blob: bd9a5d25642bceb31db9dd1ac83474ebccdde530 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_x86.h"
#include "art_method.h"
#include "code_generator_utils.h"
#include "compiled_method.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_x86.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "thread.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
#include "utils/x86/assembler_x86.h"
#include "utils/x86/managed_register_x86.h"
namespace art {
template<class MirrorType>
class GcRoot;
namespace x86 {
static constexpr int kCurrentMethodStackOffset = 0;
static constexpr Register kMethodRegisterArgument = EAX;
static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
static constexpr int kC2ConditionMask = 0x400;
static constexpr int kFakeReturnRegister = Register(8);
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, x).Int32Value()
class NullCheckSlowPathX86 : public SlowPathCode {
public:
explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
x86_codegen->InvokeRuntime(kQuickThrowNullPointer,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; }
private:
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
};
class DivZeroCheckSlowPathX86 : public SlowPathCode {
public:
explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
x86_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; }
private:
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
};
class DivRemMinusOneSlowPathX86 : public SlowPathCode {
public:
DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div)
: SlowPathCode(instruction), reg_(reg), is_div_(is_div) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
if (is_div_) {
__ negl(reg_);
} else {
__ movl(reg_, Immediate(0));
}
__ jmp(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; }
private:
Register reg_;
bool is_div_;
DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
};
class BoundsCheckSlowPathX86 : public SlowPathCode {
public:
explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
// Are we using an array length from memory?
HInstruction* array_length = instruction_->InputAt(1);
Location length_loc = locations->InAt(1);
InvokeRuntimeCallingConvention calling_convention;
if (array_length->IsArrayLength() && array_length->IsEmittedAtUseSite()) {
// Load the array length into our temporary.
uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength());
Location array_loc = array_length->GetLocations()->InAt(0);
Address array_len(array_loc.AsRegister<Register>(), len_offset);
length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(1));
// Check for conflicts with index.
if (length_loc.Equals(locations->InAt(0))) {
// We know we aren't using parameter 2.
length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(2));
}
__ movl(length_loc.AsRegister<Register>(), array_len);
if (mirror::kUseStringCompression) {
__ shrl(length_loc.AsRegister<Register>(), Immediate(1));
}
}
x86_codegen->EmitParallelMoves(
locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimInt,
length_loc,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimInt);
QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
? kQuickThrowStringBounds
: kQuickThrowArrayBounds;
x86_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; }
private:
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
};
class SuspendCheckSlowPathX86 : public SlowPathCode {
public:
SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
: SlowPathCode(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations); // Only saves full width XMM for SIMD.
x86_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
RestoreLiveRegisters(codegen, locations); // Only restores full width XMM for SIMD.
if (successor_ == nullptr) {
__ jmp(GetReturnLabel());
} else {
__ jmp(x86_codegen->GetLabelOf(successor_));
}
}
Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
HBasicBlock* GetSuccessor() const {
return successor_;
}
const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; }
private:
HBasicBlock* const successor_;
Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
};
class LoadStringSlowPathX86 : public SlowPathCode {
public:
explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
__ movl(calling_convention.GetRegisterAt(0), Immediate(string_index.index_));
x86_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
RestoreLiveRegisters(codegen, locations);
// Store the resolved String to the BSS entry.
Register method_address = locations->InAt(0).AsRegister<Register>();
__ movl(Address(method_address, CodeGeneratorX86::kDummy32BitOffset),
locations->Out().AsRegister<Register>());
Label* fixup_label = x86_codegen->NewStringBssEntryPatch(instruction_->AsLoadString());
__ Bind(fixup_label);
__ jmp(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; }
private:
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
};
class LoadClassSlowPathX86 : public SlowPathCode {
public:
LoadClassSlowPathX86(HLoadClass* cls,
HInstruction* at,
uint32_t dex_pc,
bool do_clinit)
: SlowPathCode(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
dex::TypeIndex type_index = cls_->GetTypeIndex();
__ movl(calling_convention.GetRegisterAt(0), Immediate(type_index.index_));
x86_codegen->InvokeRuntime(do_clinit_ ? kQuickInitializeStaticStorage
: kQuickInitializeType,
instruction_,
dex_pc_,
this);
if (do_clinit_) {
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
} else {
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
}
// Move the class to the desired location.
Location out = locations->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
x86_codegen->Move32(out, Location::RegisterLocation(EAX));
}
RestoreLiveRegisters(codegen, locations);
// For HLoadClass/kBssEntry, store the resolved Class to the BSS entry.
DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
if (cls_ == instruction_ && cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
DCHECK(out.IsValid());
Register method_address = locations->InAt(0).AsRegister<Register>();
__ movl(Address(method_address, CodeGeneratorX86::kDummy32BitOffset),
locations->Out().AsRegister<Register>());
Label* fixup_label = x86_codegen->NewTypeBssEntryPatch(cls_);
__ Bind(fixup_label);
}
__ jmp(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; }
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
};
class TypeCheckSlowPathX86 : public SlowPathCode {
public:
TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal)
: SlowPathCode(instruction), is_fatal_(is_fatal) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
if (!is_fatal_) {
SaveLiveRegisters(codegen, locations);
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
x86_codegen->EmitParallelMoves(locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimNot);
if (instruction_->IsInstanceOf()) {
x86_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
} else {
DCHECK(instruction_->IsCheckCast());
x86_codegen->InvokeRuntime(kQuickCheckInstanceOf,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
}
if (!is_fatal_) {
if (instruction_->IsInstanceOf()) {
x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
}
RestoreLiveRegisters(codegen, locations);
__ jmp(GetExitLabel());
}
}
const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; }
bool IsFatal() const OVERRIDE { return is_fatal_; }
private:
const bool is_fatal_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
};
class DeoptimizationSlowPathX86 : public SlowPathCode {
public:
explicit DeoptimizationSlowPathX86(HDeoptimize* instruction)
: SlowPathCode(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
__ Bind(GetEntryLabel());
LocationSummary* locations = instruction_->GetLocations();
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
x86_codegen->Load32BitValue(
calling_convention.GetRegisterAt(0),
static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
x86_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
}
const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; }
private:
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86);
};
class ArraySetSlowPathX86 : public SlowPathCode {
public:
explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
parallel_move.AddMove(
locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
nullptr);
parallel_move.AddMove(
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimInt,
nullptr);
parallel_move.AddMove(
locations->InAt(2),
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
Primitive::kPrimNot,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
x86_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
RestoreLiveRegisters(codegen, locations);
__ jmp(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; }
private:
DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86);
};
// Slow path marking an object reference `ref` during a read
// barrier. The field `obj.field` in the object `obj` holding this
// reference does not get updated by this slow path after marking (see
// ReadBarrierMarkAndUpdateFieldSlowPathX86 below for that).
//
// This means that after the execution of this slow path, `ref` will
// always be up-to-date, but `obj.field` may not; i.e., after the
// flip, `ref` will be a to-space reference, but `obj.field` will
// probably still be a from-space reference (unless it gets updated by
// another thread, or if another thread installed another object
// reference (different from `ref`) in `obj.field`).
class ReadBarrierMarkSlowPathX86 : public SlowPathCode {
public:
ReadBarrierMarkSlowPathX86(HInstruction* instruction,
Location ref,
bool unpoison_ref_before_marking)
: SlowPathCode(instruction),
ref_(ref),
unpoison_ref_before_marking_(unpoison_ref_before_marking) {
DCHECK(kEmitCompilerReadBarrier);
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; }
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Register ref_reg = ref_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
DCHECK(instruction_->IsInstanceFieldGet() ||
instruction_->IsStaticFieldGet() ||
instruction_->IsArrayGet() ||
instruction_->IsArraySet() ||
instruction_->IsLoadClass() ||
instruction_->IsLoadString() ||
instruction_->IsInstanceOf() ||
instruction_->IsCheckCast() ||
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
(instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
if (unpoison_ref_before_marking_) {
// Object* ref = ref_addr->AsMirrorPtr()
__ MaybeUnpoisonHeapReference(ref_reg);
}
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
DCHECK_NE(ref_reg, ESP);
DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg;
// "Compact" slow path, saving two moves.
//
// Instead of using the standard runtime calling convention (input
// and output in EAX):
//
// EAX <- ref
// EAX <- ReadBarrierMark(EAX)
// ref <- EAX
//
// we just use rX (the register containing `ref`) as input and output
// of a dedicated entrypoint:
//
// rX <- ReadBarrierMarkRegX(rX)
//
int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg);
// This runtime call does not require a stack map.
x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
__ jmp(GetExitLabel());
}
private:
// The location (register) of the marked object reference.
const Location ref_;
// Should the reference in `ref_` be unpoisoned prior to marking it?
const bool unpoison_ref_before_marking_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86);
};
// Slow path marking an object reference `ref` during a read barrier,
// and if needed, atomically updating the field `obj.field` in the
// object `obj` holding this reference after marking (contrary to
// ReadBarrierMarkSlowPathX86 above, which never tries to update
// `obj.field`).
//
// This means that after the execution of this slow path, both `ref`
// and `obj.field` will be up-to-date; i.e., after the flip, both will
// hold the same to-space reference (unless another thread installed
// another object reference (different from `ref`) in `obj.field`).
class ReadBarrierMarkAndUpdateFieldSlowPathX86 : public SlowPathCode {
public:
ReadBarrierMarkAndUpdateFieldSlowPathX86(HInstruction* instruction,
Location ref,
Register obj,
const Address& field_addr,
bool unpoison_ref_before_marking,
Register temp)
: SlowPathCode(instruction),
ref_(ref),
obj_(obj),
field_addr_(field_addr),
unpoison_ref_before_marking_(unpoison_ref_before_marking),
temp_(temp) {
DCHECK(kEmitCompilerReadBarrier);
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkAndUpdateFieldSlowPathX86"; }
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Register ref_reg = ref_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
// This slow path is only used by the UnsafeCASObject intrinsic.
DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking and field updating slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
__ Bind(GetEntryLabel());
if (unpoison_ref_before_marking_) {
// Object* ref = ref_addr->AsMirrorPtr()
__ MaybeUnpoisonHeapReference(ref_reg);
}
// Save the old (unpoisoned) reference.
__ movl(temp_, ref_reg);
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
DCHECK_NE(ref_reg, ESP);
DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg;
// "Compact" slow path, saving two moves.
//
// Instead of using the standard runtime calling convention (input
// and output in EAX):
//
// EAX <- ref
// EAX <- ReadBarrierMark(EAX)
// ref <- EAX
//
// we just use rX (the register containing `ref`) as input and output
// of a dedicated entrypoint:
//
// rX <- ReadBarrierMarkRegX(rX)
//
int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg);
// This runtime call does not require a stack map.
x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
// If the new reference is different from the old reference,
// update the field in the holder (`*field_addr`).
//
// Note that this field could also hold a different object, if
// another thread had concurrently changed it. In that case, the
// LOCK CMPXCHGL instruction in the compare-and-set (CAS)
// operation below would abort the CAS, leaving the field as-is.
NearLabel done;
__ cmpl(temp_, ref_reg);
__ j(kEqual, &done);
// Update the the holder's field atomically. This may fail if
// mutator updates before us, but it's OK. This is achieved
// using a strong compare-and-set (CAS) operation with relaxed
// memory synchronization ordering, where the expected value is
// the old reference and the desired value is the new reference.
// This operation is implemented with a 32-bit LOCK CMPXLCHG
// instruction, which requires the expected value (the old
// reference) to be in EAX. Save EAX beforehand, and move the
// expected value (stored in `temp_`) into EAX.
__ pushl(EAX);
__ movl(EAX, temp_);
// Convenience aliases.
Register base = obj_;
Register expected = EAX;
Register value = ref_reg;
bool base_equals_value = (base == value);
if (kPoisonHeapReferences) {
if (base_equals_value) {
// If `base` and `value` are the same register location, move
// `value` to a temporary register. This way, poisoning
// `value` won't invalidate `base`.
value = temp_;
__ movl(value, base);
}
// Check that the register allocator did not assign the location
// of `expected` (EAX) to `value` nor to `base`, so that heap
// poisoning (when enabled) works as intended below.
// - If `value` were equal to `expected`, both references would
// be poisoned twice, meaning they would not be poisoned at
// all, as heap poisoning uses address negation.
// - If `base` were equal to `expected`, poisoning `expected`
// would invalidate `base`.
DCHECK_NE(value, expected);
DCHECK_NE(base, expected);
__ PoisonHeapReference(expected);
__ PoisonHeapReference(value);
}
__ LockCmpxchgl(field_addr_, value);
// If heap poisoning is enabled, we need to unpoison the values
// that were poisoned earlier.
if (kPoisonHeapReferences) {
if (base_equals_value) {
// `value` has been moved to a temporary register, no need
// to unpoison it.
} else {
__ UnpoisonHeapReference(value);
}
// No need to unpoison `expected` (EAX), as it is be overwritten below.
}
// Restore EAX.
__ popl(EAX);
__ Bind(&done);
__ jmp(GetExitLabel());
}
private:
// The location (register) of the marked object reference.
const Location ref_;
// The register containing the object holding the marked object reference field.
const Register obj_;
// The address of the marked reference field. The base of this address must be `obj_`.
const Address field_addr_;
// Should the reference in `ref_` be unpoisoned prior to marking it?
const bool unpoison_ref_before_marking_;
const Register temp_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathX86);
};
// Slow path generating a read barrier for a heap reference.
class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode {
public:
ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index)
: SlowPathCode(instruction),
out_(out),
ref_(ref),
obj_(obj),
offset_(offset),
index_(index) {
DCHECK(kEmitCompilerReadBarrier);
// If `obj` is equal to `out` or `ref`, it means the initial object
// has been overwritten by (or after) the heap object reference load
// to be instrumented, e.g.:
//
// __ movl(out, Address(out, offset));
// codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
//
// In that case, we have lost the information about the original
// object, and the emitted read barrier cannot work properly.
DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
Register reg_out = out_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
DCHECK(instruction_->IsInstanceFieldGet() ||
instruction_->IsStaticFieldGet() ||
instruction_->IsArrayGet() ||
instruction_->IsInstanceOf() ||
instruction_->IsCheckCast() ||
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier for heap reference slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We may have to change the index's value, but as `index_` is a
// constant member (like other "inputs" of this slow path),
// introduce a copy of it, `index`.
Location index = index_;
if (index_.IsValid()) {
// Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
if (instruction_->IsArrayGet()) {
// Compute the actual memory offset and store it in `index`.
Register index_reg = index_.AsRegister<Register>();
DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
// We are about to change the value of `index_reg` (see the
// calls to art::x86::X86Assembler::shll and
// art::x86::X86Assembler::AddImmediate below), but it has
// not been saved by the previous call to
// art::SlowPathCode::SaveLiveRegisters, as it is a
// callee-save register --
// art::SlowPathCode::SaveLiveRegisters does not consider
// callee-save registers, as it has been designed with the
// assumption that callee-save registers are supposed to be
// handled by the called function. So, as a callee-save
// register, `index_reg` _would_ eventually be saved onto
// the stack, but it would be too late: we would have
// changed its value earlier. Therefore, we manually save
// it here into another freely available register,
// `free_reg`, chosen of course among the caller-save
// registers (as a callee-save `free_reg` register would
// exhibit the same problem).
//
// Note we could have requested a temporary register from
// the register allocator instead; but we prefer not to, as
// this is a slow path, and we know we can find a
// caller-save register that is available.
Register free_reg = FindAvailableCallerSaveRegister(codegen);
__ movl(free_reg, index_reg);
index_reg = free_reg;
index = Location::RegisterLocation(index_reg);
} else {
// The initial register stored in `index_` has already been
// saved in the call to art::SlowPathCode::SaveLiveRegisters
// (as it is not a callee-save register), so we can freely
// use it.
}
// Shifting the index value contained in `index_reg` by the scale
// factor (2) cannot overflow in practice, as the runtime is
// unable to allocate object arrays with a size larger than
// 2^26 - 1 (that is, 2^28 - 4 bytes).
__ shll(index_reg, Immediate(TIMES_4));
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
__ AddImmediate(index_reg, Immediate(offset_));
} else {
// In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
// intrinsics, `index_` is not shifted by a scale factor of 2
// (as in the case of ArrayGet), as it is actually an offset
// to an object field within an object.
DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
(instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
<< instruction_->AsInvoke()->GetIntrinsic();
DCHECK_EQ(offset_, 0U);
DCHECK(index_.IsRegisterPair());
// UnsafeGet's offset location is a register pair, the low
// part contains the correct offset.
index = index_.ToLow();
}
}
// We're moving two or three locations to locations that could
// overlap, so we need a parallel move resolver.
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
parallel_move.AddMove(ref_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
nullptr);
parallel_move.AddMove(obj_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimNot,
nullptr);
if (index.IsValid()) {
parallel_move.AddMove(index,
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
Primitive::kPrimInt,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
} else {
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
__ movl(calling_convention.GetRegisterAt(2), Immediate(offset_));
}
x86_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<
kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
RestoreLiveRegisters(codegen, locations);
__ jmp(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; }
private:
Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
size_t ref = static_cast<int>(ref_.AsRegister<Register>());
size_t obj = static_cast<int>(obj_.AsRegister<Register>());
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
return static_cast<Register>(i);
}
}
// We shall never fail to find a free caller-save register, as
// there are more than two core caller-save registers on x86
// (meaning it is possible to find one which is different from
// `ref` and `obj`).
DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
LOG(FATAL) << "Could not find a free caller-save register";
UNREACHABLE();
}
const Location out_;
const Location ref_;
const Location obj_;
const uint32_t offset_;
// An additional location containing an index to an array.
