| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "ssa_builder.h" | 
 |  | 
 | #include "nodes.h" | 
 | #include "reference_type_propagation.h" | 
 | #include "ssa_phi_elimination.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | void SsaBuilder::SetLoopHeaderPhiInputs() { | 
 |   for (size_t i = loop_headers_.size(); i > 0; --i) { | 
 |     HBasicBlock* block = loop_headers_[i - 1]; | 
 |     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { | 
 |       HPhi* phi = it.Current()->AsPhi(); | 
 |       size_t vreg = phi->GetRegNumber(); | 
 |       for (HBasicBlock* predecessor : block->GetPredecessors()) { | 
 |         HInstruction* value = ValueOfLocal(predecessor, vreg); | 
 |         if (value == nullptr) { | 
 |           // Vreg is undefined at this predecessor. Mark it dead and leave with | 
 |           // fewer inputs than predecessors. SsaChecker will fail if not removed. | 
 |           phi->SetDead(); | 
 |           break; | 
 |         } else { | 
 |           phi->AddInput(value); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaBuilder::FixNullConstantType() { | 
 |   // The order doesn't matter here. | 
 |   for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { | 
 |     for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) { | 
 |       HInstruction* equality_instr = it.Current(); | 
 |       if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) { | 
 |         continue; | 
 |       } | 
 |       HInstruction* left = equality_instr->InputAt(0); | 
 |       HInstruction* right = equality_instr->InputAt(1); | 
 |       HInstruction* int_operand = nullptr; | 
 |  | 
 |       if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) { | 
 |         int_operand = right; | 
 |       } else if ((right->GetType() == Primitive::kPrimNot) | 
 |                  && (left->GetType() == Primitive::kPrimInt)) { | 
 |         int_operand = left; | 
 |       } else { | 
 |         continue; | 
 |       } | 
 |  | 
 |       // If we got here, we are comparing against a reference and the int constant | 
 |       // should be replaced with a null constant. | 
 |       // Both type propagation and redundant phi elimination ensure `int_operand` | 
 |       // can only be the 0 constant. | 
 |       DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName(); | 
 |       DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue()); | 
 |       equality_instr->ReplaceInput(GetGraph()->GetNullConstant(), int_operand == right ? 1 : 0); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaBuilder::EquivalentPhisCleanup() { | 
 |   // The order doesn't matter here. | 
 |   for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) { | 
 |     for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) { | 
 |       HPhi* phi = it.Current()->AsPhi(); | 
 |       HPhi* next = phi->GetNextEquivalentPhiWithSameType(); | 
 |       if (next != nullptr) { | 
 |         // Make sure we do not replace a live phi with a dead phi. A live phi | 
 |         // has been handled by the type propagation phase, unlike a dead phi. | 
 |         if (next->IsLive()) { | 
 |           phi->ReplaceWith(next); | 
 |           phi->SetDead(); | 
 |         } else { | 
 |           next->ReplaceWith(phi); | 
 |         } | 
 |         DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr) | 
 |             << "More then one phi equivalent with type " << phi->GetType() | 
 |             << " found for phi" << phi->GetId(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaBuilder::FixEnvironmentPhis() { | 
 |   for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) { | 
 |       HPhi* phi = it_phis.Current()->AsPhi(); | 
 |       // If the phi is not dead, or has no environment uses, there is nothing to do. | 
 |       if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue; | 
 |       HInstruction* next = phi->GetNext(); | 
 |       if (!phi->IsVRegEquivalentOf(next)) continue; | 
 |       if (next->AsPhi()->IsDead()) { | 
 |         // If the phi equivalent is dead, check if there is another one. | 
 |         next = next->GetNext(); | 
 |         if (!phi->IsVRegEquivalentOf(next)) continue; | 
 |         // There can be at most two phi equivalents. | 
 |         DCHECK(!phi->IsVRegEquivalentOf(next->GetNext())); | 
 |         if (next->AsPhi()->IsDead()) continue; | 
 |       } | 
 |       // We found a live phi equivalent. Update the environment uses of `phi` with it. | 
 |       phi->ReplaceWith(next); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void AddDependentInstructionsToWorklist(HInstruction* instruction, | 
 |                                                ArenaVector<HPhi*>* worklist) { | 
 |   // If `instruction` is a dead phi, type conflict was just identified. All its | 
 |   // live phi users, and transitively users of those users, therefore need to be | 
 |   // marked dead/conflicting too, so we add them to the worklist. Otherwise we | 
 |   // add users whose type does not match and needs to be updated. | 
 |   bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead(); | 
 |   for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) { | 
 |     HInstruction* user = it.Current()->GetUser(); | 
 |     if (user->IsPhi() && user->AsPhi()->IsLive()) { | 
 |       if (add_all_live_phis || user->GetType() != instruction->GetType()) { | 
 |         worklist->push_back(user->AsPhi()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Find a candidate primitive type for `phi` by merging the type of its inputs. | 
 | // Return false if conflict is identified. | 
 | static bool TypePhiFromInputs(HPhi* phi) { | 
 |   Primitive::Type common_type = phi->GetType(); | 
 |  | 
