blob: 623ac3280e487f794e960da0b26c5b998af25279 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include "base/memory_tool.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_set>
#include <vector>
#if defined(__linux__) && defined(__arm__)
#include <sys/personality.h>
#include <sys/utsname.h>
#endif
#include "arch/instruction_set_features.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "art_method-inl.h"
#include "base/dumpable.h"
#include "base/macros.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/stringpiece.h"
#include "base/time_utils.h"
#include "base/timing_logger.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "compiler.h"
#include "compiler_callbacks.h"
#include "debug/method_debug_info.h"
#include "dex/pass_manager.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/quick_compiler_callbacks.h"
#include "dex/verification_results.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "elf_file.h"
#include "elf_writer.h"
#include "elf_writer_quick.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "image_writer.h"
#include "interpreter/unstarted_runtime.h"
#include "jit/offline_profiling_info.h"
#include "leb128.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat_writer.h"
#include "os.h"
#include "runtime.h"
#include "runtime_options.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "utils.h"
#include "well_known_classes.h"
#include "zip_archive.h"
namespace art {
static int original_argc;
static char** original_argv;
static std::string CommandLine() {
std::vector<std::string> command;
for (int i = 0; i < original_argc; ++i) {
command.push_back(original_argv[i]);
}
return Join(command, ' ');
}
// A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be
// even more aggressive. There won't be much reasonable data here for us in that case anyways (the
// locations are all staged).
static std::string StrippedCommandLine() {
std::vector<std::string> command;
// Do a pre-pass to look for zip-fd.
bool saw_zip_fd = false;
for (int i = 0; i < original_argc; ++i) {
if (StartsWith(original_argv[i], "--zip-fd=")) {
saw_zip_fd = true;
break;
}
}
// Now filter out things.
for (int i = 0; i < original_argc; ++i) {
// All runtime-arg parameters are dropped.
if (strcmp(original_argv[i], "--runtime-arg") == 0) {
i++; // Drop the next part, too.
continue;
}
// Any instruction-setXXX is dropped.
if (StartsWith(original_argv[i], "--instruction-set")) {
continue;
}
// The boot image is dropped.
if (StartsWith(original_argv[i], "--boot-image=")) {
continue;
}
// The image format is dropped.
if (StartsWith(original_argv[i], "--image-format=")) {
continue;
}
// This should leave any dex-file and oat-file options, describing what we compiled.
// However, we prefer to drop this when we saw --zip-fd.
if (saw_zip_fd) {
// Drop anything --zip-X, --dex-X, --oat-X, --swap-X, or --app-image-X
if (StartsWith(original_argv[i], "--zip-") ||
StartsWith(original_argv[i], "--dex-") ||
StartsWith(original_argv[i], "--oat-") ||
StartsWith(original_argv[i], "--swap-") ||
StartsWith(original_argv[i], "--app-image-")) {
continue;
}
}
command.push_back(original_argv[i]);
}
// Construct the final output.
if (command.size() <= 1U) {
// It seems only "/system/bin/dex2oat" is left, or not even that. Use a pretty line.
return "Starting dex2oat.";
}
return Join(command, ' ');
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: dex2oat [options]...");
UsageError("");
UsageError(" -j<number>: specifies the number of threads used for compilation.");
UsageError(" Default is the number of detected hardware threads available on the");
UsageError(" host system.");
UsageError(" Example: -j12");
UsageError("");
UsageError(" --dex-file=<dex-file>: specifies a .dex, .jar, or .apk file to compile.");
UsageError(" Example: --dex-file=/system/framework/core.jar");
UsageError("");
UsageError(" --dex-location=<dex-location>: specifies an alternative dex location to");
UsageError(" encode in the oat file for the corresponding --dex-file argument.");
UsageError(" Example: --dex-file=/home/build/out/system/framework/core.jar");
UsageError(" --dex-location=/system/framework/core.jar");
UsageError("");
UsageError(" --zip-fd=<file-descriptor>: specifies a file descriptor of a zip file");
UsageError(" containing a classes.dex file to compile.");
UsageError(" Example: --zip-fd=5");
UsageError("");
UsageError(" --zip-location=<zip-location>: specifies a symbolic name for the file");
UsageError(" corresponding to the file descriptor specified by --zip-fd.");
UsageError(" Example: --zip-location=/system/app/Calculator.apk");
UsageError("");
UsageError(" --oat-file=<file.oat>: specifies an oat output destination via a filename.");
UsageError(" Example: --oat-file=/system/framework/boot.oat");
UsageError("");
UsageError(" --oat-fd=<number>: specifies the oat output destination via a file descriptor.");
UsageError(" Example: --oat-fd=6");
UsageError("");
UsageError(" --oat-location=<oat-name>: specifies a symbolic name for the file corresponding");
UsageError(" to the file descriptor specified by --oat-fd.");
UsageError(" Example: --oat-location=/data/dalvik-cache/system@app@Calculator.apk.oat");
UsageError("");
UsageError(" --oat-symbols=<file.oat>: specifies an oat output destination with full symbols.");
UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat");
UsageError("");
UsageError(" --image=<file.art>: specifies an output image filename.");
UsageError(" Example: --image=/system/framework/boot.art");
UsageError("");
UsageError(" --image-format=(uncompressed|lz4|lz4hc):");
UsageError(" Which format to store the image.");
UsageError(" Example: --image-format=lz4");
UsageError(" Default: uncompressed");
UsageError("");
UsageError(" --image-classes=<classname-file>: specifies classes to include in an image.");
UsageError(" Example: --image=frameworks/base/preloaded-classes");
UsageError("");
UsageError(" --base=<hex-address>: specifies the base address when creating a boot image.");
UsageError(" Example: --base=0x50000000");
UsageError("");
UsageError(" --boot-image=<file.art>: provide the image file for the boot class path.");
UsageError(" Do not include the arch as part of the name, it is added automatically.");
UsageError(" Example: --boot-image=/system/framework/boot.art");
UsageError(" (specifies /system/framework/<arch>/boot.art as the image file)");
UsageError(" Default: $ANDROID_ROOT/system/framework/boot.art");
UsageError("");
UsageError(" --android-root=<path>: used to locate libraries for portable linking.");
UsageError(" Example: --android-root=out/host/linux-x86");
UsageError(" Default: $ANDROID_ROOT");
UsageError("");
UsageError(" --instruction-set=(arm|arm64|mips|mips64|x86|x86_64): compile for a particular");
UsageError(" instruction set.");
UsageError(" Example: --instruction-set=x86");
UsageError(" Default: arm");
UsageError("");
UsageError(" --instruction-set-features=...,: Specify instruction set features");
UsageError(" Example: --instruction-set-features=div");
UsageError(" Default: default");
UsageError("");
UsageError(" --compile-pic: Force indirect use of code, methods, and classes");
UsageError(" Default: disabled");
UsageError("");
UsageError(" --compiler-backend=(Quick|Optimizing): select compiler backend");
UsageError(" set.");
UsageError(" Example: --compiler-backend=Optimizing");
UsageError(" Default: Optimizing");
UsageError("");
UsageError(" --compiler-filter="
"(verify-none"
"|interpret-only"
"|space"
"|balanced"
"|speed"
"|everything"
"|time):");
UsageError(" select compiler filter.");
UsageError(" Example: --compiler-filter=everything");
UsageError(" Default: speed");
UsageError("");
UsageError(" --huge-method-max=<method-instruction-count>: threshold size for a huge");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold);
