>(visitor);
} else if (kVisitClass) {
visitor(this, ClassOffset(), false);
}
} else {
DCHECK(!klass->IsVariableSize());
VisitInstanceFieldsReferences<kVisitClass>(klass, visitor);
if (UNLIKELY(klass->IsTypeOfReferenceClass<kVerifyNone>())) {
ref_visitor(klass, AsReference());
}
}
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_OBJECT_INL_H_