| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * This file contains codegen for the Mips ISA and is intended to be |
| * includes by: |
| * |
| * Codegen-$(TARGET_ARCH_VARIANT).c |
| * |
| */ |
| |
| #include "oat/runtime/oat_support_entrypoints.h" |
| |
| namespace art { |
| |
| void genSpecialCase(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, |
| SpecialCaseHandler specialCase) |
| { |
| // TODO |
| } |
| |
| /* |
| * The lack of pc-relative loads on Mips presents somewhat of a challenge |
| * for our PIC switch table strategy. To materialize the current location |
| * we'll do a dummy JAL and reference our tables using r_RA as the |
| * base register. Note that r_RA will be used both as the base to |
| * locate the switch table data and as the reference base for the switch |
| * target offsets stored in the table. We'll use a special pseudo-instruction |
| * to represent the jal and trigger the construction of the |
| * switch table offsets (which will happen after final assembly and all |
| * labels are fixed). |
| * |
| * The test loop will look something like: |
| * |
| * ori rEnd, r_ZERO, #tableSize ; size in bytes |
| * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA |
| * nop ; opportunistically fill |
| * BaseLabel: |
| * addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel |
| addu rEnd, rEnd, rBase ; end of table |
| * lw rVal, [rSP, vRegOff] ; Test Value |
| * loop: |
| * beq rBase, rEnd, done |
| * lw rKey, 0(rBase) |
| * addu rBase, 8 |
| * bne rVal, rKey, loop |
| * lw rDisp, -4(rBase) |
| * addu r_RA, rDisp |
| * jr r_RA |
| * done: |
| * |
| */ |
| void genSparseSwitch(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc, |
| LIR* labelList) |
| { |
| const u2* table = cUnit->insns + mir->offset + mir->dalvikInsn.vB; |
| if (cUnit->printMe) { |
| dumpSparseSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable), |
| true, kAllocData); |
| tabRec->table = table; |
| tabRec->vaddr = mir->offset; |
| int elements = table[1]; |
| tabRec->targets = (LIR* *)oatNew(cUnit, elements * sizeof(LIR*), true, |
| kAllocLIR); |
| oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec); |
| |
| // The table is composed of 8-byte key/disp pairs |
| int byteSize = elements * 8; |
| |
| int sizeHi = byteSize >> 16; |
| int sizeLo = byteSize & 0xffff; |
| |
| int rEnd = oatAllocTemp(cUnit); |
| if (sizeHi) { |
| newLIR2(cUnit, kMipsLui, rEnd, sizeHi); |
| } |
| // Must prevent code motion for the curr pc pair |
| genBarrier(cUnit); // Scheduling barrier |
| newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8 |
| // Now, fill the branch delay slot |
| if (sizeHi) { |
| newLIR3(cUnit, kMipsOri, rEnd, rEnd, sizeLo); |
| } else { |
| newLIR3(cUnit, kMipsOri, rEnd, r_ZERO, sizeLo); |
| } |
| genBarrier(cUnit); // Scheduling barrier |
| |
| // Construct BaseLabel and set up table base register |
| LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| // Remember base label so offsets can be computed later |
| tabRec->anchor = baseLabel; |
| int rBase = oatAllocTemp(cUnit); |
| newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec); |
| opRegRegReg(cUnit, kOpAdd, rEnd, rEnd, rBase); |
| |
| // Grab switch test value |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| |
| // Test loop |
| int rKey = oatAllocTemp(cUnit); |
| LIR* loopLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| LIR* exitBranch = opCmpBranch(cUnit , kCondEq, rBase, rEnd, NULL); |
| loadWordDisp(cUnit, rBase, 0, rKey); |
| opRegImm(cUnit, kOpAdd, rBase, 8); |
| opCmpBranch(cUnit, kCondNe, rlSrc.lowReg, rKey, loopLabel); |
| int rDisp = oatAllocTemp(cUnit); |
| loadWordDisp(cUnit, rBase, -4, rDisp); |
| opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp); |
| opReg(cUnit, kOpBx, r_RA); |
| |
| // Loop exit |
| LIR* exitLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| exitBranch->target = exitLabel; |
| } |
| |
| /* |