UsageError("");
UsageError(" --large-method-max=<method-instruction-count>: threshold size for a large");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --large-method-max=%d", CompilerOptions::kDefaultLargeMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultLargeMethodThreshold);
UsageError("");
UsageError(" --small-method-max=<method-instruction-count>: threshold size for a small");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --small-method-max=%d", CompilerOptions::kDefaultSmallMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultSmallMethodThreshold);
UsageError("");
UsageError(" --tiny-method-max=<method-instruction-count>: threshold size for a tiny");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --tiny-method-max=%d", CompilerOptions::kDefaultTinyMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultTinyMethodThreshold);
UsageError("");
UsageError(" --num-dex-methods=<method-count>: threshold size for a small dex file for");
UsageError(" compiler filter tuning. If the input has fewer than this many methods");
UsageError(" and the filter is not interpret-only or verify-none, overrides the");
UsageError(" filter to use speed");
UsageError(" Example: --num-dex-method=%d", CompilerOptions::kDefaultNumDexMethodsThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultNumDexMethodsThreshold);
UsageError("");
UsageError(" --inline-depth-limit=<depth-limit>: the depth limit of inlining for fine tuning");
UsageError(" the compiler. A zero value will disable inlining. Honored only by Optimizing.");
UsageError(" Has priority over the --compiler-filter option. Intended for ");
UsageError(" development/experimental use.");
UsageError(" Example: --inline-depth-limit=%d", CompilerOptions::kDefaultInlineDepthLimit);
UsageError(" Default: %d", CompilerOptions::kDefaultInlineDepthLimit);
UsageError("");
UsageError(" --inline-max-code-units=<code-units-count>: the maximum code units that a method");
UsageError(" can have to be considered for inlining. A zero value will disable inlining.");
UsageError(" Honored only by Optimizing. Has priority over the --compiler-filter option.");
UsageError(" Intended for development/experimental use.");
UsageError(" Example: --inline-max-code-units=%d",
CompilerOptions::kDefaultInlineMaxCodeUnits);
UsageError(" Default: %d", CompilerOptions::kDefaultInlineMaxCodeUnits);
UsageError("");
UsageError(" --dump-timing: display a breakdown of where time was spent");
UsageError("");
UsageError(" --include-patch-information: Include patching information so the generated code");
UsageError(" can have its base address moved without full recompilation.");
UsageError("");
UsageError(" --no-include-patch-information: Do not include patching information.");
UsageError("");
UsageError(" -g");
UsageError(" --generate-debug-info: Generate debug information for native debugging,");
UsageError(" such as stack unwinding information, ELF symbols and DWARF sections.");
UsageError(" If used without --native-debuggable, it will be best-effort only.");
UsageError(" This option does not affect the generated code. (disabled by default)");
UsageError("");
UsageError(" --no-generate-debug-info: Do not generate debug information for native debugging.");
UsageError("");
UsageError(" --generate-mini-debug-info: Generate minimal amount of LZMA-compressed");
UsageError(" debug information necessary to print backtraces. (disabled by default)");
UsageError("");
UsageError(" --no-generate-mini-debug-info: Do do generated backtrace info.");
UsageError("");
UsageError(" --debuggable: Produce code debuggable with Java debugger.");
UsageError("");
UsageError(" --native-debuggable: Produce code debuggable with native debugger (like LLDB).");
UsageError(" Implies --debuggable.");
UsageError("");
UsageError(" --runtime-arg <argument>: used to specify various arguments for the runtime,");
UsageError(" such as initial heap size, maximum heap size, and verbose output.");
UsageError(" Use a separate --runtime-arg switch for each argument.");
UsageError(" Example: --runtime-arg -Xms256m");
UsageError("");
UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation.");
UsageError("");
UsageError(" --profile-file-fd=<number>: same as --profile-file but accepts a file descriptor.");
UsageError(" Cannot be used together with --profile-file.");
UsageError("");
UsageError(" --print-pass-names: print a list of pass names");
UsageError("");
UsageError(" --disable-passes=<pass-names>: disable one or more passes separated by comma.");
UsageError(" Example: --disable-passes=UseCount,BBOptimizations");
UsageError("");
UsageError(" --print-pass-options: print a list of passes that have configurable options along "
"with the setting.");
UsageError(" Will print default if no overridden setting exists.");
UsageError("");
UsageError(" --pass-options=Pass1Name:Pass1OptionName:Pass1Option#,"
"Pass2Name:Pass2OptionName:Pass2Option#");
UsageError(" Used to specify a pass specific option. The setting itself must be integer.");
UsageError(" Separator used between options is a comma.");
UsageError("");
UsageError(" --swap-file=<file-name>: specifies a file to use for swap.");
UsageError(" Example: --swap-file=/data/tmp/swap.001");
UsageError("");
UsageError(" --swap-fd=<file-descriptor>: specifies a file to use for swap (by descriptor).");
UsageError(" Example: --swap-fd=10");
UsageError("");
UsageError(" --app-image-fd=<file-descriptor>: specify output file descriptor for app image.");
UsageError(" Example: --app-image-fd=10");
UsageError("");
UsageError(" --app-image-file=<file-name>: specify a file name for app image.");
UsageError(" Example: --app-image-file=/data/dalvik-cache/system@app@Calculator.apk.art");
UsageError("");
UsageError(" --multi-image: specify that separate oat and image files be generated for each "
"input dex file.");
UsageError("");
UsageError(" --force-determinism: force the compiler to emit a deterministic output.");
UsageError(" This option is incompatible with read barriers (e.g., if dex2oat has been");
UsageError(" built with the environment variable `ART_USE_READ_BARRIER` set to `true`).");
UsageError("");
std::cerr << "See log for usage error information\n";
exit(EXIT_FAILURE);
}
// The primary goal of the watchdog is to prevent stuck build servers
// during development when fatal aborts lead to a cascade of failures
// that result in a deadlock.
class WatchDog {
// WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks
#undef CHECK_PTHREAD_CALL
#define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \
do { \
int rc = call args; \
if (rc != 0) { \
errno = rc; \
std::string message(# call); \
message += " failed for "; \
message += reason; \
Fatal(message); \
} \
} while (false)
public:
explicit WatchDog(bool is_watch_dog_enabled) {
is_watch_dog_enabled_ = is_watch_dog_enabled;
if (!is_watch_dog_enabled_) {
return;
}
shutting_down_ = false;
const char* reason = "dex2oat watch dog thread startup";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason);
}
~WatchDog() {
if (!is_watch_dog_enabled_) {
return;
}
const char* reason = "dex2oat watch dog thread shutdown";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
shutting_down_ = true;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason);
}
private:
static void* CallBack(void* arg) {
WatchDog* self = reinterpret_cast<WatchDog*>(arg);
::art::SetThreadName("dex2oat watch dog");
self->Wait();
return nullptr;
}
NO_RETURN static void Fatal(const std::string& message) {
// TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However,
// it's rather easy to hang in unwinding.
// LogLine also avoids ART logging lock issues, as it's really only a wrapper around
// logcat logging or stderr output.
