blob: bde2c70fc6027dbdedc0cce746ecc83d30425351 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "builder.h"
#include "art_field-inl.h"
#include "base/logging.h"
#include "class_linker.h"
#include "dex/verified_method.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "dex/verified_method.h"
#include "driver/compiler_driver-inl.h"
#include "driver/compiler_options.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "nodes.h"
#include "primitive.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
namespace art {
/**
* Helper class to add HTemporary instructions. This class is used when
* converting a DEX instruction to multiple HInstruction, and where those
* instructions do not die at the following instruction, but instead spans
* multiple instructions.
*/
class Temporaries : public ValueObject {
public:
explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
void Add(HInstruction* instruction) {
HInstruction* temp = new (graph_->GetArena()) HTemporary(index_);
instruction->GetBlock()->AddInstruction(temp);
DCHECK(temp->GetPrevious() == instruction);
size_t offset;
if (instruction->GetType() == Primitive::kPrimLong
|| instruction->GetType() == Primitive::kPrimDouble) {
offset = 2;
} else {
offset = 1;
}
index_ += offset;
graph_->UpdateTemporariesVRegSlots(index_);
}
private:
HGraph* const graph_;
// Current index in the temporary stack, updated by `Add`.
size_t index_;
};
class SwitchTable : public ValueObject {
public:
SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
: instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
int32_t table_offset = instruction.VRegB_31t();
const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
if (sparse) {
CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
} else {
CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
}
num_entries_ = table[1];
values_ = reinterpret_cast<const int32_t*>(&table[2]);
}
uint16_t GetNumEntries() const {
return num_entries_;
}
void CheckIndex(size_t index) const {
if (sparse_) {
// In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
} else {
// In a packed table, we have the starting key and num_entries_ values.
DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
}
}
int32_t GetEntryAt(size_t index) const {
CheckIndex(index);
return values_[index];
}
uint32_t GetDexPcForIndex(size_t index) const {
CheckIndex(index);
return dex_pc_ +
(reinterpret_cast<const int16_t*>(values_ + index) -
reinterpret_cast<const int16_t*>(&instruction_));
}
// Index of the first value in the table.
size_t GetFirstValueIndex() const {
if (sparse_) {
// In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
return num_entries_;
} else {
// In a packed table, we have the starting key and num_entries_ values.
return 1;
}
}
private:
const Instruction& instruction_;
const uint32_t dex_pc_;
// Whether this is a sparse-switch table (or a packed-switch one).
const bool sparse_;
// This can't be const as it needs to be computed off of the given instruction, and complicated
// expressions in the initializer list seemed very ugly.
uint16_t num_entries_;
const int32_t* values_;
DISALLOW_COPY_AND_ASSIGN(SwitchTable);
};
void HGraphBuilder::InitializeLocals(uint16_t count) {
graph_->SetNumberOfVRegs(count);
locals_.SetSize(count);
for (int i = 0; i < count; i++) {
HLocal* local = new (arena_) HLocal(i);
entry_block_->AddInstruction(local);
locals_.Put(i, local);
}
}
void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
// dex_compilation_unit_ is null only when unit testing.
if (dex_compilation_unit_ == nullptr) {
return;
}
graph_->SetNumberOfInVRegs(number_of_parameters);
const char* shorty = dex_compilation_unit_->GetShorty();
int locals_index = locals_.Size() - number_of_parameters;
int parameter_index = 0;
if (!dex_compilation_unit_->IsStatic()) {
// Add the implicit 'this' argument, not expressed in the signature.
HParameterValue* parameter =
new (arena_) HParameterValue(parameter_index++, Primitive::kPrimNot, true);
entry_block_->AddInstruction(parameter);
HLocal* local = GetLocalAt(locals_index++);
entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
number_of_parameters--;
}
uint32_t pos = 1;
for (int i = 0; i < number_of_parameters; i++) {
HParameterValue* parameter =
new (arena_) HParameterValue(parameter_index++, Primitive::GetType(shorty[pos++]));
entry_block_->AddInstruction(parameter);
HLocal* local = GetLocalAt(locals_index++);
// Store the parameter value in the local that the dex code will use
// to reference that parameter.
entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
|| (parameter->GetType() == Primitive::kPrimDouble);
if (is_wide) {
i++;
locals_index++;
parameter_index++;
}
}
}
template<typename T>
void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
int32_t target_offset = instruction.GetTargetOffset();
HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
DCHECK(branch_target != nullptr);
DCHECK(fallthrough_target != nullptr);
PotentiallyAddSuspendCheck(branch_target, dex_pc);
HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
T* comparison = new (arena_) T(first, second);
current_block_->AddInstruction(comparison);
HInstruction* ifinst = new (arena_) HIf(comparison);
current_block_->AddInstruction(ifinst);
current_block_->AddSuccessor(branch_target);
current_block_->AddSuccessor(fallthrough_target);
current_block_ = nullptr;
}
template<typename T>
void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
int32_t target_offset = instruction.GetTargetOffset();
HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
DCHECK(branch_target != nullptr);
DCHECK(fallthrough_target != nullptr);
PotentiallyAddSuspendCheck(branch_target, dex_pc);
HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
T* comparison = new (arena_) T(value, graph_->GetIntConstant(0));
current_block_->AddInstruction(comparison);
HInstruction* ifinst = new (arena_) HIf(comparison);
current_block_->AddInstruction(ifinst);
current_block_->AddSuccessor(branch_target);
current_block_->AddSuccessor(fallthrough_target);
current_block_ = nullptr;
}
void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
if (compilation_stats_ != nullptr) {
compilation_stats_->RecordStat(compilation_stat);
}
}
bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item,
size_t number_of_branches) {
const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
if (compiler_filter == CompilerOptions::kEverything) {
return false;
}
if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) {
VLOG(compiler) << "Skip compilation of huge method "
<< PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
<< ": " << code_item.insns_size_in_code_units_ << " code units";
MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
return true;
}
// If it's large and contains no branches, it's likely to be machine generated initialization.
if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_)
&& (number_of_branches == 0)) {
VLOG(compiler) << "Skip compilation of large method with no branch "
<< PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
<< ": " << code_item.insns_size_in_code_units_ << " code units";
MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
return true;
}
return false;
}
bool HGraphBuilder::IsBlockInPcRange(HBasicBlock* block,
uint32_t dex_pc_start,
uint32_t dex_pc_end) {
uint32_t dex_pc = block->GetDexPc();
return block != entry_block_
&& block != exit_block_
&& dex_pc >= dex_pc_start
&& dex_pc < dex_pc_end;
}
void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) {
if (code_item.tries_size_ == 0) {
return;
}
// Create branch targets at the start/end of the TryItem range. These are
// places where the program might fall through into/out of the a block and
// where TryBoundary instructions will be inserted later. Other edges which
// enter/exit the try blocks are a result of branches/switches.
for (size_t idx = 0; idx < code_item.tries_size_; ++idx) {
const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx);
uint32_t dex_pc_start = try_item->start_addr_;
uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_;
FindOrCreateBlockStartingAt(dex_pc_start);
if (dex_pc_end < code_item.insns_size_in_code_units_) {
// TODO: Do not create block if the last instruction cannot fall through.
FindOrCreateBlockStartingAt(dex_pc_end);
} else {
// The TryItem spans until the very end of the CodeItem (or beyond if
// invalid) and therefore cannot have any code afterwards.