// Only used for HArrayGet and the UnsafeGetObject &
// UnsafeGetObjectVolatile intrinsics.
const Location index_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86);
};
// Slow path generating a read barrier for a GC root.
class ReadBarrierForRootSlowPathX86 : public SlowPathCode {
public:
ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root)
: SlowPathCode(instruction), out_(out), root_(root) {
DCHECK(kEmitCompilerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Register reg_out = out_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
<< "Unexpected instruction in read barrier for GC root slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
x86_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
RestoreLiveRegisters(codegen, locations);
__ jmp(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; }
private:
const Location out_;
const Location root_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86);
};
#undef __
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<X86Assembler*>(GetAssembler())-> // NOLINT
inline Condition X86Condition(IfCondition cond) {
switch (cond) {
case kCondEQ: return kEqual;
case kCondNE: return kNotEqual;
case kCondLT: return kLess;
case kCondLE: return kLessEqual;
case kCondGT: return kGreater;
case kCondGE: return kGreaterEqual;
case kCondB: return kBelow;
case kCondBE: return kBelowEqual;
case kCondA: return kAbove;
case kCondAE: return kAboveEqual;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
// Maps signed condition to unsigned condition and FP condition to x86 name.
inline Condition X86UnsignedOrFPCondition(IfCondition cond) {
switch (cond) {
case kCondEQ: return kEqual;
case kCondNE: return kNotEqual;
// Signed to unsigned, and FP to x86 name.
case kCondLT: return kBelow;
case kCondLE: return kBelowEqual;
case kCondGT: return kAbove;
case kCondGE: return kAboveEqual;
// Unsigned remain unchanged.
case kCondB: return kBelow;
case kCondBE: return kBelowEqual;
case kCondA: return kAbove;
case kCondAE: return kAboveEqual;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << Register(reg);
}
void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << XmmRegister(reg);
}
size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
return kX86WordSize;
}
size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
return kX86WordSize;
}
size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
if (GetGraph()->HasSIMD()) {
__ movups(Address(ESP, stack_index), XmmRegister(reg_id));
} else {
__ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
}
return GetFloatingPointSpillSlotSize();
}
size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
if (GetGraph()->HasSIMD()) {
__ movups(XmmRegister(reg_id), Address(ESP, stack_index));
} else {
__ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
}
return GetFloatingPointSpillSlotSize();
}
void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(entrypoint, instruction, slow_path);
GenerateInvokeRuntime(GetThreadOffset<kX86PointerSize>(entrypoint).Int32Value());
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
void CodeGeneratorX86::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path) {
ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
GenerateInvokeRuntime(entry_point_offset);
}
void CodeGeneratorX86::GenerateInvokeRuntime(int32_t entry_point_offset) {
__ fs()->call(Address::Absolute(entry_point_offset));
}
CodeGeneratorX86::CodeGeneratorX86(HGraph* graph,
const X86InstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfCpuRegisters,
kNumberOfXmmRegisters,
kNumberOfRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves))
| (1 << kFakeReturnRegister),
0,
compiler_options,
stats),
block_labels_(nullptr),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this),
assembler_(graph->GetArena()),
isa_features_(isa_features),
pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
boot_image_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
jit_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
jit_class_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
constant_area_start_(-1),
fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
method_address_offset_(std::less<uint32_t>(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
// Use a fake return address register to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
}
void CodeGeneratorX86::SetupBlockedRegisters() const {
// Stack register is always reserved.
blocked_core_registers_[ESP] = true;
}
InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
: InstructionCodeGenerator(graph, codegen),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::X86Core(static_cast<int>(reg));
}
void CodeGeneratorX86::GenerateFrameEntry() {
__ cfi().SetCurrentCFAOffset(kX86WordSize); // return address
__ Bind(&frame_entry_label_);
bool skip_overflow_check =
IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
if (!skip_overflow_check) {
__ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86))));
RecordPcInfo(nullptr, 0);
}
if (HasEmptyFrame()) {
return;
}
for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
__ pushl(reg);
__ cfi().AdjustCFAOffset(kX86WordSize);
__ cfi().RelOffset(DWARFReg(reg), 0);
}
}
if (GetGraph()->HasShouldDeoptimizeFlag()) {
// Initialize should_deoptimize flag to 0.
__ movl(Address(ESP, -kShouldDeoptimizeFlagSize), Immediate(0));
}
int adjust = GetFrameSize() - FrameEntrySpillSize();
__ subl(ESP, Immediate(adjust));
__ cfi().AdjustCFAOffset(adjust);
// Save the current method if we need it. Note that we do not
// do this in HCurrentMethod, as the instruction might have been removed
// in the SSA graph.
if (RequiresCurrentMethod()) {
__ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument);
}
}
void CodeGeneratorX86::GenerateFrameExit() {
__ cfi().RememberState();
if (!HasEmptyFrame()) {
int adjust = GetFrameSize() - FrameEntrySpillSize();
__ addl(ESP, Immediate(adjust));
__ cfi().AdjustCFAOffset(-adjust);
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
Register reg = kCoreCalleeSaves[i];
if (allocated_registers_.ContainsCoreRegister(reg)) {
__ popl(reg);
__ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize));
__ cfi().Restore(DWARFReg(reg));
}
}
}
__ ret();
__ cfi().RestoreState();
__ cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorX86::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
return Location::RegisterLocation(EAX);
case Primitive::kPrimLong:
return Location::RegisterPairLocation(EAX, EDX);
case Primitive::kPrimVoid:
return Location::NoLocation();
case Primitive::kPrimDouble:
case Primitive::kPrimFloat:
return Location::FpuRegisterLocation(XMM0);
}
UNREACHABLE();
}
Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const {
return Location::RegisterLocation(kMethodRegisterArgument);
}
Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t index = gp_index_++;
stack_index_++;
if (index < calling_convention.GetNumberOfRegisters()) {
return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
}
}
case Primitive::kPrimLong: {
uint32_t index = gp_index_;
gp_index_ += 2;
stack_index_ += 2;
if (index + 1 < calling_convention.GetNumberOfRegisters()) {
X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
calling_convention.GetRegisterPairAt(index));
return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
}
}
case Primitive::kPrimFloat: {
uint32_t index = float_index_++;
stack_index_++;
if (index < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
}
}
case Primitive::kPrimDouble: {
uint32_t index = float_index_++;
stack_index_ += 2;
if (index < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
}
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
break;
}
return Location::NoLocation();
}
void CodeGeneratorX86::Move32(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(source.IsStackSlot());
__ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
__ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(source.IsStackSlot());
__ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
if (source.IsRegister()) {
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
int32_t value = GetInt32ValueOf(constant);
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
} else {
DCHECK(source.IsStackSlot());
__ pushl(Address(ESP, source.GetStackIndex()));
__ popl(Address(ESP, destination.GetStackIndex()));
}
}
}
void CodeGeneratorX86::Move64(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegisterPair()) {
if (source.IsRegisterPair()) {
EmitParallelMoves(
Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
Primitive::kPrimInt,
Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
Primitive::kPrimInt);
} else if (source.IsFpuRegister()) {
XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
__ movd(destination.AsRegisterPairLow<Register>(), src_reg);
__ psrlq(src_reg, Immediate(32));
__ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
} else {
// No conflict possible, so just do the moves.
DCHECK(source.IsDoubleStackSlot());
__ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
__ movl(destination.AsRegisterPairHigh<Register>(),
Address(ESP, source.GetHighStackIndex(kX86WordSize)));
}
} else if (destination.IsFpuRegister()) {
if (source.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (source.IsDoubleStackSlot()) {
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
} else if (source.IsRegisterPair()) {
size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
// Create stack space for 2 elements.
__ subl(ESP, Immediate(2 * elem_size));
__ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
__ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
// And remove the temporary stack space we allocated.
__ addl(ESP, Immediate(2 * elem_size));
} else {
LOG(FATAL) << "Unimplemented";
}
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
if (source.IsRegisterPair()) {
// No conflict possible, so just do the moves.
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
source.AsRegisterPairHigh<Register>());
} else if (source.IsFpuRegister()) {
__ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
DCHECK(constant->IsLongConstant() || constant->IsDoubleConstant());
int64_t value = GetInt64ValueOf(constant);
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value)));
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
Immediate(High32Bits(value)));
} else {
DCHECK(source.IsDoubleStackSlot()) << source;
EmitParallelMoves(
Location::StackSlot(source.GetStackIndex()),
Location::StackSlot(destination.GetStackIndex()),
Primitive::kPrimInt,
Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)),
Primitive::kPrimInt);
}
}
}
void CodeGeneratorX86::MoveConstant(Location location, int32_t value) {
DCHECK(location.IsRegister());
__ movl(location.AsRegister<Register>(), Immediate(value));
}
void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
HParallelMove move(GetGraph()->GetArena());
if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) {
move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr);
move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr);
} else {
move.AddMove(src, dst, dst_type, nullptr);
}
GetMoveResolver()->EmitNativeCode(&move);
}
void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) {
if (location.IsRegister()) {
locations->AddTemp(location);
} else if (location.IsRegisterPair()) {
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
} else {
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
}
}
void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) {
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
__ jmp(codegen_->GetLabelOf(successor));
}
}
void LocationsBuilderX86::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
HandleGoto(got, got->GetSuccessor());
}
void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) {
try_boundary->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) {
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
if (!successor->IsExitBlock()) {
HandleGoto(try_boundary, successor);
}
}
void LocationsBuilderX86::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
}
template<class LabelType>
void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond,
LabelType* true_label,
LabelType* false_label) {
if (cond->IsFPConditionTrueIfNaN()) {
__ j(kUnordered, true_label);
} else if (cond->IsFPConditionFalseIfNaN()) {
__ j(kUnordered, false_label);
}
__ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label);
}
template<class LabelType>
void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond,
LabelType* true_label,
LabelType* false_label) {
LocationSummary* locations = cond->GetLocations();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
IfCondition if_cond = cond->GetCondition();
Register left_high = left.AsRegisterPairHigh<Register>();
Register left_low = left.AsRegisterPairLow<Register>();
IfCondition true_high_cond = if_cond;
IfCondition false_high_cond = cond->GetOppositeCondition();
Condition final_condition = X86UnsignedOrFPCondition(if_cond); // unsigned on lower part
// Set the conditions for the test, remembering that == needs to be
// decided using the low words.
switch (if_cond) {
case kCondEQ:
case kCondNE:
// Nothing to do.
break;
case kCondLT:
false_high_cond = kCondGT;
break;
case kCondLE:
true_high_cond = kCondLT;
break;
case kCondGT:
false_high_cond = kCondLT;
break;
case kCondGE:
true_high_cond = kCondGT;
break;
case kCondB:
false_high_cond = kCondA;
break;
case kCondBE:
true_high_cond = kCondB;
break;
case kCondA:
false_high_cond = kCondB;
break;
case kCondAE:
true_high_cond = kCondA;
break;
}
if (right.IsConstant()) {
int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
int32_t val_high = High32Bits(value);
int32_t val_low = Low32Bits(value);
codegen_->Compare32BitValue(left_high, val_high);
if (if_cond == kCondNE) {
__ j(X86Condition(true_high_cond), true_label);
} else if (if_cond == kCondEQ) {
__ j(X86Condition(false_high_cond), false_label);
} else {
__ j(X86Condition(true_high_cond), true_label);
__ j(X86Condition(false_high_cond), false_label);
}
// Must be equal high, so compare the lows.
codegen_->Compare32BitValue(left_low, val_low);
} else if (right.IsRegisterPair()) {
Register right_high = right.AsRegisterPairHigh<Register>();
Register right_low = right.AsRegisterPairLow<Register>();
__ cmpl(left_high, right_high);
if (if_cond == kCondNE) {
__ j(X86Condition(true_high_cond), true_label);
} else if (if_cond == kCondEQ) {
__ j(X86Condition(false_high_cond), false_label);
} else {
__ j(X86Condition(true_high_cond), true_label);
__ j(X86Condition(false_high_cond), false_label);
}
// Must be equal high, so compare the lows.
__ cmpl(left_low, right_low);
} else {
DCHECK(right.IsDoubleStackSlot());
__ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
if (if_cond == kCondNE) {
__ j(X86Condition(true_high_cond), true_label);
} else if (if_cond == kCondEQ) {
__ j(X86Condition(false_high_cond), false_label);
} else {
__ j(X86Condition(true_high_cond), true_label);
__ j(X86Condition(false_high_cond), false_label);
}
// Must be equal high, so compare the lows.
__ cmpl(left_low, Address(ESP, right.GetStackIndex()));
}
// The last comparison might be unsigned.
__ j(final_condition, true_label);
}
void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs,
Location rhs,
HInstruction* insn,
bool is_double) {
HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable();
if (is_double) {
if (rhs.IsFpuRegister()) {
__ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
} else if (const_area != nullptr) {
DCHECK(const_area->IsEmittedAtUseSite());
__ ucomisd(lhs.AsFpuRegister<XmmRegister>(),
codegen_->LiteralDoubleAddress(
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(rhs.IsDoubleStackSlot());
__ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
}
} else {
if (rhs.IsFpuRegister()) {
__ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
} else if (const_area != nullptr) {
DCHECK(const_area->IsEmittedAtUseSite());
__ ucomiss(lhs.AsFpuRegister<XmmRegister>(),
codegen_->LiteralFloatAddress(
const_area->GetConstant()->AsFloatConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(rhs.IsStackSlot());
__ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
}
}
}
template<class LabelType>
void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition,
LabelType* true_target_in,
LabelType* false_target_in) {
// Generated branching requires both targets to be explicit. If either of the
// targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
LabelType fallthrough_target;
LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
LocationSummary* locations = condition->GetLocations();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
Primitive::Type type = condition->InputAt(0)->GetType();
switch (type) {
case Primitive::kPrimLong:
GenerateLongComparesAndJumps(condition, true_target, false_target);
break;
case Primitive::kPrimFloat:
GenerateFPCompare(left, right, condition, false);
GenerateFPJumps(condition, true_target, false_target);
break;
case Primitive::kPrimDouble:
GenerateFPCompare(left, right, condition, true);
GenerateFPJumps(condition, true_target, false_target);
break;
default:
LOG(FATAL) << "Unexpected compare type " << type;
}
if (false_target != &fallthrough_target) {
__ jmp(false_target);
}
if (fallthrough_target.IsLinked()) {
__ Bind(&fallthrough_target);
}
}
static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) {
// Moves may affect the eflags register (move zero uses xorl), so the EFLAGS
// are set only strictly before `branch`. We can't use the eflags on long/FP
// conditions if they are materialized due to the complex branching.
return cond->IsCondition() &&
cond->GetNext() == branch &&
cond->InputAt(0)->GetType() != Primitive::kPrimLong &&
!Primitive::IsFloatingPointType(cond->InputAt(0)->GetType());
}
template<class LabelType>
void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
LabelType* true_target,
LabelType* false_target) {
HInstruction* cond = instruction->InputAt(condition_input_index);
if (true_target == nullptr && false_target == nullptr) {
// Nothing to do. The code always falls through.
return;
} else if (cond->IsIntConstant()) {
// Constant condition, statically compared against "true" (integer value 1).
if (cond->AsIntConstant()->IsTrue()) {
if (true_target != nullptr) {
__ jmp(true_target);
}
} else {
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
if (false_target != nullptr) {
__ jmp(false_target);
}
}
return;
}
// The following code generates these patterns:
// (1) true_target == nullptr && false_target != nullptr
// - opposite condition true => branch to false_target
// (2) true_target != nullptr && false_target == nullptr
// - condition true => branch to true_target
// (3) true_target != nullptr && false_target != nullptr
// - condition true => branch to true_target
// - branch to false_target
if (IsBooleanValueOrMaterializedCondition(cond)) {
if (AreEflagsSetFrom(cond, instruction)) {
if (true_target == nullptr) {
__ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target);
} else {
__ j(X86Condition(cond->AsCondition()->GetCondition()), true_target);
}
} else {
// Materialized condition, compare against 0.
Location lhs = instruction->GetLocations()->InAt(condition_input_index);
if (lhs.IsRegister()) {
__ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
} else {
__ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
}
if (true_target == nullptr) {
__ j(kEqual, false_target);
} else {
__ j(kNotEqual, true_target);
}
}
} else {
// Condition has not been materialized, use its inputs as the comparison and
// its condition as the branch condition.
HCondition* condition = cond->AsCondition();
// If this is a long or FP comparison that has been folded into
// the HCondition, generate the comparison directly.
Primitive::Type type = condition->InputAt(0)->GetType();
if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
GenerateCompareTestAndBranch(condition, true_target, false_target);
return;
}
Location lhs = condition->GetLocations()->InAt(0);
Location rhs = condition->GetLocations()->InAt(1);
// LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition).
codegen_->GenerateIntCompare(lhs, rhs);
if (true_target == nullptr) {
__ j(X86Condition(condition->GetOppositeCondition()), false_target);
} else {
__ j(X86Condition(condition->GetCondition()), true_target);
}
}
// If neither branch falls through (case 3), the conditional branch to `true_target`
// was already emitted (case 2) and we need to emit a jump to `false_target`.
if (true_target != nullptr && false_target != nullptr) {
__ jmp(false_target);
}
}
void LocationsBuilderX86::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
locations->SetInAt(0, Location::Any());
}
}
void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
nullptr : codegen_->GetLabelOf(true_successor);
Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
nullptr : codegen_->GetLabelOf(false_successor);
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
}
void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
InvokeRuntimeCallingConvention calling_convention;
RegisterSet caller_saves = RegisterSet::Empty();
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetCustomSlowPathCallerSaves(caller_saves);
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
locations->SetInAt(0, Location::Any());
}
}
void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize);
GenerateTestAndBranch<Label>(deoptimize,
/* condition_input_index */ 0,
slow_path->GetEntryLabel(),
/* false_target */ nullptr);
}
void LocationsBuilderX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(flag, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
__ movl(flag->GetLocations()->Out().AsRegister<Register>(),
Address(ESP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
}
static bool SelectCanUseCMOV(HSelect* select) {
// There are no conditional move instructions for XMMs.
if (Primitive::IsFloatingPointType(select->GetType())) {
return false;
}
// A FP condition doesn't generate the single CC that we need.
// In 32 bit mode, a long condition doesn't generate a single CC either.
HInstruction* condition = select->GetCondition();
if (condition->IsCondition()) {
Primitive::Type compare_type = condition->InputAt(0)->GetType();
if (compare_type == Primitive::kPrimLong ||
Primitive::IsFloatingPointType(compare_type)) {
return false;
}
}
// We can generate a CMOV for this Select.
return true;
}
void LocationsBuilderX86::VisitSelect(HSelect* select) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
if (Primitive::IsFloatingPointType(select->GetType())) {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::Any());
} else {
locations->SetInAt(0, Location::RequiresRegister());
if (SelectCanUseCMOV(select)) {
if (select->InputAt(1)->IsConstant()) {
// Cmov can't handle a constant value.
locations->SetInAt(1, Location::RequiresRegister());
} else {
locations->SetInAt(1, Location::Any());
}
} else {
locations->SetInAt(1, Location::Any());
}
}
if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
locations->SetInAt(2, Location::RequiresRegister());
}
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) {
LocationSummary* locations = select->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
if (SelectCanUseCMOV(select)) {
// If both the condition and the source types are integer, we can generate
// a CMOV to implement Select.