 |   for (HInputIterator it(phi); !it.Done(); it.Advance()) { | 
 |     HInstruction* input = it.Current(); | 
 |     if (input->IsPhi() && input->AsPhi()->IsDead()) { | 
 |       // Phis are constructed live so if an input is a dead phi, it must have | 
 |       // been made dead due to type conflict. Mark this phi conflicting too. | 
 |       return false; | 
 |     } | 
 |  | 
 |     Primitive::Type input_type = HPhi::ToPhiType(input->GetType()); | 
 |     if (common_type == input_type) { | 
 |       // No change in type. | 
 |     } else if (Primitive::Is64BitType(common_type) != Primitive::Is64BitType(input_type)) { | 
 |       // Types are of different sizes, e.g. int vs. long. Must be a conflict. | 
 |       return false; | 
 |     } else if (Primitive::IsIntegralType(common_type)) { | 
 |       // Previous inputs were integral, this one is not but is of the same size. | 
 |       // This does not imply conflict since some bytecode instruction types are | 
 |       // ambiguous. TypeInputsOfPhi will either type them or detect a conflict. | 
 |       DCHECK(Primitive::IsFloatingPointType(input_type) || input_type == Primitive::kPrimNot); | 
 |       common_type = input_type; | 
 |     } else if (Primitive::IsIntegralType(input_type)) { | 
 |       // Input is integral, common type is not. Same as in the previous case, if | 
 |       // there is a conflict, it will be detected during TypeInputsOfPhi. | 
 |       DCHECK(Primitive::IsFloatingPointType(common_type) || common_type == Primitive::kPrimNot); | 
 |     } else { | 
 |       // Combining float and reference types. Clearly a conflict. | 
 |       DCHECK((common_type == Primitive::kPrimFloat && input_type == Primitive::kPrimNot) || | 
 |              (common_type == Primitive::kPrimNot && input_type == Primitive::kPrimFloat)); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // We have found a candidate type for the phi. Set it and return true. We may | 
 |   // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi. | 
 |   phi->SetType(common_type); | 
 |   return true; | 
 | } | 
 |  | 
 | // Replace inputs of `phi` to match its type. Return false if conflict is identified. | 
 | bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ArenaVector<HPhi*>* worklist) { | 
 |   Primitive::Type common_type = phi->GetType(); | 
 |   if (common_type == Primitive::kPrimVoid || Primitive::IsIntegralType(common_type)) { | 
 |     // Phi either contains only other untyped phis (common_type == kPrimVoid), | 
 |     // or `common_type` is integral and we do not need to retype ambiguous inputs | 
 |     // because they are always constructed with the integral type candidate. | 
 |     if (kIsDebugBuild) { | 
 |       for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { | 
 |         HInstruction* input = phi->InputAt(i); | 
 |         if (common_type == Primitive::kPrimVoid) { | 
 |           DCHECK(input->IsPhi() && input->GetType() == Primitive::kPrimVoid); | 
 |         } else { | 
 |           DCHECK((input->IsPhi() && input->GetType() == Primitive::kPrimVoid) || | 
 |                  HPhi::ToPhiType(input->GetType()) == common_type); | 
 |         } | 
 |       } | 
 |     } | 
 |     // Inputs did not need to be replaced, hence no conflict. Report success. | 
 |     return true; | 
 |   } else { | 
 |     DCHECK(common_type == Primitive::kPrimNot || Primitive::IsFloatingPointType(common_type)); | 
 |     for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { | 
 |       HInstruction* input = phi->InputAt(i); | 
 |       if (input->GetType() != common_type) { | 
 |         // Input type does not match phi's type. Try to retype the input or | 
 |         // generate a suitably typed equivalent. | 
 |         HInstruction* equivalent = (common_type == Primitive::kPrimNot) | 
 |             ? GetReferenceTypeEquivalent(input) | 
 |             : GetFloatOrDoubleEquivalent(input, common_type); | 
 |         if (equivalent == nullptr) { | 
 |           // Input could not be typed. Report conflict. | 
 |           return false; | 
 |         } | 
 |         // Make sure the input did not change its type and we do not need to | 
 |         // update its users. | 
 |         DCHECK_NE(input, equivalent); | 
 |  | 
 |         phi->ReplaceInput(equivalent, i); | 
 |         if (equivalent->IsPhi()) { | 
 |           worklist->push_back(equivalent->AsPhi()); | 
 |         } | 
 |       } | 
 |     } | 
 |     // All inputs either matched the type of the phi or we successfully replaced | 
 |     // them with a suitable equivalent. Report success. | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | // Attempt to set the primitive type of `phi` to match its inputs. Return whether | 
 | // it was changed by the algorithm or not. | 
 | bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ArenaVector<HPhi*>* worklist) { | 
 |   DCHECK(phi->IsLive()); | 
 |   Primitive::Type original_type = phi->GetType(); | 
 |  | 
 |   // Try to type the phi in two stages: | 
 |   // (1) find a candidate type for the phi by merging types of all its inputs, | 
 |   // (2) try to type the phi's inputs to that candidate type. | 
 |   // Either of these stages may detect a type conflict and fail, in which case | 
 |   // we immediately abort. | 
 |   if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) { | 
 |     // Conflict detected. Mark the phi dead and return true because it changed. | 
 |     phi->SetDead(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Return true if the type of the phi has changed. | 
 |   return phi->GetType() != original_type; | 
 | } | 
 |  | 
 | void SsaBuilder::RunPrimitiveTypePropagation() { | 
 |   ArenaVector<HPhi*> worklist(GetGraph()->GetArena()->Adapter()); | 