LogMessage::LogLine(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str());
exit(1);
}
void Wait() {
// TODO: tune the multiplier for GC verification, the following is just to make the timeout
// large.
constexpr int64_t multiplier = kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1;
timespec timeout_ts;
InitTimeSpec(true, CLOCK_REALTIME, multiplier * kWatchDogTimeoutSeconds * 1000, 0, &timeout_ts);
const char* reason = "dex2oat watch dog thread waiting";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
while (!shutting_down_) {
int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts));
if (rc == ETIMEDOUT) {
Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " seconds",
kWatchDogTimeoutSeconds));
} else if (rc != 0) {
std::string message(StringPrintf("pthread_cond_timedwait failed: %s",
strerror(errno)));
Fatal(message.c_str());
}
}
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
}
// When setting timeouts, keep in mind that the build server may not be as fast as your desktop.
// Debug builds are slower so they have larger timeouts.
static constexpr int64_t kSlowdownFactor = kIsDebugBuild ? 5U : 1U;
// 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager
// watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort
// itself before that watchdog would take down the system server.
static constexpr int64_t kWatchDogTimeoutSeconds = kSlowdownFactor * (9 * 60 + 30);
bool is_watch_dog_enabled_;
bool shutting_down_;
// TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases.
pthread_mutex_t mutex_;
pthread_cond_t cond_;
pthread_attr_t attr_;
pthread_t pthread_;
};
static constexpr size_t kMinDexFilesForSwap = 2;
static constexpr size_t kMinDexFileCumulativeSizeForSwap = 20 * MB;
static bool UseSwap(bool is_image, std::vector<const DexFile*>& dex_files) {
if (is_image) {
// Don't use swap, we know generation should succeed, and we don't want to slow it down.
return false;
}
if (dex_files.size() < kMinDexFilesForSwap) {
// If there are less dex files than the threshold, assume it's gonna be fine.
return false;
}
size_t dex_files_size = 0;
for (const auto* dex_file : dex_files) {
dex_files_size += dex_file->GetHeader().file_size_;
}
return dex_files_size >= kMinDexFileCumulativeSizeForSwap;
}
class Dex2Oat FINAL {
public:
explicit Dex2Oat(TimingLogger* timings) :
compiler_kind_(Compiler::kOptimizing),
instruction_set_(kRuntimeISA),
// Take the default set of instruction features from the build.
image_file_location_oat_checksum_(0),
image_file_location_oat_data_begin_(0),
image_patch_delta_(0),
key_value_store_(nullptr),
verification_results_(nullptr),
method_inliner_map_(),
runtime_(nullptr),
thread_count_(sysconf(_SC_NPROCESSORS_CONF)),
start_ns_(NanoTime()),
oat_fd_(-1),
zip_fd_(-1),
image_base_(0U),
image_classes_zip_filename_(nullptr),
image_classes_filename_(nullptr),
image_storage_mode_(ImageHeader::kStorageModeUncompressed),
compiled_classes_zip_filename_(nullptr),
compiled_classes_filename_(nullptr),
compiled_methods_zip_filename_(nullptr),
compiled_methods_filename_(nullptr),
app_image_(false),
boot_image_(false),
multi_image_(false),
is_host_(false),
class_loader_(nullptr),
elf_writers_(),
oat_writers_(),
rodata_(),
image_writer_(nullptr),
driver_(nullptr),
opened_dex_files_maps_(),
opened_dex_files_(),
no_inline_from_dex_files_(),
dump_stats_(false),
dump_passes_(false),
dump_timing_(false),
dump_slow_timing_(kIsDebugBuild),
swap_fd_(kInvalidFd),
app_image_fd_(kInvalidFd),
profile_file_fd_(kInvalidFd),
timings_(timings),
force_determinism_(false)
{}
~Dex2Oat() {
// Log completion time before deleting the runtime_, because this accesses
// the runtime.
LogCompletionTime();
if (!kIsDebugBuild && !(RUNNING_ON_MEMORY_TOOL && kMemoryToolDetectsLeaks)) {
// We want to just exit on non-debug builds, not bringing the runtime down
// in an orderly fashion. So release the following fields.
driver_.release();
image_writer_.release();
for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files_) {
dex_file.release();
}
for (std::unique_ptr<MemMap>& map : opened_dex_files_maps_) {
map.release();
}
for (std::unique_ptr<File>& oat_file : oat_files_) {
oat_file.release();
}
runtime_.release();
verification_results_.release();
key_value_store_.release();
}
}
struct ParserOptions {
std::vector<const char*> oat_symbols;
std::string boot_image_filename;
bool watch_dog_enabled = true;
bool requested_specific_compiler = false;
std::string error_msg;
};
void ParseZipFd(const StringPiece& option) {
ParseUintOption(option, "--zip-fd", &zip_fd_, Usage);
}
void ParseOatFd(const StringPiece& option) {
ParseUintOption(option, "--oat-fd", &oat_fd_, Usage);
}
void ParseFdForCollection(const StringPiece& option,
const char* arg_name,
std::vector<uint32_t>* fds) {
uint32_t fd;
ParseUintOption(option, arg_name, &fd, Usage);
fds->push_back(fd);
}
void ParseJ(const StringPiece& option) {
ParseUintOption(option, "-j", &thread_count_, Usage, /* is_long_option */ false);
}
void ParseBase(const StringPiece& option) {
DCHECK(option.starts_with("--base="));
const char* image_base_str = option.substr(strlen("--base=")).data();
char* end;
image_base_ = strtoul(image_base_str, &end, 16);
if (end == image_base_str || *end != '\0') {
Usage("Failed to parse hexadecimal value for option %s", option.data());
}
}
void ParseInstructionSet(const StringPiece& option) {
DCHECK(option.starts_with("--instruction-set="));
StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data();
// StringPiece is not necessarily zero-terminated, so need to make a copy and ensure it.
std::unique_ptr<char[]> buf(new char[instruction_set_str.length() + 1]);
strncpy(buf.get(), instruction_set_str.data(), instruction_set_str.length());
buf.get()[instruction_set_str.length()] = 0;
instruction_set_ = GetInstructionSetFromString(buf.get());
// arm actually means thumb2.