HInstruction* select_condition = select->GetCondition();
Condition cond = kNotEqual;
// Figure out how to test the 'condition'.
if (select_condition->IsCondition()) {
HCondition* condition = select_condition->AsCondition();
if (!condition->IsEmittedAtUseSite()) {
// This was a previously materialized condition.
// Can we use the existing condition code?
if (AreEflagsSetFrom(condition, select)) {
// Materialization was the previous instruction. Condition codes are right.
cond = X86Condition(condition->GetCondition());
} else {
// No, we have to recreate the condition code.
Register cond_reg = locations->InAt(2).AsRegister<Register>();
__ testl(cond_reg, cond_reg);
}
} else {
// We can't handle FP or long here.
DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()));
LocationSummary* cond_locations = condition->GetLocations();
codegen_->GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1));
cond = X86Condition(condition->GetCondition());
}
} else {
// Must be a Boolean condition, which needs to be compared to 0.
Register cond_reg = locations->InAt(2).AsRegister<Register>();
__ testl(cond_reg, cond_reg);
}
// If the condition is true, overwrite the output, which already contains false.
Location false_loc = locations->InAt(0);
Location true_loc = locations->InAt(1);
if (select->GetType() == Primitive::kPrimLong) {
// 64 bit conditional move.
Register false_high = false_loc.AsRegisterPairHigh<Register>();
Register false_low = false_loc.AsRegisterPairLow<Register>();
if (true_loc.IsRegisterPair()) {
__ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>());
__ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>());
} else {
__ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize)));
__ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex()));
}
} else {
// 32 bit conditional move.
Register false_reg = false_loc.AsRegister<Register>();
if (true_loc.IsRegister()) {
__ cmovl(cond, false_reg, true_loc.AsRegister<Register>());
} else {
__ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex()));
}
}
} else {
NearLabel false_target;
GenerateTestAndBranch<NearLabel>(
select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target);
codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
__ Bind(&false_target);
}
}
void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) {
new (GetGraph()->GetArena()) LocationSummary(info);
}
void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) {
// MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
}
void CodeGeneratorX86::GenerateNop() {
__ nop();
}
void LocationsBuilderX86::HandleCondition(HCondition* cond) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
// Handle the long/FP comparisons made in instruction simplification.
switch (cond->InputAt(0)->GetType()) {
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister());
}
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
if (cond->InputAt(1)->IsX86LoadFromConstantTable()) {
DCHECK(cond->InputAt(1)->IsEmittedAtUseSite());
} else if (cond->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::Any());
}
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister());
}
break;
}
default:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
if (!cond->IsEmittedAtUseSite()) {
// We need a byte register.
locations->SetOut(Location::RegisterLocation(ECX));
}
break;
}
}
void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) {
if (cond->IsEmittedAtUseSite()) {
return;
}
LocationSummary* locations = cond->GetLocations();
Location lhs = locations->InAt(0);
Location rhs = locations->InAt(1);
Register reg = locations->Out().AsRegister<Register>();
NearLabel true_label, false_label;
switch (cond->InputAt(0)->GetType()) {
default: {
// Integer case.
// Clear output register: setb only sets the low byte.
__ xorl(reg, reg);
codegen_->GenerateIntCompare(lhs, rhs);
__ setb(X86Condition(cond->GetCondition()), reg);
return;
}
case Primitive::kPrimLong:
GenerateLongComparesAndJumps(cond, &true_label, &false_label);
break;
case Primitive::kPrimFloat:
GenerateFPCompare(lhs, rhs, cond, false);
GenerateFPJumps(cond, &true_label, &false_label);
break;
case Primitive::kPrimDouble:
GenerateFPCompare(lhs, rhs, cond, true);
GenerateFPJumps(cond, &true_label, &false_label);
break;
}
// Convert the jumps into the result.
NearLabel done_label;
// False case: result = 0.
__ Bind(&false_label);
__ xorl(reg, reg);
__ jmp(&done_label);
// True case: result = 1.
__ Bind(&true_label);
__ movl(reg, Immediate(1));
__ Bind(&done_label);
}
void LocationsBuilderX86::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderX86::VisitConstructorFence(HConstructorFence* constructor_fence) {
constructor_fence->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitConstructorFence(
HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
memory_barrier->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}
void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderX86::VisitReturn(HReturn* ret) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
switch (ret->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
locations->SetInAt(0, Location::RegisterLocation(EAX));
break;
case Primitive::kPrimLong:
locations->SetInAt(
0, Location::RegisterPairLocation(EAX, EDX));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(
0, Location::FpuRegisterLocation(XMM0));
break;
default:
LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
if (kIsDebugBuild) {
switch (ret->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
break;
case Primitive::kPrimLong:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
break;
default:
LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
}
}
codegen_->GenerateFrameExit();
}
void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
// The trampoline uses the same calling convention as dex calling conventions,
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
// the method_idx.
HandleInvoke(invoke);
}
void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
}
void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
IntrinsicLocationsBuilderX86 intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
}
return;
}
HandleInvoke(invoke);
// For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
if (invoke->HasPcRelativeDexCache()) {
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
}
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorX86 intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
LocationSummary* locations = invoke->GetLocations();
codegen_->GenerateStaticOrDirectCall(
invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderX86 intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
}
void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
// This call to HandleInvoke allocates a temporary (core) register
// which is also used to transfer the hidden argument from FP to
// core register.
HandleInvoke(invoke);
// Add the hidden argument.
invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
}
void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
LocationSummary* locations = invoke->GetLocations();
Register temp = locations->GetTemp(0).AsRegister<Register>();
XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
Location receiver = locations->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// Set the hidden argument. This is safe to do this here, as XMM7
// won't be modified thereafter, before the `call` instruction.
DCHECK_EQ(XMM7, hidden_reg);
__ movl(temp, Immediate(invoke->GetDexMethodIndex()));
__ movd(hidden_reg, temp);
if (receiver.IsStackSlot()) {
__ movl(temp, Address(ESP, receiver.GetStackIndex()));
// /* HeapReference<Class> */ temp = temp->klass_
__ movl(temp, Address(temp, class_offset));
} else {
// /* HeapReference<Class> */ temp = receiver->klass_
__ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
__ MaybeUnpoisonHeapReference(temp);
// temp = temp->GetAddressOfIMT()
__ movl(temp,
Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
// temp = temp->GetImtEntryAt(method_offset);
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
invoke->GetImtIndex(), kX86PointerSize));
__ movl(temp, Address(temp, method_offset));
// call temp->GetEntryPoint();
__ call(Address(temp,
ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value()));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
HandleInvoke(invoke);
}
void InstructionCodeGeneratorX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
codegen_->GenerateInvokePolymorphicCall(invoke);
}
void LocationsBuilderX86::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
case Primitive::kPrimFloat:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
LocationSummary* locations = neg->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
DCHECK(in.IsRegister());
DCHECK(in.Equals(out));
__ negl(out.AsRegister<Register>());
break;
case Primitive::kPrimLong:
DCHECK(in.IsRegisterPair());
DCHECK(in.Equals(out));
__ negl(out.AsRegisterPairLow<Register>());
// Negation is similar to subtraction from zero. The least
// significant byte triggers a borrow when it is different from
// zero; to take it into account, add 1 to the most significant
// byte if the carry flag (CF) is set to 1 after the first NEGL
// operation.
__ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
__ negl(out.AsRegisterPairHigh<Register>());
break;
case Primitive::kPrimFloat: {
DCHECK(in.Equals(out));
Register constant = locations->GetTemp(0).AsRegister<Register>();
XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
// Implement float negation with an exclusive or with value
// 0x80000000 (mask for bit 31, representing the sign of a
// single-precision floating-point number).
__ movl(constant, Immediate(INT32_C(0x80000000)));
__ movd(mask, constant);
__ xorps(out.AsFpuRegister<XmmRegister>(), mask);
break;
}
case Primitive::kPrimDouble: {
DCHECK(in.Equals(out));
XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
// Implement double negation with an exclusive or with value
// 0x8000000000000000 (mask for bit 63, representing the sign of
// a double-precision floating-point number).
__ LoadLongConstant(mask, INT64_C(0x8000000000000000));
__ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
break;
}
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
DCHECK(Primitive::IsFloatingPointType(neg->GetType()));
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresFpuRegister());
}
void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) {
LocationSummary* locations = neg->GetLocations();
Location out = locations->Out();
DCHECK(locations->InAt(0).Equals(out));
Register constant_area = locations->InAt(1).AsRegister<Register>();
XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
if (neg->GetType() == Primitive::kPrimFloat) {
__ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000),
neg->GetBaseMethodAddress(),
constant_area));
__ xorps(out.AsFpuRegister<XmmRegister>(), mask);
} else {
__ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000),
neg->GetBaseMethodAddress(),
constant_area));
__ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
}
}
void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
// The float-to-long and double-to-long type conversions rely on a
// call to the runtime.
LocationSummary::CallKind call_kind =
((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
&& result_type == Primitive::kPrimLong)
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
// The Java language does not allow treating boolean as an integral type but
// our bit representation makes it safe.
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimLong: {
// Type conversion from long to byte is a result of code transformations.
HInstruction* input = conversion->InputAt(0);
Location input_location = input->IsConstant()
? Location::ConstantLocation(input->AsConstant())
: Location::RegisterPairLocation(EAX, EDX);
locations->SetInAt(0, input_location);
// Make the output overlap to please the register allocator. This greatly simplifies
// the validation of the linear scan implementation
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
}
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
// Make the output overlap to please the register allocator. This greatly simplifies
// the validation of the linear scan implementation
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to short is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
locations->SetInAt(0, Location::RegisterLocation(EAX));
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
// Processing a Dex `float-to-long' or 'double-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
// The runtime helper puts the result in EAX, EDX.
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to char is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-float' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::Any());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-double' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::Any());
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to byte is a result of code transformations.
if (in.IsRegisterPair()) {
__ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
} else {
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
}
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
if (in.IsRegister()) {
__ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
} else {
DCHECK(in.GetConstant()->IsIntConstant());
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to short is a result of code transformations.
if (in.IsRegisterPair()) {
__ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
} else if (in.IsDoubleStackSlot()) {
__ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
}
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
if (in.IsRegister()) {
__ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
} else if (in.IsStackSlot()) {
__ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
if (in.IsRegisterPair()) {
__ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
} else if (in.IsDoubleStackSlot()) {
__ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.IsConstant());
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
}
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-int' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
Register output = out.AsRegister<Register>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
NearLabel done, nan;
__ movl(output, Immediate(kPrimIntMax));
// temp = int-to-float(output)
__ cvtsi2ss(temp, output);
// if input >= temp goto done
__ comiss(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = float-to-int-truncate(input)
__ cvttss2si(output, input);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(output, output);
__ Bind(&done);
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-int' instruction.
XmmRegister input = in.AsFpuRegister<XmmRegister>();
Register output = out.AsRegister<Register>();
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
NearLabel done, nan;
__ movl(output, Immediate(kPrimIntMax));
// temp = int-to-double(output)
__ cvtsi2sd(temp, output);
// if input >= temp goto done
__ comisd(input, temp);
__ j(kAboveEqual, &done);
// if input == NaN goto nan
__ j(kUnordered, &nan);
// output = double-to-int-truncate(input)
__ cvttsd2si(output, input);
__ jmp(&done);
__ Bind(&nan);
// output = 0
__ xorl(output, output);
__ Bind(&done);
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
DCHECK_EQ(in.AsRegister<Register>(), EAX);
__ cdq();
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-long' instruction.
codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-long' instruction.
codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to short is a result of code transformations.
if (in.IsRegisterPair()) {
__ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
} else if (in.IsDoubleStackSlot()) {
__ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
}
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `Process a Dex `int-to-char'' instruction.
if (in.IsRegister()) {
__ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
} else if (in.IsStackSlot()) {
__ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
} else {
DCHECK(in.GetConstant()->IsIntConstant());
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
__ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
__ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
break;
case Primitive::kPrimLong: {
// Processing a Dex `long-to-float' instruction.
size_t adjustment = 0;
// Create stack space for the call to
// InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below.
// TODO: enhance register allocator to ask for stack temporaries.
if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) {
adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
__ subl(ESP, Immediate(adjustment));
}
// Load the value to the FP stack, using temporaries if needed.
PushOntoFPStack(in, 0, adjustment, false, true);
if (out.IsStackSlot()) {
__ fstps(Address(ESP, out.GetStackIndex() + adjustment));
} else {
__ fstps(Address(ESP, 0));
Location stack_temp = Location::StackSlot(0);
codegen_->Move32(out, stack_temp);
}
// Remove the temporary stack space we allocated.
if (adjustment != 0) {
__ addl(ESP, Immediate(adjustment));
}
break;
}
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
__ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
__ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
break;
case Primitive::kPrimLong: {
// Processing a Dex `long-to-double' instruction.
size_t adjustment = 0;
// Create stack space for the call to
// InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below.
// TODO: enhance register allocator to ask for stack temporaries.
if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) {
adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
__ subl(ESP, Immediate(adjustment));
}
// Load the value to the FP stack, using temporaries if needed.
PushOntoFPStack(in, 0, adjustment, false, true);
if (out.IsDoubleStackSlot()) {
__ fstpl(Address(ESP, out.GetStackIndex() + adjustment));
} else {
__ fstpl(Address(ESP, 0));
Location stack_temp = Location::DoubleStackSlot(0);
codegen_->Move64(out, stack_temp);
}
// Remove the temporary stack space we allocated.
if (adjustment != 0) {
__ addl(ESP, Immediate(adjustment));
}
break;
}
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
__ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderX86::VisitAdd(HAdd* add) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
DCHECK(add->InputAt(1)->IsEmittedAtUseSite());
} else if (add->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::Any());
}
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
break;
}
}
void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
LocationSummary* locations = add->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
} else if (out.AsRegister<Register>() == second.AsRegister<Register>()) {
__ addl(out.AsRegister<Register>(), first.AsRegister<Register>());
} else {
__ leal(out.AsRegister<Register>(), Address(
first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
}
} else if (second.IsConstant()) {
int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
__ addl(out.AsRegister<Register>(), Immediate(value));
} else {
__ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
}
} else {
DCHECK(first.Equals(locations->Out()));
__ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
if (second.IsRegisterPair()) {
__ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else if (second.IsDoubleStackSlot()) {
__ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ adcl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
} else {
DCHECK(second.IsConstant()) << second;
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
__ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
__ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
}
break;
}
case Primitive::kPrimFloat: {
if (second.IsFpuRegister()) {
__ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ addss(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralFloatAddress(
const_area->GetConstant()->AsFloatConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsStackSlot());
__ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimDouble: {
if (second.IsFpuRegister()) {
__ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ addsd(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralDoubleAddress(
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsDoubleStackSlot());
__ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void LocationsBuilderX86::VisitSub(HSub* sub) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
switch (sub->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
DCHECK(sub->InputAt(1)->IsEmittedAtUseSite());
} else if (sub->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::Any());
}
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
LocationSummary* locations = sub->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
} else if (second.IsConstant()) {
__ subl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimLong: {
if (second.IsRegisterPair()) {
__ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else if (second.IsDoubleStackSlot()) {
__ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ sbbl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
} else {
DCHECK(second.IsConstant()) << second;
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
__ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
__ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
}
break;
}
case Primitive::kPrimFloat: {
if (second.IsFpuRegister()) {
__ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ subss(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralFloatAddress(
const_area->GetConstant()->AsFloatConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsStackSlot());
__ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimDouble: {
if (second.IsFpuRegister()) {
__ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ subsd(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralDoubleAddress(
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsDoubleStackSlot());
__ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void LocationsBuilderX86::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
if (mul->InputAt(1)->IsIntConstant()) {
// Can use 3 operand multiply.
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::SameAsFirstInput());
}
break;
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
// Needed for imul on 32bits with 64bits output.
locations->AddTemp(Location::RegisterLocation(EAX));
locations->AddTemp(Location::RegisterLocation(EDX));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
DCHECK(mul->InputAt(1)->IsEmittedAtUseSite());
} else if (mul->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::Any());
}
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
LocationSummary* locations = mul->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
// The constant may have ended up in a register, so test explicitly to avoid
// problems where the output may not be the same as the first operand.
if (mul->InputAt(1)->IsIntConstant()) {
Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue());
__ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm);
} else if (second.IsRegister()) {
DCHECK(first.Equals(out));
__ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
} else {
DCHECK(second.IsStackSlot());
DCHECK(first.Equals(out));
__ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
break;
case Primitive::kPrimLong: {
Register in1_hi = first.AsRegisterPairHigh<Register>();
Register in1_lo = first.AsRegisterPairLow<Register>();
Register eax = locations->GetTemp(0).AsRegister<Register>();
Register edx = locations->GetTemp(1).AsRegister<Register>();
DCHECK_EQ(EAX, eax);
DCHECK_EQ(EDX, edx);
// input: in1 - 64 bits, in2 - 64 bits.