 |  | 
 |   for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     if (block->IsLoopHeader()) { | 
 |       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { | 
 |         HPhi* phi = phi_it.Current()->AsPhi(); | 
 |         if (phi->IsLive()) { | 
 |           worklist.push_back(phi); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { | 
 |         // Eagerly compute the type of the phi, for quicker convergence. Note | 
 |         // that we don't need to add users to the worklist because we are | 
 |         // doing a reverse post-order visit, therefore either the phi users are | 
 |         // non-loop phi and will be visited later in the visit, or are loop-phis, | 
 |         // and they are already in the work list. | 
 |         HPhi* phi = phi_it.Current()->AsPhi(); | 
 |         if (phi->IsLive()) { | 
 |           UpdatePrimitiveType(phi, &worklist); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   ProcessPrimitiveTypePropagationWorklist(&worklist); | 
 |   EquivalentPhisCleanup(); | 
 | } | 
 |  | 
 | void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi*>* worklist) { | 
 |   // Process worklist | 
 |   while (!worklist->empty()) { | 
 |     HPhi* phi = worklist->back(); | 
 |     worklist->pop_back(); | 
 |     // The phi could have been made dead as a result of conflicts while in the | 
 |     // worklist. If it is now dead, there is no point in updating its type. | 
 |     if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) { | 
 |       AddDependentInstructionsToWorklist(phi, worklist); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { | 
 |   Primitive::Type type = aget->GetType(); | 
 |   DCHECK(Primitive::IsIntOrLongType(type)); | 
 |   HArrayGet* next = aget->GetNext()->AsArrayGet(); | 
 |   return (next != nullptr && next->IsEquivalentOf(aget)) ? next : nullptr; | 
 | } | 
 |  | 
 | static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { | 
 |   Primitive::Type type = aget->GetType(); | 
 |   DCHECK(Primitive::IsIntOrLongType(type)); | 
 |   DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr); | 
 |  | 
 |   HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetArena()) HArrayGet( | 
 |       aget->GetArray(), | 
 |       aget->GetIndex(), | 
 |       type == Primitive::kPrimInt ? Primitive::kPrimFloat : Primitive::kPrimDouble, | 
 |       aget->GetDexPc()); | 
 |   aget->GetBlock()->InsertInstructionAfter(equivalent, aget); | 
 |   return equivalent; | 
 | } | 
 |  | 
 | static Primitive::Type GetPrimitiveArrayComponentType(HInstruction* array) | 
 |     SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |   ReferenceTypeInfo array_type = array->GetReferenceTypeInfo(); | 
 |   DCHECK(array_type.IsPrimitiveArrayClass()); | 
 |   return array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType(); | 
 | } | 
 |  | 
 | bool SsaBuilder::FixAmbiguousArrayOps() { | 
 |   if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet | 
 |   // uses (because they are untyped) and environment uses (if --debuggable). | 
 |   // After resolving all ambiguous ArrayGets, we will re-run primitive type | 
 |   // propagation on the Phis which need to be updated. | 
 |   ArenaVector<HPhi*> worklist(GetGraph()->GetArena()->Adapter()); | 
 |  | 
 |   { | 
 |     ScopedObjectAccess soa(Thread::Current()); | 
 |  | 
 |     for (HArrayGet* aget_int : ambiguous_agets_) { | 
 |       HInstruction* array = aget_int->GetArray(); | 
 |       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { | 
 |         // RTP did not type the input array. Bail. | 
 |         return false; | 
 |       } | 
 |  | 
 |       HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int); | 
 |       Primitive::Type array_type = GetPrimitiveArrayComponentType(array); | 
 |       DCHECK_EQ(Primitive::Is64BitType(aget_int->GetType()), Primitive::Is64BitType(array_type)); | 
 |  | 
 |       if (Primitive::IsIntOrLongType(array_type)) { | 
 |         if (aget_float != nullptr) { | 
 |           // There is a float/double equivalent. We must replace it and re-run | 
 |           // primitive type propagation on all dependent instructions. | 
 |           aget_float->ReplaceWith(aget_int); | 
 |           aget_float->GetBlock()->RemoveInstruction(aget_float); | 
 |           AddDependentInstructionsToWorklist(aget_int, &worklist); | 
 |         } | 
 |       } else { | 
 |         DCHECK(Primitive::IsFloatingPointType(array_type)); | 
 |         if (aget_float == nullptr) { | 
 |           // This is a float/double ArrayGet but there were no typed uses which | 
 |           // would create the typed equivalent. Create it now. | 
 |           aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int); | 
 |         } | 
 |         // Replace the original int/long instruction. Note that it may have phi | 
 |         // uses, environment uses, as well as real uses (from untyped ArraySets). | 
 |         // We need to re-run primitive type propagation on its dependent instructions. | 
 |         aget_int->ReplaceWith(aget_float); | 
 |         aget_int->GetBlock()->RemoveInstruction(aget_int); | 
 |         AddDependentInstructionsToWorklist(aget_float, &worklist); | 
 |       } | 
 |     } | 
 |  | 
 |     // Set a flag stating that types of ArrayGets have been resolved. Requesting | 
 |     // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet | 
 |     // will fail from now on. | 
 |     agets_fixed_ = true; | 
 |  | 
 |     for (HArraySet* aset : ambiguous_asets_) { | 
 |       HInstruction* array = aset->GetArray(); | 
 |       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { | 
 |         // RTP did not type the input array. Bail. | 