| * Code pattern will look something like: |
| * |
| * lw rVal |
| * jal BaseLabel ; stores "return address" (BaseLabel) in r_RA |
| * nop ; opportunistically fill |
| * [subiu rVal, bias] ; Remove bias if lowVal != 0 |
| * bound check -> done |
| * lw rDisp, [r_RA, rVal] |
| * addu r_RA, rDisp |
| * jr r_RA |
| * done: |
| */ |
| void genPackedSwitch(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| { |
| const u2* table = cUnit->insns + mir->offset + mir->dalvikInsn.vB; |
| if (cUnit->printMe) { |
| dumpPackedSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable), |
| true, kAllocData); |
| tabRec->table = table; |
| tabRec->vaddr = mir->offset; |
| int size = table[1]; |
| tabRec->targets = (LIR* *)oatNew(cUnit, size * sizeof(LIR*), true, |
| kAllocLIR); |
| oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec); |
| |
| // Get the switch value |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| |
| // Prepare the bias. If too big, handle 1st stage here |
| int lowKey = s4FromSwitchData(&table[2]); |
| bool largeBias = false; |
| int rKey; |
| if (lowKey == 0) { |
| rKey = rlSrc.lowReg; |
| } else if ((lowKey & 0xffff) != lowKey) { |
| rKey = oatAllocTemp(cUnit); |
| loadConstant(cUnit, rKey, lowKey); |
| largeBias = true; |
| } else { |
| rKey = oatAllocTemp(cUnit); |
| } |
| |
| // Must prevent code motion for the curr pc pair |
| genBarrier(cUnit); |
| newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8 |
| // Now, fill the branch delay slot with bias strip |
| if (lowKey == 0) { |
| newLIR0(cUnit, kMipsNop); |
| } else { |
| if (largeBias) { |
| opRegRegReg(cUnit, kOpSub, rKey, rlSrc.lowReg, rKey); |
| } else { |
| opRegRegImm(cUnit, kOpSub, rKey, rlSrc.lowReg, lowKey); |
| } |
| } |
| genBarrier(cUnit); // Scheduling barrier |
| |
| // Construct BaseLabel and set up table base register |
| LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| // Remember base label so offsets can be computed later |
| tabRec->anchor = baseLabel; |
| |
| // Bounds check - if < 0 or >= size continue following switch |
| LIR* branchOver = opCmpImmBranch(cUnit, kCondHi, rKey, size-1, NULL); |
| |
| // Materialize the table base pointer |
| int rBase = oatAllocTemp(cUnit); |
| newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec); |
| |
| // Load the displacement from the switch table |
| int rDisp = oatAllocTemp(cUnit); |
| loadBaseIndexed(cUnit, rBase, rKey, rDisp, 2, kWord); |
| |
| // Add to r_AP and go |
| opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp); |
| opReg(cUnit, kOpBx, r_RA); |
| |
| /* branchOver target here */ |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| branchOver->target = (LIR*)target; |
| } |
| |
| /* |
| * Array data table format: |
| * ushort ident = 0x0300 magic value |
| * ushort width width of each element in the table |
| * uint size number of elements in the table |
| * ubyte data[size*width] table of data values (may contain a single-byte |
| * padding at the end) |
| * |
| * Total size is 4+(width * size + 1)/2 16-bit code units. |
| */ |
| void genFillArrayData(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| { |
| const u2* table = cUnit->insns + mir->offset + mir->dalvikInsn.vB; |
| // Add the table to the list - we'll process it later |
| FillArrayData *tabRec = (FillArrayData *) |
| oatNew(cUnit, sizeof(FillArrayData), true, kAllocData); |
| tabRec->table = table; |
| tabRec->vaddr = mir->offset; |
| u2 width = tabRec->table[1]; |
| u4 size = tabRec->table[2] | (((u4)tabRec->table[3]) << 16); |
| tabRec->size = (size * width) + 8; |
| |
| oatInsertGrowableList(cUnit, &cUnit->fillArrayData, (intptr_t)tabRec); |
| |
| // Making a call - use explicit registers |
| oatFlushAllRegs(cUnit); /* Everything to home location */ |
| oatLockCallTemps(cUnit); |
| loadValueDirectFixed(cUnit, rlSrc, rARG0); |
| |
| // Must prevent code motion for the curr pc pair |
| genBarrier(cUnit); |
| newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8 |