if (instruction_set_ == InstructionSet::kArm) {
instruction_set_ = InstructionSet::kThumb2;
}
}
void ParseInstructionSetVariant(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--instruction-set-variant="));
StringPiece str = option.substr(strlen("--instruction-set-variant=")).data();
instruction_set_features_.reset(
InstructionSetFeatures::FromVariant(
instruction_set_, str.as_string(), &parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("%s", parser_options->error_msg.c_str());
}
}
void ParseInstructionSetFeatures(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--instruction-set-features="));
StringPiece str = option.substr(strlen("--instruction-set-features=")).data();
if (instruction_set_features_.get() == nullptr) {
instruction_set_features_.reset(
InstructionSetFeatures::FromVariant(
instruction_set_, "default", &parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
instruction_set_features_.reset(
instruction_set_features_->AddFeaturesFromString(str.as_string(),
&parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("Error parsing '%s': %s", option.data(), parser_options->error_msg.c_str());
}
}
void ParseCompilerBackend(const StringPiece& option, ParserOptions* parser_options) {
DCHECK(option.starts_with("--compiler-backend="));
parser_options->requested_specific_compiler = true;
StringPiece backend_str = option.substr(strlen("--compiler-backend=")).data();
if (backend_str == "Quick") {
compiler_kind_ = Compiler::kQuick;
} else if (backend_str == "Optimizing") {
compiler_kind_ = Compiler::kOptimizing;
} else {
Usage("Unknown compiler backend: %s", backend_str.data());
}
}
void ParseImageFormat(const StringPiece& option) {
const StringPiece substr("--image-format=");
DCHECK(option.starts_with(substr));
const StringPiece format_str = option.substr(substr.length());
if (format_str == "lz4") {
image_storage_mode_ = ImageHeader::kStorageModeLZ4;
} else if (format_str == "lz4hc") {
image_storage_mode_ = ImageHeader::kStorageModeLZ4HC;
} else if (format_str == "uncompressed") {
image_storage_mode_ = ImageHeader::kStorageModeUncompressed;
} else {
Usage("Unknown image format: %s", format_str.data());
}
}
void ProcessOptions(ParserOptions* parser_options) {
boot_image_ = !image_filenames_.empty();
app_image_ = app_image_fd_ != -1 || !app_image_file_name_.empty();
if (IsAppImage() && IsBootImage()) {
Usage("Can't have both --image and (--app-image-fd or --app-image-file)");
}
if (IsBootImage()) {
// We need the boot image to always be debuggable.
compiler_options_->debuggable_ = true;
}
if (oat_filenames_.empty() && oat_fd_ == -1) {
Usage("Output must be supplied with either --oat-file or --oat-fd");
}
if (!oat_filenames_.empty() && oat_fd_ != -1) {
Usage("--oat-file should not be used with --oat-fd");
}
if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) {
Usage("--oat-symbols should not be used with --oat-fd");
}
if (!parser_options->oat_symbols.empty() && is_host_) {
Usage("--oat-symbols should not be used with --host");
}
if (oat_fd_ != -1 && !image_filenames_.empty()) {
Usage("--oat-fd should not be used with --image");
}
if (!parser_options->oat_symbols.empty() &&
parser_options->oat_symbols.size() != oat_filenames_.size()) {
Usage("--oat-file arguments do not match --oat-symbols arguments");
}
if (!image_filenames_.empty() && image_filenames_.size() != oat_filenames_.size()) {
Usage("--oat-file arguments do not match --image arguments");
}
if (android_root_.empty()) {
const char* android_root_env_var = getenv("ANDROID_ROOT");
if (android_root_env_var == nullptr) {
Usage("--android-root unspecified and ANDROID_ROOT not set");
}
android_root_ += android_root_env_var;
}
if (!boot_image_ && parser_options->boot_image_filename.empty()) {
parser_options->boot_image_filename += android_root_;
parser_options->boot_image_filename += "/framework/boot.art";
}
if (!parser_options->boot_image_filename.empty()) {
boot_image_filename_ = parser_options->boot_image_filename;
}
if (image_classes_filename_ != nullptr && !IsBootImage()) {
Usage("--image-classes should only be used with --image");
}
if (image_classes_filename_ != nullptr && !boot_image_filename_.empty()) {
Usage("--image-classes should not be used with --boot-image");
}
if (image_classes_zip_filename_ != nullptr && image_classes_filename_ == nullptr) {
Usage("--image-classes-zip should be used with --image-classes");
}
if (compiled_classes_filename_ != nullptr && !IsBootImage()) {
Usage("--compiled-classes should only be used with --image");
}
if (compiled_classes_filename_ != nullptr && !boot_image_filename_.empty()) {
Usage("--compiled-classes should not be used with --boot-image");
}
if (compiled_classes_zip_filename_ != nullptr && compiled_classes_filename_ == nullptr) {
Usage("--compiled-classes-zip should be used with --compiled-classes");
}
if (dex_filenames_.empty() && zip_fd_ == -1) {
Usage("Input must be supplied with either --dex-file or --zip-fd");
}
if (!dex_filenames_.empty() && zip_fd_ != -1) {
Usage("--dex-file should not be used with --zip-fd");
}
if (!dex_filenames_.empty() && !zip_location_.empty()) {
Usage("--dex-file should not be used with --zip-location");
}
if (dex_locations_.empty()) {
for (const char* dex_file_name : dex_filenames_) {
dex_locations_.push_back(dex_file_name);
}
} else if (dex_locations_.size() != dex_filenames_.size()) {
Usage("--dex-location arguments do not match --dex-file arguments");
}
if (!dex_filenames_.empty() && !oat_filenames_.empty()) {
if (oat_filenames_.size() != 1 && oat_filenames_.size() != dex_filenames_.size()) {
Usage("--oat-file arguments must be singular or match --dex-file arguments");
}
}
if (zip_fd_ != -1 && zip_location_.empty()) {
Usage("--zip-location should be supplied with --zip-fd");
}
if (boot_image_filename_.empty()) {
if (image_base_ == 0) {
Usage("Non-zero --base not specified");
}
}
if (!profile_file_.empty() && (profile_file_fd_ != kInvalidFd)) {
Usage("Profile file should not be specified with both --profile-file-fd and --profile-file");
}
if (!parser_options->oat_symbols.empty()) {
oat_unstripped_ = std::move(parser_options->oat_symbols);
}
// If no instruction set feature was given, use the default one for the target
// instruction set.
if (instruction_set_features_.get() == nullptr) {
instruction_set_features_.reset(
InstructionSetFeatures::FromVariant(
instruction_set_, "default", &parser_options->error_msg));
if (instruction_set_features_.get() == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
if (instruction_set_ == kRuntimeISA) {
std::unique_ptr<const InstructionSetFeatures> runtime_features(
InstructionSetFeatures::FromCppDefines());
if (!instruction_set_features_->Equals(runtime_features.get())) {
LOG(WARNING) << "Mismatch between dex2oat instruction set features ("
<< *instruction_set_features_ << ") and those of dex2oat executable ("
<< *runtime_features <<") for the command line:\n"
<< CommandLine();
}
}
// It they are not set, use default values for inlining settings.
// TODO: We should rethink the compiler filter. We mostly save
// time here, which is orthogonal to space.
if (compiler_options_->inline_depth_limit_ == CompilerOptions::kUnsetInlineDepthLimit) {
compiler_options_->inline_depth_limit_ =
(compiler_options_->compiler_filter_ == CompilerOptions::kSpace)
// Implementation of the space filter: limit inlining depth.
? CompilerOptions::kSpaceFilterInlineDepthLimit
: CompilerOptions::kDefaultInlineDepthLimit;
}
if (compiler_options_->inline_max_code_units_ == CompilerOptions::kUnsetInlineMaxCodeUnits) {
compiler_options_->inline_max_code_units_ =
(compiler_options_->compiler_filter_ == CompilerOptions::kSpace)
// Implementation of the space filter: limit inlining max code units.
? CompilerOptions::kSpaceFilterInlineMaxCodeUnits
: CompilerOptions::kDefaultInlineMaxCodeUnits;
}
// Checks are all explicit until we know the architecture.