 |         return false; | 
 |       } | 
 |  | 
 |       HInstruction* value = aset->GetValue(); | 
 |       Primitive::Type value_type = value->GetType(); | 
 |       Primitive::Type array_type = GetPrimitiveArrayComponentType(array); | 
 |       DCHECK_EQ(Primitive::Is64BitType(value_type), Primitive::Is64BitType(array_type)); | 
 |  | 
 |       if (Primitive::IsFloatingPointType(array_type)) { | 
 |         if (!Primitive::IsFloatingPointType(value_type)) { | 
 |           DCHECK(Primitive::IsIntegralType(value_type)); | 
 |           // Array elements are floating-point but the value has not been replaced | 
 |           // with its floating-point equivalent. The replacement must always | 
 |           // succeed in code validated by the verifier. | 
 |           HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type); | 
 |           DCHECK(equivalent != nullptr); | 
 |           aset->ReplaceInput(equivalent, /* input_index */ 2); | 
 |           if (equivalent->IsPhi()) { | 
 |             // Returned equivalent is a phi which may not have had its inputs | 
 |             // replaced yet. We need to run primitive type propagation on it. | 
 |             worklist.push_back(equivalent->AsPhi()); | 
 |           } | 
 |         } | 
 |       } else { | 
 |         // Array elements are integral and the value assigned to it initially | 
 |         // was integral too. Nothing to do. | 
 |         DCHECK(Primitive::IsIntegralType(array_type)); | 
 |         DCHECK(Primitive::IsIntegralType(value_type)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!worklist.empty()) { | 
 |     ProcessPrimitiveTypePropagationWorklist(&worklist); | 
 |     EquivalentPhisCleanup(); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool HasAliasInEnvironments(HInstruction* instruction) { | 
 |   for (HUseIterator<HEnvironment*> use_it(instruction->GetEnvUses()); | 
 |        !use_it.Done(); | 
 |        use_it.Advance()) { | 
 |     HEnvironment* use = use_it.Current()->GetUser(); | 
 |     HUseListNode<HEnvironment*>* next = use_it.Current()->GetNext(); | 
 |     if (next != nullptr && next->GetUser() == use) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (kIsDebugBuild) { | 
 |     // Do a quadratic search to ensure same environment uses are next | 
 |     // to each other. | 
 |     for (HUseIterator<HEnvironment*> use_it(instruction->GetEnvUses()); | 
 |          !use_it.Done(); | 
 |          use_it.Advance()) { | 
 |       HUseListNode<HEnvironment*>* current = use_it.Current(); | 
 |       HUseListNode<HEnvironment*>* next = current->GetNext(); | 
 |       while (next != nullptr) { | 
 |         DCHECK(next->GetUser() != current->GetUser()); | 
 |         next = next->GetNext(); | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void SsaBuilder::RemoveRedundantUninitializedStrings() { | 
 |   if (GetGraph()->IsDebuggable()) { | 
 |     // Do not perform the optimization for consistency with the interpreter | 
 |     // which always allocates an object for new-instance of String. | 
 |     return; | 
 |   } | 
 |  | 
 |   for (HNewInstance* new_instance : uninitialized_strings_) { | 
 |     // Replace NewInstance of String with NullConstant if not used prior to | 
 |     // calling StringFactory. In case of deoptimization, the interpreter is | 
 |     // expected to skip null check on the `this` argument of the StringFactory call. | 
 |     if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) { | 
 |       new_instance->ReplaceWith(GetGraph()->GetNullConstant()); | 
 |       new_instance->GetBlock()->RemoveInstruction(new_instance); | 
 |  | 
 |       // Remove LoadClass if not needed any more. | 
 |       HInstruction* input = new_instance->InputAt(0); | 
 |       HLoadClass* load_class = nullptr; | 
 |  | 
 |       // If the class was not present in the dex cache at the point of building | 
 |       // the graph, the builder inserted a HClinitCheck in between. Since the String | 
 |       // class is always initialized at the point of running Java code, we can remove | 
 |       // that check. | 
 |       if (input->IsClinitCheck()) { | 
 |         load_class = input->InputAt(0)->AsLoadClass(); | 
 |         input->ReplaceWith(load_class); | 
 |         input->GetBlock()->RemoveInstruction(input); | 
 |       } else { | 
 |         load_class = input->AsLoadClass(); | 
 |         DCHECK(new_instance->IsStringAlloc()); | 
 |         DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible"; | 
 |       } | 
 |       DCHECK(load_class != nullptr); | 
 |       if (!load_class->HasUses()) { | 
 |         // Even if the HLoadClass needs access check, we can remove it, as we know the | 
 |         // String class does not need it. | 
 |         load_class->GetBlock()->RemoveInstruction(load_class); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | GraphAnalysisResult SsaBuilder::BuildSsa() { | 
 |   DCHECK(!GetGraph()->IsInSsaForm()); | 
 |  | 
 |   // 1) Visit in reverse post order. We need to have all predecessors of a block | 
 |   // visited (with the exception of loops) in order to create the right environment | 
 |   // for that block. For loops, we create phis whose inputs will be set in 2). | 
 |   for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { | 
 |     VisitBasicBlock(it.Current()); | 
 |   } | 
 |  | 
 |   // 2) Set inputs of loop header phis. | 
 |   SetLoopHeaderPhiInputs(); | 
 |  | 
 |   // 3) Propagate types of phis. At this point, phis are typed void in the general | 
 |   // case, or float/double/reference if we created an equivalent phi. So we need | 
 |   // to propagate the types across phis to give them a correct type. If a type | 