// output: in1
// formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
// parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
// parts: in1.lo = (in1.lo * in2.lo)[31:0]
if (second.IsConstant()) {
DCHECK(second.GetConstant()->IsLongConstant());
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
int32_t low_value = Low32Bits(value);
int32_t high_value = High32Bits(value);
Immediate low(low_value);
Immediate high(high_value);
__ movl(eax, high);
// eax <- in1.lo * in2.hi
__ imull(eax, in1_lo);
// in1.hi <- in1.hi * in2.lo
__ imull(in1_hi, low);
// in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
__ addl(in1_hi, eax);
// move in2_lo to eax to prepare for double precision
__ movl(eax, low);
// edx:eax <- in1.lo * in2.lo
__ mull(in1_lo);
// in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
__ addl(in1_hi, edx);
// in1.lo <- (in1.lo * in2.lo)[31:0];
__ movl(in1_lo, eax);
} else if (second.IsRegisterPair()) {
Register in2_hi = second.AsRegisterPairHigh<Register>();
Register in2_lo = second.AsRegisterPairLow<Register>();
__ movl(eax, in2_hi);
// eax <- in1.lo * in2.hi
__ imull(eax, in1_lo);
// in1.hi <- in1.hi * in2.lo
__ imull(in1_hi, in2_lo);
// in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
__ addl(in1_hi, eax);
// move in1_lo to eax to prepare for double precision
__ movl(eax, in1_lo);
// edx:eax <- in1.lo * in2.lo
__ mull(in2_lo);
// in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
__ addl(in1_hi, edx);
// in1.lo <- (in1.lo * in2.lo)[31:0];
__ movl(in1_lo, eax);
} else {
DCHECK(second.IsDoubleStackSlot()) << second;
Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
Address in2_lo(ESP, second.GetStackIndex());
__ movl(eax, in2_hi);
// eax <- in1.lo * in2.hi
__ imull(eax, in1_lo);
// in1.hi <- in1.hi * in2.lo
__ imull(in1_hi, in2_lo);
// in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
__ addl(in1_hi, eax);
// move in1_lo to eax to prepare for double precision
__ movl(eax, in1_lo);
// edx:eax <- in1.lo * in2.lo
__ mull(in2_lo);
// in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
__ addl(in1_hi, edx);
// in1.lo <- (in1.lo * in2.lo)[31:0];
__ movl(in1_lo, eax);
}
break;
}
case Primitive::kPrimFloat: {
DCHECK(first.Equals(locations->Out()));
if (second.IsFpuRegister()) {
__ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ mulss(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralFloatAddress(
const_area->GetConstant()->AsFloatConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsStackSlot());
__ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimDouble: {
DCHECK(first.Equals(locations->Out()));
if (second.IsFpuRegister()) {
__ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ mulsd(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralDoubleAddress(
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsDoubleStackSlot());
__ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorX86::PushOntoFPStack(Location source,
uint32_t temp_offset,
uint32_t stack_adjustment,
bool is_fp,
bool is_wide) {
if (source.IsStackSlot()) {
DCHECK(!is_wide);
if (is_fp) {
__ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
} else {
__ filds(Address(ESP, source.GetStackIndex() + stack_adjustment));
}
} else if (source.IsDoubleStackSlot()) {
DCHECK(is_wide);
if (is_fp) {
__ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
} else {
__ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment));
}
} else {
// Write the value to the temporary location on the stack and load to FP stack.
if (!is_wide) {
Location stack_temp = Location::StackSlot(temp_offset);
codegen_->Move32(stack_temp, source);
if (is_fp) {
__ flds(Address(ESP, temp_offset));
} else {
__ filds(Address(ESP, temp_offset));
}
} else {
Location stack_temp = Location::DoubleStackSlot(temp_offset);
codegen_->Move64(stack_temp, source);
if (is_fp) {
__ fldl(Address(ESP, temp_offset));
} else {
__ fildl(Address(ESP, temp_offset));
}
}
}
}
void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
Primitive::Type type = rem->GetResultType();
bool is_float = type == Primitive::kPrimFloat;
size_t elem_size = Primitive::ComponentSize(type);
LocationSummary* locations = rem->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
// Create stack space for 2 elements.
// TODO: enhance register allocator to ask for stack temporaries.
__ subl(ESP, Immediate(2 * elem_size));
// Load the values to the FP stack in reverse order, using temporaries if needed.
const bool is_wide = !is_float;
PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide);
PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide);
// Loop doing FPREM until we stabilize.
NearLabel retry;
__ Bind(&retry);
__ fprem();
// Move FP status to AX.
__ fstsw();
// And see if the argument reduction is complete. This is signaled by the
// C2 FPU flag bit set to 0.
__ andl(EAX, Immediate(kC2ConditionMask));
__ j(kNotEqual, &retry);
// We have settled on the final value. Retrieve it into an XMM register.
// Store FP top of stack to real stack.
if (is_float) {
__ fsts(Address(ESP, 0));
} else {
__ fstl(Address(ESP, 0));
}
// Pop the 2 items from the FP stack.
__ fucompp();
// Load the value from the stack into an XMM register.
DCHECK(out.IsFpuRegister()) << out;
if (is_float) {
__ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
} else {
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
}
// And remove the temporary stack space we allocated.
__ addl(ESP, Immediate(2 * elem_size));
}
void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(1).IsConstant());
DCHECK(locations->InAt(1).GetConstant()->IsIntConstant());
Register out_register = locations->Out().AsRegister<Register>();
Register input_register = locations->InAt(0).AsRegister<Register>();
int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
DCHECK(imm == 1 || imm == -1);
if (instruction->IsRem()) {
__ xorl(out_register, out_register);
} else {
__ movl(out_register, input_register);
if (imm == -1) {
__ negl(out_register);
}
}
}
void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register out_register = locations->Out().AsRegister<Register>();
Register input_register = locations->InAt(0).AsRegister<Register>();
int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
Register num = locations->GetTemp(0).AsRegister<Register>();
__ leal(num, Address(input_register, abs_imm - 1));
__ testl(input_register, input_register);
__ cmovl(kGreaterEqual, num, input_register);
int shift = CTZ(imm);
__ sarl(num, Immediate(shift));
if (imm < 0) {
__ negl(num);
}
__ movl(out_register, num);
}
void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
LocationSummary* locations = instruction->GetLocations();
int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
Register eax = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
Register num;
Register edx;
if (instruction->IsDiv()) {
edx = locations->GetTemp(0).AsRegister<Register>();
num = locations->GetTemp(1).AsRegister<Register>();
} else {
edx = locations->Out().AsRegister<Register>();
num = locations->GetTemp(0).AsRegister<Register>();
}
DCHECK_EQ(EAX, eax);
DCHECK_EQ(EDX, edx);
if (instruction->IsDiv()) {
DCHECK_EQ(EAX, out);
} else {
DCHECK_EQ(EDX, out);
}
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
// Save the numerator.
__ movl(num, eax);
// EAX = magic
__ movl(eax, Immediate(magic));
// EDX:EAX = magic * numerator
__ imull(num);
if (imm > 0 && magic < 0) {
// EDX += num
__ addl(edx, num);
} else if (imm < 0 && magic > 0) {
__ subl(edx, num);
}
// Shift if needed.
if (shift != 0) {
__ sarl(edx, Immediate(shift));
}
// EDX += 1 if EDX < 0
__ movl(eax, edx);
__ shrl(edx, Immediate(31));
__ addl(edx, eax);
if (instruction->IsRem()) {
__ movl(eax, num);
__ imull(edx, Immediate(imm));
__ subl(eax, edx);
__ movl(edx, eax);
} else {
__ movl(eax, edx);
}
}
void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
LocationSummary* locations = instruction->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
bool is_div = instruction->IsDiv();
switch (instruction->GetResultType()) {
case Primitive::kPrimInt: {
DCHECK_EQ(EAX, first.AsRegister<Register>());
DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
if (second.IsConstant()) {
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
if (imm == 0) {
// Do not generate anything for 0. DivZeroCheck would forbid any generated code.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) {
DivByPowerOfTwo(instruction->AsDiv());
} else {
DCHECK(imm <= -2 || imm >= 2);
GenerateDivRemWithAnyConstant(instruction);
}
} else {
SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(
instruction, out.AsRegister<Register>(), is_div);
codegen_->AddSlowPath(slow_path);
Register second_reg = second.AsRegister<Register>();
// 0x80000000/-1 triggers an arithmetic exception!
// Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
// it's safe to just use negl instead of more complex comparisons.
__ cmpl(second_reg, Immediate(-1));
__ j(kEqual, slow_path->GetEntryLabel());
// edx:eax <- sign-extended of eax
__ cdq();
// eax = quotient, edx = remainder
__ idivl(second_reg);
__ Bind(slow_path->GetExitLabel());
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
if (is_div) {
codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
} else {
codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
}
break;
}
default:
LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
}
}
void LocationsBuilderX86::VisitDiv(HDiv* div) {
LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong)
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RegisterLocation(EAX));
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
locations->SetOut(Location::SameAsFirstInput());
// Intel uses edx:eax as the dividend.
locations->AddTemp(Location::RegisterLocation(EDX));
// We need to save the numerator while we tweak eax and edx. As we are using imul in a way
// which enforces results to be in EAX and EDX, things are simpler if we use EAX also as
// output and request another temp.
if (div->InputAt(1)->IsIntConstant()) {
locations->AddTemp(Location::RequiresRegister());
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
// Runtime helper puts the result in EAX, EDX.
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
DCHECK(div->InputAt(1)->IsEmittedAtUseSite());
} else if (div->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::Any());
}
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
LocationSummary* locations = div->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (div->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
GenerateDivRemIntegral(div);
break;
}
case Primitive::kPrimFloat: {
if (second.IsFpuRegister()) {
__ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ divss(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralFloatAddress(
const_area->GetConstant()->AsFloatConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsStackSlot());
__ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
case Primitive::kPrimDouble: {
if (second.IsFpuRegister()) {
__ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
} else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
DCHECK(const_area->IsEmittedAtUseSite());
__ divsd(first.AsFpuRegister<XmmRegister>(),
codegen_->LiteralDoubleAddress(
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
const_area->GetBaseMethodAddress(),
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
} else {
DCHECK(second.IsDoubleStackSlot());
__ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
}
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void LocationsBuilderX86::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong)
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
switch (type) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RegisterLocation(EAX));
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
locations->SetOut(Location::RegisterLocation(EDX));
// We need to save the numerator while we tweak eax and edx. As we are using imul in a way
// which enforces results to be in EAX and EDX, things are simpler if we use EDX also as
// output and request another temp.
if (rem->InputAt(1)->IsIntConstant()) {
locations->AddTemp(Location::RequiresRegister());
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
// Runtime helper puts the result in EAX, EDX.
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
break;
}
case Primitive::kPrimDouble:
case Primitive::kPrimFloat: {
locations->SetInAt(0, Location::Any());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RegisterLocation(EAX));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
GenerateDivRemIntegral(rem);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
GenerateRemFP(rem);
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::Any());
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
if (!instruction->IsConstant()) {
locations->AddTemp(Location::RequiresRegister());
}
break;
}
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
}
}
void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location value = locations->InAt(0);
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt: {
if (value.IsRegister()) {
__ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
__ j(kEqual, slow_path->GetEntryLabel());
} else if (value.IsStackSlot()) {
__ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
__ j(kEqual, slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ jmp(slow_path->GetEntryLabel());
}
}
break;
}
case Primitive::kPrimLong: {
if (value.IsRegisterPair()) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
__ movl(temp, value.AsRegisterPairLow<Register>());
__ orl(temp, value.AsRegisterPairHigh<Register>());
__ j(kEqual, slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ jmp(slow_path->GetEntryLabel());
}
}
break;
}
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
}
}
void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
switch (op->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
// Can't have Location::Any() and output SameAsFirstInput()
locations->SetInAt(0, Location::RequiresRegister());
// The shift count needs to be in CL or a constant.
locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
locations->SetOut(Location::SameAsFirstInput());
break;
}
default:
LOG(FATAL) << "Unexpected op type " << op->GetResultType();
}
}
void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations = op->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
switch (op->GetResultType()) {
case Primitive::kPrimInt: {
DCHECK(first.IsRegister());
Register first_reg = first.AsRegister<Register>();
if (second.IsRegister()) {
Register second_reg = second.AsRegister<Register>();
DCHECK_EQ(ECX, second_reg);
if (op->IsShl()) {
__ shll(first_reg, second_reg);
} else if (op->IsShr()) {
__ sarl(first_reg, second_reg);
} else {
__ shrl(first_reg, second_reg);
}
} else {
int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance;
if (shift == 0) {
return;
}
Immediate imm(shift);
if (op->IsShl()) {
__ shll(first_reg, imm);
} else if (op->IsShr()) {
__ sarl(first_reg, imm);
} else {
__ shrl(first_reg, imm);
}
}
break;
}
case Primitive::kPrimLong: {
if (second.IsRegister()) {
Register second_reg = second.AsRegister<Register>();
DCHECK_EQ(ECX, second_reg);
if (op->IsShl()) {
GenerateShlLong(first, second_reg);
} else if (op->IsShr()) {
GenerateShrLong(first, second_reg);
} else {
GenerateUShrLong(first, second_reg);
}
} else {
// Shift by a constant.
int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
// Nothing to do if the shift is 0, as the input is already the output.
if (shift != 0) {
if (op->IsShl()) {
GenerateShlLong(first, shift);
} else if (op->IsShr()) {
GenerateShrLong(first, shift);
} else {
GenerateUShrLong(first, shift);
}
}
}
break;
}
default:
LOG(FATAL) << "Unexpected op type " << op->GetResultType();
}
}
void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) {
Register low = loc.AsRegisterPairLow<Register>();
Register high = loc.AsRegisterPairHigh<Register>();
if (shift == 1) {
// This is just an addition.
__ addl(low, low);
__ adcl(high, high);
} else if (shift == 32) {
// Shift by 32 is easy. High gets low, and low gets 0.
codegen_->EmitParallelMoves(
loc.ToLow(),
loc.ToHigh(),
Primitive::kPrimInt,
Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
loc.ToLow(),
Primitive::kPrimInt);
} else if (shift > 32) {
// Low part becomes 0. High part is low part << (shift-32).
__ movl(high, low);
__ shll(high, Immediate(shift - 32));
__ xorl(low, low);
} else {
// Between 1 and 31.
__ shld(high, low, Immediate(shift));
__ shll(low, Immediate(shift));
}
}
void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
NearLabel done;
__ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
__ shll(loc.AsRegisterPairLow<Register>(), shifter);
__ testl(shifter, Immediate(32));
__ j(kEqual, &done);
__ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
__ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
__ Bind(&done);
}
void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) {
Register low = loc.AsRegisterPairLow<Register>();
Register high = loc.AsRegisterPairHigh<Register>();
if (shift == 32) {
// Need to copy the sign.
DCHECK_NE(low, high);
__ movl(low, high);
__ sarl(high, Immediate(31));
} else if (shift > 32) {
DCHECK_NE(low, high);
// High part becomes sign. Low part is shifted by shift - 32.
__ movl(low, high);
__ sarl(high, Immediate(31));
__ sarl(low, Immediate(shift - 32));
} else {
// Between 1 and 31.
__ shrd(low, high, Immediate(shift));
__ sarl(high, Immediate(shift));
}
}
void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
NearLabel done;
__ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
__ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
__ testl(shifter, Immediate(32));
__ j(kEqual, &done);
__ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
__ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
__ Bind(&done);
}
void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) {
Register low = loc.AsRegisterPairLow<Register>();
Register high = loc.AsRegisterPairHigh<Register>();
if (shift == 32) {
// Shift by 32 is easy. Low gets high, and high gets 0.
codegen_->EmitParallelMoves(
loc.ToHigh(),
loc.ToLow(),
Primitive::kPrimInt,
Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
loc.ToHigh(),
Primitive::kPrimInt);
} else if (shift > 32) {
// Low part is high >> (shift - 32). High part becomes 0.
__ movl(low, high);
__ shrl(low, Immediate(shift - 32));
__ xorl(high, high);
} else {
// Between 1 and 31.
__ shrd(low, high, Immediate(shift));
__ shrl(high, Immediate(shift));
}
}
void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
NearLabel done;
__ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
__ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
__ testl(shifter, Immediate(32));
__ j(kEqual, &done);
__ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
__ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
__ Bind(&done);
}
void LocationsBuilderX86::VisitRor(HRor* ror) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
switch (ror->GetResultType()) {
case Primitive::kPrimLong:
// Add the temporary needed.
locations->AddTemp(Location::RequiresRegister());
FALLTHROUGH_INTENDED;
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
// The shift count needs to be in CL (unless it is a constant).
locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1)));
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
UNREACHABLE();
}
}
void InstructionCodeGeneratorX86::VisitRor(HRor* ror) {
LocationSummary* locations = ror->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
if (ror->GetResultType() == Primitive::kPrimInt) {
Register first_reg = first.AsRegister<Register>();
if (second.IsRegister()) {
Register second_reg = second.AsRegister<Register>();
__ rorl(first_reg, second_reg);
} else {
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance);
__ rorl(first_reg, imm);
}
return;
}
DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong);
Register first_reg_lo = first.AsRegisterPairLow<Register>();
Register first_reg_hi = first.AsRegisterPairHigh<Register>();
Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
if (second.IsRegister()) {
Register second_reg = second.AsRegister<Register>();
DCHECK_EQ(second_reg, ECX);
__ movl(temp_reg, first_reg_hi);
__ shrd(first_reg_hi, first_reg_lo, second_reg);
__ shrd(first_reg_lo, temp_reg, second_reg);
__ movl(temp_reg, first_reg_hi);
__ testl(second_reg, Immediate(32));
__ cmovl(kNotEqual, first_reg_hi, first_reg_lo);
__ cmovl(kNotEqual, first_reg_lo, temp_reg);
} else {
int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
if (shift_amt == 0) {
// Already fine.
return;
}
if (shift_amt == 32) {
// Just swap.
__ movl(temp_reg, first_reg_lo);
__ movl(first_reg_lo, first_reg_hi);
__ movl(first_reg_hi, temp_reg);
return;
}
Immediate imm(shift_amt);
// Save the constents of the low value.
__ movl(temp_reg, first_reg_lo);
// Shift right into low, feeding bits from high.
__ shrd(first_reg_lo, first_reg_hi, imm);
// Shift right into high, feeding bits from the original low.
__ shrd(first_reg_hi, temp_reg, imm);
// Swap if needed.
if (shift_amt > 32) {
__ movl(temp_reg, first_reg_lo);
__ movl(first_reg_lo, first_reg_hi);
__ movl(first_reg_hi, temp_reg);
}
}
}
void LocationsBuilderX86::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderX86::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
locations->SetOut(Location::RegisterLocation(EAX));
if (instruction->IsStringAlloc()) {
locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
} else {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
}
void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
// Note: if heap poisoning is enabled, the entry point takes cares
// of poisoning the reference.
if (instruction->IsStringAlloc()) {
// String is allocated through StringFactory. Call NewEmptyString entry point.
Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize);
__ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString)));
__ call(Address(temp, code_offset.Int32Value()));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
} else {
codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
DCHECK(!codegen_->IsLeafMethod());
}
}
void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
locations->SetOut(Location::RegisterLocation(EAX));
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
// Note: if heap poisoning is enabled, the entry point takes cares
// of poisoning the reference.