// Set the compilation target's implicit checks options.
switch (instruction_set_) {
case kArm:
case kThumb2:
case kArm64:
case kX86:
case kX86_64:
case kMips:
case kMips64:
compiler_options_->implicit_null_checks_ = true;
compiler_options_->implicit_so_checks_ = true;
break;
default:
// Defaults are correct.
break;
}
compiler_options_->verbose_methods_ = verbose_methods_.empty() ? nullptr : &verbose_methods_;
if (!IsBootImage() && multi_image_) {
Usage("--multi-image can only be used when creating boot images");
}
if (IsBootImage() && multi_image_ && image_filenames_.size() > 1) {
Usage("--multi-image cannot be used with multiple image names");
}
// For now, if we're on the host and compile the boot image, *always* use multiple image files.
if (!kIsTargetBuild && IsBootImage()) {
if (image_filenames_.size() == 1) {
multi_image_ = true;
}
}
// Done with usage checks, enable watchdog if requested
if (parser_options->watch_dog_enabled) {
watchdog_.reset(new WatchDog(true));
}
// Fill some values into the key-value store for the oat header.
key_value_store_.reset(new SafeMap<std::string, std::string>());
// Automatically force determinism for the boot image in a host build if the default GC is CMS
// or MS and read barriers are not enabled, as the former switches the GC to a non-concurrent
// one by passing the option `-Xgc:nonconcurrent` (see below).
if (!kIsTargetBuild && IsBootImage()) {
if (SupportsDeterministicCompilation()) {
force_determinism_ = true;
} else {
LOG(WARNING) << "Deterministic compilation is disabled.";
}
}
compiler_options_->force_determinism_ = force_determinism_;
}
static bool SupportsDeterministicCompilation() {
return (gc::kCollectorTypeDefault == gc::kCollectorTypeCMS ||
gc::kCollectorTypeDefault == gc::kCollectorTypeMS) &&
!kEmitCompilerReadBarrier;
}
void ExpandOatAndImageFilenames() {
std::string base_oat = oat_filenames_[0];
size_t last_oat_slash = base_oat.rfind('/');
if (last_oat_slash == std::string::npos) {
Usage("--multi-image used with unusable oat filename %s", base_oat.c_str());
}
// We also need to honor path components that were encoded through '@'. Otherwise the loading
// code won't be able to find the images.
if (base_oat.find('@', last_oat_slash) != std::string::npos) {
last_oat_slash = base_oat.rfind('@');
}
base_oat = base_oat.substr(0, last_oat_slash + 1);
std::string base_img = image_filenames_[0];
size_t last_img_slash = base_img.rfind('/');
if (last_img_slash == std::string::npos) {
Usage("--multi-image used with unusable image filename %s", base_img.c_str());
}
// We also need to honor path components that were encoded through '@'. Otherwise the loading
// code won't be able to find the images.
if (base_img.find('@', last_img_slash) != std::string::npos) {
last_img_slash = base_img.rfind('@');
}
// Get the prefix, which is the primary image name (without path components). Strip the
// extension.
std::string prefix = base_img.substr(last_img_slash + 1);
if (prefix.rfind('.') != std::string::npos) {
prefix = prefix.substr(0, prefix.rfind('.'));
}
if (!prefix.empty()) {
prefix = prefix + "-";
}
base_img = base_img.substr(0, last_img_slash + 1);
// Note: we have some special case here for our testing. We have to inject the differentiating
// parts for the different core images.
std::string infix; // Empty infix by default.
{
// Check the first name.
std::string dex_file = oat_filenames_[0];
size_t last_dex_slash = dex_file.rfind('/');
if (last_dex_slash != std::string::npos) {
dex_file = dex_file.substr(last_dex_slash + 1);
}
size_t last_dex_dot = dex_file.rfind('.');
if (last_dex_dot != std::string::npos) {
dex_file = dex_file.substr(0, last_dex_dot);
}
if (StartsWith(dex_file, "core-")) {
infix = dex_file.substr(strlen("core"));
}
}
// Now create the other names. Use a counted loop to skip the first one.
for (size_t i = 1; i < dex_locations_.size(); ++i) {
// TODO: Make everything properly std::string.
std::string image_name = CreateMultiImageName(dex_locations_[i], prefix, infix, ".art");
char_backing_storage_.push_back(base_img + image_name);
image_filenames_.push_back((char_backing_storage_.end() - 1)->c_str());
std::string oat_name = CreateMultiImageName(dex_locations_[i], prefix, infix, ".oat");
char_backing_storage_.push_back(base_oat + oat_name);
oat_filenames_.push_back((char_backing_storage_.end() - 1)->c_str());
}
}
// Modify the input string in the following way:
// 0) Assume input is /a/b/c.d
// 1) Strip the path -> c.d
// 2) Inject prefix p -> pc.d
// 3) Inject infix i -> pci.d
// 4) Replace suffix with s if it's "jar" -> d == "jar" -> pci.s
static std::string CreateMultiImageName(std::string in,
const std::string& prefix,
const std::string& infix,
const char* replace_suffix) {
size_t last_dex_slash = in.rfind('/');
if (last_dex_slash != std::string::npos) {
in = in.substr(last_dex_slash + 1);
}
if (!prefix.empty()) {
in = prefix + in;
}
if (!infix.empty()) {
// Inject infix.
size_t last_dot = in.rfind('.');
if (last_dot != std::string::npos) {
in.insert(last_dot, infix);
}
}
if (EndsWith(in, ".jar")) {
in = in.substr(0, in.length() - strlen(".jar")) +
(replace_suffix != nullptr ? replace_suffix : "");
}
return in;
}
void InsertCompileOptions(int argc, char** argv) {
std::ostringstream oss;
for (int i = 0; i < argc; ++i) {
if (i > 0) {
oss << ' ';
}
oss << argv[i];
}
key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str());
oss.str(""); // Reset.
oss << kRuntimeISA;
key_value_store_->Put(OatHeader::kDex2OatHostKey, oss.str());
key_value_store_->Put(
OatHeader::kPicKey,
compiler_options_->compile_pic_ ? OatHeader::kTrueValue : OatHeader::kFalseValue);
key_value_store_->Put(
OatHeader::kDebuggableKey,
compiler_options_->debuggable_ ? OatHeader::kTrueValue : OatHeader::kFalseValue);
if (compiler_options_->IsExtractOnly()) {
key_value_store_->Put(OatHeader::kCompilationType, OatHeader::kExtractOnlyValue);
} else if (UseProfileGuidedCompilation()) {
key_value_store_->Put(OatHeader::kCompilationType, OatHeader::kProfileGuideCompiledValue);
}
}
// Parse the arguments from the command line. In case of an unrecognized option or impossible
// values/combinations, a usage error will be displayed and exit() is called. Thus, if the method
// returns, arguments have been successfully parsed.
void ParseArgs(int argc, char** argv) {
original_argc = argc;
original_argv = argv;
InitLogging(argv);
// Skip over argv[0].
