| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "nodes.h" |
| |
| #include "code_generator.h" |
| #include "ssa_builder.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/bit_utils.h" |
| #include "utils/growable_array.h" |
| #include "scoped_thread_state_change.h" |
| |
| namespace art { |
| |
| void HGraph::AddBlock(HBasicBlock* block) { |
| block->SetBlockId(blocks_.Size()); |
| blocks_.Add(block); |
| } |
| |
| void HGraph::FindBackEdges(ArenaBitVector* visited) { |
| ArenaBitVector visiting(arena_, blocks_.Size(), false); |
| VisitBlockForBackEdges(entry_block_, visited, &visiting); |
| } |
| |
| static void RemoveAsUser(HInstruction* instruction) { |
| for (size_t i = 0; i < instruction->InputCount(); i++) { |
| instruction->RemoveAsUserOfInput(i); |
| } |
| |
| for (HEnvironment* environment = instruction->GetEnvironment(); |
| environment != nullptr; |
| environment = environment->GetParent()) { |
| for (size_t i = 0, e = environment->Size(); i < e; ++i) { |
| if (environment->GetInstructionAt(i) != nullptr) { |
| environment->RemoveAsUserOfInput(i); |
| } |
| } |
| } |
| } |
| |
| void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const { |
| for (size_t i = 0; i < blocks_.Size(); ++i) { |
| if (!visited.IsBitSet(i)) { |
| HBasicBlock* block = blocks_.Get(i); |
| DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage"; |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| RemoveAsUser(it.Current()); |
| } |
| } |
| } |
| } |
| |
| void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) { |
| for (size_t i = 0; i < blocks_.Size(); ++i) { |
| if (!visited.IsBitSet(i)) { |
| HBasicBlock* block = blocks_.Get(i); |
| // We only need to update the successor, which might be live. |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| successor->RemovePredecessor(block); |
| } |
| // Remove the block from the list of blocks, so that further analyses |
| // never see it. |
| blocks_.Put(i, nullptr); |
| } |
| } |
| } |
| |
| void HGraph::VisitBlockForBackEdges(HBasicBlock* block, |
| ArenaBitVector* visited, |
| ArenaBitVector* visiting) { |
| int id = block->GetBlockId(); |
| if (visited->IsBitSet(id)) return; |
| |
| visited->SetBit(id); |
| visiting->SetBit(id); |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| if (visiting->IsBitSet(successor->GetBlockId())) { |
| successor->AddBackEdge(block); |
| } else { |
| VisitBlockForBackEdges(successor, visited, visiting); |
| } |
| } |
| visiting->ClearBit(id); |
| } |
| |
| void HGraph::BuildDominatorTree() { |
| // (1) Simplify the CFG so that catch blocks have only exceptional incoming |
| // edges. This invariant simplifies building SSA form because Phis cannot |
| // collect both normal- and exceptional-flow values at the same time. |
| SimplifyCatchBlocks(); |
| |
| ArenaBitVector visited(arena_, blocks_.Size(), false); |
| |
| // (2) Find the back edges in the graph doing a DFS traversal. |
| FindBackEdges(&visited); |
| |
| // (3) Remove instructions and phis from blocks not visited during |
| // the initial DFS as users from other instructions, so that |
| // users can be safely removed before uses later. |
| RemoveInstructionsAsUsersFromDeadBlocks(visited); |
| |
| // (4) Remove blocks not visited during the initial DFS. |
| // Step (4) requires dead blocks to be removed from the |
| // predecessors list of live blocks. |
| RemoveDeadBlocks(visited); |
| |
| // (5) Simplify the CFG now, so that we don't need to recompute |
| // dominators and the reverse post order. |
| SimplifyCFG(); |
| |
| // (6) Compute the dominance information and the reverse post order. |
| ComputeDominanceInformation(); |
| } |
| |
| void HGraph::ClearDominanceInformation() { |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| it.Current()->ClearDominanceInformation(); |
| } |
| reverse_post_order_.Reset(); |
| } |
| |
| void HBasicBlock::ClearDominanceInformation() { |
| dominated_blocks_.clear(); |
| dominator_ = nullptr; |
| } |
| |
| void HGraph::ComputeDominanceInformation() { |
| DCHECK(reverse_post_order_.IsEmpty()); |
| GrowableArray<size_t> visits(arena_, blocks_.Size()); |
| visits.SetSize(blocks_.Size()); |
| reverse_post_order_.Add(entry_block_); |
| for (HBasicBlock* successor : entry_block_->GetSuccessors()) { |
| VisitBlockForDominatorTree(successor, entry_block_, &visits); |
| } |
| } |
| |
| HBasicBlock* HGraph::FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const { |
| ArenaBitVector visited(arena_, blocks_.Size(), false); |
| // Walk the dominator tree of the first block and mark the visited blocks. |
| while (first != nullptr) { |
| visited.SetBit(first->GetBlockId()); |
| first = first->GetDominator(); |
| } |
| // Walk the dominator tree of the second block until a marked block is found. |
| while (second != nullptr) { |
| if (visited.IsBitSet(second->GetBlockId())) { |
| return second; |
| } |
| second = second->GetDominator(); |
| } |
| LOG(ERROR) << "Could not find common dominator"; |
| return nullptr; |
| } |
| |
| void HGraph::VisitBlockForDominatorTree(HBasicBlock* block, |
| HBasicBlock* predecessor, |
| GrowableArray<size_t>* visits) { |
| if (block->GetDominator() == nullptr) { |
| block->SetDominator(predecessor); |
| } else { |
| block->SetDominator(FindCommonDominator(block->GetDominator(), predecessor)); |
| } |
| |
| visits->Increment(block->GetBlockId()); |
| // Once all the forward edges have been visited, we know the immediate |
| // dominator of the block. We can then start visiting its successors. |
| if (visits->Get(block->GetBlockId()) == |
| block->GetPredecessors().size() - block->NumberOfBackEdges()) { |
| block->GetDominator()->AddDominatedBlock(block); |
| reverse_post_order_.Add(block); |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| VisitBlockForDominatorTree(successor, block, visits); |
| } |
| } |
| } |
| |
| void HGraph::TransformToSsa() { |
| DCHECK(!reverse_post_order_.IsEmpty()); |
| SsaBuilder ssa_builder(this); |
| ssa_builder.BuildSsa(); |
| } |
| |
| HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) { |
| HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc()); |
| AddBlock(new_block); |
| // Use `InsertBetween` to ensure the predecessor index and successor index of |
| // `block` and `successor` are preserved. |
| new_block->InsertBetween(block, successor); |
| return new_block; |
| } |
| |
| void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) { |
| // Insert a new node between `block` and `successor` to split the |
| // critical edge. |
| HBasicBlock* new_block = SplitEdge(block, successor); |
| new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc())); |
| if (successor->IsLoopHeader()) { |
| // If we split at a back edge boundary, make the new block the back edge. |
| HLoopInformation* info = successor->GetLoopInformation(); |
| if (info->IsBackEdge(*block)) { |
| info->RemoveBackEdge(block); |
| info->AddBackEdge(new_block); |
| } |
| } |
| } |
| |
| void HGraph::SimplifyLoop(HBasicBlock* header) { |
| HLoopInformation* info = header->GetLoopInformation(); |
| |
| // Make sure the loop has only one pre header. This simplifies SSA building by having |
| // to just look at the pre header to know which locals are initialized at entry of the |
| // loop. |
| size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges(); |
| if (number_of_incomings != 1) { |
| HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| AddBlock(pre_header); |
| pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc())); |
| |
| for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) { |
| HBasicBlock* predecessor = header->GetPredecessor(pred); |
| if (!info->IsBackEdge(*predecessor)) { |
| predecessor->ReplaceSuccessor(header, pre_header); |
| pred--; |
| } |
| } |
| pre_header->AddSuccessor(header); |
| } |
| |
| // Make sure the first predecessor of a loop header is the incoming block. |
| if (info->IsBackEdge(*header->GetPredecessor(0))) { |