}
}
// Create branch targets for exception handlers.
const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
for (uint32_t idx = 0; idx < handlers_size; ++idx) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
uint32_t address = iterator.GetHandlerAddress();
HBasicBlock* block = FindOrCreateBlockStartingAt(address);
block->SetIsCatchBlock();
}
handlers_ptr = iterator.EndDataPointer();
}
}
void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) {
if (code_item.tries_size_ == 0) {
return;
}
for (size_t idx = 0; idx < code_item.tries_size_; ++idx) {
const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx);
uint32_t try_start = try_item->start_addr_;
uint32_t try_end = try_start + try_item->insn_count_;
// Iterate over all blocks in the dex pc range of the TryItem and:
// (a) split edges which enter/exit the try range,
// (b) create TryBoundary instructions in the new blocks,
// (c) link the new blocks to corresponding exception handlers.
for (uint32_t inner_pc = try_start; inner_pc < try_end; ++inner_pc) {
HBasicBlock* try_block = FindBlockStartingAt(inner_pc);
if (try_block == nullptr) {
continue;
}
// Find predecessors which are not covered by the same TryItem range. Such
// edges enter the try block and will have a TryBoundary inserted.
for (size_t i = 0; i < try_block->GetPredecessors().Size(); ++i) {
HBasicBlock* predecessor = try_block->GetPredecessors().Get(i);
HTryBoundary* try_boundary = nullptr;
if (predecessor->IsSingleTryBoundary()) {
try_boundary = predecessor->GetLastInstruction()->AsTryBoundary();
if (try_boundary->GetNormalFlowSuccessor() == try_block
&& try_block->IsFirstIndexOfPredecessor(predecessor, i)) {
// The edge was already split because of an exit from a neighbouring
// TryItem and `predecessor` is the block with a TryBoundary created
// between the two original blocks. We do not split the edge again.
DCHECK(!IsBlockInPcRange(predecessor->GetSinglePredecessor(), try_start, try_end));
DCHECK(try_boundary->IsTryExit());
DCHECK(!try_boundary->IsTryEntry());
try_boundary->SetIsTryEntry();
} else {
// This is an edge between a previously created TryBoundary and its
// handler. We skip it because it is exceptional flow.
DCHECK(try_block->IsCatchBlock());
DCHECK(try_boundary->HasExceptionHandler(try_block));
continue;
}
} else if (!IsBlockInPcRange(predecessor, try_start, try_end)) {
// This is an entry point into the TryItem and the edge has not been
// split yet. That means that either `predecessor` is not in a TryItem,
// or it is in a different TryItem and we happened to iterate over
// this block first. We split the edge and `predecessor` may add its
// own exception handlers later.
try_boundary = new (arena_) HTryBoundary(/* is_entry */ true, /* is_exit */ false);
HBasicBlock* try_entry_block = graph_->SplitEdge(predecessor, try_block);
try_entry_block->AddInstruction(try_boundary);
} else {
// Not an edge on the boundary of the try block.
continue;
}
DCHECK(try_boundary != nullptr);
// Link the TryBoundary block to the handlers of this TryItem.
for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) {
try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress()));
}
}
// Find successors which are not covered by the same TryItem range. Such
// edges exit the try block and will have a TryBoundary inserted.
for (size_t i = 0; i < try_block->GetSuccessors().Size(); ++i) {
HBasicBlock* successor = try_block->GetSuccessors().Get(i);
HTryBoundary* try_boundary = nullptr;
if (successor->IsSingleTryBoundary()) {
// The edge was already split because of an entry into a neighbouring
// TryItem. We do not split the edge again.
try_boundary = successor->GetLastInstruction()->AsTryBoundary();
DCHECK_EQ(try_block, successor->GetSinglePredecessor());
DCHECK(try_boundary->IsTryEntry());
DCHECK(!try_boundary->IsTryExit());
DCHECK(!IsBlockInPcRange(try_boundary->GetNormalFlowSuccessor(), try_start, try_end));
try_boundary->SetIsTryExit();
} else if (!IsBlockInPcRange(successor, try_start, try_end)) {
// This is an exit out of the TryItem and the edge has not been split
// yet. That means that either `successor` is not in a TryItem, or it
// is in a different TryItem and we happened to iterate over this
// block first. We split the edge and `successor` may add its own
// exception handlers later.
HInstruction* last_instruction = try_block->GetLastInstruction();
if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) {
DCHECK_EQ(successor, exit_block_);
// Control flow exits the try block with a Return(Void). Because
// splitting the edge would invalidate the invariant that Return
// always jumps to Exit, we move the Return outside the try block.
HBasicBlock* return_block = try_block->SplitBefore(last_instruction);
graph_->AddBlock(return_block);
successor = return_block;
}
try_boundary = new (arena_) HTryBoundary(/* is_entry */ false, /* is_exit */ true);
HBasicBlock* try_exit_block = graph_->SplitEdge(try_block, successor);
try_exit_block->AddInstruction(try_boundary);
} else {
// Not an edge on the boundary of the try block.
continue;
}
DCHECK(try_boundary != nullptr);
// Link the TryBoundary block to the handlers of this TryItem.
for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) {
try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress()));
}
}
}
}
}
bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
DCHECK(graph_->GetBlocks().IsEmpty());
const uint16_t* code_ptr = code_item.insns_;
const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
code_start_ = code_ptr;
// Setup the graph with the entry block and exit block.
entry_block_ = new (arena_) HBasicBlock(graph_, 0);
graph_->AddBlock(entry_block_);
exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
graph_->SetEntryBlock(entry_block_);
graph_->SetExitBlock(exit_block_);
InitializeLocals(code_item.registers_size_);
graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
// Compute the number of dex instructions, blocks, and branches. We will
// check these values against limits given to the compiler.
size_t number_of_branches = 0;
// To avoid splitting blocks, we compute ahead of time the instructions that
// start a new block, and create these blocks.
if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) {
MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode);
return false;
}
// Note that the compiler driver is null when unit testing.
if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) {
return false;
}
CreateBlocksForTryCatch(code_item);
InitializeParameters(code_item.ins_size_);
size_t dex_pc = 0;
while (code_ptr < code_end) {
// Update the current block if dex_pc starts a new block.
MaybeUpdateCurrentBlock(dex_pc);
const Instruction& instruction = *Instruction::At(code_ptr);
if (!AnalyzeDexInstruction(instruction, dex_pc)) {
return false;
}
dex_pc += instruction.SizeInCodeUnits();
code_ptr += instruction.SizeInCodeUnits();
}
// Add Exit to the exit block.
exit_block_->AddInstruction(new (arena_) HExit());
// Add the suspend check to the entry block.
entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
entry_block_->AddInstruction(new (arena_) HGoto());
// Iterate over blocks covered by TryItems and insert TryBoundaries at entry
// and exit points. This requires all control-flow instructions and
// non-exceptional edges to have been created.
InsertTryBoundaryBlocks(code_item);
// Add the exit block at the end to give it the highest id.
graph_->AddBlock(exit_block_);
return true;
}
void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) {
HBasicBlock* block = FindBlockStartingAt(dex_pc);
if (block == nullptr) {
return;
}
if (current_block_ != nullptr) {
// Branching instructions clear current_block, so we know
// the last instruction of the current block is not a branching
// instruction. We add an unconditional goto to the found block.
current_block_->AddInstruction(new (arena_) HGoto());
current_block_->AddSuccessor(block);
}
graph_->AddBlock(block);
current_block_ = block;
}
bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
const uint16_t* code_end,
size_t* number_of_branches) {
branch_targets_.SetSize(code_end - code_ptr);
// Create the first block for the dex instructions, single successor of the entry block.
HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
branch_targets_.Put(0, block);
entry_block_->AddSuccessor(block);
// Iterate over all instructions and find branching instructions. Create blocks for
// the locations these instructions branch to.
uint32_t dex_pc = 0;
while (code_ptr < code_end) {
const Instruction& instruction = *Instruction::At(code_ptr);
if (instruction.IsBranch()) {
(*number_of_branches)++;
int32_t target = instruction.GetTargetOffset() + dex_pc;
// Create a block for the target instruction.