argv++;
argc--;
if (argc == 0) {
Usage("No arguments specified");
}
std::unique_ptr<ParserOptions> parser_options(new ParserOptions());
compiler_options_.reset(new CompilerOptions());
for (int i = 0; i < argc; i++) {
const StringPiece option(argv[i]);
const bool log_options = false;
if (log_options) {
LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
}
if (option.starts_with("--dex-file=")) {
dex_filenames_.push_back(option.substr(strlen("--dex-file=")).data());
} else if (option.starts_with("--dex-location=")) {
dex_locations_.push_back(option.substr(strlen("--dex-location=")).data());
} else if (option.starts_with("--zip-fd=")) {
ParseZipFd(option);
} else if (option.starts_with("--zip-location=")) {
zip_location_ = option.substr(strlen("--zip-location=")).data();
} else if (option.starts_with("--oat-file=")) {
oat_filenames_.push_back(option.substr(strlen("--oat-file=")).data());
} else if (option.starts_with("--oat-symbols=")) {
parser_options->oat_symbols.push_back(option.substr(strlen("--oat-symbols=")).data());
} else if (option.starts_with("--oat-fd=")) {
ParseOatFd(option);
} else if (option == "--watch-dog") {
parser_options->watch_dog_enabled = true;
} else if (option == "--no-watch-dog") {
parser_options->watch_dog_enabled = false;
} else if (option.starts_with("-j")) {
ParseJ(option);
} else if (option.starts_with("--oat-location=")) {
oat_location_ = option.substr(strlen("--oat-location=")).data();
} else if (option.starts_with("--image=")) {
image_filenames_.push_back(option.substr(strlen("--image=")).data());
} else if (option.starts_with("--image-classes=")) {
image_classes_filename_ = option.substr(strlen("--image-classes=")).data();
} else if (option.starts_with("--image-classes-zip=")) {
image_classes_zip_filename_ = option.substr(strlen("--image-classes-zip=")).data();
} else if (option.starts_with("--image-format=")) {
ParseImageFormat(option);
} else if (option.starts_with("--compiled-classes=")) {
compiled_classes_filename_ = option.substr(strlen("--compiled-classes=")).data();
} else if (option.starts_with("--compiled-classes-zip=")) {
compiled_classes_zip_filename_ = option.substr(strlen("--compiled-classes-zip=")).data();
} else if (option.starts_with("--compiled-methods=")) {
compiled_methods_filename_ = option.substr(strlen("--compiled-methods=")).data();
} else if (option.starts_with("--compiled-methods-zip=")) {
compiled_methods_zip_filename_ = option.substr(strlen("--compiled-methods-zip=")).data();
} else if (option.starts_with("--base=")) {
ParseBase(option);
} else if (option.starts_with("--boot-image=")) {
parser_options->boot_image_filename = option.substr(strlen("--boot-image=")).data();
} else if (option.starts_with("--android-root=")) {
android_root_ = option.substr(strlen("--android-root=")).data();
} else if (option.starts_with("--instruction-set=")) {
ParseInstructionSet(option);
} else if (option.starts_with("--instruction-set-variant=")) {
ParseInstructionSetVariant(option, parser_options.get());
} else if (option.starts_with("--instruction-set-features=")) {
ParseInstructionSetFeatures(option, parser_options.get());
} else if (option.starts_with("--compiler-backend=")) {
ParseCompilerBackend(option, parser_options.get());
} else if (option.starts_with("--profile-file=")) {
profile_file_ = option.substr(strlen("--profile-file=")).ToString();
} else if (option.starts_with("--profile-file-fd=")) {
ParseUintOption(option, "--profile-file-fd", &profile_file_fd_, Usage);
} else if (option == "--host") {
is_host_ = true;
} else if (option == "--runtime-arg") {
if (++i >= argc) {
Usage("Missing required argument for --runtime-arg");
}
if (log_options) {
LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
}
runtime_args_.push_back(argv[i]);
} else if (option == "--dump-timing") {
dump_timing_ = true;
} else if (option == "--dump-passes") {
dump_passes_ = true;
} else if (option == "--dump-stats") {
dump_stats_ = true;
} else if (option.starts_with("--swap-file=")) {
swap_file_name_ = option.substr(strlen("--swap-file=")).data();
} else if (option.starts_with("--swap-fd=")) {
ParseUintOption(option, "--swap-fd", &swap_fd_, Usage);
} else if (option.starts_with("--app-image-file=")) {
app_image_file_name_ = option.substr(strlen("--app-image-file=")).data();
} else if (option.starts_with("--app-image-fd=")) {
ParseUintOption(option, "--app-image-fd", &app_image_fd_, Usage);
} else if (option.starts_with("--verbose-methods=")) {
// TODO: rather than switch off compiler logging, make all VLOG(compiler) messages
// conditional on having verbost methods.
gLogVerbosity.compiler = false;
Split(option.substr(strlen("--verbose-methods=")).ToString(), ',', &verbose_methods_);
} else if (option == "--multi-image") {
multi_image_ = true;
} else if (option.starts_with("--no-inline-from=")) {
no_inline_from_string_ = option.substr(strlen("--no-inline-from=")).data();
} else if (option == "--force-determinism") {
if (!SupportsDeterministicCompilation()) {
Usage("Cannot use --force-determinism with read barriers or non-CMS garbage collector");
}
force_determinism_ = true;
} else if (!compiler_options_->ParseCompilerOption(option, Usage)) {
Usage("Unknown argument %s", option.data());
}
}
ProcessOptions(parser_options.get());
// Insert some compiler things.
InsertCompileOptions(argc, argv);
}
// Check whether the oat output files are writable, and open them for later. Also open a swap
// file, if a name is given.
bool OpenFile() {
// Prune non-existent dex files now so that we don't create empty oat files for multi-image.
PruneNonExistentDexFiles();
// Expand oat and image filenames for multi image.
if (IsBootImage() && multi_image_) {
ExpandOatAndImageFilenames();
}
bool create_file = oat_fd_ == -1; // as opposed to using open file descriptor
if (create_file) {
for (const char* oat_filename : oat_filenames_) {
std::unique_ptr<File> oat_file(OS::CreateEmptyFile(oat_filename));
if (oat_file.get() == nullptr) {
PLOG(ERROR) << "Failed to create oat file: " << oat_filename;
return false;
}
if (create_file && fchmod(oat_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make oat file world readable: " << oat_filename;
oat_file->Erase();
return false;
}
oat_files_.push_back(std::move(oat_file));
}
} else {
std::unique_ptr<File> oat_file(new File(oat_fd_, oat_location_, true));
oat_file->DisableAutoClose();
if (oat_file->SetLength(0) != 0) {
PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed.";
}
if (oat_file.get() == nullptr) {
PLOG(ERROR) << "Failed to create oat file: " << oat_location_;
return false;
}
if (create_file && fchmod(oat_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make oat file world readable: " << oat_location_;
oat_file->Erase();
return false;
}
oat_filenames_.push_back(oat_location_.c_str());
oat_files_.push_back(std::move(oat_file));
}
// Swap file handling.
//
// If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file
// that we can use for swap.