QuickEntrypointEnum entrypoint =
CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass());
codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
DCHECK(!codegen_->IsLeafMethod());
}
void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorX86::VisitParameterValue(
HParameterValue* instruction ATTRIBUTE_UNUSED) {
}
void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
}
void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
}
void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
instruction->GetIndex(), kX86PointerSize).SizeValue();
__ movl(locations->Out().AsRegister<Register>(),
Address(locations->InAt(0).AsRegister<Register>(), method_offset));
} else {
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
instruction->GetIndex(), kX86PointerSize));
__ movl(locations->Out().AsRegister<Register>(),
Address(locations->InAt(0).AsRegister<Register>(),
mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
// temp = temp->GetImtEntryAt(method_offset);
__ movl(locations->Out().AsRegister<Register>(),
Address(locations->Out().AsRegister<Register>(), method_offset));
}
}
void LocationsBuilderX86::VisitNot(HNot* not_) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
LocationSummary* locations = not_->GetLocations();
Location in = locations->InAt(0);
Location out = locations->Out();
DCHECK(in.Equals(out));
switch (not_->GetResultType()) {
case Primitive::kPrimInt:
__ notl(out.AsRegister<Register>());
break;
case Primitive::kPrimLong:
__ notl(out.AsRegisterPairLow<Register>());
__ notl(out.AsRegisterPairHigh<Register>());
break;
default:
LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
}
}
void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) {
LocationSummary* locations = bool_not->GetLocations();
Location in = locations->InAt(0);
Location out = locations->Out();
DCHECK(in.Equals(out));
__ xorl(out.AsRegister<Register>(), Immediate(1));
}
void LocationsBuilderX86::VisitCompare(HCompare* compare) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
switch (compare->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
if (compare->InputAt(1)->IsX86LoadFromConstantTable()) {
DCHECK(compare->InputAt(1)->IsEmittedAtUseSite());
} else if (compare->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::Any());
}
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
LocationSummary* locations = compare->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
NearLabel less, greater, done;
Condition less_cond = kLess;
switch (compare->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt: {
codegen_->GenerateIntCompare(left, right);
break;
}
case Primitive::kPrimLong: {
Register left_low = left.AsRegisterPairLow<Register>();
Register left_high = left.AsRegisterPairHigh<Register>();
int32_t val_low = 0;
int32_t val_high = 0;
bool right_is_const = false;
if (right.IsConstant()) {
DCHECK(right.GetConstant()->IsLongConstant());
right_is_const = true;
int64_t val = right.GetConstant()->AsLongConstant()->GetValue();
val_low = Low32Bits(val);
val_high = High32Bits(val);
}
if (right.IsRegisterPair()) {
__ cmpl(left_high, right.AsRegisterPairHigh<Register>());
} else if (right.IsDoubleStackSlot()) {
__ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
} else {
DCHECK(right_is_const) << right;
codegen_->Compare32BitValue(left_high, val_high);
}
__ j(kLess, &less); // Signed compare.
__ j(kGreater, &greater); // Signed compare.
if (right.IsRegisterPair()) {
__ cmpl(left_low, right.AsRegisterPairLow<Register>());
} else if (right.IsDoubleStackSlot()) {
__ cmpl(left_low, Address(ESP, right.GetStackIndex()));
} else {
DCHECK(right_is_const) << right;
codegen_->Compare32BitValue(left_low, val_low);
}
less_cond = kBelow; // for CF (unsigned).
break;
}
case Primitive::kPrimFloat: {
GenerateFPCompare(left, right, compare, false);
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
less_cond = kBelow; // for CF (floats).
break;
}
case Primitive::kPrimDouble: {
GenerateFPCompare(left, right, compare, true);
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
less_cond = kBelow; // for CF (floats).
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
}
__ movl(out, Immediate(0));
__ j(kEqual, &done);
__ j(less_cond, &less);
__ Bind(&greater);
__ movl(out, Immediate(1));
__ jmp(&done);
__ Bind(&less);
__ movl(out, Immediate(-1));
__ Bind(&done);
}
void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
/*
* According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
* All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
* For those cases, all we need to ensure is that there is a scheduling barrier in place.
*/
switch (kind) {
case MemBarrierKind::kAnyAny: {
MemoryFence();
break;
}
case MemBarrierKind::kAnyStore:
case MemBarrierKind::kLoadAny:
case MemBarrierKind::kStoreStore: {
// nop
break;
}
case MemBarrierKind::kNTStoreStore:
// Non-Temporal Store/Store needs an explicit fence.
MemoryFence(/* non-temporal */ true);
break;
}
}
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
return desired_dispatch_info;
}
Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
Register temp) {
DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
if (!invoke->GetLocations()->Intrinsified()) {
return location.AsRegister<Register>();
}
// For intrinsics we allow any location, so it may be on the stack.
if (!location.IsRegister()) {
__ movl(temp, Address(ESP, location.GetStackIndex()));
return temp;
}
// For register locations, check if the register was saved. If so, get it from the stack.
// Note: There is a chance that the register was saved but not overwritten, so we could
// save one load. However, since this is just an intrinsic slow path we prefer this
// simple and more robust approach rather that trying to determine if that's the case.
SlowPathCode* slow_path = GetCurrentSlowPath();
if (slow_path != nullptr) {
if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
__ movl(temp, Address(ESP, stack_offset));
return temp;
}
}
return location.AsRegister<Register>();
}
Location CodeGeneratorX86::GenerateCalleeMethodStaticOrDirectCall(HInvokeStaticOrDirect* invoke,
Location temp) {
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
switch (invoke->GetMethodLoadKind()) {
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
// temp = thread->string_init_entrypoint
uint32_t offset =
GetThreadOffset<kX86PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
__ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(offset));
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
__ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress()));
break;
case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
temp.AsRegister<Register>());
__ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset));
// Bind a new fixup label at the end of the "movl" insn.
uint32_t offset = invoke->GetDexCacheArrayOffset();
__ Bind(NewPcRelativeDexCacheArrayPatch(
invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress(),
invoke->GetDexFileForPcRelativeDexCache(),
offset));
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
Register method_reg;
Register reg = temp.AsRegister<Register>();
if (current_method.IsRegister()) {
method_reg = current_method.AsRegister<Register>();
} else {
DCHECK(invoke->GetLocations()->Intrinsified());
DCHECK(!current_method.IsValid());
method_reg = reg;
__ movl(reg, Address(ESP, kCurrentMethodStackOffset));
}
// /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
__ movl(reg, Address(method_reg,
ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value()));
// temp = temp[index_in_cache];
// Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
uint32_t index_in_cache = invoke->GetDexMethodIndex();
__ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache)));
break;
}
}
return callee_method;
}
void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
Location callee_method = GenerateCalleeMethodStaticOrDirectCall(invoke, temp);
switch (invoke->GetCodePtrLocation()) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
__ call(GetFrameEntryLabel());
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
// (callee_method + offset_of_quick_compiled_code)()
__ call(Address(callee_method.AsRegister<Register>(),
ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kX86PointerSize).Int32Value()));
break;
}
DCHECK(!IsLeafMethod());
}
void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
Register temp = temp_in.AsRegister<Register>();
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
invoke->GetVTableIndex(), kX86PointerSize).Uint32Value();
// Use the calling convention instead of the location of the receiver, as
// intrinsics may have put the receiver in a different register. In the intrinsics
// slow path, the arguments have been moved to the right place, so here we are
// guaranteed that the receiver is the first register of the calling convention.
InvokeDexCallingConvention calling_convention;
Register receiver = calling_convention.GetRegisterAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// /* HeapReference<Class> */ temp = receiver->klass_
__ movl(temp, Address(receiver, class_offset));
MaybeRecordImplicitNullCheck(invoke);
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
__ MaybeUnpoisonHeapReference(temp);
// temp = temp->GetMethodAt(method_offset);
__ movl(temp, Address(temp, method_offset));
// call temp->GetEntryPoint();
__ call(Address(
temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value()));
}
void CodeGeneratorX86::RecordBootStringPatch(HLoadString* load_string) {
DCHECK(GetCompilerOptions().IsBootImage());
HX86ComputeBaseMethodAddress* address = nullptr;
if (GetCompilerOptions().GetCompilePic()) {
address = load_string->InputAt(0)->AsX86ComputeBaseMethodAddress();
} else {
DCHECK_EQ(load_string->InputCount(), 0u);
}
string_patches_.emplace_back(address,
load_string->GetDexFile(),
load_string->GetStringIndex().index_);
__ Bind(&string_patches_.back().label);
}
void CodeGeneratorX86::RecordBootTypePatch(HLoadClass* load_class) {
HX86ComputeBaseMethodAddress* address = nullptr;
if (GetCompilerOptions().GetCompilePic()) {
address = load_class->InputAt(0)->AsX86ComputeBaseMethodAddress();
} else {
DCHECK_EQ(load_class->InputCount(), 0u);
}
boot_image_type_patches_.emplace_back(address,
load_class->GetDexFile(),
load_class->GetTypeIndex().index_);
__ Bind(&boot_image_type_patches_.back().label);
}
Label* CodeGeneratorX86::NewTypeBssEntryPatch(HLoadClass* load_class) {
HX86ComputeBaseMethodAddress* address =
load_class->InputAt(0)->AsX86ComputeBaseMethodAddress();
type_bss_entry_patches_.emplace_back(
address, load_class->GetDexFile(), load_class->GetTypeIndex().index_);
return &type_bss_entry_patches_.back().label;
}
Label* CodeGeneratorX86::NewStringBssEntryPatch(HLoadString* load_string) {
DCHECK(!GetCompilerOptions().IsBootImage());
HX86ComputeBaseMethodAddress* address =
load_string->InputAt(0)->AsX86ComputeBaseMethodAddress();
string_patches_.emplace_back(
address, load_string->GetDexFile(), load_string->GetStringIndex().index_);
return &string_patches_.back().label;
}
Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch(
HX86ComputeBaseMethodAddress* method_address,
const DexFile& dex_file,
uint32_t element_offset) {
// Add the patch entry and bind its label at the end of the instruction.
pc_relative_dex_cache_patches_.emplace_back(method_address, dex_file, element_offset);
return &pc_relative_dex_cache_patches_.back().label;
}
// The label points to the end of the "movl" or another instruction but the literal offset
// for method patch needs to point to the embedded constant which occupies the last 4 bytes.
constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u;
template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
inline void CodeGeneratorX86::EmitPcRelativeLinkerPatches(
const ArenaDeque<X86PcRelativePatchInfo>& infos,
ArenaVector<LinkerPatch>* linker_patches) {
for (const X86PcRelativePatchInfo& info : infos) {
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
linker_patches->push_back(Factory(
literal_offset, &info.dex_file, GetMethodAddressOffset(info.method_address), info.index));
}
}
void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
DCHECK(linker_patches->empty());
size_t size =
pc_relative_dex_cache_patches_.size() +
string_patches_.size() +
boot_image_type_patches_.size() +
type_bss_entry_patches_.size();
linker_patches->reserve(size);
EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_,
linker_patches);
if (!GetCompilerOptions().IsBootImage()) {
DCHECK(boot_image_type_patches_.empty());
EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(string_patches_, linker_patches);
} else if (GetCompilerOptions().GetCompilePic()) {
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(boot_image_type_patches_,
linker_patches);
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(string_patches_, linker_patches);
} else {
for (const PatchInfo<Label>& info : boot_image_type_patches_) {
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
linker_patches->push_back(LinkerPatch::TypePatch(literal_offset, &info.dex_file, info.index));
}
for (const PatchInfo<Label>& info : string_patches_) {
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
linker_patches->push_back(
LinkerPatch::StringPatch(literal_offset, &info.dex_file, info.index));
}
}
EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_,
linker_patches);
DCHECK_EQ(size, linker_patches->size());
}
void CodeGeneratorX86::MarkGCCard(Register temp,
Register card,
Register object,
Register value,
bool value_can_be_null) {
NearLabel is_null;
if (value_can_be_null) {
__ testl(value, value);
__ j(kEqual, &is_null);
}
__ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86PointerSize>().Int32Value()));
__ movl(temp, object);
__ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
__ movb(Address(temp, card, TIMES_1, 0),
X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
if (value_can_be_null) {
__ Bind(&is_null);
}
}
void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
bool object_field_get_with_read_barrier =
kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction,
kEmitCompilerReadBarrier ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall);
if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
// The output overlaps in case of long: we don't want the low move
// to overwrite the object's location. Likewise, in the case of
// an object field get with read barriers enabled, we do not want
// the move to overwrite the object's location, as we need it to emit
// the read barrier.
locations->SetOut(
Location::RequiresRegister(),
(object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ?
Location::kOutputOverlap :
Location::kNoOutputOverlap);
}
if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) {
// Long values can be loaded atomically into an XMM using movsd.
// So we use an XMM register as a temp to achieve atomicity (first
// load the temp into the XMM and then copy the XMM into the
// output, 32 bits at a time).
locations->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations = instruction->GetLocations();
Location base_loc = locations->InAt(0);
Register base = base_loc.AsRegister<Register>();
Location out = locations->Out();
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
switch (field_type) {
case Primitive::kPrimBoolean: {
__ movzxb(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimByte: {
__ movsxb(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimShort: {
__ movsxw(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimChar: {
__ movzxw(out.AsRegister<Register>(), Address(base, offset));
break;
}
case Primitive::kPrimInt:
__ movl(out.AsRegister<Register>(), Address(base, offset));
break;
case Primitive::kPrimNot: {
// /* HeapReference<Object> */ out = *(base + offset)
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Note that a potential implicit null check is handled in this
// CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call.
codegen_->GenerateFieldLoadWithBakerReadBarrier(
instruction, out, base, offset, /* needs_null_check */ true);
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
} else {
__ movl(out.AsRegister<Register>(), Address(base, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
}
break;
}
case Primitive::kPrimLong: {
if (is_volatile) {
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movsd(temp, Address(base, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movd(out.AsRegisterPairLow<Register>(), temp);
__ psrlq(temp, Immediate(32));
__ movd(out.AsRegisterPairHigh<Register>(), temp);
} else {
DCHECK_NE(base, out.AsRegisterPairLow<Register>());
__ movl(out.AsRegisterPairLow<Register>(), Address(base, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset));
}
break;
}
case Primitive::kPrimFloat: {
__ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimDouble: {
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) {
// Potential implicit null checks, in the case of reference or
// long fields, are handled in the previous switch statement.
} else {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (is_volatile) {
if (field_type == Primitive::kPrimNot) {
// Memory barriers, in the case of references, are also handled
// in the previous switch statement.
} else {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
}
void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
bool is_byte_type = (field_type == Primitive::kPrimBoolean)
|| (field_type == Primitive::kPrimByte);
// The register allocator does not support multiple
// inputs that die at entry with one in a specific register.
if (is_byte_type) {
// Ensure the value is in a byte register.
locations->SetInAt(1, Location::RegisterLocation(EAX));
} else if (Primitive::IsFloatingPointType(field_type)) {
if (is_volatile && field_type == Primitive::kPrimDouble) {
// In order to satisfy the semantics of volatile, this must be a single instruction store.
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1)));
}
} else if (is_volatile && field_type == Primitive::kPrimLong) {
// In order to satisfy the semantics of volatile, this must be a single instruction store.
locations->SetInAt(1, Location::RequiresRegister());
// 64bits value can be atomically written to an address with movsd and an XMM register.
// We need two XMM registers because there's no easier way to (bit) copy a register pair
// into a single XMM register (we copy each pair part into the XMMs and then interleave them).
// NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
// isolated cases when we need this it isn't worth adding the extra complexity.
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
// Temporary registers for the write barrier.
locations->AddTemp(Location::RequiresRegister()); // May be used for reference poisoning too.
// Ensure the card is in a byte register.
locations->AddTemp(Location::RegisterLocation(ECX));
}
}
}
void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations = instruction->GetLocations();
Register base = locations->InAt(0).AsRegister<Register>();
Location value = locations->InAt(1);
bool is_volatile = field_info.IsVolatile();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
bool maybe_record_implicit_null_check_done = false;
switch (field_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
__ movb(Address(base, offset), value.AsRegister<ByteRegister>());
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
if (value.IsConstant()) {
int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
__ movw(Address(base, offset), Immediate(v));
} else {
__ movw(Address(base, offset), value.AsRegister<Register>());
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
if (kPoisonHeapReferences && needs_write_barrier) {
// Note that in the case where `value` is a null reference,
// we do not enter this block, as the reference does not
// need poisoning.
DCHECK_EQ(field_type, Primitive::kPrimNot);
Register temp = locations->GetTemp(0).AsRegister<Register>();
__ movl(temp, value.AsRegister<Register>());
__ PoisonHeapReference(temp);
__ movl(Address(base, offset), temp);
} else if (value.IsConstant()) {
int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
__ movl(Address(base, offset), Immediate(v));
} else {
DCHECK(value.IsRegister()) << value;
__ movl(Address(base, offset), value.AsRegister<Register>());
}
break;
}
case Primitive::kPrimLong: {
if (is_volatile) {
XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
__ movd(temp1, value.AsRegisterPairLow<Register>());
__ movd(temp2, value.AsRegisterPairHigh<Register>());
__ punpckldq(temp1, temp2);
__ movsd(Address(base, offset), temp1);
codegen_->MaybeRecordImplicitNullCheck(instruction);
} else if (value.IsConstant()) {
int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
__ movl(Address(base, offset), Immediate(Low32Bits(v)));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
} else {
__ movl(Address(base, offset), value.AsRegisterPairLow<Register>());
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>());
}
maybe_record_implicit_null_check_done = true;
break;
}
case Primitive::kPrimFloat: {
if (value.IsConstant()) {
int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
__ movl(Address(base, offset), Immediate(v));
} else {
__ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
}
break;
}
case Primitive::kPrimDouble: {
if (value.IsConstant()) {
int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
__ movl(Address(base, offset), Immediate(Low32Bits(v)));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
maybe_record_implicit_null_check_done = true;
} else {
__ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
if (!maybe_record_implicit_null_check_done) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (needs_write_barrier) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null);
}
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
}
void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
}
void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderX86::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderX86::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionX86 calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks()
? Location::RequiresRegister()
: Location::Any();
locations->SetInAt(0, loc);
}
void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (CanMoveNullCheckToUser(instruction)) {
return;
}
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
__ testl(EAX, Address(obj.AsRegister<Register>(), 0));
RecordPcInfo(instruction, instruction->GetDexPc());
}
void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction);
AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
if (obj.IsRegister()) {
__ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>());
} else if (obj.IsStackSlot()) {
__ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
} else {
DCHECK(obj.IsConstant()) << obj;
DCHECK(obj.GetConstant()->IsNullConstant());
__ jmp(slow_path->GetEntryLabel());
return;
}
__ j(kEqual, slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
codegen_->GenerateNullCheck(instruction);
}
void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
bool object_array_get_with_read_barrier =
kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction,
object_array_get_with_read_barrier ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall);
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
// The output overlaps in case of long: we don't want the low move
// to overwrite the array's location. Likewise, in the case of an
// object array get with read barriers enabled, we do not want the
// move to overwrite the array's location, as we need it to emit
// the read barrier.
locations->SetOut(
Location::RequiresRegister(),
(instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ?