 |   // conflict is detected in this stage, the phi is marked dead. | 
 |   RunPrimitiveTypePropagation(); | 
 |  | 
 |   // 4) Now that the correct primitive types have been assigned, we can get rid | 
 |   // of redundant phis. Note that we cannot do this phase before type propagation, | 
 |   // otherwise we could get rid of phi equivalents, whose presence is a requirement | 
 |   // for the type propagation phase. Note that this is to satisfy statement (a) | 
 |   // of the SsaBuilder (see ssa_builder.h). | 
 |   SsaRedundantPhiElimination(GetGraph()).Run(); | 
 |  | 
 |   // 5) Fix the type for null constants which are part of an equality comparison. | 
 |   // We need to do this after redundant phi elimination, to ensure the only cases | 
 |   // that we can see are reference comparison against 0. The redundant phi | 
 |   // elimination ensures we do not see a phi taking two 0 constants in a HEqual | 
 |   // or HNotEqual. | 
 |   FixNullConstantType(); | 
 |  | 
 |   // 6) Compute type of reference type instructions. The pass assumes that | 
 |   // NullConstant has been fixed up. | 
 |   ReferenceTypePropagation(GetGraph(), handles_, /* is_first_run */ true).Run(); | 
 |  | 
 |   // 7) Step 1) duplicated ArrayGet instructions with ambiguous type (int/float | 
 |   // or long/double) and marked ArraySets with ambiguous input type. Now that RTP | 
 |   // computed the type of the array input, the ambiguity can be resolved and the | 
 |   // correct equivalents kept. | 
 |   if (!FixAmbiguousArrayOps()) { | 
 |     return kAnalysisFailAmbiguousArrayOp; | 
 |   } | 
 |  | 
 |   // 8) Mark dead phis. This will mark phis which are not used by instructions | 
 |   // or other live phis. If compiling as debuggable code, phis will also be kept | 
 |   // live if they have an environment use. | 
 |   SsaDeadPhiElimination dead_phi_elimimation(GetGraph()); | 
 |   dead_phi_elimimation.MarkDeadPhis(); | 
 |  | 
 |   // 9) Make sure environments use the right phi equivalent: a phi marked dead | 
 |   // can have a phi equivalent that is not dead. In that case we have to replace | 
 |   // it with the live equivalent because deoptimization and try/catch rely on | 
 |   // environments containing values of all live vregs at that point. Note that | 
 |   // there can be multiple phis for the same Dex register that are live | 
 |   // (for example when merging constants), in which case it is okay for the | 
 |   // environments to just reference one. | 
 |   FixEnvironmentPhis(); | 
 |  | 
 |   // 10) Now that the right phis are used for the environments, we can eliminate | 
 |   // phis we do not need. Regardless of the debuggable status, this phase is | 
 |   /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well | 
 |   // as for the code generation, which does not deal with phis of conflicting | 
 |   // input types. | 
 |   dead_phi_elimimation.EliminateDeadPhis(); | 
 |  | 
 |   // 11) Step 1) replaced uses of NewInstances of String with the results of | 
 |   // their corresponding StringFactory calls. Unless the String objects are used | 
 |   // before they are initialized, they can be replaced with NullConstant. | 
 |   // Note that this optimization is valid only if unsimplified code does not use | 
 |   // the uninitialized value because we assume execution can be deoptimized at | 
 |   // any safepoint. We must therefore perform it before any other optimizations. | 
 |   RemoveRedundantUninitializedStrings(); | 
 |  | 
 |   // 12) Clear locals. | 
 |   for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions()); | 
 |        !it.Done(); | 
 |        it.Advance()) { | 
 |     HInstruction* current = it.Current(); | 
 |     if (current->IsLocal()) { | 
 |       current->GetBlock()->RemoveInstruction(current); | 
 |     } | 
 |   } | 
 |  | 
 |   GetGraph()->SetInSsaForm(); | 
 |   return kAnalysisSuccess; | 
 | } | 
 |  | 
 | ArenaVector<HInstruction*>* SsaBuilder::GetLocalsFor(HBasicBlock* block) { | 
 |   ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; | 
 |   const size_t vregs = GetGraph()->GetNumberOfVRegs(); | 
 |   if (locals->empty() && vregs != 0u) { | 
 |     locals->resize(vregs, nullptr); | 
 |  | 
 |     if (block->IsCatchBlock()) { | 
 |       ArenaAllocator* arena = GetGraph()->GetArena(); | 
 |       // We record incoming inputs of catch phis at throwing instructions and | 
 |       // must therefore eagerly create the phis. Phis for undefined vregs will | 
 |       // be deleted when the first throwing instruction with the vreg undefined | 
 |       // is encountered. Unused phis will be removed by dead phi analysis. | 
 |       for (size_t i = 0; i < vregs; ++i) { | 
 |         // No point in creating the catch phi if it is already undefined at | 
 |         // the first throwing instruction. | 
 |         HInstruction* current_local_value = (*current_locals_)[i]; | 
 |         if (current_local_value != nullptr) { | 
 |           HPhi* phi = new (arena) HPhi( | 
 |               arena, | 
 |               i, | 
 |               0, | 
 |               current_local_value->GetType()); | 
 |           block->AddPhi(phi); | 
 |           (*locals)[i] = phi; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return locals; | 
 | } | 
 |  | 
 | HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) { | 
 |   ArenaVector<HInstruction*>* locals = GetLocalsFor(block); | 
 |   return (*locals)[local]; | 
 | } | 
 |  | 
 | void SsaBuilder::VisitBasicBlock(HBasicBlock* block) { | 
 |   current_locals_ = GetLocalsFor(block); | 
 |  | 
 |   if (block->IsCatchBlock()) { | 
 |     // Catch phis were already created and inputs collected from throwing sites. | 
 |     if (kIsDebugBuild) { | 