| // Now, fill the branch delay slot with the helper load |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode)); |
| genBarrier(cUnit); // Scheduling barrier |
| |
| // Construct BaseLabel and set up table base register |
| LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel); |
| |
| // Materialize a pointer to the fill data image |
| newLIR4(cUnit, kMipsDelta, rARG1, 0, (intptr_t)baseLabel, (intptr_t)tabRec); |
| |
| // And go... |
| oatClobberCalleeSave(cUnit); |
| opReg(cUnit, kOpBlx, rTgt); // ( array*, fill_data* ) |
| } |
| |
| void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc) |
| { |
| RegLocation rlResult; |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegImm(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, 0x80000000); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc) |
| { |
| RegLocation rlResult; |
| rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); |
| rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg, 0x80000000); |
| opRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| |
| /* |
| * TODO: implement fast path to short-circuit thin-lock case |
| */ |
| void genMonitorEnter(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| { |
| oatFlushAllRegs(cUnit); |
| loadValueDirectFixed(cUnit, rlSrc, rARG0); // Get obj |
| oatLockCallTemps(cUnit); // Prepare for explicit register usage |
| genNullCheck(cUnit, rlSrc.sRegLow, rARG0, mir); |
| // Go expensive route - artLockObjectFromCode(self, obj); |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pLockObjectFromCode)); |
| oatClobberCalleeSave(cUnit); |
| opReg(cUnit, kOpBlx, rTgt); |
| } |
| |
| /* |
| * TODO: implement fast path to short-circuit thin-lock case |
| */ |
| void genMonitorExit(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc) |
| { |
| oatFlushAllRegs(cUnit); |
| loadValueDirectFixed(cUnit, rlSrc, rARG0); // Get obj |
| oatLockCallTemps(cUnit); // Prepare for explicit register usage |
| genNullCheck(cUnit, rlSrc.sRegLow, rARG0, mir); |
| // Go expensive route - UnlockObjectFromCode(obj); |
| int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pUnlockObjectFromCode)); |
| oatClobberCalleeSave(cUnit); |
| opReg(cUnit, kOpBlx, rTgt); |
| } |
| |
| /* |
| * Compare two 64-bit values |
| * x = y return 0 |
| * x < y return -1 |
| * x > y return 1 |
| * |
| * slt t0, x.hi, y.hi; # (x.hi < y.hi) ? 1:0 |
| * sgt t1, x.hi, y.hi; # (y.hi > x.hi) ? 1:0 |
| * subu res, t0, t1 # res = -1:1:0 for [ < > = ] |
| * bnez res, finish |
| * sltu t0, x.lo, y.lo |
| * sgtu r1, x.lo, y.lo |
| * subu res, t0, t1 |
| * finish: |
| * |
| */ |
| void genCmpLong(CompilationUnit* cUnit, MIR* mir, RegLocation rlDest, |
| RegLocation rlSrc1, RegLocation rlSrc2) |
| { |
| rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| int t0 = oatAllocTemp(cUnit); |
| int t1 = oatAllocTemp(cUnit); |
| RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); |
| newLIR3(cUnit, kMipsSlt, t0, rlSrc1.highReg, rlSrc2.highReg); |
| newLIR3(cUnit, kMipsSlt, t1, rlSrc2.highReg, rlSrc1.highReg); |
| newLIR3(cUnit, kMipsSubu, rlResult.lowReg, t1, t0); |
| LIR* branch = opCmpImmBranch(cUnit, kCondNe, rlResult.lowReg, 0, NULL); |
| newLIR3(cUnit, kMipsSltu, t0, rlSrc1.lowReg, rlSrc2.lowReg); |
| newLIR3(cUnit, kMipsSltu, t1, rlSrc2.lowReg, rlSrc1.lowReg); |
| newLIR3(cUnit, kMipsSubu, rlResult.lowReg, t1, t0); |
| oatFreeTemp(cUnit, t0); |
| oatFreeTemp(cUnit, t1); |
| LIR* target = newLIR0(cUnit, kPseudoTargetLabel); |
| branch->target = (LIR*)target; |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| LIR* opCmpBranch(CompilationUnit* cUnit, ConditionCode cond, int src1, |
| int src2, LIR* target) |
| { |
| LIR* branch; |
| MipsOpCode sltOp; |
| MipsOpCode brOp; |
| bool cmpZero = false; |
| bool swapped = false; |
| switch (cond) { |
| case kCondEq: |
| brOp = kMipsBeq; |
| cmpZero = true; |
| break; |
| case kCondNe: |
| brOp = kMipsBne; |