Location::kOutputOverlap :
Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location index = locations->InAt(1);
Location out_loc = locations->Out();
uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimBoolean: {
Register out = out_loc.AsRegister<Register>();
__ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset));
break;
}
case Primitive::kPrimByte: {
Register out = out_loc.AsRegister<Register>();
__ movsxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset));
break;
}
case Primitive::kPrimShort: {
Register out = out_loc.AsRegister<Register>();
__ movsxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset));
break;
}
case Primitive::kPrimChar: {
Register out = out_loc.AsRegister<Register>();
if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
// Branch cases into compressed and uncompressed for each index's type.
uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
NearLabel done, not_compressed;
__ testb(Address(obj, count_offset), Immediate(1));
codegen_->MaybeRecordImplicitNullCheck(instruction);
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ j(kNotZero, &not_compressed);
__ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset));
__ jmp(&done);
__ Bind(&not_compressed);
__ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset));
__ Bind(&done);
} else {
// Common case for charAt of array of char or when string compression's
// feature is turned off.
__ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset));
}
break;
}
case Primitive::kPrimInt: {
Register out = out_loc.AsRegister<Register>();
__ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset));
break;
}
case Primitive::kPrimNot: {
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
// /* HeapReference<Object> */ out =
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Note that a potential implicit null check is handled in this
// CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call.
codegen_->GenerateArrayLoadWithBakerReadBarrier(
instruction, out_loc, obj, data_offset, index, /* needs_null_check */ true);
} else {
Register out = out_loc.AsRegister<Register>();
__ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
if (index.IsConstant()) {
uint32_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
} else {
codegen_->MaybeGenerateReadBarrierSlow(
instruction, out_loc, out_loc, obj_loc, data_offset, index);
}
}
break;
}
case Primitive::kPrimLong: {
DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>());
__ movl(out_loc.AsRegisterPairLow<Register>(),
CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(out_loc.AsRegisterPairHigh<Register>(),
CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset + kX86WordSize));
break;
}
case Primitive::kPrimFloat: {
XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
__ movss(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset));
break;
}
case Primitive::kPrimDouble: {
XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
__ movsd(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset));
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) {
// Potential implicit null checks, in the case of reference or
// long arrays, are handled in the previous switch statement.
} else {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
Primitive::Type value_type = instruction->GetComponentType();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction,
may_need_runtime_call_for_type_check ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall);
bool is_byte_type = (value_type == Primitive::kPrimBoolean)
|| (value_type == Primitive::kPrimByte);
// We need the inputs to be different than the output in case of long operation.
// In case of a byte operation, the register allocator does not support multiple
// inputs that die at entry with one in a specific register.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (is_byte_type) {
// Ensure the value is in a byte register.
locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
} else if (Primitive::IsFloatingPointType(value_type)) {
locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2)));
} else {
locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
}
if (needs_write_barrier) {
// Temporary registers for the write barrier.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
// Ensure the card is in a byte register.
locations->AddTemp(Location::RegisterLocation(ECX));
}
}
void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location array_loc = locations->InAt(0);
Register array = array_loc.AsRegister<Register>();
Location index = locations->InAt(1);
Location value = locations->InAt(2);
Primitive::Type value_type = instruction->GetComponentType();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_1, offset);
if (value.IsRegister()) {
__ movb(address, value.AsRegister<ByteRegister>());
} else {
__ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_2, offset);
if (value.IsRegister()) {
__ movw(address, value.AsRegister<Register>());
} else {
__ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimNot: {
uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
if (!value.IsRegister()) {
// Just setting null.
DCHECK(instruction->InputAt(2)->IsNullConstant());
DCHECK(value.IsConstant()) << value;
__ movl(address, Immediate(0));
codegen_->MaybeRecordImplicitNullCheck(instruction);
DCHECK(!needs_write_barrier);
DCHECK(!may_need_runtime_call_for_type_check);
break;
}
DCHECK(needs_write_barrier);
Register register_value = value.AsRegister<Register>();
// We cannot use a NearLabel for `done`, as its range may be too
// short when Baker read barriers are enabled.
Label done;
NearLabel not_null, do_put;
SlowPathCode* slow_path = nullptr;
Location temp_loc = locations->GetTemp(0);
Register temp = temp_loc.AsRegister<Register>();
if (may_need_runtime_call_for_type_check) {
slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction);
codegen_->AddSlowPath(slow_path);
if (instruction->GetValueCanBeNull()) {
__ testl(register_value, register_value);
__ j(kNotEqual, &not_null);
__ movl(address, Immediate(0));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ jmp(&done);
__ Bind(&not_null);
}
// Note that when Baker read barriers are enabled, the type
// checks are performed without read barriers. This is fine,
// even in the case where a class object is in the from-space
// after the flip, as a comparison involving such a type would
// not produce a false positive; it may of course produce a
// false negative, in which case we would take the ArraySet
// slow path.
// /* HeapReference<Class> */ temp = array->klass_
__ movl(temp, Address(array, class_offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ MaybeUnpoisonHeapReference(temp);
// /* HeapReference<Class> */ temp = temp->component_type_
__ movl(temp, Address(temp, component_offset));
// If heap poisoning is enabled, no need to unpoison `temp`
// nor the object reference in `register_value->klass`, as
// we are comparing two poisoned references.
__ cmpl(temp, Address(register_value, class_offset));
if (instruction->StaticTypeOfArrayIsObjectArray()) {
__ j(kEqual, &do_put);
// If heap poisoning is enabled, the `temp` reference has
// not been unpoisoned yet; unpoison it now.
__ MaybeUnpoisonHeapReference(temp);
// If heap poisoning is enabled, no need to unpoison the
// heap reference loaded below, as it is only used for a
// comparison with null.
__ cmpl(Address(temp, super_offset), Immediate(0));
__ j(kNotEqual, slow_path->GetEntryLabel());
__ Bind(&do_put);
} else {
__ j(kNotEqual, slow_path->GetEntryLabel());
}
}
if (kPoisonHeapReferences) {
__ movl(temp, register_value);
__ PoisonHeapReference(temp);
__ movl(address, temp);
} else {
__ movl(address, register_value);
}
if (!may_need_runtime_call_for_type_check) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
Register card = locations->GetTemp(1).AsRegister<Register>();
codegen_->MarkGCCard(
temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull());
__ Bind(&done);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
break;
}
case Primitive::kPrimInt: {
uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
if (value.IsRegister()) {
__ movl(address, value.AsRegister<Register>());
} else {
DCHECK(value.IsConstant()) << value;
int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
__ movl(address, Immediate(v));
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
if (value.IsRegisterPair()) {
__ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset),
value.AsRegisterPairLow<Register>());
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize),
value.AsRegisterPairHigh<Register>());
} else {
DCHECK(value.IsConstant());
int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
__ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset),
Immediate(Low32Bits(val)));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize),
Immediate(High32Bits(val)));
}
break;
}
case Primitive::kPrimFloat: {
uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
if (value.IsFpuRegister()) {
__ movss(address, value.AsFpuRegister<XmmRegister>());
} else {
DCHECK(value.IsConstant());
int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue());
__ movl(address, Immediate(v));
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
break;
}
case Primitive::kPrimDouble: {
uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset);
if (value.IsFpuRegister()) {
__ movsd(address, value.AsFpuRegister<XmmRegister>());
} else {
DCHECK(value.IsConstant());
Address address_hi =
CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset + kX86WordSize);
int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue());
__ movl(address, Immediate(Low32Bits(v)));
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ movl(address_hi, Immediate(High32Bits(v)));
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
if (!instruction->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
if (instruction->IsEmittedAtUseSite()) {
return;
}
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
Register obj = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ movl(out, Address(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
// Mask out most significant bit in case the array is String's array of char.
if (mirror::kUseStringCompression && instruction->IsStringLength()) {
__ shrl(out, Immediate(1));
}
}
void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
HInstruction* length = instruction->InputAt(1);
if (!length->IsEmittedAtUseSite()) {
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
}
// Need register to see array's length.
if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
locations->AddTemp(Location::RequiresRegister());
}
}
void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
const bool is_string_compressed_char_at =
mirror::kUseStringCompression && instruction->IsStringCharAt();
LocationSummary* locations = instruction->GetLocations();
Location index_loc = locations->InAt(0);
Location length_loc = locations->InAt(1);
SlowPathCode* slow_path =
new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction);
if (length_loc.IsConstant()) {
int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant());
if (index_loc.IsConstant()) {
// BCE will remove the bounds check if we are guarenteed to pass.
int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
if (index < 0 || index >= length) {
codegen_->AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
} else {
// Some optimization after BCE may have generated this, and we should not
// generate a bounds check if it is a valid range.
}
return;
}
// We have to reverse the jump condition because the length is the constant.
Register index_reg = index_loc.AsRegister<Register>();
__ cmpl(index_reg, Immediate(length));
codegen_->AddSlowPath(slow_path);
__ j(kAboveEqual, slow_path->GetEntryLabel());
} else {
HInstruction* array_length = instruction->InputAt(1);
if (array_length->IsEmittedAtUseSite()) {
// Address the length field in the array.
DCHECK(array_length->IsArrayLength());
uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength());
Location array_loc = array_length->GetLocations()->InAt(0);
Address array_len(array_loc.AsRegister<Register>(), len_offset);
if (is_string_compressed_char_at) {
// TODO: if index_loc.IsConstant(), compare twice the index (to compensate for
// the string compression flag) with the in-memory length and avoid the temporary.
Register length_reg = locations->GetTemp(0).AsRegister<Register>();
__ movl(length_reg, array_len);
codegen_->MaybeRecordImplicitNullCheck(array_length);
__ shrl(length_reg, Immediate(1));
codegen_->GenerateIntCompare(length_reg, index_loc);
} else {
// Checking bounds for general case:
// Array of char or string's array with feature compression off.
if (index_loc.IsConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
__ cmpl(array_len, Immediate(value));
} else {
__ cmpl(array_len, index_loc.AsRegister<Register>());
}
codegen_->MaybeRecordImplicitNullCheck(array_length);
}
} else {
codegen_->GenerateIntCompare(length_loc, index_loc);
}
codegen_->AddSlowPath(slow_path);
__ j(kBelowEqual, slow_path->GetEntryLabel());
}
}
void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
// In suspend check slow path, usually there are no caller-save registers at all.
// If SIMD instructions are present, however, we force spilling all live SIMD
// registers in full width (since the runtime only saves/restores lower part).
locations->SetCustomSlowPathCallerSaves(
GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
}
void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathX86* slow_path =
down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath());
if (slow_path == nullptr) {
slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor);
instruction->SetSlowPath(slow_path);
codegen_->AddSlowPath(slow_path);
if (successor != nullptr) {
DCHECK(successor->IsLoopHeader());
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
}
} else {
DCHECK_EQ(slow_path->GetSuccessor(), successor);
}
__ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86PointerSize>().Int32Value()),
Immediate(0));
if (successor == nullptr) {
__ j(kNotEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ j(kEqual, codegen_->GetLabelOf(successor));
__ jmp(slow_path->GetEntryLabel());
}
}
X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(temp_reg, Address(ESP, src + stack_offset));
__ movl(Address(ESP, dst + stack_offset), temp_reg);
}
void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(temp_reg, Address(ESP, src + stack_offset));
__ movl(Address(ESP, dst + stack_offset), temp_reg);
__ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize));
__ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg);
}
void ParallelMoveResolverX86::EmitMove(size_t index) {
MoveOperands* move = moves_[index];
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (destination.IsFpuRegister()) {
__ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
} else {
DCHECK(destination.IsStackSlot());
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
}
} else if (source.IsRegisterPair()) {
size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
// Create stack space for 2 elements.
__ subl(ESP, Immediate(2 * elem_size));
__ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
__ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
// And remove the temporary stack space we allocated.
__ addl(ESP, Immediate(2 * elem_size));
} else if (source.IsFpuRegister()) {
if (destination.IsRegister()) {
__ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
} else if (destination.IsFpuRegister()) {
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (destination.IsRegisterPair()) {
XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
__ movd(destination.AsRegisterPairLow<Register>(), src_reg);
__ psrlq(src_reg, Immediate(32));
__ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
} else if (destination.IsStackSlot()) {
__ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
} else if (destination.IsDoubleStackSlot()) {
__ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
} else {
DCHECK(destination.IsSIMDStackSlot());
__ movups(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
__ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
} else if (destination.IsFpuRegister()) {
__ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
} else {
DCHECK(destination.IsStackSlot());
MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex());
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsRegisterPair()) {
__ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
__ movl(destination.AsRegisterPairHigh<Register>(),
Address(ESP, source.GetHighStackIndex(kX86WordSize)));
} else if (destination.IsFpuRegister()) {
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex());
}
} else if (source.IsSIMDStackSlot()) {
DCHECK(destination.IsFpuRegister());
__ movups(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
} else if (source.IsConstant()) {
HConstant* constant = source.GetConstant();
if (constant->IsIntConstant() || constant->IsNullConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
if (destination.IsRegister()) {
if (value == 0) {
__ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
} else {
__ movl(destination.AsRegister<Register>(), Immediate(value));
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
}
} else if (constant->IsFloatConstant()) {
float fp_value = constant->AsFloatConstant()->GetValue();
int32_t value = bit_cast<int32_t, float>(fp_value);
Immediate imm(value);
if (destination.IsFpuRegister()) {
XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
if (value == 0) {
// Easy handling of 0.0.
__ xorps(dest, dest);
} else {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp = static_cast<Register>(ensure_scratch.GetRegister());
__ movl(temp, Immediate(value));
__ movd(dest, temp);
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
__ movl(Address(ESP, destination.GetStackIndex()), imm);
}
} else if (constant->IsLongConstant()) {
int64_t value = constant->AsLongConstant()->GetValue();
int32_t low_value = Low32Bits(value);
int32_t high_value = High32Bits(value);
Immediate low(low_value);
Immediate high(high_value);
if (destination.IsDoubleStackSlot()) {
__ movl(Address(ESP, destination.GetStackIndex()), low);
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
} else {
__ movl(destination.AsRegisterPairLow<Register>(), low);
__ movl(destination.AsRegisterPairHigh<Register>(), high);
}
} else {
DCHECK(constant->IsDoubleConstant());
double dbl_value = constant->AsDoubleConstant()->GetValue();
int64_t value = bit_cast<int64_t, double>(dbl_value);
int32_t low_value = Low32Bits(value);
int32_t high_value = High32Bits(value);
Immediate low(low_value);
Immediate high(high_value);
if (destination.IsFpuRegister()) {
XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
if (value == 0) {
// Easy handling of 0.0.
__ xorpd(dest, dest);
} else {
__ pushl(high);
__ pushl(low);
__ movsd(dest, Address(ESP, 0));
__ addl(ESP, Immediate(8));
}
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ movl(Address(ESP, destination.GetStackIndex()), low);
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
}
}
} else {
LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
}
}
void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
Register suggested_scratch = reg == EAX ? EBX : EAX;
ScratchRegisterScope ensure_scratch(
this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
__ movl(Address(ESP, mem + stack_offset), reg);
__ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
}
void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
ScratchRegisterScope ensure_scratch(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
__ movl(temp_reg, Address(ESP, mem + stack_offset));
__ movss(Address(ESP, mem + stack_offset), reg);
__ movd(reg, temp_reg);
}
void ParallelMoveResolverX86::Exchange(int mem1, int mem2) {
ScratchRegisterScope ensure_scratch1(
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
ScratchRegisterScope ensure_scratch2(
this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
__ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
__ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
__ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
__ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
}
void ParallelMoveResolverX86::EmitSwap(size_t index) {
MoveOperands* move = moves_[index];
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister() && destination.IsRegister()) {
// Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary.
DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>());
__ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
__ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>());
__ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(destination.GetStackIndex(), source.GetStackIndex());
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
// Use XOR Swap algorithm to avoid a temporary.
DCHECK_NE(source.reg(), destination.reg());
__ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
__ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
__ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
} else if (source.IsFpuRegister() && destination.IsStackSlot()) {
Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
} else if (destination.IsFpuRegister() && source.IsStackSlot()) {
Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
} else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
// Take advantage of the 16 bytes in the XMM register.
XmmRegister reg = source.AsFpuRegister<XmmRegister>();
Address stack(ESP, destination.GetStackIndex());
// Load the double into the high doubleword.
__ movhpd(reg, stack);
// Store the low double into the destination.
__ movsd(stack, reg);
// Move the high double to the low double.
__ psrldq(reg, Immediate(8));
} else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) {
// Take advantage of the 16 bytes in the XMM register.
XmmRegister reg = destination.AsFpuRegister<XmmRegister>();
Address stack(ESP, source.GetStackIndex());
// Load the double into the high doubleword.
__ movhpd(reg, stack);
// Store the low double into the destination.
__ movsd(stack, reg);
// Move the high double to the low double.
__ psrldq(reg, Immediate(8));
} else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) {
Exchange(destination.GetStackIndex(), source.GetStackIndex());
Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize));
} else {
LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
}
}
void ParallelMoveResolverX86::SpillScratch(int reg) {
__ pushl(static_cast<Register>(reg));
}
void ParallelMoveResolverX86::RestoreScratch(int reg) {
__ popl(static_cast<Register>(reg));
}
HLoadClass::LoadKind CodeGeneratorX86::GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) {
switch (desired_class_load_kind) {
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
case HLoadClass::LoadKind::kReferrersClass:
break;
case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
DCHECK(!GetCompilerOptions().GetCompilePic());
break;
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
DCHECK(GetCompilerOptions().GetCompilePic());
FALLTHROUGH_INTENDED;
case HLoadClass::LoadKind::kBssEntry:
DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT.
break;
case HLoadClass::LoadKind::kBootImageAddress:
break;
case HLoadClass::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadClass::LoadKind::kDexCacheViaMethod:
break;
}
return desired_class_load_kind;
}
void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) {
InvokeRuntimeCallingConvention calling_convention;
CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
cls,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Location::RegisterLocation(EAX));
DCHECK_EQ(calling_convention.GetRegisterAt(0), EAX);
return;
}
DCHECK(!cls->NeedsAccessCheck());
const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
if (load_kind == HLoadClass::LoadKind::kReferrersClass ||
load_kind == HLoadClass::LoadKind::kBootImageLinkTimePcRelative ||
load_kind == HLoadClass::LoadKind::kBssEntry) {
locations->SetInAt(0, Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister());
if (load_kind == HLoadClass::LoadKind::kBssEntry) {
if (!kUseReadBarrier || kUseBakerReadBarrier) {
// Rely on the type resolution and/or initialization to save everything.
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetCustomSlowPathCallerSaves(caller_saves);
} else {
// For non-Baker read barrier we have a temp-clobbering call.