 |       // Make sure there was at least one throwing instruction which initialized | 
 |       // locals (guaranteed by HGraphBuilder) and that all try blocks have been | 
 |       // visited already (from HTryBoundary scoping and reverse post order). | 
 |       bool throwing_instruction_found = false; | 
 |       bool catch_block_visited = false; | 
 |       for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { | 
 |         HBasicBlock* current = it.Current(); | 
 |         if (current == block) { | 
 |           catch_block_visited = true; | 
 |         } else if (current->IsTryBlock() && | 
 |                    current->GetTryCatchInformation()->GetTryEntry().HasExceptionHandler(*block)) { | 
 |           DCHECK(!catch_block_visited) << "Catch block visited before its try block."; | 
 |           throwing_instruction_found |= current->HasThrowingInstructions(); | 
 |         } | 
 |       } | 
 |       DCHECK(throwing_instruction_found) << "No instructions throwing into a live catch block."; | 
 |     } | 
 |   } else if (block->IsLoopHeader()) { | 
 |     // If the block is a loop header, we know we only have visited the pre header | 
 |     // because we are visiting in reverse post order. We create phis for all initialized | 
 |     // locals from the pre header. Their inputs will be populated at the end of | 
 |     // the analysis. | 
 |     for (size_t local = 0; local < current_locals_->size(); ++local) { | 
 |       HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local); | 
 |       if (incoming != nullptr) { | 
 |         HPhi* phi = new (GetGraph()->GetArena()) HPhi( | 
 |             GetGraph()->GetArena(), | 
 |             local, | 
 |             0, | 
 |             incoming->GetType()); | 
 |         block->AddPhi(phi); | 
 |         (*current_locals_)[local] = phi; | 
 |       } | 
 |     } | 
 |     // Save the loop header so that the last phase of the analysis knows which | 
 |     // blocks need to be updated. | 
 |     loop_headers_.push_back(block); | 
 |   } else if (block->GetPredecessors().size() > 0) { | 
 |     // All predecessors have already been visited because we are visiting in reverse post order. | 
 |     // We merge the values of all locals, creating phis if those values differ. | 
 |     for (size_t local = 0; local < current_locals_->size(); ++local) { | 
 |       bool one_predecessor_has_no_value = false; | 
 |       bool is_different = false; | 
 |       HInstruction* value = ValueOfLocal(block->GetPredecessors()[0], local); | 
 |  | 
 |       for (HBasicBlock* predecessor : block->GetPredecessors()) { | 
 |         HInstruction* current = ValueOfLocal(predecessor, local); | 
 |         if (current == nullptr) { | 
 |           one_predecessor_has_no_value = true; | 
 |           break; | 
 |         } else if (current != value) { | 
 |           is_different = true; | 
 |         } | 
 |       } | 
 |  | 
 |       if (one_predecessor_has_no_value) { | 
 |         // If one predecessor has no value for this local, we trust the verifier has | 
 |         // successfully checked that there is a store dominating any read after this block. | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (is_different) { | 
 |         HInstruction* first_input = ValueOfLocal(block->GetPredecessors()[0], local); | 
 |         HPhi* phi = new (GetGraph()->GetArena()) HPhi( | 
 |             GetGraph()->GetArena(), | 
 |             local, | 
 |             block->GetPredecessors().size(), | 
 |             first_input->GetType()); | 
 |         for (size_t i = 0; i < block->GetPredecessors().size(); i++) { | 
 |           HInstruction* pred_value = ValueOfLocal(block->GetPredecessors()[i], local); | 
 |           phi->SetRawInputAt(i, pred_value); | 
 |         } | 
 |         block->AddPhi(phi); | 
 |         value = phi; | 
 |       } | 
 |       (*current_locals_)[local] = value; | 
 |     } | 
 |   } | 
 |  | 
 |   // Visit all instructions. The instructions of interest are: | 
 |   // - HLoadLocal: replace them with the current value of the local. | 
 |   // - HStoreLocal: update current value of the local and remove the instruction. | 
 |   // - Instructions that require an environment: populate their environment | 
 |   //   with the current values of the locals. | 
 |   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |     it.Current()->Accept(this); | 
 |   } | 
 | } | 
 |  | 
 | /** | 
 |  * Constants in the Dex format are not typed. So the builder types them as | 
 |  * integers, but when doing the SSA form, we might realize the constant | 
 |  * is used for floating point operations. We create a floating-point equivalent | 
 |  * constant to make the operations correctly typed. | 
 |  */ | 
 | HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) { | 
 |   // We place the floating point constant next to this constant. | 
 |   HFloatConstant* result = constant->GetNext()->AsFloatConstant(); | 
 |   if (result == nullptr) { | 
 |     HGraph* graph = constant->GetBlock()->GetGraph(); | 
 |     ArenaAllocator* allocator = graph->GetArena(); | 
 |     result = new (allocator) HFloatConstant(bit_cast<float, int32_t>(constant->GetValue())); | 
 |     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); | 
 |     graph->CacheFloatConstant(result); | 
 |   } else { | 
 |     // If there is already a constant with the expected type, we know it is | 
 |     // the floating point equivalent of this constant. | 
 |     DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue()); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | /** | 
 |  * Wide constants in the Dex format are not typed. So the builder types them as | 
 |  * longs, but when doing the SSA form, we might realize the constant | 