FindOrCreateBlockStartingAt(target);
dex_pc += instruction.SizeInCodeUnits();
code_ptr += instruction.SizeInCodeUnits();
if (instruction.CanFlowThrough()) {
if (code_ptr >= code_end) {
// In the normal case we should never hit this but someone can artificially forge a dex
// file to fall-through out the method code. In this case we bail out compilation.
return false;
} else {
FindOrCreateBlockStartingAt(dex_pc);
}
}
} else if (instruction.IsSwitch()) {
SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
uint16_t num_entries = table.GetNumEntries();
// In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
// entry at index 0 is the first key, and values are after *all* keys.
size_t offset = table.GetFirstValueIndex();
// Use a larger loop counter type to avoid overflow issues.
for (size_t i = 0; i < num_entries; ++i) {
// The target of the case.
uint32_t target = dex_pc + table.GetEntryAt(i + offset);
FindOrCreateBlockStartingAt(target);
// The next case gets its own block.
if (i < num_entries) {
block = new (arena_) HBasicBlock(graph_, target);
branch_targets_.Put(table.GetDexPcForIndex(i), block);
}
}
// Fall-through. Add a block if there is more code afterwards.
dex_pc += instruction.SizeInCodeUnits();
code_ptr += instruction.SizeInCodeUnits();
if (code_ptr >= code_end) {
// In the normal case we should never hit this but someone can artificially forge a dex
// file to fall-through out the method code. In this case we bail out compilation.
// (A switch can fall-through so we don't need to check CanFlowThrough().)
return false;
} else {
FindOrCreateBlockStartingAt(dex_pc);
}
} else {
code_ptr += instruction.SizeInCodeUnits();
dex_pc += instruction.SizeInCodeUnits();
}
}
return true;
}
HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const {
DCHECK_GE(dex_pc, 0);
DCHECK_LT(static_cast<size_t>(dex_pc), branch_targets_.Size());
return branch_targets_.Get(dex_pc);
}
HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) {
HBasicBlock* block = FindBlockStartingAt(dex_pc);
if (block == nullptr) {
block = new (arena_) HBasicBlock(graph_, dex_pc);
branch_targets_.Put(dex_pc, block);
}
return block;
}
template<typename T>
void HGraphBuilder::Unop_12x(const Instruction& instruction, Primitive::Type type) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
current_block_->AddInstruction(new (arena_) T(type, first));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
void HGraphBuilder::Conversion_12x(const Instruction& instruction,
Primitive::Type input_type,
Primitive::Type result_type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), type);
current_block_->AddInstruction(new (arena_) T(type, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_23x(const Instruction& instruction,
Primitive::Type type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), type);
current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
Primitive::Type type) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
current_block_->AddInstruction(new (arena_) T(type, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
Primitive::Type type,
HCompare::Bias bias,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), type);
current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type) {
HInstruction* first = LoadLocal(instruction.VRegA(), type);
HInstruction* second = LoadLocal(instruction.VRegB(), type);
current_block_->AddInstruction(new (arena_) T(type, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type) {
HInstruction* first = LoadLocal(instruction.VRegA(), type);
HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
current_block_->AddInstruction(new (arena_) T(type, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_12x(const Instruction& instruction,
Primitive::Type type,
uint32_t dex_pc) {
HInstruction* first = LoadLocal(instruction.VRegA(), type);
HInstruction* second = LoadLocal(instruction.VRegB(), type);
current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse) {
HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s());
if (reverse) {
std::swap(first, second);
}
current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse) {
HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b());
if (reverse) {
std::swap(first, second);
}
current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
Thread* self = Thread::Current();
return cu->IsConstructor()
&& driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
}
void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type) {
if (type == Primitive::kPrimVoid) {
if (graph_->ShouldGenerateConstructorBarrier()) {
// The compilation unit is null during testing.
if (dex_compilation_unit_ != nullptr) {
DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
<< "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
}
current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore));
}
current_block_->AddInstruction(new (arena_) HReturnVoid());
} else {
HInstruction* value = LoadLocal(instruction.VRegA(), type);
current_block_->AddInstruction(new (arena_) HReturn(value));
}
current_block_->AddSuccessor(exit_block_);
current_block_ = nullptr;
}
bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
uint32_t dex_pc,
uint32_t method_idx,
uint32_t number_of_vreg_arguments,
bool is_range,
uint32_t* args,
uint32_t register_index) {
Instruction::Code opcode = instruction.Opcode();
InvokeType invoke_type;
switch (opcode) {
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_STATIC_RANGE:
invoke_type = kStatic;
break;
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_DIRECT_RANGE:
invoke_type = kDirect;
break;
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_VIRTUAL_RANGE:
invoke_type = kVirtual;
break;
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_INTERFACE_RANGE:
invoke_type = kInterface;
break;
case Instruction::INVOKE_SUPER_RANGE:
case Instruction::INVOKE_SUPER:
invoke_type = kSuper;
break;
default:
LOG(FATAL) << "Unexpected invoke op: " << opcode;
return false;
}
const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(method_id.proto_idx_);
const char* descriptor = dex_file_->StringDataByIdx(proto_id.shorty_idx_);
Primitive::Type return_type = Primitive::GetType(descriptor[0]);
bool is_instance_call = invoke_type != kStatic;
// Remove the return type from the 'proto'.
size_t number_of_arguments = strlen(descriptor) - 1;
if (is_instance_call) {
// One extra argument for 'this'.
++number_of_arguments;
}
MethodReference target_method(dex_file_, method_idx);
uintptr_t direct_code;
uintptr_t direct_method;
int table_index;
InvokeType optimized_invoke_type = invoke_type;
if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_, dex_pc, true, true,
&optimized_invoke_type, &target_method, &table_index,
&direct_code, &direct_method)) {
VLOG(compiler) << "Did not compile "
<< PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
<< " because a method call could not be resolved";
MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod);
return false;
}
DCHECK(optimized_invoke_type != kSuper);
// By default, consider that the called method implicitly requires
// an initialization check of its declaring method.
HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
// Potential class initialization check, in the case of a static method call.
HClinitCheck* clinit_check = nullptr;
// Replace calls to String.<init> with StringFactory.
int32_t string_init_offset = 0;
bool is_string_init = compiler_driver_->IsStringInit(method_idx, dex_file_, &string_init_offset);
if (is_string_init) {
return_type = Primitive::kPrimNot;
is_instance_call = false;
number_of_arguments--;
invoke_type = kStatic;
optimized_invoke_type = kStatic;
}
HInvoke* invoke = nullptr;
if (optimized_invoke_type == kVirtual) {
invoke = new (arena_) HInvokeVirtual(
arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
} else if (optimized_invoke_type == kInterface) {
invoke = new (arena_) HInvokeInterface(
arena_, number_of_arguments, return_type, dex_pc, method_idx, table_index);
} else {
DCHECK(optimized_invoke_type == kDirect || optimized_invoke_type == kStatic);
// Sharpening to kDirect only works if we compile PIC.