}
}
}
Label* CodeGeneratorX86::NewJitRootClassPatch(const DexFile& dex_file,
dex::TypeIndex dex_index,
Handle<mirror::Class> handle) {
jit_class_roots_.Overwrite(TypeReference(&dex_file, dex_index),
reinterpret_cast64<uint64_t>(handle.GetReference()));
// Add a patch entry and return the label.
jit_class_patches_.emplace_back(dex_file, dex_index.index_);
PatchInfo<Label>* info = &jit_class_patches_.back();
return &info->label;
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) {
codegen_->GenerateLoadClassRuntimeCall(cls);
return;
}
DCHECK(!cls->NeedsAccessCheck());
LocationSummary* locations = cls->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
bool generate_null_check = false;
const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
? kWithoutReadBarrier
: kCompilerReadBarrierOption;
switch (load_kind) {
case HLoadClass::LoadKind::kReferrersClass: {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
Register current_method = locations->InAt(0).AsRegister<Register>();
GenerateGcRootFieldLoad(
cls,
out_loc,
Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()),
/* fixup_label */ nullptr,
read_barrier_option);
break;
}
case HLoadClass::LoadKind::kBootImageLinkTimeAddress: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
__ movl(out, Immediate(/* placeholder */ 0));
codegen_->RecordBootTypePatch(cls);
break;
}
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
Register method_address = locations->InAt(0).AsRegister<Register>();
__ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
codegen_->RecordBootTypePatch(cls);
break;
}
case HLoadClass::LoadKind::kBootImageAddress: {
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
uint32_t address = dchecked_integral_cast<uint32_t>(
reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
DCHECK_NE(address, 0u);
__ movl(out, Immediate(address));
break;
}
case HLoadClass::LoadKind::kBssEntry: {
Register method_address = locations->InAt(0).AsRegister<Register>();
Address address(method_address, CodeGeneratorX86::kDummy32BitOffset);
Label* fixup_label = codegen_->NewTypeBssEntryPatch(cls);
GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option);
generate_null_check = true;
break;
}
case HLoadClass::LoadKind::kJitTableAddress: {
Address address = Address::Absolute(CodeGeneratorX86::kDummy32BitOffset);
Label* fixup_label = codegen_->NewJitRootClassPatch(
cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass());
// /* GcRoot<mirror::Class> */ out = *address
GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option);
break;
}
case HLoadClass::LoadKind::kDexCacheViaMethod:
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
if (generate_null_check || cls->MustGenerateClinitCheck()) {
DCHECK(cls->CanCallRuntime());
SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
if (generate_null_check) {
__ testl(out, out);
__ j(kEqual, slow_path->GetEntryLabel());
}
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
// We assume the class to not be null.
SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
check->GetLoadClass(), check, check->GetDexPc(), true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<Register>());
}
void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
SlowPathCode* slow_path, Register class_reg) {
__ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()),
Immediate(mirror::Class::kStatusInitialized));
__ j(kLess, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
// No need for memory fence, thanks to the X86 memory model.
}
HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) {
switch (desired_string_load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
DCHECK(!GetCompilerOptions().GetCompilePic());
break;
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
DCHECK(GetCompilerOptions().GetCompilePic());
FALLTHROUGH_INTENDED;
case HLoadString::LoadKind::kBssEntry:
DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT.
break;
case HLoadString::LoadKind::kBootImageAddress:
break;
case HLoadString::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadString::LoadKind::kDexCacheViaMethod:
break;
}
return desired_string_load_kind;
}
void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
HLoadString::LoadKind load_kind = load->GetLoadKind();
if (load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative ||
load_kind == HLoadString::LoadKind::kBssEntry) {
locations->SetInAt(0, Location::RequiresRegister());
}
if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) {
locations->SetOut(Location::RegisterLocation(EAX));
} else {
locations->SetOut(Location::RequiresRegister());
if (load_kind == HLoadString::LoadKind::kBssEntry) {
if (!kUseReadBarrier || kUseBakerReadBarrier) {
// Rely on the pResolveString to save everything.
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetCustomSlowPathCallerSaves(caller_saves);
} else {
// For non-Baker read barrier we have a temp-clobbering call.
}
}
}
}
Label* CodeGeneratorX86::NewJitRootStringPatch(const DexFile& dex_file,
dex::StringIndex dex_index,
Handle<mirror::String> handle) {
jit_string_roots_.Overwrite(
StringReference(&dex_file, dex_index), reinterpret_cast64<uint64_t>(handle.GetReference()));
// Add a patch entry and return the label.
jit_string_patches_.emplace_back(dex_file, dex_index.index_);
PatchInfo<Label>* info = &jit_string_patches_.back();
return &info->label;
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
LocationSummary* locations = load->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
switch (load->GetLoadKind()) {
case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
__ movl(out, Immediate(/* placeholder */ 0));
codegen_->RecordBootStringPatch(load);
return; // No dex cache slow path.
}
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
Register method_address = locations->InAt(0).AsRegister<Register>();
__ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
codegen_->RecordBootStringPatch(load);
return; // No dex cache slow path.
}
case HLoadString::LoadKind::kBootImageAddress: {
uint32_t address = dchecked_integral_cast<uint32_t>(
reinterpret_cast<uintptr_t>(load->GetString().Get()));
DCHECK_NE(address, 0u);
__ movl(out, Immediate(address));
return; // No dex cache slow path.
}
case HLoadString::LoadKind::kBssEntry: {
Register method_address = locations->InAt(0).AsRegister<Register>();
Address address = Address(method_address, CodeGeneratorX86::kDummy32BitOffset);
Label* fixup_label = codegen_->NewStringBssEntryPatch(load);
// /* GcRoot<mirror::String> */ out = *address /* PC-relative */
GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption);
SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load);
codegen_->AddSlowPath(slow_path);
__ testl(out, out);
__ j(kEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
case HLoadString::LoadKind::kJitTableAddress: {
Address address = Address::Absolute(CodeGeneratorX86::kDummy32BitOffset);
Label* fixup_label = codegen_->NewJitRootStringPatch(
load->GetDexFile(), load->GetStringIndex(), load->GetString());
// /* GcRoot<mirror::String> */ out = *address
GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption);
return;
}
default:
break;
}
// TODO: Re-add the compiler code to do string dex cache lookup again.
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
__ movl(calling_convention.GetRegisterAt(0), Immediate(load->GetStringIndex().index_));
codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
}
static Address GetExceptionTlsAddress() {
return Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>().Int32Value());
}
void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
__ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress());
}
void LocationsBuilderX86::VisitClearException(HClearException* clear) {
new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
}
void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
__ fs()->movl(GetExceptionTlsAddress(), Immediate(0));
}
void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
// Temp is used for read barrier.
static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
if (kEmitCompilerReadBarrier &&
!kUseBakerReadBarrier &&
(type_check_kind == TypeCheckKind::kAbstractClassCheck ||
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
return 1;
}
return 0;
}
// Interface case has 3 temps, one for holding the number of interfaces, one for the current
// interface pointer, one for loading the current interface.
// The other checks have one temp for loading the object's class.
static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
if (type_check_kind == TypeCheckKind::kInterfaceCheck && !kPoisonHeapReferences) {
return 2;
}
return 1 + NumberOfInstanceOfTemps(type_check_kind);
}
void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
bool baker_read_barrier_slow_path = false;
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kAbstractClassCheck:
case TypeCheckKind::kClassHierarchyCheck:
case TypeCheckKind::kArrayObjectCheck:
call_kind =
kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
baker_read_barrier_slow_path = kUseBakerReadBarrier;
break;
case TypeCheckKind::kArrayCheck:
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck:
call_kind = LocationSummary::kCallOnSlowPath;
break;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
if (baker_read_barrier_slow_path) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
// Note that TypeCheckSlowPathX86 uses this "out" register too.
locations->SetOut(Location::RequiresRegister());
// When read barriers are enabled, we need a temporary register for some cases.
locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
}
void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location cls = locations->InAt(1);
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
DCHECK_LE(num_temps, 1u);
Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
SlowPathCode* slow_path = nullptr;
NearLabel done, zero;
// Return 0 if `obj` is null.
// Avoid null check if we know obj is not null.
if (instruction->MustDoNullCheck()) {
__ testl(obj, obj);
__ j(kEqual, &zero);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
kCompilerReadBarrierOption);
if (cls.IsRegister()) {
__ cmpl(out, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
}
// Classes must be equal for the instanceof to succeed.
__ j(kNotEqual, &zero);
__ movl(out, Immediate(1));
__ jmp(&done);
break;
}
case TypeCheckKind::kAbstractClassCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
kCompilerReadBarrierOption);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
NearLabel loop;
__ Bind(&loop);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
__ testl(out, out);
// If `out` is null, we use it for the result, and jump to `done`.
__ j(kEqual, &done);
if (cls.IsRegister()) {
__ cmpl(out, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
}
__ j(kNotEqual, &loop);
__ movl(out, Immediate(1));
if (zero.IsLinked()) {
__ jmp(&done);
}
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
kCompilerReadBarrierOption);
// Walk over the class hierarchy to find a match.
NearLabel loop, success;
__ Bind(&loop);
if (cls.IsRegister()) {
__ cmpl(out, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
}
__ j(kEqual, &success);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
__ testl(out, out);
__ j(kNotEqual, &loop);
// If `out` is null, we use it for the result, and jump to `done`.
__ jmp(&done);
__ Bind(&success);
__ movl(out, Immediate(1));
if (zero.IsLinked()) {
__ jmp(&done);
}
break;
}
case TypeCheckKind::kArrayObjectCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
kCompilerReadBarrierOption);
// Do an exact check.
NearLabel exact_check;
if (cls.IsRegister()) {
__ cmpl(out, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
}
__ j(kEqual, &exact_check);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ out = out->component_type_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
component_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
__ testl(out, out);
// If `out` is null, we use it for the result, and jump to `done`.
__ j(kEqual, &done);
__ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, &zero);
__ Bind(&exact_check);
__ movl(out, Immediate(1));
__ jmp(&done);
break;
}
case TypeCheckKind::kArrayCheck: {
// No read barrier since the slow path will retry upon failure.
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
kWithoutReadBarrier);
if (cls.IsRegister()) {
__ cmpl(out, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
}
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
/* is_fatal */ false);
codegen_->AddSlowPath(slow_path);
__ j(kNotEqual, slow_path->GetEntryLabel());
__ movl(out, Immediate(1));
if (zero.IsLinked()) {
__ jmp(&done);
}
break;
}
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck: {
// Note that we indeed only call on slow path, but we always go
// into the slow path for the unresolved and interface check
// cases.
//
// We cannot directly call the InstanceofNonTrivial runtime
// entry point without resorting to a type checking slow path
// here (i.e. by calling InvokeRuntime directly), as it would
// require to assign fixed registers for the inputs of this
// HInstanceOf instruction (following the runtime calling
// convention), which might be cluttered by the potential first
// read barrier emission at the beginning of this method.
//
// TODO: Introduce a new runtime entry point taking the object
// to test (instead of its class) as argument, and let it deal
// with the read barrier issues. This will let us refactor this
// case of the `switch` code as it was previously (with a direct
// call to the runtime not using a type checking slow path).
// This should also be beneficial for the other cases above.
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
/* is_fatal */ false);
codegen_->AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
if (zero.IsLinked()) {
__ jmp(&done);
}
break;
}
}
if (zero.IsLinked()) {
__ Bind(&zero);
__ xorl(out, out);
}
if (done.IsLinked()) {
__ Bind(&done);
}
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
static bool IsTypeCheckSlowPathFatal(TypeCheckKind type_check_kind, bool throws_into_catch) {
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kAbstractClassCheck:
case TypeCheckKind::kClassHierarchyCheck:
case TypeCheckKind::kArrayObjectCheck:
return !throws_into_catch && !kEmitCompilerReadBarrier;
case TypeCheckKind::kInterfaceCheck:
return !throws_into_catch && !kEmitCompilerReadBarrier && !kPoisonHeapReferences;
case TypeCheckKind::kArrayCheck:
case TypeCheckKind::kUnresolvedCheck:
return false;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary::CallKind call_kind =
IsTypeCheckSlowPathFatal(type_check_kind, throws_into_catch)
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
// Require a register for the interface check since there is a loop that compares the class to
// a memory address.
locations->SetInAt(1, Location::RequiresRegister());
} else {
locations->SetInAt(1, Location::Any());
}
// Note that TypeCheckSlowPathX86 uses this "temp" register too.
locations->AddTemp(Location::RequiresRegister());
// When read barriers are enabled, we need an additional temporary register for some cases.
locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
}
void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location cls = locations->InAt(1);
Location temp_loc = locations->GetTemp(0);
Register temp = temp_loc.AsRegister<Register>();
const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
DCHECK_GE(num_temps, 1u);
DCHECK_LE(num_temps, 2u);
Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
const uint32_t object_array_data_offset =
mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
// Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
// from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
// read barriers is done for performance and code size reasons.
bool is_type_check_slow_path_fatal =
IsTypeCheckSlowPathFatal(type_check_kind, instruction->CanThrowIntoCatchBlock());
SlowPathCode* type_check_slow_path =
new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
is_type_check_slow_path_fatal);
codegen_->AddSlowPath(type_check_slow_path);
NearLabel done;
// Avoid null check if we know obj is not null.
if (instruction->MustDoNullCheck()) {
__ testl(obj, obj);
__ j(kEqual, &done);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kArrayCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
kWithoutReadBarrier);
if (cls.IsRegister()) {
__ cmpl(temp, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
}
// Jump to slow path for throwing the exception or doing a
// more involved array check.
__ j(kNotEqual, type_check_slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kAbstractClassCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
kWithoutReadBarrier);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
NearLabel loop;
__ Bind(&loop);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is null, jump to the slow path to throw the
// exception.
__ testl(temp, temp);
__ j(kZero, type_check_slow_path->GetEntryLabel());
// Otherwise, compare the classes
if (cls.IsRegister()) {
__ cmpl(temp, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
}
__ j(kNotEqual, &loop);
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
kWithoutReadBarrier);
// Walk over the class hierarchy to find a match.
NearLabel loop;
__ Bind(&loop);
if (cls.IsRegister()) {
__ cmpl(temp, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
}
__ j(kEqual, &done);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is not null, jump
// back at the beginning of the loop.
__ testl(temp, temp);
__ j(kNotZero, &loop);
// Otherwise, jump to the slow path to throw the exception.;
__ jmp(type_check_slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kArrayObjectCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
kWithoutReadBarrier);
// Do an exact check.
if (cls.IsRegister()) {
__ cmpl(temp, cls.AsRegister<Register>());
} else {
DCHECK(cls.IsStackSlot()) << cls;
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
}
__ j(kEqual, &done);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ temp = temp->component_type_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
component_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the component type is null (i.e. the object not an array), jump to the slow path to
// throw the exception. Otherwise proceed with the check.
__ testl(temp, temp);
__ j(kZero, type_check_slow_path->GetEntryLabel());
__ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, type_check_slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kUnresolvedCheck:
// We always go into the type check slow path for the unresolved check case.
// We cannot directly call the CheckCast runtime entry point
// without resorting to a type checking slow path here (i.e. by
// calling InvokeRuntime directly), as it would require to
// assign fixed registers for the inputs of this HInstanceOf
// instruction (following the runtime calling convention), which
// might be cluttered by the potential first read barrier
// emission at the beginning of this method.
__ jmp(type_check_slow_path->GetEntryLabel());
break;
case TypeCheckKind::kInterfaceCheck: {
// Fast path for the interface check. Since we compare with a memory location in the inner
// loop we would need to have cls poisoned. However unpoisoning cls would reset the
// conditional flags and cause the conditional jump to be incorrect. Therefore we just jump
// to the slow path if we are running under poisoning.
if (!kPoisonHeapReferences) {
// Try to avoid read barriers to improve the fast path. We can not get false positives by
// doing this.
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
kWithoutReadBarrier);
// /* HeapReference<Class> */ temp = temp->iftable_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
temp_loc,
iftable_offset,
kWithoutReadBarrier);
// Iftable is never null.
__ movl(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset));
// Loop through the iftable and check if any class matches.
NearLabel start_loop;
__ Bind(&start_loop);
// Need to subtract first to handle the empty array case.
__ subl(maybe_temp2_loc.AsRegister<Register>(), Immediate(2));
__ j(kNegative, type_check_slow_path->GetEntryLabel());
// Go to next interface if the classes do not match.
__ cmpl(cls.AsRegister<Register>(),
CodeGeneratorX86::ArrayAddress(temp,
maybe_temp2_loc,
TIMES_4,
object_array_data_offset));
__ j(kNotEqual, &start_loop);
} else {
__ jmp(type_check_slow_path->GetEntryLabel());
}
break;
}
}
__ Bind(&done);
__ Bind(type_check_slow_path->GetExitLabel());
}
void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject
: kQuickUnlockObject,
instruction,
instruction->GetDexPc());
if (instruction->IsEnter()) {
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
} else {
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
}
}
void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
DCHECK(instruction->GetResultType() == Primitive::kPrimInt
|| instruction->GetResultType() == Primitive::kPrimLong);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::Any());
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
DCHECK(first.Equals(locations->Out()));
if (instruction->GetResultType() == Primitive::kPrimInt) {
if (second.IsRegister()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
}
} else if (second.IsConstant()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<Register>(),
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
}
} else {
if (instruction->IsAnd()) {
__ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
} else if (instruction->IsOr()) {
__ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
}
}
} else {
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
if (second.IsRegisterPair()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else if (instruction->IsOr()) {
__ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
__ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
}
} else if (second.IsDoubleStackSlot()) {
if (instruction->IsAnd()) {
__ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ andl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
} else if (instruction->IsOr()) {
__ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ orl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
} else {
DCHECK(instruction->IsXor());
__ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
__ xorl(first.AsRegisterPairHigh<Register>(),
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
}
} else {
DCHECK(second.IsConstant()) << second;
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
int32_t low_value = Low32Bits(value);
int32_t high_value = High32Bits(value);
Immediate low(low_value);
Immediate high(high_value);
Register first_low = first.AsRegisterPairLow<Register>();
Register first_high = first.AsRegisterPairHigh<Register>();
if (instruction->IsAnd()) {
if (low_value == 0) {
__ xorl(first_low, first_low);
} else if (low_value != -1) {
__ andl(first_low, low);
}
if (high_value == 0) {
__ xorl(first_high, first_high);
} else if (high_value != -1) {
__ andl(first_high, high);
}
} else if (instruction->IsOr()) {
if (low_value != 0) {
__ orl(first_low, low);
}
if (high_value != 0) {
__ orl(first_high, high);
}
} else {
DCHECK(instruction->IsXor());
if (low_value != 0) {
__ xorl(first_low, low);
}
if (high_value != 0) {
__ xorl(first_high, high);
}
}
}
}
}
void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(
HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
Register out_reg = out.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
CHECK(kEmitCompilerReadBarrier);
if (kUseBakerReadBarrier) {
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(
instruction, out, out_reg, offset, /* needs_null_check */ false);
} else {
// Load with slow path based read barrier.