| HBasicBlock* to_swap = header->GetPredecessor(0); |
| for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) { |
| HBasicBlock* predecessor = header->GetPredecessor(pred); |
| if (!info->IsBackEdge(*predecessor)) { |
| header->predecessors_[pred] = to_swap; |
| header->predecessors_[0] = predecessor; |
| break; |
| } |
| } |
| } |
| |
| // Place the suspend check at the beginning of the header, so that live registers |
| // will be known when allocating registers. Note that code generation can still |
| // generate the suspend check at the back edge, but needs to be careful with |
| // loop phi spill slots (which are not written to at back edge). |
| HInstruction* first_instruction = header->GetFirstInstruction(); |
| if (!first_instruction->IsSuspendCheck()) { |
| HSuspendCheck* check = new (arena_) HSuspendCheck(header->GetDexPc()); |
| header->InsertInstructionBefore(check, first_instruction); |
| first_instruction = check; |
| } |
| info->SetSuspendCheck(first_instruction->AsSuspendCheck()); |
| } |
| |
| static bool CheckIfPredecessorAtIsExceptional(const HBasicBlock& block, size_t pred_idx) { |
| HBasicBlock* predecessor = block.GetPredecessor(pred_idx); |
| if (!predecessor->EndsWithTryBoundary()) { |
| // Only edges from HTryBoundary can be exceptional. |
| return false; |
| } |
| HTryBoundary* try_boundary = predecessor->GetLastInstruction()->AsTryBoundary(); |
| if (try_boundary->GetNormalFlowSuccessor() == &block) { |
| // This block is the normal-flow successor of `try_boundary`, but it could |
| // also be one of its exception handlers if catch blocks have not been |
| // simplified yet. Predecessors are unordered, so we will consider the first |
| // occurrence to be the normal edge and a possible second occurrence to be |
| // the exceptional edge. |
| return !block.IsFirstIndexOfPredecessor(predecessor, pred_idx); |
| } else { |
| // This is not the normal-flow successor of `try_boundary`, hence it must be |
| // one of its exception handlers. |
| DCHECK(try_boundary->HasExceptionHandler(block)); |
| return true; |
| } |
| } |
| |
| void HGraph::SimplifyCatchBlocks() { |
| for (size_t i = 0; i < blocks_.Size(); ++i) { |
| HBasicBlock* catch_block = blocks_.Get(i); |
| if (!catch_block->IsCatchBlock()) { |
| continue; |
| } |
| |
| bool exceptional_predecessors_only = true; |
| for (size_t j = 0; j < catch_block->GetPredecessors().size(); ++j) { |
| if (!CheckIfPredecessorAtIsExceptional(*catch_block, j)) { |
| exceptional_predecessors_only = false; |
| break; |
| } |
| } |
| |
| if (!exceptional_predecessors_only) { |
| // Catch block has normal-flow predecessors and needs to be simplified. |
| // Splitting the block before its first instruction moves all its |
| // instructions into `normal_block` and links the two blocks with a Goto. |
| // Afterwards, incoming normal-flow edges are re-linked to `normal_block`, |
| // leaving `catch_block` with the exceptional edges only. |
| // Note that catch blocks with normal-flow predecessors cannot begin with |
| // a MOVE_EXCEPTION instruction, as guaranteed by the verifier. |
| DCHECK(!catch_block->GetFirstInstruction()->IsLoadException()); |
| HBasicBlock* normal_block = catch_block->SplitBefore(catch_block->GetFirstInstruction()); |
| for (size_t j = 0; j < catch_block->GetPredecessors().size(); ++j) { |
| if (!CheckIfPredecessorAtIsExceptional(*catch_block, j)) { |
| catch_block->GetPredecessor(j)->ReplaceSuccessor(catch_block, normal_block); |
| --j; |
| } |
| } |
| } |
| } |
| } |
| |
| void HGraph::ComputeTryBlockInformation() { |
| // Iterate in reverse post order to propagate try membership information from |
| // predecessors to their successors. |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| if (block->IsEntryBlock() || block->IsCatchBlock()) { |
| // Catch blocks after simplification have only exceptional predecessors |
| // and hence are never in tries. |
| continue; |
| } |
| |
| // Infer try membership from the first predecessor. Having simplified loops, |
| // the first predecessor can never be a back edge and therefore it must have |
| // been visited already and had its try membership set. |
| HBasicBlock* first_predecessor = block->GetPredecessor(0); |
| DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor)); |
| const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors(); |
| if (try_entry != nullptr) { |
| block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry)); |
| } |
| } |
| } |
| |
| bool HGraph::HasTryCatch() const { |
| for (size_t i = 0, e = blocks_.Size(); i < e; ++i) { |
| HBasicBlock* block = blocks_.Get(i); |
| if (block != nullptr && (block->IsTryBlock() || block->IsCatchBlock())) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void HGraph::SimplifyCFG() { |
| // Simplify the CFG for future analysis, and code generation: |
| // (1): Split critical edges. |
| // (2): Simplify loops by having only one back edge, and one preheader. |
| for (size_t i = 0; i < blocks_.Size(); ++i) { |
| HBasicBlock* block = blocks_.Get(i); |
| if (block == nullptr) continue; |
| if (block->NumberOfNormalSuccessors() > 1) { |
| for (size_t j = 0; j < block->GetSuccessors().size(); ++j) { |
| HBasicBlock* successor = block->GetSuccessor(j); |
| DCHECK(!successor->IsCatchBlock()); |
| if (successor->GetPredecessors().size() > 1) { |
| SplitCriticalEdge(block, successor); |
| --j; |
| } |
| } |
| } |
| if (block->IsLoopHeader()) { |
| SimplifyLoop(block); |
| } |
| } |
| } |
| |
| bool HGraph::AnalyzeNaturalLoops() const { |
| // Order does not matter. |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| if (block->IsLoopHeader()) { |
| if (block->IsCatchBlock()) { |
| // TODO: Dealing with exceptional back edges could be tricky because |
| // they only approximate the real control flow. Bail out for now. |
| return false; |
| } |
| HLoopInformation* info = block->GetLoopInformation(); |
| if (!info->Populate()) { |
| // Abort if the loop is non natural. We currently bailout in such cases. |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void HGraph::InsertConstant(HConstant* constant) { |
| // New constants are inserted before the final control-flow instruction |
| // of the graph, or at its end if called from the graph builder. |
| if (entry_block_->EndsWithControlFlowInstruction()) { |
| entry_block_->InsertInstructionBefore(constant, entry_block_->GetLastInstruction()); |
| } else { |
| entry_block_->AddInstruction(constant); |
| } |
| } |
| |
| HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) { |
| // For simplicity, don't bother reviving the cached null constant if it is |
| // not null and not in a block. Otherwise, we need to clear the instruction |
| // id and/or any invariants the graph is assuming when adding new instructions. |
| if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) { |
| cached_null_constant_ = new (arena_) HNullConstant(dex_pc); |
| InsertConstant(cached_null_constant_); |
| } |
| return cached_null_constant_; |
| } |
| |
| HCurrentMethod* HGraph::GetCurrentMethod() { |
| // For simplicity, don't bother reviving the cached current method if it is |
| // not null and not in a block. Otherwise, we need to clear the instruction |
| // id and/or any invariants the graph is assuming when adding new instructions. |
| if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) { |
| cached_current_method_ = new (arena_) HCurrentMethod( |
| Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt, |
| entry_block_->GetDexPc()); |
| if (entry_block_->GetFirstInstruction() == nullptr) { |
| entry_block_->AddInstruction(cached_current_method_); |
| } else { |
| entry_block_->InsertInstructionBefore( |
| cached_current_method_, entry_block_->GetFirstInstruction()); |
| } |
| } |
| return cached_current_method_; |
| } |
| |
| HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) { |
| switch (type) { |