DCHECK((optimized_invoke_type == invoke_type) || (optimized_invoke_type != kDirect)
|| compiler_driver_->GetCompilerOptions().GetCompilePic());
bool is_recursive =
(target_method.dex_method_index == outer_compilation_unit_->GetDexMethodIndex())
&& (target_method.dex_file == outer_compilation_unit_->GetDexFile());
if (optimized_invoke_type == kStatic && !is_string_init) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<4> hs(soa.Self());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(
dex_compilation_unit_->GetClassLinker()->FindDexCache(
*dex_compilation_unit_->GetDexFile())));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
ArtMethod* resolved_method = compiler_driver_->ResolveMethod(
soa, dex_cache, class_loader, dex_compilation_unit_, method_idx, optimized_invoke_type);
if (resolved_method == nullptr) {
MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedMethod);
return false;
}
const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
// The index at which the method's class is stored in the DexCache's type array.
uint32_t storage_index = DexFile::kDexNoIndex;
bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
if (is_outer_class) {
storage_index = outer_class->GetDexTypeIndex();
} else if (outer_dex_cache.Get() == dex_cache.Get()) {
// Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
GetCompilingClass(),
resolved_method,
method_idx,
&storage_index);
}
if (!outer_class->IsInterface()
&& outer_class->IsSubClass(resolved_method->GetDeclaringClass())) {
// If the outer class is the declaring class or a subclass
// of the declaring class, no class initialization is needed
// before the static method call.
// Note that in case of inlining, we do not need to add clinit checks
// to calls that satisfy this subclass check with any inlined methods. This
// will be detected by the optimization passes.
clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
} else if (storage_index != DexFile::kDexNoIndex) {
// If the method's class type index is available, check
// whether we should add an explicit class initialization
// check for its declaring class before the static method call.
// TODO: find out why this check is needed.
bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
*outer_compilation_unit_->GetDexFile(), storage_index);
bool is_initialized =
resolved_method->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
if (is_initialized) {
clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
} else {
clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
HLoadClass* load_class = new (arena_) HLoadClass(
graph_->GetCurrentMethod(),
storage_index,
*dex_compilation_unit_->GetDexFile(),
is_outer_class,
dex_pc);
current_block_->AddInstruction(load_class);
clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
current_block_->AddInstruction(clinit_check);
}
}
}
invoke = new (arena_) HInvokeStaticOrDirect(arena_,
number_of_arguments,
return_type,
dex_pc,
target_method.dex_method_index,
is_recursive,
string_init_offset,
invoke_type,
optimized_invoke_type,
clinit_check_requirement);
}
size_t start_index = 0;
Temporaries temps(graph_);
if (is_instance_call) {
HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot);
HNullCheck* null_check = new (arena_) HNullCheck(arg, dex_pc);
current_block_->AddInstruction(null_check);
temps.Add(null_check);
invoke->SetArgumentAt(0, null_check);
start_index = 1;
}
uint32_t descriptor_index = 1; // Skip the return type.
uint32_t argument_index = start_index;
if (is_string_init) {
start_index = 1;
}
for (size_t i = start_index;
// Make sure we don't go over the expected arguments or over the number of
// dex registers given. If the instruction was seen as dead by the verifier,
// it hasn't been properly checked.
(i < number_of_vreg_arguments) && (argument_index < number_of_arguments);
i++, argument_index++) {
Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
if (!is_range
&& is_wide
&& ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
// Longs and doubles should be in pairs, that is, sequential registers. The verifier should
// reject any class where this is violated. However, the verifier only does these checks
// on non trivially dead instructions, so we just bailout the compilation.
VLOG(compiler) << "Did not compile "
<< PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
<< " because of non-sequential dex register pair in wide argument";
MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
return false;
}
HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
invoke->SetArgumentAt(argument_index, arg);
if (is_wide) {
i++;
}
}
if (argument_index != number_of_arguments) {
VLOG(compiler) << "Did not compile "
<< PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
<< " because of wrong number of arguments in invoke instruction";
MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
return false;
}
if (invoke->IsInvokeStaticOrDirect()) {
invoke->SetArgumentAt(argument_index, graph_->GetCurrentMethod());
argument_index++;
}
if (clinit_check_requirement == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit) {
// Add the class initialization check as last input of `invoke`.
DCHECK(clinit_check != nullptr);
invoke->SetArgumentAt(argument_index, clinit_check);
}
current_block_->AddInstruction(invoke);
latest_result_ = invoke;
// Add move-result for StringFactory method.
if (is_string_init) {
uint32_t orig_this_reg = is_range ? register_index : args[0];
UpdateLocal(orig_this_reg, invoke);
const VerifiedMethod* verified_method =
compiler_driver_->GetVerifiedMethod(dex_file_, dex_compilation_unit_->GetDexMethodIndex());
if (verified_method == nullptr) {
LOG(WARNING) << "No verified method for method calling String.<init>: "
<< PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_);
return false;
}
const SafeMap<uint32_t, std::set<uint32_t>>& string_init_map =
verified_method->GetStringInitPcRegMap();
auto map_it = string_init_map.find(dex_pc);
if (map_it != string_init_map.end()) {
std::set<uint32_t> reg_set = map_it->second;
for (auto set_it = reg_set.begin(); set_it != reg_set.end(); ++set_it) {
HInstruction* load_local = LoadLocal(orig_this_reg, Primitive::kPrimNot);
UpdateLocal(*set_it, load_local);
}
}
}
return true;
}
bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
uint32_t dex_pc,
bool is_put) {
uint32_t source_or_dest_reg = instruction.VRegA_22c();
uint32_t obj_reg = instruction.VRegB_22c();
uint16_t field_index = instruction.VRegC_22c();
ScopedObjectAccess soa(Thread::Current());
ArtField* resolved_field =
compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
if (resolved_field == nullptr) {
MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
return false;
}
Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot);
current_block_->AddInstruction(new (arena_) HNullCheck(object, dex_pc));
if (is_put) {
Temporaries temps(graph_);
HInstruction* null_check = current_block_->GetLastInstruction();
// We need one temporary for the null check.
temps.Add(null_check);
HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
current_block_->AddInstruction(new (arena_) HInstanceFieldSet(
null_check,
value,
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
*dex_file_));
} else {
current_block_->AddInstruction(new (arena_) HInstanceFieldGet(
current_block_->GetLastInstruction(),
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
*dex_file_));
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
return true;
}
static mirror::Class* GetClassFrom(CompilerDriver* driver,
const DexCompilationUnit& compilation_unit) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
const DexFile& dex_file = *compilation_unit.GetDexFile();
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(
compilation_unit.GetClassLinker()->FindDexCache(dex_file)));
return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
}
mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const {
return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
}
mirror::Class* HGraphBuilder::GetCompilingClass() const {
return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
}
bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<4> hs(soa.Self());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(
dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile())));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
return outer_class.Get() == cls.Get();
}
bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
uint32_t dex_pc,
bool is_put) {
uint32_t source_or_dest_reg = instruction.VRegA_21c();
uint16_t field_index = instruction.VRegB_21c();
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<4> hs(soa.Self());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(
dex_compilation_unit_->GetClassLinker()->FindDexCache(*dex_compilation_unit_->GetDexFile())));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
ArtField* resolved_field = compiler_driver_->ResolveField(
soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
if (resolved_field == nullptr) {
MaybeRecordStat(MethodCompilationStat::kNotCompiledUnresolvedField);
return false;
}
const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
outer_compilation_unit_->GetClassLinker()->FindDexCache(outer_dex_file)));
Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
// The index at which the field's class is stored in the DexCache's type array.
uint32_t storage_index;
bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
if (is_outer_class) {
storage_index = outer_class->GetDexTypeIndex();
} else if (outer_dex_cache.Get() != dex_cache.Get()) {
// The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
return false;
} else {
std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
outer_dex_cache.Get(),
GetCompilingClass(),
resolved_field,
field_index,
&storage_index);
bool can_easily_access = is_put ? pair.second : pair.first;
if (!can_easily_access) {
return false;
}
}
// TODO: find out why this check is needed.
bool is_in_dex_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(
*outer_compilation_unit_->GetDexFile(), storage_index);
bool is_initialized = resolved_field->GetDeclaringClass()->IsInitialized() && is_in_dex_cache;
HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
storage_index,
*dex_compilation_unit_->GetDexFile(),
is_outer_class,
dex_pc);
current_block_->AddInstruction(constant);
HInstruction* cls = constant;
if (!is_initialized && !is_outer_class) {
cls = new (arena_) HClinitCheck(constant, dex_pc);
current_block_->AddInstruction(cls);
}
Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
if (is_put) {
// We need to keep the class alive before loading the value.