// Save the value of `out` into `maybe_temp` before overwriting it
// in the following move operation, as we will need it for the
// read barrier below.
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
__ movl(maybe_temp.AsRegister<Register>(), out_reg);
// /* HeapReference<Object> */ out = *(out + offset)
__ movl(out_reg, Address(out_reg, offset));
codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
__ movl(out_reg, Address(out_reg, offset));
__ MaybeUnpoisonHeapReference(out_reg);
}
}
void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(
HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
ReadBarrierOption read_barrier_option) {
Register out_reg = out.AsRegister<Register>();
Register obj_reg = obj.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
CHECK(kEmitCompilerReadBarrier);
if (kUseBakerReadBarrier) {
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(
instruction, out, obj_reg, offset, /* needs_null_check */ false);
} else {
// Load with slow path based read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ movl(out_reg, Address(obj_reg, offset));
codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ movl(out_reg, Address(obj_reg, offset));
__ MaybeUnpoisonHeapReference(out_reg);
}
}
void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(
HInstruction* instruction,
Location root,
const Address& address,
Label* fixup_label,
ReadBarrierOption read_barrier_option) {
Register root_reg = root.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
DCHECK(kEmitCompilerReadBarrier);
if (kUseBakerReadBarrier) {
// Fast path implementation of art::ReadBarrier::BarrierForRoot when
// Baker's read barrier are used:
//
// root = obj.field;
// temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
// if (temp != null) {
// root = temp(root)
// }
// /* GcRoot<mirror::Object> */ root = *address
__ movl(root_reg, address);
if (fixup_label != nullptr) {
__ Bind(fixup_label);
}
static_assert(
sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
"art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
"have different sizes.");
static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::CompressedReference<mirror::Object> and int32_t "
"have different sizes.");
// Slow path marking the GC root `root`.
SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(
instruction, root, /* unpoison_ref_before_marking */ false);
codegen_->AddSlowPath(slow_path);
// Test the entrypoint (`Thread::Current()->pReadBarrierMarkReg ## root.reg()`).
const int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86PointerSize>(root.reg());
__ fs()->cmpl(Address::Absolute(entry_point_offset), Immediate(0));
// The entrypoint is null when the GC is not marking.
__ j(kNotEqual, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
} else {
// GC root loaded through a slow path for read barriers other
// than Baker's.
// /* GcRoot<mirror::Object>* */ root = address
__ leal(root_reg, address);
if (fixup_label != nullptr) {
__ Bind(fixup_label);
}
// /* mirror::Object* */ root = root->Read()
codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
}
} else {
// Plain GC root load with no read barrier.
// /* GcRoot<mirror::Object> */ root = *address
__ movl(root_reg, address);
if (fixup_label != nullptr) {
__ Bind(fixup_label);
}
// Note that GC roots are not affected by heap poisoning, thus we
// do not have to unpoison `root_reg` here.
}
}
void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
bool needs_null_check) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
// /* HeapReference<Object> */ ref = *(obj + offset)
Address src(obj, offset);
GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check);
}
void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t data_offset,
Location index,
bool needs_null_check) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
// /* HeapReference<Object> */ ref =
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
Address src = CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset);
GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check);
}
void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
const Address& src,
bool needs_null_check,
bool always_update_field,
Register* temp) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
// In slow path based read barriers, the read barrier call is
// inserted after the original load. However, in fast path based
// Baker's read barriers, we need to perform the load of
// mirror::Object::monitor_ *before* the original reference load.
// This load-load ordering is required by the read barrier.
// The fast path/slow path (for Baker's algorithm) should look like:
//
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<Object> ref = *src; // Original reference load.
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
// }
//
// Note: the original implementation in ReadBarrier::Barrier is
// slightly more complex as:
// - it implements the load-load fence using a data dependency on
// the high-bits of rb_state, which are expected to be all zeroes
// (we use CodeGeneratorX86::GenerateMemoryBarrier instead here,
// which is a no-op thanks to the x86 memory model);
// - it performs additional checks that we do not do here for
// performance reasons.
Register ref_reg = ref.AsRegister<Register>();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
// Given the numeric representation, it's enough to check the low bit of the rb_state.
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
// if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value));
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
// Load fence to prevent load-load reordering.
// Note that this is a no-op, thanks to the x86 memory model.
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
// The actual reference load.
// /* HeapReference<Object> */ ref = *src
__ movl(ref_reg, src); // Flags are unaffected.
// Note: Reference unpoisoning modifies the flags, so we need to delay it after the branch.
// Slow path marking the object `ref` when it is gray.
SlowPathCode* slow_path;
if (always_update_field) {
DCHECK(temp != nullptr);
slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathX86(
instruction, ref, obj, src, /* unpoison_ref_before_marking */ true, *temp);
} else {
slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(
instruction, ref, /* unpoison_ref_before_marking */ true);
}
AddSlowPath(slow_path);
// We have done the "if" of the gray bit check above, now branch based on the flags.
__ j(kNotZero, slow_path->GetEntryLabel());
// Object* ref = ref_addr->AsMirrorPtr()
__ MaybeUnpoisonHeapReference(ref_reg);
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
DCHECK(kEmitCompilerReadBarrier);
// Insert a slow path based read barrier *after* the reference load.
//
// If heap poisoning is enabled, the unpoisoning of the loaded
// reference will be carried out by the runtime within the slow
// path.
//
// Note that `ref` currently does not get unpoisoned (when heap
// poisoning is enabled), which is alright as the `ref` argument is
// not used by the artReadBarrierSlow entry point.
//
// TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
SlowPathCode* slow_path = new (GetGraph()->GetArena())
ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index);
AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
if (kEmitCompilerReadBarrier) {
// Baker's read barriers shall be handled by the fast path
// (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier).
DCHECK(!kUseBakerReadBarrier);
// If heap poisoning is enabled, unpoisoning will be taken care of
// by the runtime within the slow path.
GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
} else if (kPoisonHeapReferences) {
__ UnpoisonHeapReference(out.AsRegister<Register>());
}
}
void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction,
Location out,
Location root) {
DCHECK(kEmitCompilerReadBarrier);
// Insert a slow path based read barrier *after* the GC root load.
//
// Note that GC roots are not affected by heap poisoning, so we do
// not need to do anything special for this here.
SlowPathCode* slow_path =
new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root);
AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
// Simple implementation of packed switch - generate cascaded compare/jumps.
void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block) {
// Figure out the correct compare values and jump conditions.
// Handle the first compare/branch as a special case because it might
// jump to the default case.
DCHECK_GT(num_entries, 2u);
Condition first_condition;
uint32_t index;
const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
if (lower_bound != 0) {
first_condition = kLess;
__ cmpl(value_reg, Immediate(lower_bound));
__ j(first_condition, codegen_->GetLabelOf(default_block));
__ j(kEqual, codegen_->GetLabelOf(successors[0]));
index = 1;
} else {
// Handle all the compare/jumps below.
first_condition = kBelow;
index = 0;
}
// Handle the rest of the compare/jumps.
for (; index + 1 < num_entries; index += 2) {
int32_t compare_to_value = lower_bound + index + 1;
__ cmpl(value_reg, Immediate(compare_to_value));
// Jump to successors[index] if value < case_value[index].
__ j(first_condition, codegen_->GetLabelOf(successors[index]));
// Jump to successors[index + 1] if value == case_value[index + 1].
__ j(kEqual, codegen_->GetLabelOf(successors[index + 1]));
}
if (index != num_entries) {
// There are an odd number of entries. Handle the last one.
DCHECK_EQ(index + 1, num_entries);
__ cmpl(value_reg, Immediate(lower_bound + index));
__ j(kEqual, codegen_->GetLabelOf(successors[index]));
}
// And the default for any other value.
if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
__ jmp(codegen_->GetLabelOf(default_block));
}
}
void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
uint32_t num_entries = switch_instr->GetNumEntries();
LocationSummary* locations = switch_instr->GetLocations();
Register value_reg = locations->InAt(0).AsRegister<Register>();
GenPackedSwitchWithCompares(value_reg,
lower_bound,
num_entries,
switch_instr->GetBlock(),
switch_instr->GetDefaultBlock());
}
void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
// Constant area pointer.
locations->SetInAt(1, Location::RequiresRegister());
// And the temporary we need.
locations->AddTemp(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
uint32_t num_entries = switch_instr->GetNumEntries();
LocationSummary* locations = switch_instr->GetLocations();
Register value_reg = locations->InAt(0).AsRegister<Register>();
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
if (num_entries <= kPackedSwitchJumpTableThreshold) {
GenPackedSwitchWithCompares(value_reg,
lower_bound,
num_entries,
switch_instr->GetBlock(),
default_block);
return;
}
// Optimizing has a jump area.
Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
Register constant_area = locations->InAt(1).AsRegister<Register>();
// Remove the bias, if needed.
if (lower_bound != 0) {
__ leal(temp_reg, Address(value_reg, -lower_bound));
value_reg = temp_reg;
}
// Is the value in range?
DCHECK_GE(num_entries, 1u);
__ cmpl(value_reg, Immediate(num_entries - 1));
__ j(kAbove, codegen_->GetLabelOf(default_block));
// We are in the range of the table.
// Load (target-constant_area) from the jump table, indexing by the value.
__ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg));
// Compute the actual target address by adding in constant_area.
__ addl(temp_reg, constant_area);
// And jump.
__ jmp(temp_reg);
}
void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress(
HX86ComputeBaseMethodAddress* insn) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress(
HX86ComputeBaseMethodAddress* insn) {
LocationSummary* locations = insn->GetLocations();
Register reg = locations->Out().AsRegister<Register>();
// Generate call to next instruction.
Label next_instruction;
__ call(&next_instruction);
__ Bind(&next_instruction);
// Remember this offset for later use with constant area.
codegen_->AddMethodAddressOffset(insn, GetAssembler()->CodeSize());
// Grab the return address off the stack.
__ popl(reg);
}
void LocationsBuilderX86::VisitX86LoadFromConstantTable(
HX86LoadFromConstantTable* insn) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant()));
// If we don't need to be materialized, we only need the inputs to be set.
if (insn->IsEmittedAtUseSite()) {
return;
}
switch (insn->GetType()) {
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimInt:
locations->SetOut(Location::RequiresRegister());
break;
default:
LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
}
}
void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) {
if (insn->IsEmittedAtUseSite()) {
return;
}
LocationSummary* locations = insn->GetLocations();
Location out = locations->Out();
Register const_area = locations->InAt(0).AsRegister<Register>();
HConstant *value = insn->GetConstant();
switch (insn->GetType()) {
case Primitive::kPrimFloat:
__ movss(out.AsFpuRegister<XmmRegister>(),
codegen_->LiteralFloatAddress(
value->AsFloatConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
break;
case Primitive::kPrimDouble:
__ movsd(out.AsFpuRegister<XmmRegister>(),
codegen_->LiteralDoubleAddress(
value->AsDoubleConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
break;
case Primitive::kPrimInt:
__ movl(out.AsRegister<Register>(),
codegen_->LiteralInt32Address(
value->AsIntConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
break;
default:
LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
}
}
/**
* Class to handle late fixup of offsets into constant area.
*/
class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> {
public:
RIPFixup(CodeGeneratorX86& codegen,
HX86ComputeBaseMethodAddress* base_method_address,
size_t offset)
: codegen_(&codegen),
base_method_address_(base_method_address),
offset_into_constant_area_(offset) {}
protected:
void SetOffset(size_t offset) { offset_into_constant_area_ = offset; }
CodeGeneratorX86* codegen_;
HX86ComputeBaseMethodAddress* base_method_address_;
private:
void Process(const MemoryRegion& region, int pos) OVERRIDE {
// Patch the correct offset for the instruction. The place to patch is the
// last 4 bytes of the instruction.
// The value to patch is the distance from the offset in the constant area
// from the address computed by the HX86ComputeBaseMethodAddress instruction.
int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_;
int32_t relative_position =
constant_offset - codegen_->GetMethodAddressOffset(base_method_address_);
// Patch in the right value.
region.StoreUnaligned<int32_t>(pos - 4, relative_position);
}
// Location in constant area that the fixup refers to.
int32_t offset_into_constant_area_;
};
/**
* Class to handle late fixup of offsets to a jump table that will be created in the
* constant area.
*/
class JumpTableRIPFixup : public RIPFixup {
public:
JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr)
: RIPFixup(codegen, switch_instr->GetBaseMethodAddress(), static_cast<size_t>(-1)),
switch_instr_(switch_instr) {}
void CreateJumpTable() {
X86Assembler* assembler = codegen_->GetAssembler();
// Ensure that the reference to the jump table has the correct offset.
const int32_t offset_in_constant_table = assembler->ConstantAreaSize();
SetOffset(offset_in_constant_table);
// The label values in the jump table are computed relative to the
// instruction addressing the constant area.
const int32_t relative_offset = codegen_->GetMethodAddressOffset(base_method_address_);
// Populate the jump table with the correct values for the jump table.
int32_t num_entries = switch_instr_->GetNumEntries();
HBasicBlock* block = switch_instr_->GetBlock();
const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors();
// The value that we want is the target offset - the position of the table.
for (int32_t i = 0; i < num_entries; i++) {
HBasicBlock* b = successors[i];
Label* l = codegen_->GetLabelOf(b);
DCHECK(l->IsBound());
int32_t offset_to_block = l->Position() - relative_offset;
assembler->AppendInt32(offset_to_block);
}
}
private:
const HX86PackedSwitch* switch_instr_;
};
void CodeGeneratorX86::Finalize(CodeAllocator* allocator) {
// Generate the constant area if needed.
X86Assembler* assembler = GetAssembler();
if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) {
// Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8
// byte values.
assembler->Align(4, 0);
constant_area_start_ = assembler->CodeSize();
// Populate any jump tables.
for (JumpTableRIPFixup* jump_table : fixups_to_jump_tables_) {
jump_table->CreateJumpTable();
}
// And now add the constant area to the generated code.
assembler->AddConstantArea();
}
// And finish up.
CodeGenerator::Finalize(allocator);
}
Address CodeGeneratorX86::LiteralDoubleAddress(double v,
HX86ComputeBaseMethodAddress* method_base,
Register reg) {
AssemblerFixup* fixup =
new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddDouble(v));
return Address(reg, kDummy32BitOffset, fixup);
}
Address CodeGeneratorX86::LiteralFloatAddress(float v,
HX86ComputeBaseMethodAddress* method_base,
Register reg) {
AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddFloat(v));
return Address(reg, kDummy32BitOffset, fixup);
}
Address CodeGeneratorX86::LiteralInt32Address(int32_t v,
HX86ComputeBaseMethodAddress* method_base,
Register reg) {
AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddInt32(v));
return Address(reg, kDummy32BitOffset, fixup);
}
Address CodeGeneratorX86::LiteralInt64Address(int64_t v,
HX86ComputeBaseMethodAddress* method_base,
Register reg) {
AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddInt64(v));
return Address(reg, kDummy32BitOffset, fixup);
}
void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) {
if (value == 0) {
__ xorl(dest, dest);
} else {
__ movl(dest, Immediate(value));
}
}
void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) {
if (value == 0) {
__ testl(dest, dest);
} else {
__ cmpl(dest, Immediate(value));
}
}
void CodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) {
Register lhs_reg = lhs.AsRegister<Register>();
GenerateIntCompare(lhs_reg, rhs);
}
void CodeGeneratorX86::GenerateIntCompare(Register lhs, Location rhs) {
if (rhs.IsConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
Compare32BitValue(lhs, value);
} else if (rhs.IsStackSlot()) {
__ cmpl(lhs, Address(ESP, rhs.GetStackIndex()));
} else {
__ cmpl(lhs, rhs.AsRegister<Register>());
}
}
Address CodeGeneratorX86::ArrayAddress(Register obj,
Location index,
ScaleFactor scale,
uint32_t data_offset) {
return index.IsConstant() ?
Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << scale) + data_offset) :
Address(obj, index.AsRegister<Register>(), scale, data_offset);
}
Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr,
Register reg,
Register value) {
// Create a fixup to be used to create and address the jump table.
JumpTableRIPFixup* table_fixup =
new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr);
// We have to populate the jump tables.
fixups_to_jump_tables_.push_back(table_fixup);
// We want a scaled address, as we are extracting the correct offset from the table.
return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup);
}
// TODO: target as memory.
void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) {
if (!target.IsValid()) {
DCHECK_EQ(type, Primitive::kPrimVoid);
return;
}
DCHECK_NE(type, Primitive::kPrimVoid);
Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type);
if (target.Equals(return_loc)) {
return;
}
// TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
// with the else branch.
if (type == Primitive::kPrimLong) {
HParallelMove parallel_move(GetGraph()->GetArena());
parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr);
parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr);
GetMoveResolver()->EmitNativeCode(&parallel_move);
} else {
// Let the parallel move resolver take care of all of this.
HParallelMove parallel_move(GetGraph()->GetArena());
parallel_move.AddMove(return_loc, target, type, nullptr);
GetMoveResolver()->EmitNativeCode(&parallel_move);
}
}
void CodeGeneratorX86::PatchJitRootUse(uint8_t* code,
const uint8_t* roots_data,
const PatchInfo<Label>& info,
uint64_t index_in_table) const {
uint32_t code_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
uintptr_t address =
reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
typedef __attribute__((__aligned__(1))) uint32_t unaligned_uint32_t;
reinterpret_cast<unaligned_uint32_t*>(code + code_offset)[0] =
dchecked_integral_cast<uint32_t>(address);
}
void CodeGeneratorX86::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
for (const PatchInfo<Label>& info : jit_string_patches_) {
const auto it = jit_string_roots_.find(
StringReference(&info.dex_file, dex::StringIndex(info.index)));
DCHECK(it != jit_string_roots_.end());
uint64_t index_in_table = it->second;
PatchJitRootUse(code, roots_data, info, index_in_table);
}
for (const PatchInfo<Label>& info : jit_class_patches_) {
const auto it = jit_class_roots_.find(
TypeReference(&info.dex_file, dex::TypeIndex(info.index)));
DCHECK(it != jit_class_roots_.end());
uint64_t index_in_table = it->second;
PatchJitRootUse(code, roots_data, info, index_in_table);
}
}
#undef __
} // namespace x86
} // namespace art