| case Primitive::Type::kPrimBoolean: |
| DCHECK(IsUint<1>(value)); |
| FALLTHROUGH_INTENDED; |
| case Primitive::Type::kPrimByte: |
| case Primitive::Type::kPrimChar: |
| case Primitive::Type::kPrimShort: |
| case Primitive::Type::kPrimInt: |
| DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value)); |
| return GetIntConstant(static_cast<int32_t>(value), dex_pc); |
| |
| case Primitive::Type::kPrimLong: |
| return GetLongConstant(value, dex_pc); |
| |
| default: |
| LOG(FATAL) << "Unsupported constant type"; |
| UNREACHABLE(); |
| } |
| } |
| |
| void HGraph::CacheFloatConstant(HFloatConstant* constant) { |
| int32_t value = bit_cast<int32_t, float>(constant->GetValue()); |
| DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end()); |
| cached_float_constants_.Overwrite(value, constant); |
| } |
| |
| void HGraph::CacheDoubleConstant(HDoubleConstant* constant) { |
| int64_t value = bit_cast<int64_t, double>(constant->GetValue()); |
| DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end()); |
| cached_double_constants_.Overwrite(value, constant); |
| } |
| |
| void HLoopInformation::Add(HBasicBlock* block) { |
| blocks_.SetBit(block->GetBlockId()); |
| } |
| |
| void HLoopInformation::Remove(HBasicBlock* block) { |
| blocks_.ClearBit(block->GetBlockId()); |
| } |
| |
| void HLoopInformation::PopulateRecursive(HBasicBlock* block) { |
| if (blocks_.IsBitSet(block->GetBlockId())) { |
| return; |
| } |
| |
| blocks_.SetBit(block->GetBlockId()); |
| block->SetInLoop(this); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| PopulateRecursive(predecessor); |
| } |
| } |
| |
| bool HLoopInformation::Populate() { |
| DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated"; |
| for (size_t i = 0, e = GetBackEdges().Size(); i < e; ++i) { |
| HBasicBlock* back_edge = GetBackEdges().Get(i); |
| DCHECK(back_edge->GetDominator() != nullptr); |
| if (!header_->Dominates(back_edge)) { |
| // This loop is not natural. Do not bother going further. |
| return false; |
| } |
| |
| // Populate this loop: starting with the back edge, recursively add predecessors |
| // that are not already part of that loop. Set the header as part of the loop |
| // to end the recursion. |
| // This is a recursive implementation of the algorithm described in |
| // "Advanced Compiler Design & Implementation" (Muchnick) p192. |
| blocks_.SetBit(header_->GetBlockId()); |
| PopulateRecursive(back_edge); |
| } |
| return true; |
| } |
| |
| void HLoopInformation::Update() { |
| HGraph* graph = header_->GetGraph(); |
| for (uint32_t id : blocks_.Indexes()) { |
| HBasicBlock* block = graph->GetBlocks().Get(id); |
| // Reset loop information of non-header blocks inside the loop, except |
| // members of inner nested loops because those should already have been |
| // updated by their own LoopInformation. |
| if (block->GetLoopInformation() == this && block != header_) { |
| block->SetLoopInformation(nullptr); |
| } |
| } |
| blocks_.ClearAllBits(); |
| |
| if (back_edges_.IsEmpty()) { |
| // The loop has been dismantled, delete its suspend check and remove info |
| // from the header. |
| DCHECK(HasSuspendCheck()); |
| header_->RemoveInstruction(suspend_check_); |
| header_->SetLoopInformation(nullptr); |
| header_ = nullptr; |
| suspend_check_ = nullptr; |
| } else { |
| if (kIsDebugBuild) { |
| for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) { |
| DCHECK(header_->Dominates(back_edges_.Get(i))); |
| } |
| } |
| // This loop still has reachable back edges. Repopulate the list of blocks. |
| bool populate_successful = Populate(); |
| DCHECK(populate_successful); |
| } |
| } |
| |
| HBasicBlock* HLoopInformation::GetPreHeader() const { |
| return header_->GetDominator(); |
| } |
| |
| bool HLoopInformation::Contains(const HBasicBlock& block) const { |
| return blocks_.IsBitSet(block.GetBlockId()); |
| } |
| |
| bool HLoopInformation::IsIn(const HLoopInformation& other) const { |
| return other.blocks_.IsBitSet(header_->GetBlockId()); |
| } |
| |
| size_t HLoopInformation::GetLifetimeEnd() const { |
| size_t last_position = 0; |
| for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) { |
| last_position = std::max(back_edges_.Get(i)->GetLifetimeEnd(), last_position); |
| } |
| return last_position; |
| } |
| |
| bool HBasicBlock::Dominates(HBasicBlock* other) const { |
| // Walk up the dominator tree from `other`, to find out if `this` |
| // is an ancestor. |
| HBasicBlock* current = other; |
| while (current != nullptr) { |
| if (current == this) { |
| return true; |
| } |
| current = current->GetDominator(); |
| } |
| return false; |
| } |
| |
| static void UpdateInputsUsers(HInstruction* instruction) { |
| for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { |
| instruction->InputAt(i)->AddUseAt(instruction, i); |
| } |
| // Environment should be created later. |
| DCHECK(!instruction->HasEnvironment()); |
| } |
| |
| void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial, |
| HInstruction* replacement) { |
| DCHECK(initial->GetBlock() == this); |
| InsertInstructionBefore(replacement, initial); |
| initial->ReplaceWith(replacement); |
| RemoveInstruction(initial); |
| } |
| |
| static void Add(HInstructionList* instruction_list, |
| HBasicBlock* block, |
| HInstruction* instruction) { |
| DCHECK(instruction->GetBlock() == nullptr); |
| DCHECK_EQ(instruction->GetId(), -1); |
| instruction->SetBlock(block); |
| instruction->SetId(block->GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instruction_list->AddInstruction(instruction); |
| } |
| |
| void HBasicBlock::AddInstruction(HInstruction* instruction) { |
| Add(&instructions_, this, instruction); |
| } |
| |
| void HBasicBlock::AddPhi(HPhi* phi) { |
| Add(&phis_, this, phi); |
| } |
| |
| void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(!cursor->IsPhi()); |
| DCHECK(!instruction->IsPhi()); |
| DCHECK_EQ(instruction->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| DCHECK(!instruction->IsControlFlow()); |
| instruction->SetBlock(this); |
| instruction->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instructions_.InsertInstructionBefore(instruction, cursor); |
| } |
| |
| void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(!cursor->IsPhi()); |
| DCHECK(!instruction->IsPhi()); |
| DCHECK_EQ(instruction->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| DCHECK(!instruction->IsControlFlow()); |
| DCHECK(!cursor->IsControlFlow()); |
| instruction->SetBlock(this); |
| instruction->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instructions_.InsertInstructionAfter(instruction, cursor); |
| } |
| |
| void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) { |
| DCHECK_EQ(phi->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| phi->SetBlock(this); |
| phi->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(phi); |
| phis_.InsertInstructionAfter(phi, cursor); |
| } |
| |
| static void Remove(HInstructionList* instruction_list, |
| HBasicBlock* block, |
| HInstruction* instruction, |
| bool ensure_safety) { |
| DCHECK_EQ(block, instruction->GetBlock()); |
| instruction->SetBlock(nullptr); |
| instruction_list->RemoveInstruction(instruction); |
| if (ensure_safety) { |
| DCHECK(instruction->GetUses().IsEmpty()); |
| DCHECK(instruction->GetEnvUses().IsEmpty()); |
| RemoveAsUser(instruction); |
| } |
| } |
| |
| void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) { |
| DCHECK(!instruction->IsPhi()); |
| Remove(&instructions_, this, instruction, ensure_safety); |
| } |
| |
| void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) { |
| Remove(&phis_, this, phi, ensure_safety); |
| } |
| |
| void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) { |
| if (instruction->IsPhi()) { |
| RemovePhi(instruction->AsPhi(), ensure_safety); |
| } else { |
| RemoveInstruction(instruction, ensure_safety); |
| } |
| } |
| |
| void HEnvironment::CopyFrom(const GrowableArray<HInstruction*>& locals) { |