Temporaries temps(graph_);
temps.Add(cls);
HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
DCHECK_EQ(value->GetType(), field_type);
current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls,
value,
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
*dex_file_));
} else {
current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls,
field_type,
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
*dex_file_));
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
return true;
}
void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
uint16_t first_vreg,
int64_t second_vreg_or_constant,
uint32_t dex_pc,
Primitive::Type type,
bool second_is_constant,
bool isDiv) {
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
HInstruction* first = LoadLocal(first_vreg, type);
HInstruction* second = nullptr;
if (second_is_constant) {
if (type == Primitive::kPrimInt) {
second = graph_->GetIntConstant(second_vreg_or_constant);
} else {
second = graph_->GetLongConstant(second_vreg_or_constant);
}
} else {
second = LoadLocal(second_vreg_or_constant, type);
}
if (!second_is_constant
|| (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
|| (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
second = new (arena_) HDivZeroCheck(second, dex_pc);
Temporaries temps(graph_);
current_block_->AddInstruction(second);
temps.Add(current_block_->GetLastInstruction());
}
if (isDiv) {
current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
} else {
current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
}
UpdateLocal(out_vreg, current_block_->GetLastInstruction());
}
void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
uint32_t dex_pc,
bool is_put,
Primitive::Type anticipated_type) {
uint8_t source_or_dest_reg = instruction.VRegA_23x();
uint8_t array_reg = instruction.VRegB_23x();
uint8_t index_reg = instruction.VRegC_23x();
// We need one temporary for the null check, one for the index, and one for the length.
Temporaries temps(graph_);
HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot);
object = new (arena_) HNullCheck(object, dex_pc);
current_block_->AddInstruction(object);
temps.Add(object);
HInstruction* length = new (arena_) HArrayLength(object);
current_block_->AddInstruction(length);
temps.Add(length);
HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
index = new (arena_) HBoundsCheck(index, length, dex_pc);
current_block_->AddInstruction(index);
temps.Add(index);
if (is_put) {
HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
// TODO: Insert a type check node if the type is Object.
current_block_->AddInstruction(new (arena_) HArraySet(
object, index, value, anticipated_type, dex_pc));
} else {
current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type));
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
graph_->SetHasBoundsChecks(true);
}
void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
uint32_t type_index,
uint32_t number_of_vreg_arguments,
bool is_range,
uint32_t* args,
uint32_t register_index) {
HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments);
QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
? kQuickAllocArrayWithAccessCheck
: kQuickAllocArray;
HInstruction* object = new (arena_) HNewArray(length,
graph_->GetCurrentMethod(),
dex_pc,
type_index,
*dex_compilation_unit_->GetDexFile(),
entrypoint);
current_block_->AddInstruction(object);
const char* descriptor = dex_file_->StringByTypeIdx(type_index);
DCHECK_EQ(descriptor[0], '[') << descriptor;
char primitive = descriptor[1];
DCHECK(primitive == 'I'
|| primitive == 'L'
|| primitive == '[') << descriptor;
bool is_reference_array = (primitive == 'L') || (primitive == '[');
Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
Temporaries temps(graph_);
temps.Add(object);
for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
HInstruction* index = graph_->GetIntConstant(i);
current_block_->AddInstruction(
new (arena_) HArraySet(object, index, value, type, dex_pc));
}
latest_result_ = object;
}
template <typename T>
void HGraphBuilder::BuildFillArrayData(HInstruction* object,
const T* data,
uint32_t element_count,
Primitive::Type anticipated_type,
uint32_t dex_pc) {
for (uint32_t i = 0; i < element_count; ++i) {
HInstruction* index = graph_->GetIntConstant(i);
HInstruction* value = graph_->GetIntConstant(data[i]);
current_block_->AddInstruction(new (arena_) HArraySet(
object, index, value, anticipated_type, dex_pc));
}
}
void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
Temporaries temps(graph_);
HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot);
HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
current_block_->AddInstruction(null_check);
temps.Add(null_check);
HInstruction* length = new (arena_) HArrayLength(null_check);
current_block_->AddInstruction(length);
int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
const uint8_t* data = payload->data;
uint32_t element_count = payload->element_count;
// Implementation of this DEX instruction seems to be that the bounds check is
// done before doing any stores.
HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1);
current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
switch (payload->element_width) {
case 1:
BuildFillArrayData(null_check,
reinterpret_cast<const int8_t*>(data),
element_count,
Primitive::kPrimByte,
dex_pc);
break;
case 2:
BuildFillArrayData(null_check,
reinterpret_cast<const int16_t*>(data),
element_count,
Primitive::kPrimShort,
dex_pc);
break;
case 4:
BuildFillArrayData(null_check,
reinterpret_cast<const int32_t*>(data),
element_count,
Primitive::kPrimInt,
dex_pc);
break;
case 8:
BuildFillWideArrayData(null_check,
reinterpret_cast<const int64_t*>(data),
element_count,
dex_pc);
break;
default:
LOG(FATAL) << "Unknown element width for " << payload->element_width;
}
graph_->SetHasBoundsChecks(true);
}
void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
const int64_t* data,
uint32_t element_count,
uint32_t dex_pc) {
for (uint32_t i = 0; i < element_count; ++i) {
HInstruction* index = graph_->GetIntConstant(i);
HInstruction* value = graph_->GetLongConstant(data[i]);
current_block_->AddInstruction(new (arena_) HArraySet(
object, index, value, Primitive::kPrimLong, dex_pc));
}
}
bool HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
uint8_t destination,
uint8_t reference,
uint16_t type_index,
uint32_t dex_pc) {
bool type_known_final;
bool type_known_abstract;
// `CanAccessTypeWithoutChecks` will tell whether the method being
// built is trying to access its own class, so that the generated
// code can optimize for this case. However, the optimization does not
// work for inlining, so we use `IsOutermostCompilingClass` instead.
bool dont_use_is_referrers_class;
bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
&type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
if (!can_access) {
MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
return false;
}
HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
HLoadClass* cls = new (arena_) HLoadClass(
graph_->GetCurrentMethod(),
type_index,
*dex_compilation_unit_->GetDexFile(),
IsOutermostCompilingClass(type_index),
dex_pc);
current_block_->AddInstruction(cls);
// The class needs a temporary before being used by the type check.
Temporaries temps(graph_);
temps.Add(cls);
if (instruction.Opcode() == Instruction::INSTANCE_OF) {
current_block_->AddInstruction(
new (arena_) HInstanceOf(object, cls, type_known_final, dex_pc));
UpdateLocal(destination, current_block_->GetLastInstruction());
} else {
DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
current_block_->AddInstruction(
new (arena_) HCheckCast(object, cls, type_known_final, dex_pc));
}
return true;
}
bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index) const {
return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index);
}
void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
// Verifier guarantees that the payload for PackedSwitch contains:
// (a) number of entries (may be zero)
// (b) first and lowest switch case value (entry 0, always present)
// (c) list of target pcs (entries 1 <= i <= N)
SwitchTable table(instruction, dex_pc, false);
// Value to test against.
HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
// Retrieve number of entries.
uint16_t num_entries = table.GetNumEntries();
if (num_entries == 0) {
return;
}
// Chained cmp-and-branch, starting from starting_key.
int32_t starting_key = table.GetEntryAt(0);
for (size_t i = 1; i <= num_entries; i++) {
BuildSwitchCaseHelper(instruction, i, i == num_entries, table, value, starting_key + i - 1,
table.GetEntryAt(i), dex_pc);
}
}
void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
// Verifier guarantees that the payload for SparseSwitch contains:
// (a) number of entries (may be zero)
// (b) sorted key values (entries 0 <= i < N)
// (c) target pcs corresponding to the switch values (entries N <= i < 2*N)
SwitchTable table(instruction, dex_pc, true);
// Value to test against.
HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
uint16_t num_entries = table.GetNumEntries();
for (size_t i = 0; i < num_entries; i++) {
BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
}
}
void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
bool is_last_case, const SwitchTable& table,
HInstruction* value, int32_t case_value_int,
int32_t target_offset, uint32_t dex_pc) {
HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
DCHECK(case_target != nullptr);
PotentiallyAddSuspendCheck(case_target, dex_pc);
// The current case's value.
HInstruction* this_case_value = graph_->GetIntConstant(case_value_int);
// Compare value and this_case_value.
HEqual* comparison = new (arena_) HEqual(value, this_case_value);
current_block_->AddInstruction(comparison);
HInstruction* ifinst = new (arena_) HIf(comparison);
current_block_->AddInstruction(ifinst);
// Case hit: use the target offset to determine where to go.
current_block_->AddSuccessor(case_target);
// Case miss: go to the next case (or default fall-through).
// When there is a next case, we use the block stored with the table offset representing this
// case (that is where we registered them in ComputeBranchTargets).
// When there is no next case, we use the following instruction.
// TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
if (!is_last_case) {
HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
DCHECK(next_case_target != nullptr);
current_block_->AddSuccessor(next_case_target);
// Need to manually add the block, as there is no dex-pc transition for the cases.
graph_->AddBlock(next_case_target);
current_block_ = next_case_target;
} else {
HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
DCHECK(default_target != nullptr);
current_block_->AddSuccessor(default_target);
current_block_ = nullptr;
}
}
void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) {
int32_t target_offset = target->GetDexPc() - dex_pc;
if (target_offset <= 0) {
// DX generates back edges to the first encountered return. We can save
// time of later passes by not adding redundant suspend checks.
HInstruction* last_in_target = target->GetLastInstruction();
if (last_in_target != nullptr &&
(last_in_target->IsReturn() || last_in_target->IsReturnVoid())) {
return;
}
// Add a suspend check to backward branches which may potentially loop. We
// can remove them after we recognize loops in the graph.
current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
}
}
bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
if (current_block_ == nullptr) {
return true; // Dead code
}
switch (instruction.Opcode()) {
case Instruction::CONST_4: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_16: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_HIGH16: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_16: {
int32_t register_index = instruction.VRegA();
// Get 16 bits of constant value, sign extended to 64 bits.
int64_t value = instruction.VRegB_21s();
value <<= 48;
value >>= 48;
HLongConstant* constant = graph_->GetLongConstant(value);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_32: {
int32_t register_index = instruction.VRegA();
// Get 32 bits of constant value, sign extended to 64 bits.
int64_t value = instruction.VRegB_31i();
value <<= 32;
value >>= 32;
HLongConstant* constant = graph_->GetLongConstant(value);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE: {
int32_t register_index = instruction.VRegA();
HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_HIGH16: {
int32_t register_index = instruction.VRegA();
int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
HLongConstant* constant = graph_->GetLongConstant(value);
UpdateLocal(register_index, constant);
break;
}
// Note that the SSA building will refine the types.
case Instruction::MOVE:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_16: {
HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
UpdateLocal(instruction.VRegA(), value);
break;
}
// Note that the SSA building will refine the types.
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_FROM16:
case Instruction::MOVE_WIDE_16: {
HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
UpdateLocal(instruction.VRegA(), value);
break;
}
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_OBJECT_FROM16: {
HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
UpdateLocal(instruction.VRegA(), value);
break;
}
case Instruction::RETURN_VOID: {
BuildReturn(instruction, Primitive::kPrimVoid);
break;
}
#define IF_XX(comparison, cond) \
case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
IF_XX(HEqual, EQ);
IF_XX(HNotEqual, NE);
IF_XX(HLessThan, LT);
IF_XX(HLessThanOrEqual, LE);
IF_XX(HGreaterThan, GT);
IF_XX(HGreaterThanOrEqual, GE);
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32: {
int32_t offset = instruction.GetTargetOffset();
HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
DCHECK(target != nullptr);
PotentiallyAddSuspendCheck(target, dex_pc);
current_block_->AddInstruction(new (arena_) HGoto());
current_block_->AddSuccessor(target);
current_block_ = nullptr;
break;
}
case Instruction::RETURN: {
BuildReturn(instruction, return_type_);
break;
}
case Instruction::RETURN_OBJECT: {
BuildReturn(instruction, return_type_);
break;
}
case Instruction::RETURN_WIDE: {
BuildReturn(instruction, return_type_);
break;
}
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_SUPER:
case Instruction::INVOKE_VIRTUAL: {
uint32_t method_idx = instruction.VRegB_35c();
uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
uint32_t args[5];
instruction.GetVarArgs(args);
if (!BuildInvoke(instruction, dex_pc, method_idx,
number_of_vreg_arguments, false, args, -1)) {
return false;
}
break;
}
case Instruction::INVOKE_DIRECT_RANGE:
case Instruction::INVOKE_INTERFACE_RANGE:
case Instruction::INVOKE_STATIC_RANGE:
case Instruction::INVOKE_SUPER_RANGE:
case Instruction::INVOKE_VIRTUAL_RANGE: {
uint32_t method_idx = instruction.VRegB_3rc();
uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
uint32_t register_index = instruction.VRegC();
if (!BuildInvoke(instruction, dex_pc, method_idx,
number_of_vreg_arguments, true, nullptr, register_index)) {
return false;
}
break;
}
case Instruction::NEG_INT: {
Unop_12x<HNeg>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::NEG_LONG: {
Unop_12x<HNeg>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::NEG_FLOAT: {
Unop_12x<HNeg>(instruction, Primitive::kPrimFloat);
break;
}
case Instruction::NEG_DOUBLE: {
Unop_12x<HNeg>(instruction, Primitive::kPrimDouble);
break;
}
case Instruction::NOT_INT: {
Unop_12x<HNot>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::NOT_LONG: {
Unop_12x<HNot>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::INT_TO_LONG: {
Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
break;
}
case Instruction::INT_TO_FLOAT: {
Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
break;
}
case Instruction::INT_TO_DOUBLE: {
Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
break;
}
case Instruction::LONG_TO_INT: {
Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
break;
}
case Instruction::LONG_TO_FLOAT: {
Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
break;
}
case Instruction::LONG_TO_DOUBLE: {
Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
break;
}
case Instruction::FLOAT_TO_INT: {
Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
break;
}
case Instruction::FLOAT_TO_LONG: {
Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
break;
}
case Instruction::FLOAT_TO_DOUBLE: {
Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
break;
}
case Instruction::DOUBLE_TO_INT: {
Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
break;
}
case Instruction::DOUBLE_TO_LONG: {
Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
break;
}
case Instruction::DOUBLE_TO_FLOAT: {
Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
break;
}
case Instruction::INT_TO_BYTE: {
Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
break;
}
case Instruction::INT_TO_SHORT: {
Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
break;
}
case Instruction::INT_TO_CHAR: {
Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
break;
}
case Instruction::ADD_INT: {
Binop_23x<HAdd>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::ADD_LONG: {
Binop_23x<HAdd>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::ADD_DOUBLE: {