//
// If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We
// will immediately unlink to satisfy the swap fd assumption.
if (swap_fd_ == -1 && !swap_file_name_.empty()) {
std::unique_ptr<File> swap_file(OS::CreateEmptyFile(swap_file_name_.c_str()));
if (swap_file.get() == nullptr) {
PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_;
return false;
}
swap_fd_ = swap_file->Fd();
swap_file->MarkUnchecked(); // We don't we to track this, it will be unlinked immediately.
swap_file->DisableAutoClose(); // We'll handle it ourselves, the File object will be
// released immediately.
unlink(swap_file_name_.c_str());
}
// If we use a swap file, ensure we are above the threshold to make it necessary.
if (swap_fd_ != -1) {
if (!UseSwap(IsBootImage(), dex_files_)) {
close(swap_fd_);
swap_fd_ = -1;
VLOG(compiler) << "Decided to run without swap.";
} else {
LOG(INFO) << "Large app, accepted running with swap.";
}
}
// Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that.
return true;
}
void EraseOatFiles() {
for (size_t i = 0; i < oat_files_.size(); ++i) {
DCHECK(oat_files_[i].get() != nullptr);
oat_files_[i]->Erase();
oat_files_[i].reset();
}
}
void Shutdown() {
ScopedObjectAccess soa(Thread::Current());
for (jobject dex_cache : dex_caches_) {
soa.Env()->DeleteLocalRef(dex_cache);
}
dex_caches_.clear();
}
void LoadClassProfileDescriptors() {
if (profile_compilation_info_ != nullptr && app_image_) {
Runtime* runtime = Runtime::Current();
CHECK(runtime != nullptr);
std::set<DexCacheResolvedClasses> resolved_classes(
profile_compilation_info_->GetResolvedClasses());
image_classes_.reset(new std::unordered_set<std::string>(
runtime->GetClassLinker()->GetClassDescriptorsForProfileKeys(resolved_classes)));
VLOG(compiler) << "Loaded " << image_classes_->size()
<< " image class descriptors from profile";
if (VLOG_IS_ON(compiler)) {
for (const std::string& s : *image_classes_) {
LOG(INFO) << "Image class " << s;
}
}
}
}
// Set up the environment for compilation. Includes starting the runtime and loading/opening the
// boot class path.
bool Setup() {
TimingLogger::ScopedTiming t("dex2oat Setup", timings_);
art::MemMap::Init(); // For ZipEntry::ExtractToMemMap.
if (!PrepareImageClasses() || !PrepareCompiledClasses() || !PrepareCompiledMethods()) {
return false;
}
verification_results_.reset(new VerificationResults(compiler_options_.get()));
callbacks_.reset(new QuickCompilerCallbacks(
verification_results_.get(),
&method_inliner_map_,
IsBootImage() ?
CompilerCallbacks::CallbackMode::kCompileBootImage :
CompilerCallbacks::CallbackMode::kCompileApp));
RuntimeArgumentMap runtime_options;
if (!PrepareRuntimeOptions(&runtime_options)) {
return false;
}
CreateOatWriters();
if (!AddDexFileSources()) {
return false;
}
if (IsBootImage() && image_filenames_.size() > 1) {
// If we're compiling the boot image, store the boot classpath into the Key-Value store.
// We need this for the multi-image case.
key_value_store_->Put(OatHeader::kBootClassPath, GetMultiImageBootClassPath());
}
if (!IsBootImage()) {
// When compiling an app, create the runtime early to retrieve
// the image location key needed for the oat header.
if (!CreateRuntime(std::move(runtime_options))) {
return false;
}
if (compiler_options_->IsExtractOnly()) {
// ExtractOnly oat files only contain non-quickened DEX code and are
// therefore independent of the image file.
image_file_location_oat_checksum_ = 0u;
image_file_location_oat_data_begin_ = 0u;
image_patch_delta_ = 0;
} else {
TimingLogger::ScopedTiming t3("Loading image checksum", timings_);
std::vector<gc::space::ImageSpace*> image_spaces =
Runtime::Current()->GetHeap()->GetBootImageSpaces();
image_file_location_oat_checksum_ = image_spaces[0]->GetImageHeader().GetOatChecksum();
image_file_location_oat_data_begin_ =
reinterpret_cast<uintptr_t>(image_spaces[0]->GetImageHeader().GetOatDataBegin());
image_patch_delta_ = image_spaces[0]->GetImageHeader().GetPatchDelta();
// Store the boot image filename(s).
std::vector<std::string> image_filenames;
for (const gc::space::ImageSpace* image_space : image_spaces) {
image_filenames.push_back(image_space->GetImageFilename());
}
std::string image_file_location = Join(image_filenames, ':');
if (!image_file_location.empty()) {
key_value_store_->Put(OatHeader::kImageLocationKey, image_file_location);
}
}
// Open dex files for class path.
const std::vector<std::string> class_path_locations =
GetClassPathLocations(runtime_->GetClassPathString());
OpenClassPathFiles(class_path_locations, &class_path_files_);
// Store the classpath we have right now.
std::vector<const DexFile*> class_path_files = MakeNonOwningPointerVector(class_path_files_);
key_value_store_->Put(OatHeader::kClassPathKey,
OatFile::EncodeDexFileDependencies(class_path_files));
}
// Now that we have finalized key_value_store_, start writing the oat file.
{
TimingLogger::ScopedTiming t_dex("Writing and opening dex files", timings_);
rodata_.reserve(oat_writers_.size());
for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) {
rodata_.push_back(elf_writers_[i]->StartRoData());
// Unzip or copy dex files straight to the oat file.
std::unique_ptr<MemMap> opened_dex_files_map;
std::vector<std::unique_ptr<const DexFile>> opened_dex_files;
if (!oat_writers_[i]->WriteAndOpenDexFiles(rodata_.back(),
oat_files_[i].get(),
instruction_set_,
instruction_set_features_.get(),
key_value_store_.get(),
/* verify */ true,
&opened_dex_files_map,
&opened_dex_files)) {
return false;
}
dex_files_per_oat_file_.push_back(MakeNonOwningPointerVector(opened_dex_files));
if (opened_dex_files_map != nullptr) {
opened_dex_files_maps_.push_back(std::move(opened_dex_files_map));
for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files) {
dex_file_oat_filename_map_.emplace(dex_file.get(), oat_filenames_[i]);
opened_dex_files_.push_back(std::move(dex_file));
}
} else {
DCHECK(opened_dex_files.empty());
}
}
}
dex_files_ = MakeNonOwningPointerVector(opened_dex_files_);
if (IsBootImage()) {
// For boot image, pass opened dex files to the Runtime::Create().
// Note: Runtime acquires ownership of these dex files.
runtime_options.Set(RuntimeArgumentMap::BootClassPathDexList, &opened_dex_files_);
if (!CreateRuntime(std::move(runtime_options))) {
return false;
}
}
// If we're doing the image, override the compiler filter to force full compilation. Must be
// done ahead of WellKnownClasses::Init that causes verification. Note: doesn't force
// compilation of class initializers.
// Whilst we're in native take the opportunity to initialize well known classes.
Thread* self = Thread::Current();
WellKnownClasses::Init(self->GetJniEnv());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
if (!IsBootImage()) {
constexpr bool kSaveDexInput = false;
if (kSaveDexInput) {
SaveDexInput();
}
// Handle and ClassLoader creation needs to come after Runtime::Create.
ScopedObjectAccess soa(self);
// Classpath: first the class-path given.
std::vector<const DexFile*> class_path_files = MakeNonOwningPointerVector(class_path_files_);
// Then the dex files we'll compile. Thus we'll resolve the class-path first.
class_path_files.insert(class_path_files.end(), dex_files_.begin(), dex_files_.end());
class_loader_ = class_linker->CreatePathClassLoader(self, class_path_files);
}
// Ensure opened dex files are writable for dex-to-dex transformations.
for (const std::unique_ptr<MemMap>& map : opened_dex_files_maps_) {
if (!map->Protect(PROT_READ | PROT_WRITE)) {
PLOG(ERROR) << "Failed to make .dex files writeable.";
return false;
}
}
// Ensure that the dex caches stay live since we don't want class unloading
// to occur during compilation.
for (const auto& dex_file : dex_files_) {
ScopedObjectAccess soa(self);
dex_caches_.push_back(soa.AddLocalReference<jobject>(
class_linker->RegisterDexFile(*dex_file, Runtime::Current()->GetLinearAlloc())));
}
/*
* If we're not in interpret-only or verify-none mode, go ahead and compile small applications.