| for (size_t i = 0; i < locals.Size(); i++) { |
| HInstruction* instruction = locals.Get(i); |
| SetRawEnvAt(i, instruction); |
| if (instruction != nullptr) { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::CopyFrom(HEnvironment* env) { |
| for (size_t i = 0; i < env->Size(); i++) { |
| HInstruction* instruction = env->GetInstructionAt(i); |
| SetRawEnvAt(i, instruction); |
| if (instruction != nullptr) { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env, |
| HBasicBlock* loop_header) { |
| DCHECK(loop_header->IsLoopHeader()); |
| for (size_t i = 0; i < env->Size(); i++) { |
| HInstruction* instruction = env->GetInstructionAt(i); |
| SetRawEnvAt(i, instruction); |
| if (instruction == nullptr) { |
| continue; |
| } |
| if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) { |
| // At the end of the loop pre-header, the corresponding value for instruction |
| // is the first input of the phi. |
| HInstruction* initial = instruction->AsPhi()->InputAt(0); |
| DCHECK(initial->GetBlock()->Dominates(loop_header)); |
| SetRawEnvAt(i, initial); |
| initial->AddEnvUseAt(this, i); |
| } else { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::RemoveAsUserOfInput(size_t index) const { |
| const HUserRecord<HEnvironment*> user_record = vregs_.Get(index); |
| user_record.GetInstruction()->RemoveEnvironmentUser(user_record.GetUseNode()); |
| } |
| |
| HInstruction* HInstruction::GetNextDisregardingMoves() const { |
| HInstruction* next = GetNext(); |
| while (next != nullptr && next->IsParallelMove()) { |
| next = next->GetNext(); |
| } |
| return next; |
| } |
| |
| HInstruction* HInstruction::GetPreviousDisregardingMoves() const { |
| HInstruction* previous = GetPrevious(); |
| while (previous != nullptr && previous->IsParallelMove()) { |
| previous = previous->GetPrevious(); |
| } |
| return previous; |
| } |
| |
| void HInstructionList::AddInstruction(HInstruction* instruction) { |
| if (first_instruction_ == nullptr) { |
| DCHECK(last_instruction_ == nullptr); |
| first_instruction_ = last_instruction_ = instruction; |
| } else { |
| last_instruction_->next_ = instruction; |
| instruction->previous_ = last_instruction_; |
| last_instruction_ = instruction; |
| } |
| } |
| |
| void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(Contains(cursor)); |
| if (cursor == first_instruction_) { |
| cursor->previous_ = instruction; |
| instruction->next_ = cursor; |
| first_instruction_ = instruction; |
| } else { |
| instruction->previous_ = cursor->previous_; |
| instruction->next_ = cursor; |
| cursor->previous_ = instruction; |
| instruction->previous_->next_ = instruction; |
| } |
| } |
| |
| void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(Contains(cursor)); |
| if (cursor == last_instruction_) { |
| cursor->next_ = instruction; |
| instruction->previous_ = cursor; |
| last_instruction_ = instruction; |
| } else { |
| instruction->next_ = cursor->next_; |
| instruction->previous_ = cursor; |
| cursor->next_ = instruction; |
| instruction->next_->previous_ = instruction; |
| } |
| } |
| |
| void HInstructionList::RemoveInstruction(HInstruction* instruction) { |
| if (instruction->previous_ != nullptr) { |
| instruction->previous_->next_ = instruction->next_; |
| } |
| if (instruction->next_ != nullptr) { |
| instruction->next_->previous_ = instruction->previous_; |
| } |
| if (instruction == first_instruction_) { |
| first_instruction_ = instruction->next_; |
| } |
| if (instruction == last_instruction_) { |
| last_instruction_ = instruction->previous_; |
| } |
| } |
| |
| bool HInstructionList::Contains(HInstruction* instruction) const { |
| for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { |
| if (it.Current() == instruction) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool HInstructionList::FoundBefore(const HInstruction* instruction1, |
| const HInstruction* instruction2) const { |
| DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock()); |
| for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { |
| if (it.Current() == instruction1) { |
| return true; |
| } |
| if (it.Current() == instruction2) { |
| return false; |
| } |
| } |
| LOG(FATAL) << "Did not find an order between two instructions of the same block."; |
| return true; |
| } |
| |
| bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const { |
| if (other_instruction == this) { |
| // An instruction does not strictly dominate itself. |
| return false; |
| } |
| HBasicBlock* block = GetBlock(); |
| HBasicBlock* other_block = other_instruction->GetBlock(); |
| if (block != other_block) { |
| return GetBlock()->Dominates(other_instruction->GetBlock()); |
| } else { |
| // If both instructions are in the same block, ensure this |
| // instruction comes before `other_instruction`. |
| if (IsPhi()) { |
| if (!other_instruction->IsPhi()) { |
| // Phis appear before non phi-instructions so this instruction |
| // dominates `other_instruction`. |
| return true; |
| } else { |
| // There is no order among phis. |
| LOG(FATAL) << "There is no dominance between phis of a same block."; |
| return false; |
| } |
| } else { |
| // `this` is not a phi. |
| if (other_instruction->IsPhi()) { |
| // Phis appear before non phi-instructions so this instruction |
| // does not dominate `other_instruction`. |
| return false; |
| } else { |
| // Check whether this instruction comes before |
| // `other_instruction` in the instruction list. |
| return block->GetInstructions().FoundBefore(this, other_instruction); |
| } |
| } |
| } |
| } |
| |
| void HInstruction::ReplaceWith(HInstruction* other) { |
| DCHECK(other != nullptr); |
| for (HUseIterator<HInstruction*> it(GetUses()); !it.Done(); it.Advance()) { |
| HUseListNode<HInstruction*>* current = it.Current(); |
| HInstruction* user = current->GetUser(); |
| size_t input_index = current->GetIndex(); |
| user->SetRawInputAt(input_index, other); |
| other->AddUseAt(user, input_index); |
| } |
| |
| for (HUseIterator<HEnvironment*> it(GetEnvUses()); !it.Done(); it.Advance()) { |
| HUseListNode<HEnvironment*>* current = it.Current(); |
| HEnvironment* user = current->GetUser(); |
| size_t input_index = current->GetIndex(); |
| user->SetRawEnvAt(input_index, other); |
| other->AddEnvUseAt(user, input_index); |
| } |
| |
| uses_.Clear(); |
| env_uses_.Clear(); |
| } |
| |
| void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) { |
| RemoveAsUserOfInput(index); |
| SetRawInputAt(index, replacement); |
| replacement->AddUseAt(this, index); |
| } |
| |
| size_t HInstruction::EnvironmentSize() const { |
| return HasEnvironment() ? environment_->Size() : 0; |
| } |
| |
| void HPhi::AddInput(HInstruction* input) { |
| DCHECK(input->GetBlock() != nullptr); |
| inputs_.Add(HUserRecord<HInstruction*>(input)); |
| input->AddUseAt(this, inputs_.Size() - 1); |
| } |
| |
| void HPhi::RemoveInputAt(size_t index) { |
| RemoveAsUserOfInput(index); |
| inputs_.DeleteAt(index); |
| for (size_t i = index, e = InputCount(); i < e; ++i) { |
| InputRecordAt(i).GetUseNode()->SetIndex(i); |
| } |
| } |
| |
| #define DEFINE_ACCEPT(name, super) \ |
| void H##name::Accept(HGraphVisitor* visitor) { \ |
| visitor->Visit##name(this); \ |
| } |
| |
| FOR_EACH_INSTRUCTION(DEFINE_ACCEPT) |
| |
| #undef DEFINE_ACCEPT |
| |
| void HGraphVisitor::VisitInsertionOrder() { |
| const GrowableArray<HBasicBlock*>& blocks = graph_->GetBlocks(); |
| for (size_t i = 0 ; i < blocks.Size(); i++) { |
| HBasicBlock* block = blocks.Get(i); |
| if (block != nullptr) { |
| VisitBasicBlock(block); |
| } |
| } |
| } |
| |
| void HGraphVisitor::VisitReversePostOrder() { |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| VisitBasicBlock(it.Current()); |
| } |
| } |
| |
| void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) { |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| } |
| |
| HConstant* HTypeConversion::TryStaticEvaluation() const { |
| HGraph* graph = GetBlock()->GetGraph(); |