Binop_23x<HAdd>(instruction, Primitive::kPrimDouble);
break;
}
case Instruction::ADD_FLOAT: {
Binop_23x<HAdd>(instruction, Primitive::kPrimFloat);
break;
}
case Instruction::SUB_INT: {
Binop_23x<HSub>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SUB_LONG: {
Binop_23x<HSub>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::SUB_FLOAT: {
Binop_23x<HSub>(instruction, Primitive::kPrimFloat);
break;
}
case Instruction::SUB_DOUBLE: {
Binop_23x<HSub>(instruction, Primitive::kPrimDouble);
break;
}
case Instruction::ADD_INT_2ADDR: {
Binop_12x<HAdd>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::MUL_INT: {
Binop_23x<HMul>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::MUL_LONG: {
Binop_23x<HMul>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::MUL_FLOAT: {
Binop_23x<HMul>(instruction, Primitive::kPrimFloat);
break;
}
case Instruction::MUL_DOUBLE: {
Binop_23x<HMul>(instruction, Primitive::kPrimDouble);
break;
}
case Instruction::DIV_INT: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, Primitive::kPrimInt, false, true);
break;
}
case Instruction::DIV_LONG: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, Primitive::kPrimLong, false, true);
break;
}
case Instruction::DIV_FLOAT: {
Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
break;
}
case Instruction::DIV_DOUBLE: {
Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
break;
}
case Instruction::REM_INT: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, Primitive::kPrimInt, false, false);
break;
}
case Instruction::REM_LONG: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, Primitive::kPrimLong, false, false);
break;
}
case Instruction::REM_FLOAT: {
Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
break;
}
case Instruction::REM_DOUBLE: {
Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
break;
}
case Instruction::AND_INT: {
Binop_23x<HAnd>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::AND_LONG: {
Binop_23x<HAnd>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::SHL_INT: {
Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SHL_LONG: {
Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::SHR_INT: {
Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SHR_LONG: {
Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::USHR_INT: {
Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::USHR_LONG: {
Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::OR_INT: {
Binop_23x<HOr>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::OR_LONG: {
Binop_23x<HOr>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::XOR_INT: {
Binop_23x<HXor>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::XOR_LONG: {
Binop_23x<HXor>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::ADD_LONG_2ADDR: {
Binop_12x<HAdd>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::ADD_DOUBLE_2ADDR: {
Binop_12x<HAdd>(instruction, Primitive::kPrimDouble);
break;
}
case Instruction::ADD_FLOAT_2ADDR: {
Binop_12x<HAdd>(instruction, Primitive::kPrimFloat);
break;
}
case Instruction::SUB_INT_2ADDR: {
Binop_12x<HSub>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SUB_LONG_2ADDR: {
Binop_12x<HSub>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::SUB_FLOAT_2ADDR: {
Binop_12x<HSub>(instruction, Primitive::kPrimFloat);
break;
}
case Instruction::SUB_DOUBLE_2ADDR: {
Binop_12x<HSub>(instruction, Primitive::kPrimDouble);
break;
}
case Instruction::MUL_INT_2ADDR: {
Binop_12x<HMul>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::MUL_LONG_2ADDR: {
Binop_12x<HMul>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::MUL_FLOAT_2ADDR: {
Binop_12x<HMul>(instruction, Primitive::kPrimFloat);
break;
}
case Instruction::MUL_DOUBLE_2ADDR: {
Binop_12x<HMul>(instruction, Primitive::kPrimDouble);
break;
}
case Instruction::DIV_INT_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, Primitive::kPrimInt, false, true);
break;
}
case Instruction::DIV_LONG_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, Primitive::kPrimLong, false, true);
break;
}
case Instruction::REM_INT_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, Primitive::kPrimInt, false, false);
break;
}
case Instruction::REM_LONG_2ADDR: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
dex_pc, Primitive::kPrimLong, false, false);
break;
}
case Instruction::REM_FLOAT_2ADDR: {
Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
break;
}
case Instruction::REM_DOUBLE_2ADDR: {
Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
break;
}
case Instruction::SHL_INT_2ADDR: {
Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SHL_LONG_2ADDR: {
Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::SHR_INT_2ADDR: {
Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SHR_LONG_2ADDR: {
Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::USHR_INT_2ADDR: {
Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::USHR_LONG_2ADDR: {
Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::DIV_FLOAT_2ADDR: {
Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
break;
}
case Instruction::DIV_DOUBLE_2ADDR: {
Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
break;
}
case Instruction::AND_INT_2ADDR: {
Binop_12x<HAnd>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::AND_LONG_2ADDR: {
Binop_12x<HAnd>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::OR_INT_2ADDR: {
Binop_12x<HOr>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::OR_LONG_2ADDR: {
Binop_12x<HOr>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::XOR_INT_2ADDR: {
Binop_12x<HXor>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::XOR_LONG_2ADDR: {
Binop_12x<HXor>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::ADD_INT_LIT16: {
Binop_22s<HAdd>(instruction, false);
break;
}
case Instruction::AND_INT_LIT16: {
Binop_22s<HAnd>(instruction, false);
break;
}
case Instruction::OR_INT_LIT16: {
Binop_22s<HOr>(instruction, false);
break;
}
case Instruction::XOR_INT_LIT16: {
Binop_22s<HXor>(instruction, false);
break;
}
case Instruction::RSUB_INT: {
Binop_22s<HSub>(instruction, true);
break;
}
case Instruction::MUL_INT_LIT16: {
Binop_22s<HMul>(instruction, false);
break;
}
case Instruction::ADD_INT_LIT8: {
Binop_22b<HAdd>(instruction, false);
break;
}
case Instruction::AND_INT_LIT8: {
Binop_22b<HAnd>(instruction, false);
break;
}
case Instruction::OR_INT_LIT8: {
Binop_22b<HOr>(instruction, false);
break;
}
case Instruction::XOR_INT_LIT8: {
Binop_22b<HXor>(instruction, false);
break;
}
case Instruction::RSUB_INT_LIT8: {
Binop_22b<HSub>(instruction, true);
break;
}
case Instruction::MUL_INT_LIT8: {
Binop_22b<HMul>(instruction, false);
break;
}
case Instruction::DIV_INT_LIT16:
case Instruction::DIV_INT_LIT8: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, Primitive::kPrimInt, true, true);
break;
}
case Instruction::REM_INT_LIT16:
case Instruction::REM_INT_LIT8: {
BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
dex_pc, Primitive::kPrimInt, true, false);
break;
}
case Instruction::SHL_INT_LIT8: {
Binop_22b<HShl>(instruction, false);
break;
}
case Instruction::SHR_INT_LIT8: {
Binop_22b<HShr>(instruction, false);
break;
}
case Instruction::USHR_INT_LIT8: {
Binop_22b<HUShr>(instruction, false);
break;
}
case Instruction::NEW_INSTANCE: {
uint16_t type_index = instruction.VRegB_21c();
if (compiler_driver_->IsStringTypeIndex(type_index, dex_file_)) {
// Turn new-instance of string into a const 0.
int32_t register_index = instruction.VRegA();
HNullConstant* constant = graph_->GetNullConstant();
UpdateLocal(register_index, constant);
} else {
QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
? kQuickAllocObjectWithAccessCheck
: kQuickAllocObject;
current_block_->AddInstruction(new (arena_) HNewInstance(
graph_->GetCurrentMethod(),
dex_pc,
type_index,
*dex_compilation_unit_->GetDexFile(),
entrypoint));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
break;
}
case Instruction::NEW_ARRAY: {
uint16_t type_index = instruction.VRegC_22c();
HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index)
? kQuickAllocArrayWithAccessCheck
: kQuickAllocArray;
current_block_->AddInstruction(new (arena_) HNewArray(length,
graph_->GetCurrentMethod(),
dex_pc,
type_index,
*dex_compilation_unit_->GetDexFile(),
entrypoint));
UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
break;
}
case Instruction::FILLED_NEW_ARRAY: {
uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
uint32_t type_index = instruction.VRegB_35c();
uint32_t args[5];
instruction.GetVarArgs(args);
BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
break;
}
case Instruction::FILLED_NEW_ARRAY_RANGE: {
uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
uint32_t type_index = instruction.VRegB_3rc();
uint32_t register_index = instruction.VRegC_3rc();
BuildFilledNewArray(
dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
break;
}
case Instruction::FILL_ARRAY_DATA: {
BuildFillArrayData(instruction, dex_pc);
break;
}
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_WIDE:
case Instruction::MOVE_RESULT_OBJECT: {
if (latest_result_ == nullptr) {
// Only dead code can lead to this situation, where the verifier
// does not reject the method.