 |  * is used for floating point operations. We create a floating-point equivalent | 
 |  * constant to make the operations correctly typed. | 
 |  */ | 
 | HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) { | 
 |   // We place the floating point constant next to this constant. | 
 |   HDoubleConstant* result = constant->GetNext()->AsDoubleConstant(); | 
 |   if (result == nullptr) { | 
 |     HGraph* graph = constant->GetBlock()->GetGraph(); | 
 |     ArenaAllocator* allocator = graph->GetArena(); | 
 |     result = new (allocator) HDoubleConstant(bit_cast<double, int64_t>(constant->GetValue())); | 
 |     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); | 
 |     graph->CacheDoubleConstant(result); | 
 |   } else { | 
 |     // If there is already a constant with the expected type, we know it is | 
 |     // the floating point equivalent of this constant. | 
 |     DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue()); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | /** | 
 |  * Because of Dex format, we might end up having the same phi being | 
 |  * used for non floating point operations and floating point / reference operations. | 
 |  * Because we want the graph to be correctly typed (and thereafter avoid moves between | 
 |  * floating point registers and core registers), we need to create a copy of the | 
 |  * phi with a floating point / reference type. | 
 |  */ | 
 | HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) { | 
 |   DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one."; | 
 |  | 
 |   // We place the floating point /reference phi next to this phi. | 
 |   HInstruction* next = phi->GetNext(); | 
 |   if (next != nullptr | 
 |       && next->AsPhi()->GetRegNumber() == phi->GetRegNumber() | 
 |       && next->GetType() != type) { | 
 |     // Move to the next phi to see if it is the one we are looking for. | 
 |     next = next->GetNext(); | 
 |   } | 
 |  | 
 |   if (next == nullptr | 
 |       || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber()) | 
 |       || (next->GetType() != type)) { | 
 |     ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena(); | 
 |     HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type); | 
 |     for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { | 
 |       // Copy the inputs. Note that the graph may not be correctly typed | 
 |       // by doing this copy, but the type propagation phase will fix it. | 
 |       new_phi->SetRawInputAt(i, phi->InputAt(i)); | 
 |     } | 
 |     phi->GetBlock()->InsertPhiAfter(new_phi, phi); | 
 |     DCHECK(new_phi->IsLive()); | 
 |     return new_phi; | 
 |   } else { | 
 |     // An existing equivalent was found. If it is dead, conflict was previously | 
 |     // identified and we return nullptr instead. | 
 |     HPhi* next_phi = next->AsPhi(); | 
 |     DCHECK_EQ(next_phi->GetType(), type); | 
 |     return next_phi->IsLive() ? next_phi : nullptr; | 
 |   } | 
 | } | 
 |  | 
 | HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { | 
 |   DCHECK(Primitive::IsIntegralType(aget->GetType())); | 
 |  | 
 |   if (!Primitive::IsIntOrLongType(aget->GetType())) { | 
 |     // Cannot type boolean, char, byte, short to float/double. | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   DCHECK(ContainsElement(ambiguous_agets_, aget)); | 
 |   if (agets_fixed_) { | 
 |     // This used to be an ambiguous ArrayGet but its type has been resolved to | 
 |     // int/long. Requesting a float/double equivalent should lead to a conflict. | 
 |     if (kIsDebugBuild) { | 
 |       ScopedObjectAccess soa(Thread::Current()); | 
 |       DCHECK(Primitive::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray()))); | 
 |     } | 
 |     return nullptr; | 
 |   } else { | 
 |     // This is an ambiguous ArrayGet which has not been resolved yet. Return an | 
 |     // equivalent float/double instruction to use until it is resolved. | 
 |     HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget); | 
 |     return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent; | 
 |   } | 
 | } | 
 |  | 
 | HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, Primitive::Type type) { | 
 |   if (value->IsArrayGet()) { | 
 |     return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet()); | 
 |   } else if (value->IsLongConstant()) { | 
 |     return GetDoubleEquivalent(value->AsLongConstant()); | 
 |   } else if (value->IsIntConstant()) { | 
 |     return GetFloatEquivalent(value->AsIntConstant()); | 
 |   } else if (value->IsPhi()) { | 
 |     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); | 
 |   } else { | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { | 
 |   if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) { | 
 |     return value->GetBlock()->GetGraph()->GetNullConstant(); | 
 |   } else if (value->IsPhi()) { | 
 |     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot); | 
 |   } else { | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | void SsaBuilder::VisitLoadLocal(HLoadLocal* load) { | 
 |   Primitive::Type load_type = load->GetType(); | 
 |   HInstruction* value = (*current_locals_)[load->GetLocal()->GetRegNumber()]; | 
 |   // If the operation requests a specific type, we make sure its input is of that type. | 
 |   if (load_type != value->GetType()) { | 
 |     if (load_type == Primitive::kPrimFloat || load_type == Primitive::kPrimDouble) { | 
 |       value = GetFloatOrDoubleEquivalent(value, load_type); | 
 |     } else if (load_type == Primitive::kPrimNot) { | 
 |       value = GetReferenceTypeEquivalent(value); | 
 |     } | 
 |   } | 
 |  | 
 |   load->ReplaceWith(value); | 