| if (GetInput()->IsIntConstant()) { |
| int32_t value = GetInput()->AsIntConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimLong: |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case Primitive::kPrimFloat: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| case Primitive::kPrimDouble: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsLongConstant()) { |
| int64_t value = GetInput()->AsLongConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimInt: |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case Primitive::kPrimFloat: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| case Primitive::kPrimDouble: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsFloatConstant()) { |
| float value = GetInput()->AsFloatConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimInt: |
| if (std::isnan(value)) |
| return graph->GetIntConstant(0, GetDexPc()); |
| if (value >= kPrimIntMax) |
| return graph->GetIntConstant(kPrimIntMax, GetDexPc()); |
| if (value <= kPrimIntMin) |
| return graph->GetIntConstant(kPrimIntMin, GetDexPc()); |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case Primitive::kPrimLong: |
| if (std::isnan(value)) |
| return graph->GetLongConstant(0, GetDexPc()); |
| if (value >= kPrimLongMax) |
| return graph->GetLongConstant(kPrimLongMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetLongConstant(kPrimLongMin, GetDexPc()); |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case Primitive::kPrimDouble: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsDoubleConstant()) { |
| double value = GetInput()->AsDoubleConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimInt: |
| if (std::isnan(value)) |
| return graph->GetIntConstant(0, GetDexPc()); |
| if (value >= kPrimIntMax) |
| return graph->GetIntConstant(kPrimIntMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetIntConstant(kPrimIntMin, GetDexPc()); |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case Primitive::kPrimLong: |
| if (std::isnan(value)) |
| return graph->GetLongConstant(0, GetDexPc()); |
| if (value >= kPrimLongMax) |
| return graph->GetLongConstant(kPrimLongMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetLongConstant(kPrimLongMin, GetDexPc()); |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case Primitive::kPrimFloat: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } |
| return nullptr; |
| } |
| |
| HConstant* HUnaryOperation::TryStaticEvaluation() const { |
| if (GetInput()->IsIntConstant()) { |
| return Evaluate(GetInput()->AsIntConstant()); |
| } else if (GetInput()->IsLongConstant()) { |
| return Evaluate(GetInput()->AsLongConstant()); |
| } |
| return nullptr; |
| } |
| |
| HConstant* HBinaryOperation::TryStaticEvaluation() const { |
| if (GetLeft()->IsIntConstant()) { |
| if (GetRight()->IsIntConstant()) { |
| return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant()); |
| } else if (GetRight()->IsLongConstant()) { |
| return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsLongConstant()); |
| } |
| } else if (GetLeft()->IsLongConstant()) { |
| if (GetRight()->IsIntConstant()) { |
| return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant()); |
| } else if (GetRight()->IsLongConstant()) { |
| return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant()); |
| } |
| } |
| return nullptr; |
| } |
| |
| HConstant* HBinaryOperation::GetConstantRight() const { |
| if (GetRight()->IsConstant()) { |
| return GetRight()->AsConstant(); |
| } else if (IsCommutative() && GetLeft()->IsConstant()) { |
| return GetLeft()->AsConstant(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // If `GetConstantRight()` returns one of the input, this returns the other |
| // one. Otherwise it returns null. |
| HInstruction* HBinaryOperation::GetLeastConstantLeft() const { |
| HInstruction* most_constant_right = GetConstantRight(); |
| if (most_constant_right == nullptr) { |
| return nullptr; |
| } else if (most_constant_right == GetLeft()) { |
| return GetRight(); |
| } else { |
| return GetLeft(); |
| } |
| } |
| |
| bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const { |
| return this == instruction->GetPreviousDisregardingMoves(); |
| } |
| |
| bool HInstruction::Equals(HInstruction* other) const { |
| if (!InstructionTypeEquals(other)) return false; |
| DCHECK_EQ(GetKind(), other->GetKind()); |
| if (!InstructionDataEquals(other)) return false; |
| if (GetType() != other->GetType()) return false; |
| if (InputCount() != other->InputCount()) return false; |
| |
| for (size_t i = 0, e = InputCount(); i < e; ++i) { |
| if (InputAt(i) != other->InputAt(i)) return false; |
| } |
| DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode()); |
| return true; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) { |
| #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break; |
| switch (rhs) { |
| FOR_EACH_INSTRUCTION(DECLARE_CASE) |
| default: |
| os << "Unknown instruction kind " << static_cast<int>(rhs); |
| break; |
| } |
| #undef DECLARE_CASE |
| return os; |
| } |
| |
| void HInstruction::MoveBefore(HInstruction* cursor) { |
| next_->previous_ = previous_; |
| if (previous_ != nullptr) { |
| previous_->next_ = next_; |
| } |
| if (block_->instructions_.first_instruction_ == this) { |
| block_->instructions_.first_instruction_ = next_; |
| } |
| DCHECK_NE(block_->instructions_.last_instruction_, this); |
| |
| previous_ = cursor->previous_; |
| if (previous_ != nullptr) { |
| previous_->next_ = this; |
| } |
| next_ = cursor; |
| cursor->previous_ = this; |
| block_ = cursor->block_; |
| |
| if (block_->instructions_.first_instruction_ == cursor) { |
| block_->instructions_.first_instruction_ = this; |
| } |
| } |
| |
| HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) { |
| DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented"; |
| DCHECK_EQ(cursor->GetBlock(), this); |
| |
| HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), |
| cursor->GetDexPc()); |
| new_block->instructions_.first_instruction_ = cursor; |
| new_block->instructions_.last_instruction_ = instructions_.last_instruction_; |
| instructions_.last_instruction_ = cursor->previous_; |
| if (cursor->previous_ == nullptr) { |
| instructions_.first_instruction_ = nullptr; |
| } else { |
| cursor->previous_->next_ = nullptr; |
| cursor->previous_ = nullptr; |
| } |
| |
| new_block->instructions_.SetBlockOfInstructions(new_block); |
| AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc())); |
| |
| for (HBasicBlock* successor : GetSuccessors()) { |
| new_block->successors_.push_back(successor); |
| successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block; |
| } |
| successors_.clear(); |
| AddSuccessor(new_block); |
| |
| GetGraph()->AddBlock(new_block); |
| return new_block; |
| } |
| |
| HBasicBlock* HBasicBlock::SplitAfter(HInstruction* cursor) { |
| DCHECK(!cursor->IsControlFlow()); |
| DCHECK_NE(instructions_.last_instruction_, cursor); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| |
| HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc()); |
| new_block->instructions_.first_instruction_ = cursor->GetNext(); |
| new_block->instructions_.last_instruction_ = instructions_.last_instruction_; |
| cursor->next_->previous_ = nullptr; |
| cursor->next_ = nullptr; |
| instructions_.last_instruction_ = cursor; |
| |
| new_block->instructions_.SetBlockOfInstructions(new_block); |
| for (HBasicBlock* successor : GetSuccessors()) { |
| new_block->successors_.push_back(successor); |
| successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block; |
| } |
| successors_.clear(); |
| |
| for (HBasicBlock* dominated : GetDominatedBlocks()) { |
| dominated->dominator_ = new_block; |
| new_block->dominated_blocks_.push_back(dominated); |
| } |
| dominated_blocks_.clear(); |
| return new_block; |
| } |
| |
| const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const { |
| if (EndsWithTryBoundary()) { |
| HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary(); |
| if (try_boundary->IsEntry()) { |
| DCHECK(!IsTryBlock()); |
| return try_boundary; |
| } else { |
| DCHECK(IsTryBlock()); |
| DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary)); |
| return nullptr; |
| } |
| } else if (IsTryBlock()) { |
| return &try_catch_information_->GetTryEntry(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| static bool HasOnlyOneInstruction(const HBasicBlock& block) { |
| return block.GetPhis().IsEmpty() |
| && !block.GetInstructions().IsEmpty() |
| && block.GetFirstInstruction() == block.GetLastInstruction(); |
| } |
| |
| bool HBasicBlock::IsSingleGoto() const { |
| return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto(); |
| } |
| |
| bool HBasicBlock::IsSingleTryBoundary() const { |
| return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary(); |
| } |
| |
| bool HBasicBlock::EndsWithControlFlowInstruction() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow(); |
| } |
| |
| bool HBasicBlock::EndsWithIf() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf(); |
| } |
| |
| bool HBasicBlock::EndsWithTryBoundary() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary(); |
| } |
| |
| bool HBasicBlock::HasSinglePhi() const { |
| return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr; |
| } |
| |
| bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const { |
| if (GetBlock()->GetSuccessors().size() != other.GetBlock()->GetSuccessors().size()) { |
| return false; |
| } |
| |
| // Exception handlers need to be stored in the same order. |
| for (HExceptionHandlerIterator it1(*this), it2(other); |
| !it1.Done(); |
| it1.Advance(), it2.Advance()) { |
| DCHECK(!it2.Done()); |
| if (it1.Current() != it2.Current()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| size_t HInstructionList::CountSize() const { |
| size_t size = 0; |
| HInstruction* current = first_instruction_; |
| for (; current != nullptr; current = current->GetNext()) { |
| size++; |
| } |
| return size; |
| } |
| |
| void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const { |
| for (HInstruction* current = first_instruction_; |
| current != nullptr; |
| current = current->GetNext()) { |
| current->SetBlock(block); |
| } |
| } |
| |
| void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) { |
| DCHECK(Contains(cursor)); |
| if (!instruction_list.IsEmpty()) { |
| if (cursor == last_instruction_) { |
| last_instruction_ = instruction_list.last_instruction_; |
| } else { |
| cursor->next_->previous_ = instruction_list.last_instruction_; |
| } |
| instruction_list.last_instruction_->next_ = cursor->next_; |
| cursor->next_ = instruction_list.first_instruction_; |
| instruction_list.first_instruction_->previous_ = cursor; |
| } |
| } |
| |
| void HInstructionList::Add(const HInstructionList& instruction_list) { |
| if (IsEmpty()) { |
| first_instruction_ = instruction_list.first_instruction_; |
| last_instruction_ = instruction_list.last_instruction_; |
| } else { |
| AddAfter(last_instruction_, instruction_list); |
| } |
| } |
| |
| void HBasicBlock::DisconnectAndDelete() { |
| // Dominators must be removed after all the blocks they dominate. This way |
| // a loop header is removed last, a requirement for correct loop information |
| // iteration. |
| DCHECK(dominated_blocks_.empty()); |
| |
| // Remove the block from all loops it is included in. |
| for (HLoopInformationOutwardIterator it(*this); !it.Done(); it.Advance()) { |
| HLoopInformation* loop_info = it.Current(); |
| loop_info->Remove(this); |
| if (loop_info->IsBackEdge(*this)) { |
| // If this was the last back edge of the loop, we deliberately leave the |
| // loop in an inconsistent state and will fail SSAChecker unless the |
| // entire loop is removed during the pass. |
| loop_info->RemoveBackEdge(this); |
| } |
| } |
| |
| // Disconnect the block from its predecessors and update their control-flow |
| // instructions. |
| for (HBasicBlock* predecessor : predecessors_) { |
| HInstruction* last_instruction = predecessor->GetLastInstruction(); |
| predecessor->RemoveInstruction(last_instruction); |
| predecessor->RemoveSuccessor(this); |
| if (predecessor->GetSuccessors().size() == 1u) { |
| DCHECK(last_instruction->IsIf()); |
| predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc())); |
| } else { |
| // The predecessor has no remaining successors and therefore must be dead. |
| // We deliberately leave it without a control-flow instruction so that the |
| // SSAChecker fails unless it is not removed during the pass too. |
| DCHECK_EQ(predecessor->GetSuccessors().size(), 0u); |
| } |
| } |
| predecessors_.clear(); |
| |
| // Disconnect the block from its successors and update their phis. |
| for (HBasicBlock* successor : successors_) { |
| // Delete this block from the list of predecessors. |
| size_t this_index = successor->GetPredecessorIndexOf(this); |
| successor->predecessors_.erase(successor->predecessors_.begin() + this_index); |
| |
| // Check that `successor` has other predecessors, otherwise `this` is the |
| // dominator of `successor` which violates the order DCHECKed at the top. |
| DCHECK(!successor->predecessors_.empty()); |
| |
| // Remove this block's entries in the successor's phis. |
| if (successor->predecessors_.size() == 1u) { |
| // The successor has just one predecessor left. Replace phis with the only |
| // remaining input. |
| for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HPhi* phi = phi_it.Current()->AsPhi(); |
| phi->ReplaceWith(phi->InputAt(1 - this_index)); |
| successor->RemovePhi(phi); |
| } |
| } else { |
| for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| phi_it.Current()->AsPhi()->RemoveInputAt(this_index); |
| } |
| } |
| } |
| successors_.clear(); |
| |
| // Disconnect from the dominator. |
| dominator_->RemoveDominatedBlock(this); |
| SetDominator(nullptr); |
| |
| // Delete from the graph. The function safely deletes remaining instructions |
| // and updates the reverse post order. |
| graph_->DeleteDeadBlock(this); |
| SetGraph(nullptr); |
| } |
| |
| void HBasicBlock::MergeWith(HBasicBlock* other) { |
| DCHECK_EQ(GetGraph(), other->GetGraph()); |
| DCHECK(ContainsElement(dominated_blocks_, other)); |
| DCHECK_EQ(GetSingleSuccessor(), other); |
| DCHECK_EQ(other->GetSinglePredecessor(), this); |
| DCHECK(other->GetPhis().IsEmpty()); |
| |
| // Move instructions from `other` to `this`. |
| DCHECK(EndsWithControlFlowInstruction()); |
| RemoveInstruction(GetLastInstruction()); |
| instructions_.Add(other->GetInstructions()); |
| other->instructions_.SetBlockOfInstructions(this); |
| other->instructions_.Clear(); |
| |
| // Remove `other` from the loops it is included in. |
| for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) { |
| HLoopInformation* loop_info = it.Current(); |
| loop_info->Remove(other); |
| if (loop_info->IsBackEdge(*other)) { |
| loop_info->ReplaceBackEdge(other, this); |
| } |
| } |
| |
| // Update links to the successors of `other`. |
| successors_.clear(); |
| while (!other->successors_.empty()) { |
| HBasicBlock* successor = other->GetSuccessor(0); |
| successor->ReplacePredecessor(other, this); |
| } |
| |
| // Update the dominator tree. |
| RemoveDominatedBlock(other); |
| for (HBasicBlock* dominated : other->GetDominatedBlocks()) { |
| dominated_blocks_.push_back(dominated); |
| dominated->SetDominator(this); |
| } |
| other->dominated_blocks_.clear(); |
| other->dominator_ = nullptr; |
| |
| // Clear the list of predecessors of `other` in preparation of deleting it. |
| other->predecessors_.clear(); |
| |
| // Delete `other` from the graph. The function updates reverse post order. |
| graph_->DeleteDeadBlock(other); |
| other->SetGraph(nullptr); |
| } |
| |
| void HBasicBlock::MergeWithInlined(HBasicBlock* other) { |
| DCHECK_NE(GetGraph(), other->GetGraph()); |
| DCHECK(GetDominatedBlocks().empty()); |