} else {
// An Invoke/FilledNewArray and its MoveResult could have landed in
// different blocks if there was a try/catch block boundary between
// them. For Invoke, we insert a StoreLocal after the instruction. For
// FilledNewArray, the local needs to be updated after the array was
// filled, otherwise we might overwrite an input vreg.
HStoreLocal* update_local =
new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_);
HBasicBlock* block = latest_result_->GetBlock();
if (block == current_block_) {
// MoveResult and the previous instruction are in the same block.
current_block_->AddInstruction(update_local);
} else {
// The two instructions are in different blocks. Insert the MoveResult
// before the final control-flow instruction of the previous block.
DCHECK(block->EndsWithControlFlowInstruction());
DCHECK(current_block_->GetInstructions().IsEmpty());
block->InsertInstructionBefore(update_local, block->GetLastInstruction());
}
latest_result_ = nullptr;
}
break;
}
case Instruction::CMP_LONG: {
Binop_23x_cmp(instruction, Primitive::kPrimLong, HCompare::kNoBias, dex_pc);
break;
}
case Instruction::CMPG_FLOAT: {
Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kGtBias, dex_pc);
break;
}
case Instruction::CMPG_DOUBLE: {
Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kGtBias, dex_pc);
break;
}
case Instruction::CMPL_FLOAT: {
Binop_23x_cmp(instruction, Primitive::kPrimFloat, HCompare::kLtBias, dex_pc);
break;
}
case Instruction::CMPL_DOUBLE: {
Binop_23x_cmp(instruction, Primitive::kPrimDouble, HCompare::kLtBias, dex_pc);
break;
}
case Instruction::NOP:
break;
case Instruction::IGET:
case Instruction::IGET_WIDE:
case Instruction::IGET_OBJECT:
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
case Instruction::IGET_CHAR:
case Instruction::IGET_SHORT: {
if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
return false;
}
break;
}
case Instruction::IPUT:
case Instruction::IPUT_WIDE:
case Instruction::IPUT_OBJECT:
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
case Instruction::IPUT_CHAR:
case Instruction::IPUT_SHORT: {
if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
return false;
}
break;
}
case Instruction::SGET:
case Instruction::SGET_WIDE:
case Instruction::SGET_OBJECT:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT: {
if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
return false;
}
break;
}
case Instruction::SPUT:
case Instruction::SPUT_WIDE:
case Instruction::SPUT_OBJECT:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT: {
if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
return false;
}
break;
}
#define ARRAY_XX(kind, anticipated_type) \
case Instruction::AGET##kind: { \
BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
break; \
} \
case Instruction::APUT##kind: { \
BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
break; \
}
ARRAY_XX(, Primitive::kPrimInt);
ARRAY_XX(_WIDE, Primitive::kPrimLong);
ARRAY_XX(_OBJECT, Primitive::kPrimNot);
ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
ARRAY_XX(_BYTE, Primitive::kPrimByte);
ARRAY_XX(_CHAR, Primitive::kPrimChar);
ARRAY_XX(_SHORT, Primitive::kPrimShort);
case Instruction::ARRAY_LENGTH: {
HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot);
// No need for a temporary for the null check, it is the only input of the following
// instruction.
object = new (arena_) HNullCheck(object, dex_pc);
current_block_->AddInstruction(object);
current_block_->AddInstruction(new (arena_) HArrayLength(object));
UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_STRING: {
current_block_->AddInstruction(
new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_21c(), dex_pc));
UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_STRING_JUMBO: {
current_block_->AddInstruction(
new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_31c(), dex_pc));
UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
break;
}
case Instruction::CONST_CLASS: {
uint16_t type_index = instruction.VRegB_21c();
bool type_known_final;
bool type_known_abstract;
bool dont_use_is_referrers_class;
// `CanAccessTypeWithoutChecks` will tell whether the method being
// built is trying to access its own class, so that the generated
// code can optimize for this case. However, the optimization does not
// work for inlining, so we use `IsOutermostCompilingClass` instead.
bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
&type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
if (!can_access) {
MaybeRecordStat(MethodCompilationStat::kNotCompiledCantAccesType);
return false;
}
current_block_->AddInstruction(new (arena_) HLoadClass(
graph_->GetCurrentMethod(),
type_index,
*dex_compilation_unit_->GetDexFile(),
IsOutermostCompilingClass(type_index),
dex_pc));
UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
break;
}
case Instruction::MOVE_EXCEPTION: {
current_block_->AddInstruction(new (arena_) HLoadException());
UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
break;
}
case Instruction::THROW: {
HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
// A throw instruction must branch to the exit block.
current_block_->AddSuccessor(exit_block_);
// We finished building this block. Set the current block to null to avoid
// adding dead instructions to it.
current_block_ = nullptr;
break;
}
case Instruction::INSTANCE_OF: {
uint8_t destination = instruction.VRegA_22c();
uint8_t reference = instruction.VRegB_22c();
uint16_t type_index = instruction.VRegC_22c();
if (!BuildTypeCheck(instruction, destination, reference, type_index, dex_pc)) {
return false;
}
break;
}
case Instruction::CHECK_CAST: {
uint8_t reference = instruction.VRegA_21c();
uint16_t type_index = instruction.VRegB_21c();
if (!BuildTypeCheck(instruction, -1, reference, type_index, dex_pc)) {
return false;
}
break;
}
case Instruction::MONITOR_ENTER: {
current_block_->AddInstruction(new (arena_) HMonitorOperation(
LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
HMonitorOperation::kEnter,
dex_pc));
break;
}
case Instruction::MONITOR_EXIT: {
current_block_->AddInstruction(new (arena_) HMonitorOperation(
LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
HMonitorOperation::kExit,
dex_pc));
break;
}
case Instruction::PACKED_SWITCH: {
BuildPackedSwitch(instruction, dex_pc);
break;
}
case Instruction::SPARSE_SWITCH: {
BuildSparseSwitch(instruction, dex_pc);
break;
}
default:
VLOG(compiler) << "Did not compile "
<< PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
<< " because of unhandled instruction "
<< instruction.Name();
MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
return false;
}
return true;
} // NOLINT(readability/fn_size)
HLocal* HGraphBuilder::GetLocalAt(int register_index) const {
return locals_.Get(register_index);
}
void HGraphBuilder::UpdateLocal(int register_index, HInstruction* instruction) const {
HLocal* local = GetLocalAt(register_index);
current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction));
}
HInstruction* HGraphBuilder::LoadLocal(int register_index, Primitive::Type type) const {
HLocal* local = GetLocalAt(register_index);
current_block_->AddInstruction(new (arena_) HLoadLocal(local, type));
return current_block_->GetLastInstruction();
}
} // namespace art