 |   load->GetBlock()->RemoveInstruction(load); | 
 | } | 
 |  | 
 | void SsaBuilder::VisitStoreLocal(HStoreLocal* store) { | 
 |   uint32_t reg_number = store->GetLocal()->GetRegNumber(); | 
 |   HInstruction* stored_value = store->InputAt(1); | 
 |   Primitive::Type stored_type = stored_value->GetType(); | 
 |   DCHECK_NE(stored_type, Primitive::kPrimVoid); | 
 |  | 
 |   // Storing into vreg `reg_number` may implicitly invalidate the surrounding | 
 |   // registers. Consider the following cases: | 
 |   // (1) Storing a wide value must overwrite previous values in both `reg_number` | 
 |   //     and `reg_number+1`. We store `nullptr` in `reg_number+1`. | 
 |   // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` | 
 |   //     must invalidate it. We store `nullptr` in `reg_number-1`. | 
 |   // Consequently, storing a wide value into the high vreg of another wide value | 
 |   // will invalidate both `reg_number-1` and `reg_number+1`. | 
 |  | 
 |   if (reg_number != 0) { | 
 |     HInstruction* local_low = (*current_locals_)[reg_number - 1]; | 
 |     if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) { | 
 |       // The vreg we are storing into was previously the high vreg of a pair. | 
 |       // We need to invalidate its low vreg. | 
 |       DCHECK((*current_locals_)[reg_number] == nullptr); | 
 |       (*current_locals_)[reg_number - 1] = nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   (*current_locals_)[reg_number] = stored_value; | 
 |   if (Primitive::Is64BitType(stored_type)) { | 
 |     // We are storing a pair. Invalidate the instruction in the high vreg. | 
 |     (*current_locals_)[reg_number + 1] = nullptr; | 
 |   } | 
 |  | 
 |   store->GetBlock()->RemoveInstruction(store); | 
 | } | 
 |  | 
 | void SsaBuilder::VisitInstruction(HInstruction* instruction) { | 
 |   if (instruction->NeedsEnvironment()) { | 
 |     HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment( | 
 |         GetGraph()->GetArena(), | 
 |         current_locals_->size(), | 
 |         GetGraph()->GetDexFile(), | 
 |         GetGraph()->GetMethodIdx(), | 
 |         instruction->GetDexPc(), | 
 |         GetGraph()->GetInvokeType(), | 
 |         instruction); | 
 |     environment->CopyFrom(*current_locals_); | 
 |     instruction->SetRawEnvironment(environment); | 
 |   } | 
 |  | 
 |   // If in a try block, propagate values of locals into catch blocks. | 
 |   if (instruction->CanThrowIntoCatchBlock()) { | 
 |     const HTryBoundary& try_entry = | 
 |         instruction->GetBlock()->GetTryCatchInformation()->GetTryEntry(); | 
 |     for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { | 
 |       ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); | 
 |       DCHECK_EQ(handler_locals->size(), current_locals_->size()); | 
 |       for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { | 
 |         HInstruction* handler_value = (*handler_locals)[vreg]; | 
 |         if (handler_value == nullptr) { | 
 |           // Vreg was undefined at a previously encountered throwing instruction | 
 |           // and the catch phi was deleted. Do not record the local value. | 
 |           continue; | 
 |         } | 
 |         DCHECK(handler_value->IsPhi()); | 
 |  | 
 |         HInstruction* local_value = (*current_locals_)[vreg]; | 
 |         if (local_value == nullptr) { | 
 |           // This is the first instruction throwing into `catch_block` where | 
 |           // `vreg` is undefined. Delete the catch phi. | 
 |           catch_block->RemovePhi(handler_value->AsPhi()); | 
 |           (*handler_locals)[vreg] = nullptr; | 
 |         } else { | 
 |           // Vreg has been defined at all instructions throwing into `catch_block` | 
 |           // encountered so far. Record the local value in the catch phi. | 
 |           handler_value->AsPhi()->AddInput(local_value); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaBuilder::VisitArrayGet(HArrayGet* aget) { | 
 |   Primitive::Type type = aget->GetType(); | 
 |   DCHECK(!Primitive::IsFloatingPointType(type)); | 
 |   if (Primitive::IsIntOrLongType(type)) { | 
 |     ambiguous_agets_.push_back(aget); | 
 |   } | 
 |   VisitInstruction(aget); | 
 | } | 
 |  | 
 | void SsaBuilder::VisitArraySet(HArraySet* aset) { | 
 |   Primitive::Type type = aset->GetValue()->GetType(); | 
 |   if (Primitive::IsIntOrLongType(type)) { | 
 |     ambiguous_asets_.push_back(aset); | 
 |   } | 
 |   VisitInstruction(aset); | 
 | } | 
 |  | 
 | void SsaBuilder::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
 |   VisitInstruction(invoke); | 
 |  | 
 |   if (invoke->IsStringInit()) { | 
 |     // This is a StringFactory call which acts as a String constructor. Its | 
 |     // result replaces the empty String pre-allocated by NewInstance. | 
 |     HInstruction* arg_this = invoke->GetAndRemoveThisArgumentOfStringInit(); | 
 |  | 
 |     // Replacing the NewInstance might render it redundant. Keep a list of these | 
 |     // to be visited once it is clear whether it is has remaining uses. | 
 |     if (arg_this->IsNewInstance()) { | 
 |       uninitialized_strings_.push_back(arg_this->AsNewInstance()); | 
 |     } else { | 
 |       DCHECK(arg_this->IsPhi()); | 
 |       // NewInstance is not the direct input of the StringFactory call. It might | 
 |       // be redundant but optimizing this case is not worth the effort. | 
 |     } | 
 |  | 
 |     // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. | 
 |     for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { | 
 |       if ((*current_locals_)[vreg] == arg_this) { | 
 |         (*current_locals_)[vreg] = invoke; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace art |