| DCHECK(GetSuccessors().empty()); |
| DCHECK(!EndsWithControlFlowInstruction()); |
| DCHECK(other->GetSinglePredecessor()->IsEntryBlock()); |
| DCHECK(other->GetPhis().IsEmpty()); |
| DCHECK(!other->IsInLoop()); |
| |
| // Move instructions from `other` to `this`. |
| instructions_.Add(other->GetInstructions()); |
| other->instructions_.SetBlockOfInstructions(this); |
| |
| // Update links to the successors of `other`. |
| successors_.clear(); |
| while (!other->successors_.empty()) { |
| HBasicBlock* successor = other->GetSuccessor(0); |
| successor->ReplacePredecessor(other, this); |
| } |
| |
| // Update the dominator tree. |
| for (HBasicBlock* dominated : other->GetDominatedBlocks()) { |
| dominated_blocks_.push_back(dominated); |
| dominated->SetDominator(this); |
| } |
| other->dominated_blocks_.clear(); |
| other->dominator_ = nullptr; |
| other->graph_ = nullptr; |
| } |
| |
| void HBasicBlock::ReplaceWith(HBasicBlock* other) { |
| while (!GetPredecessors().empty()) { |
| HBasicBlock* predecessor = GetPredecessor(0); |
| predecessor->ReplaceSuccessor(this, other); |
| } |
| while (!GetSuccessors().empty()) { |
| HBasicBlock* successor = GetSuccessor(0); |
| successor->ReplacePredecessor(this, other); |
| } |
| for (HBasicBlock* dominated : GetDominatedBlocks()) { |
| other->AddDominatedBlock(dominated); |
| } |
| GetDominator()->ReplaceDominatedBlock(this, other); |
| other->SetDominator(GetDominator()); |
| dominator_ = nullptr; |
| graph_ = nullptr; |
| } |
| |
| // Create space in `blocks` for adding `number_of_new_blocks` entries |
| // starting at location `at`. Blocks after `at` are moved accordingly. |
| static void MakeRoomFor(GrowableArray<HBasicBlock*>* blocks, |
| size_t number_of_new_blocks, |
| size_t at) { |
| size_t old_size = blocks->Size(); |
| size_t new_size = old_size + number_of_new_blocks; |
| blocks->SetSize(new_size); |
| for (size_t i = old_size - 1, j = new_size - 1; i > at; --i, --j) { |
| blocks->Put(j, blocks->Get(i)); |
| } |
| } |
| |
| void HGraph::DeleteDeadBlock(HBasicBlock* block) { |
| DCHECK_EQ(block->GetGraph(), this); |
| DCHECK(block->GetSuccessors().empty()); |
| DCHECK(block->GetPredecessors().empty()); |
| DCHECK(block->GetDominatedBlocks().empty()); |
| DCHECK(block->GetDominator() == nullptr); |
| |
| for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| block->RemoveInstruction(it.Current()); |
| } |
| for (HBackwardInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| block->RemovePhi(it.Current()->AsPhi()); |
| } |
| |
| if (block->IsExitBlock()) { |
| exit_block_ = nullptr; |
| } |
| |
| reverse_post_order_.Delete(block); |
| blocks_.Put(block->GetBlockId(), nullptr); |
| } |
| |
| HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) { |
| DCHECK(HasExitBlock()) << "Unimplemented scenario"; |
| // Update the environments in this graph to have the invoke's environment |
| // as parent. |
| { |
| HReversePostOrderIterator it(*this); |
| it.Advance(); // Skip the entry block, we do not need to update the entry's suspend check. |
| for (; !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| HInstruction* current = instr_it.Current(); |
| if (current->NeedsEnvironment()) { |
| current->GetEnvironment()->SetAndCopyParentChain( |
| outer_graph->GetArena(), invoke->GetEnvironment()); |
| } |
| } |
| } |
| } |
| outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs()); |
| if (HasBoundsChecks()) { |
| outer_graph->SetHasBoundsChecks(true); |
| } |
| |
| HInstruction* return_value = nullptr; |
| if (GetBlocks().Size() == 3) { |
| // Simple case of an entry block, a body block, and an exit block. |
| // Put the body block's instruction into `invoke`'s block. |
| HBasicBlock* body = GetBlocks().Get(1); |
| DCHECK(GetBlocks().Get(0)->IsEntryBlock()); |
| DCHECK(GetBlocks().Get(2)->IsExitBlock()); |
| DCHECK(!body->IsExitBlock()); |
| HInstruction* last = body->GetLastInstruction(); |
| |
| invoke->GetBlock()->instructions_.AddAfter(invoke, body->GetInstructions()); |
| body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock()); |
| |
| // Replace the invoke with the return value of the inlined graph. |
| if (last->IsReturn()) { |
| return_value = last->InputAt(0); |
| invoke->ReplaceWith(return_value); |
| } else { |
| DCHECK(last->IsReturnVoid()); |
| } |
| |
| invoke->GetBlock()->RemoveInstruction(last); |
| } else { |
| // Need to inline multiple blocks. We split `invoke`'s block |
| // into two blocks, merge the first block of the inlined graph into |
| // the first half, and replace the exit block of the inlined graph |
| // with the second half. |
| ArenaAllocator* allocator = outer_graph->GetArena(); |
| HBasicBlock* at = invoke->GetBlock(); |
| HBasicBlock* to = at->SplitAfter(invoke); |
| |
| HBasicBlock* first = entry_block_->GetSuccessor(0); |
| DCHECK(!first->IsInLoop()); |
| at->MergeWithInlined(first); |
| exit_block_->ReplaceWith(to); |
| |
| // Update all predecessors of the exit block (now the `to` block) |
| // to not `HReturn` but `HGoto` instead. |
| bool returns_void = to->GetPredecessor(0)->GetLastInstruction()->IsReturnVoid(); |
| if (to->GetPredecessors().size() == 1) { |
| HBasicBlock* predecessor = to->GetPredecessor(0); |
| HInstruction* last = predecessor->GetLastInstruction(); |
| if (!returns_void) { |
| return_value = last->InputAt(0); |
| } |
| predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc())); |
| predecessor->RemoveInstruction(last); |
| } else { |
| if (!returns_void) { |
| // There will be multiple returns. |
| return_value = new (allocator) HPhi( |
| allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc()); |
| to->AddPhi(return_value->AsPhi()); |
| } |
| for (HBasicBlock* predecessor : to->GetPredecessors()) { |
| HInstruction* last = predecessor->GetLastInstruction(); |
| if (!returns_void) { |
| return_value->AsPhi()->AddInput(last->InputAt(0)); |
| } |
| predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc())); |
| predecessor->RemoveInstruction(last); |
| } |
| } |
| |
| if (return_value != nullptr) { |
| invoke->ReplaceWith(return_value); |
| } |
| |
| // Update the meta information surrounding blocks: |
| // (1) the graph they are now in, |
| // (2) the reverse post order of that graph, |
| // (3) the potential loop information they are now in. |
| |
| // We don't add the entry block, the exit block, and the first block, which |
| // has been merged with `at`. |
| static constexpr int kNumberOfSkippedBlocksInCallee = 3; |
| |
| // We add the `to` block. |
| static constexpr int kNumberOfNewBlocksInCaller = 1; |
| size_t blocks_added = (reverse_post_order_.Size() - kNumberOfSkippedBlocksInCallee) |
| + kNumberOfNewBlocksInCaller; |
| |
| // Find the location of `at` in the outer graph's reverse post order. The new |
| // blocks will be added after it. |
| size_t index_of_at = 0; |
| while (outer_graph->reverse_post_order_.Get(index_of_at) != at) { |
| index_of_at++; |
| } |
| MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at); |
| |
| // Do a reverse post order of the blocks in the callee and do (1), (2), |
| // and (3) to the blocks that apply. |
| HLoopInformation* info = at->GetLoopInformation(); |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| HBasicBlock* current = it.Current(); |
| if (current != exit_block_ && current != entry_block_ && current != first) { |
| DCHECK(!current->IsInLoop()); |
| DCHECK(current->GetGraph() == this); |
| current->SetGraph(outer_graph); |
| outer_graph->AddBlock(current); |
| outer_graph->reverse_post_order_.Put(++index_of_at, current); |
| if (info != nullptr) { |
| current->SetLoopInformation(info); |
| for (HLoopInformationOutwardIterator loop_it(*at); !loop_it.Done(); loop_it.Advance()) { |
| loop_it.Current()->Add(current); |
| } |
| } |
| } |
| } |
| |
| // Do (1), (2), and (3) to `to`. |
| to->SetGraph(outer_graph); |
| outer_graph->AddBlock(to); |