| cmpZero = true; |
| break; |
| case kCondCc: |
| sltOp = kMipsSltu; |
| brOp = kMipsBnez; |
| break; |
| case kCondCs: |
| sltOp = kMipsSltu; |
| brOp = kMipsBeqz; |
| break; |
| case kCondGe: |
| sltOp = kMipsSlt; |
| brOp = kMipsBeqz; |
| break; |
| case kCondGt: |
| sltOp = kMipsSlt; |
| brOp = kMipsBnez; |
| swapped = true; |
| break; |
| case kCondLe: |
| sltOp = kMipsSlt; |
| brOp = kMipsBeqz; |
| swapped = true; |
| break; |
| case kCondLt: |
| sltOp = kMipsSlt; |
| brOp = kMipsBnez; |
| break; |
| case kCondHi: // Gtu |
| sltOp = kMipsSltu; |
| brOp = kMipsBnez; |
| swapped = true; |
| break; |
| default: |
| LOG(FATAL) << "No support for ConditionCode: " << (int) cond; |
| return NULL; |
| } |
| if (cmpZero) { |
| branch = newLIR2(cUnit, brOp, src1, src2); |
| } else { |
| int tReg = oatAllocTemp(cUnit); |
| if (swapped) { |
| newLIR3(cUnit, sltOp, tReg, src2, src1); |
| } else { |
| newLIR3(cUnit, sltOp, tReg, src1, src2); |
| } |
| branch = newLIR1(cUnit, brOp, tReg); |
| oatFreeTemp(cUnit, tReg); |
| } |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* opCmpImmBranch(CompilationUnit* cUnit, ConditionCode cond, int reg, |
| int checkValue, LIR* target) |
| { |
| LIR* branch; |
| if (checkValue != 0) { |
| // TUNING: handle s16 & kCondLt/Mi case using slti |
| int tReg = oatAllocTemp(cUnit); |
| loadConstant(cUnit, tReg, checkValue); |
| branch = opCmpBranch(cUnit, cond, reg, tReg, target); |
| oatFreeTemp(cUnit, tReg); |
| return branch; |
| } |
| MipsOpCode opc; |
| switch (cond) { |
| case kCondEq: opc = kMipsBeqz; break; |
| case kCondGe: opc = kMipsBgez; break; |
| case kCondGt: opc = kMipsBgtz; break; |
| case kCondLe: opc = kMipsBlez; break; |
| //case KCondMi: |
| case kCondLt: opc = kMipsBltz; break; |
| case kCondNe: opc = kMipsBnez; break; |
| default: |
| // Tuning: use slti when applicable |
| int tReg = oatAllocTemp(cUnit); |
| loadConstant(cUnit, tReg, checkValue); |
| branch = opCmpBranch(cUnit, cond, reg, tReg, target); |
| oatFreeTemp(cUnit, tReg); |
| return branch; |
| } |
| branch = newLIR1(cUnit, opc, reg); |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* opRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc) |
| { |
| #ifdef __mips_hard_float |
| if (FPREG(rDest) || FPREG(rSrc)) |
| return fpRegCopy(cUnit, rDest, rSrc); |
| #endif |
| LIR* res = rawLIR(cUnit, cUnit->currentDalvikOffset, kMipsMove, |
| rDest, rSrc); |
| if (!(cUnit->disableOpt & (1 << kSafeOptimizations)) && rDest == rSrc) { |
| res->flags.isNop = true; |
| } |
| return res; |
| } |
| |
| LIR* opRegCopy(CompilationUnit *cUnit, int rDest, int rSrc) |
| { |
| LIR *res = opRegCopyNoInsert(cUnit, rDest, rSrc); |
| oatAppendLIR(cUnit, (LIR*)res); |
| return res; |
| } |
| |
| void opRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi, |
| int srcLo, int srcHi) |
| { |
| #ifdef __mips_hard_float |
| bool destFP = FPREG(destLo) && FPREG(destHi); |
| bool srcFP = FPREG(srcLo) && FPREG(srcHi); |
| assert(FPREG(srcLo) == FPREG(srcHi)); |
| assert(FPREG(destLo) == FPREG(destHi)); |
| if (destFP) { |
| if (srcFP) { |
| opRegCopy(cUnit, S2D(destLo, destHi), S2D(srcLo, srcHi)); |
| } else { |
| /* note the operands are swapped for the mtc1 instr */ |
| newLIR2(cUnit, kMipsMtc1, srcLo, destLo); |
| newLIR2(cUnit, kMipsMtc1, srcHi, destHi); |
| } |
| } else { |
| if (srcFP) { |
| newLIR2(cUnit, kMipsMfc1, destLo, srcLo); |
| newLIR2(cUnit, kMipsMfc1, destHi, srcHi); |
| } else { |
| // Handle overlap |
| if (srcHi == destLo) { |
| opRegCopy(cUnit, destHi, srcHi); |
| opRegCopy(cUnit, destLo, srcLo); |
| } else { |
| opRegCopy(cUnit, destLo, srcLo); |
| opRegCopy(cUnit, destHi, srcHi); |
| } |
| } |
| } |
| #else |
| // Handle overlap |
| if (srcHi == destLo) { |
| opRegCopy(cUnit, destHi, srcHi); |
| opRegCopy(cUnit, destLo, srcLo); |
| } else { |
| opRegCopy(cUnit, destLo, srcLo); |
| opRegCopy(cUnit, destHi, srcHi); |
| } |
| #endif |
| } |
| |
| } // namespace art |