| outer_graph->reverse_post_order_.Put(++index_of_at, to); |
| if (info != nullptr) { |
| to->SetLoopInformation(info); |
| for (HLoopInformationOutwardIterator loop_it(*at); !loop_it.Done(); loop_it.Advance()) { |
| loop_it.Current()->Add(to); |
| } |
| if (info->IsBackEdge(*at)) { |
| // Only `to` can become a back edge, as the inlined blocks |
| // are predecessors of `to`. |
| info->ReplaceBackEdge(at, to); |
| } |
| } |
| } |
| |
| // Update the next instruction id of the outer graph, so that instructions |
| // added later get bigger ids than those in the inner graph. |
| outer_graph->SetCurrentInstructionId(GetNextInstructionId()); |
| |
| // Walk over the entry block and: |
| // - Move constants from the entry block to the outer_graph's entry block, |
| // - Replace HParameterValue instructions with their real value. |
| // - Remove suspend checks, that hold an environment. |
| // We must do this after the other blocks have been inlined, otherwise ids of |
| // constants could overlap with the inner graph. |
| size_t parameter_index = 0; |
| for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* current = it.Current(); |
| if (current->IsNullConstant()) { |
| current->ReplaceWith(outer_graph->GetNullConstant(current->GetDexPc())); |
| } else if (current->IsIntConstant()) { |
| current->ReplaceWith(outer_graph->GetIntConstant( |
| current->AsIntConstant()->GetValue(), current->GetDexPc())); |
| } else if (current->IsLongConstant()) { |
| current->ReplaceWith(outer_graph->GetLongConstant( |
| current->AsLongConstant()->GetValue(), current->GetDexPc())); |
| } else if (current->IsFloatConstant()) { |
| current->ReplaceWith(outer_graph->GetFloatConstant( |
| current->AsFloatConstant()->GetValue(), current->GetDexPc())); |
| } else if (current->IsDoubleConstant()) { |
| current->ReplaceWith(outer_graph->GetDoubleConstant( |
| current->AsDoubleConstant()->GetValue(), current->GetDexPc())); |
| } else if (current->IsParameterValue()) { |
| if (kIsDebugBuild |
| && invoke->IsInvokeStaticOrDirect() |
| && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) { |
| // Ensure we do not use the last input of `invoke`, as it |
| // contains a clinit check which is not an actual argument. |
| size_t last_input_index = invoke->InputCount() - 1; |
| DCHECK(parameter_index != last_input_index); |
| } |
| current->ReplaceWith(invoke->InputAt(parameter_index++)); |
| } else if (current->IsCurrentMethod()) { |
| current->ReplaceWith(outer_graph->GetCurrentMethod()); |
| } else { |
| DCHECK(current->IsGoto() || current->IsSuspendCheck()); |
| entry_block_->RemoveInstruction(current); |
| } |
| } |
| |
| // Finally remove the invoke from the caller. |
| invoke->GetBlock()->RemoveInstruction(invoke); |
| |
| return return_value; |
| } |
| |
| /* |
| * Loop will be transformed to: |
| * old_pre_header |
| * | |
| * if_block |
| * / \ |
| * dummy_block deopt_block |
| * \ / |
| * new_pre_header |
| * | |
| * header |
| */ |
| void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) { |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* pre_header = header->GetDominator(); |
| |
| // Need this to avoid critical edge. |
| HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| // Need this to avoid critical edge. |
| HBasicBlock* dummy_block = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* deopt_block = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| AddBlock(if_block); |
| AddBlock(dummy_block); |
| AddBlock(deopt_block); |
| AddBlock(new_pre_header); |
| |
| header->ReplacePredecessor(pre_header, new_pre_header); |
| pre_header->successors_.clear(); |
| pre_header->dominated_blocks_.clear(); |
| |
| pre_header->AddSuccessor(if_block); |
| if_block->AddSuccessor(dummy_block); // True successor |
| if_block->AddSuccessor(deopt_block); // False successor |
| dummy_block->AddSuccessor(new_pre_header); |
| deopt_block->AddSuccessor(new_pre_header); |
| |
| pre_header->dominated_blocks_.push_back(if_block); |
| if_block->SetDominator(pre_header); |
| if_block->dominated_blocks_.push_back(dummy_block); |
| dummy_block->SetDominator(if_block); |
| if_block->dominated_blocks_.push_back(deopt_block); |
| deopt_block->SetDominator(if_block); |
| if_block->dominated_blocks_.push_back(new_pre_header); |
| new_pre_header->SetDominator(if_block); |
| new_pre_header->dominated_blocks_.push_back(header); |
| header->SetDominator(new_pre_header); |
| |
| size_t index_of_header = 0; |
| while (reverse_post_order_.Get(index_of_header) != header) { |
| index_of_header++; |
| } |
| MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1); |
| reverse_post_order_.Put(index_of_header++, if_block); |
| reverse_post_order_.Put(index_of_header++, dummy_block); |
| reverse_post_order_.Put(index_of_header++, deopt_block); |
| reverse_post_order_.Put(index_of_header++, new_pre_header); |
| |
| HLoopInformation* info = pre_header->GetLoopInformation(); |
| if (info != nullptr) { |
| if_block->SetLoopInformation(info); |
| dummy_block->SetLoopInformation(info); |
| deopt_block->SetLoopInformation(info); |
| new_pre_header->SetLoopInformation(info); |
| for (HLoopInformationOutwardIterator loop_it(*pre_header); |
| !loop_it.Done(); |
| loop_it.Advance()) { |
| loop_it.Current()->Add(if_block); |
| loop_it.Current()->Add(dummy_block); |
| loop_it.Current()->Add(deopt_block); |
| loop_it.Current()->Add(new_pre_header); |
| } |
| } |
| } |
| |
| void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) { |
| if (kIsDebugBuild) { |
| DCHECK_EQ(GetType(), Primitive::kPrimNot); |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName(); |
| if (IsBoundType()) { |
| // Having the test here spares us from making the method virtual just for |
| // the sake of a DCHECK. |
| ReferenceTypeInfo upper_bound_rti = AsBoundType()->GetUpperBound(); |
| DCHECK(upper_bound_rti.IsSupertypeOf(rti)) |
| << " upper_bound_rti: " << upper_bound_rti |
| << " rti: " << rti; |
| DCHECK(!upper_bound_rti.GetTypeHandle()->IsFinal() || rti.IsExact()); |
| } |
| } |
| reference_type_info_ = rti; |
| } |
| |
| ReferenceTypeInfo::ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} |
| |
| ReferenceTypeInfo::ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) |
| : type_handle_(type_handle), is_exact_(is_exact) { |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(IsValidHandle(type_handle)); |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) { |
| ScopedObjectAccess soa(Thread::Current()); |
| os << "[" |
| << " is_valid=" << rhs.IsValid() |
| << " type=" << (!rhs.IsValid() ? "?" : PrettyClass(rhs.GetTypeHandle().Get())) |
| << " is_exact=" << rhs.IsExact() |
| << " ]"; |
| return os; |
| } |
| |
| bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) { |
| // For now, assume that instructions in different blocks may use the |
| // environment. |
| // TODO: Use the control flow to decide if this is true. |
| if (GetBlock() != other->GetBlock()) { |
| return true; |
| } |
| |
| // We know that we are in the same block. Walk from 'this' to 'other', |
| // checking to see if there is any instruction with an environment. |
| HInstruction* current = this; |
| for (; current != other && current != nullptr; current = current->GetNext()) { |
| // This is a conservative check, as the instruction result may not be in |
| // the referenced environment. |
| if (current->HasEnvironment()) { |
| return true; |
| } |
| } |
| |
| // We should have been called with 'this' before 'other' in the block. |
| // Just confirm this. |
| DCHECK(current != nullptr); |
| return false; |
| } |
| |
| void HInstruction::RemoveEnvironmentUsers() { |
| for (HUseIterator<HEnvironment*> use_it(GetEnvUses()); !use_it.Done(); use_it.Advance()) { |
| HUseListNode<HEnvironment*>* user_node = use_it.Current(); |
| HEnvironment* user = user_node->GetUser(); |
| user->SetRawEnvAt(user_node->GetIndex(), nullptr); |
| } |
| env_uses_.Clear(); |
| } |
| |
| } // namespace art |