* Don't bother to check if we're doing the image.
*/
if (!IsBootImage() &&
compiler_options_->IsCompilationEnabled() &&
compiler_kind_ == Compiler::kQuick) {
size_t num_methods = 0;
for (size_t i = 0; i != dex_files_.size(); ++i) {
const DexFile* dex_file = dex_files_[i];
CHECK(dex_file != nullptr);
num_methods += dex_file->NumMethodIds();
}
if (num_methods <= compiler_options_->GetNumDexMethodsThreshold()) {
compiler_options_->SetCompilerFilter(CompilerOptions::kSpeed);
VLOG(compiler) << "Below method threshold, compiling anyways";
}
}
return true;
}
// If we need to keep the oat file open for the image writer.
bool ShouldKeepOatFileOpen() const {
return IsImage() && oat_fd_ != kInvalidFd;
}
// Create and invoke the compiler driver. This will compile all the dex files.
void Compile() {
TimingLogger::ScopedTiming t("dex2oat Compile", timings_);
compiler_phases_timings_.reset(new CumulativeLogger("compilation times"));
// Find the dex files we should not inline from.
std::vector<std::string> no_inline_filters;
Split(no_inline_from_string_, ',', &no_inline_filters);
// For now, on the host always have core-oj removed.
const std::string core_oj = "core-oj";
if (!kIsTargetBuild && !ContainsElement(no_inline_filters, core_oj)) {
no_inline_filters.push_back(core_oj);
}
if (!no_inline_filters.empty()) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
std::vector<const DexFile*> class_path_files = MakeNonOwningPointerVector(class_path_files_);
std::vector<const std::vector<const DexFile*>*> dex_file_vectors = {
&class_linker->GetBootClassPath(),
&class_path_files,
&dex_files_
};
for (const std::vector<const DexFile*>* dex_file_vector : dex_file_vectors) {
for (const DexFile* dex_file : *dex_file_vector) {
for (const std::string& filter : no_inline_filters) {
// Use dex_file->GetLocation() rather than dex_file->GetBaseLocation(). This
// allows tests to specify <test-dexfile>:classes2.dex if needed but if the
// base location passes the StartsWith() test, so do all extra locations.
std::string dex_location = dex_file->GetLocation();
if (filter.find('/') == std::string::npos) {
// The filter does not contain the path. Remove the path from dex_location as well.
size_t last_slash = dex_file->GetLocation().rfind('/');
if (last_slash != std::string::npos) {
dex_location = dex_location.substr(last_slash + 1);
}
}
if (StartsWith(dex_location, filter.c_str())) {
VLOG(compiler) << "Disabling inlining from " << dex_file->GetLocation();
no_inline_from_dex_files_.push_back(dex_file);
break;
}
}
}
}
if (!no_inline_from_dex_files_.empty()) {
compiler_options_->no_inline_from_ = &no_inline_from_dex_files_;
}
}
driver_.reset(new CompilerDriver(compiler_options_.get(),
verification_results_.get(),
&method_inliner_map_,
compiler_kind_,
instruction_set_,
instruction_set_features_.get(),
IsBootImage(),
image_classes_.release(),
compiled_classes_.release(),
nullptr,
thread_count_,
dump_stats_,
dump_passes_,
compiler_phases_timings_.get(),
swap_fd_,
&dex_file_oat_filename_map_,
profile_compilation_info_.get()));
driver_->SetDexFilesForOatFile(dex_files_);
driver_->CompileAll(class_loader_, dex_files_, timings_);
}
// Notes on the interleaving of creating the images and oat files to
// ensure the references between the two are correct.
//
// Currently we have a memory layout that looks something like this:
//
// +--------------+
// | images |
// +--------------+
// | oat files |
// +--------------+
// | alloc spaces |
// +--------------+
//
// There are several constraints on the loading of the images and oat files.
//
// 1. The images are expected to be loaded at an absolute address and
// contain Objects with absolute pointers within the images.
//
// 2. There are absolute pointers from Methods in the images to their
// code in the oat files.
//
// 3. There are absolute pointers from the code in the oat files to Methods
// in the images.
//
// 4. There are absolute pointers from code in the oat files to other code
// in the oat files.
//
// To get this all correct, we go through several steps.
//
// 1. We prepare offsets for all data in the oat files and calculate
// the oat data size and code size. During this stage, we also set
// oat code offsets in methods for use by the image writer.
//
// 2. We prepare offsets for the objects in the images and calculate
// the image sizes.
//
// 3. We create the oat files. Originally this was just our own proprietary
// file but now it is contained within an ELF dynamic object (aka an .so
// file). Since we know the image sizes and oat data sizes and code sizes we
// can prepare the ELF headers and we then know the ELF memory segment
// layout and we can now resolve all references. The compiler provides
// LinkerPatch information in each CompiledMethod and we resolve these,
// using the layout information and image object locations provided by
// image writer, as we're writing the method code.
//
// 4. We create the image files. They need to know where the oat files
// will be loaded after itself. Originally oat files were simply
// memory mapped so we could predict where their contents were based
// on the file size. Now that they are ELF files, we need to inspect
// the ELF files to understand the in memory segment layout including
// where the oat header is located within.
// TODO: We could just remember this information from step 3.
//
// 5. We fixup the ELF program headers so that dlopen will try to
// load the .so at the desired location at runtime by offsetting the
// Elf32_Phdr.p_vaddr values by the desired base address.
// TODO: Do this in step 3. We already know the layout there.
//
// Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5.
// are done by the CreateImageFile() below.
// Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the
// ImageWriter, if necessary.
// Note: Flushing (and closing) the file is the caller's responsibility, except for the failure
// case (when the file will be explicitly erased).
bool WriteOatFiles() {
TimingLogger::ScopedTiming t("dex2oat Oat", timings_);
// Sync the data to the file, in case we did dex2dex transformations.
for (const std::unique_ptr<MemMap>& map : opened_dex_files_maps_) {
if (!map->Sync()) {
PLOG(ERROR) << "Failed to Sync() dex2dex output. Map: " << map->GetName();
return false;
}
}
if (IsImage()) {
if (app_image_ && image_base_ == 0) {
gc::Heap* const heap = Runtime::Current()->GetHeap();
for (gc::space::ImageSpace* image_space : heap->GetBootImageSpaces()) {
image_base_ = std::max(image_base_, RoundUp(
reinterpret_cast<uintptr_t>(image_space->GetImageHeader().GetOatFileEnd()),
kPageSize));
}
// The non moving space is right after the oat file. Put the preferred app image location
// right after the non moving space so that we ideally get a continuous immune region for
// the GC.
// Use the default non moving space capacity since dex2oat does not have a separate non-
// moving space. This means the runtime's non moving space space size will be as large
// as the growth limit for dex2oat, but smaller in the zygote.
const size_t non_moving_space_capacity = gc::Heap::kDefaultNonMovingSpaceCapacity;
image_base_ += non_moving_space_capacity;
VLOG(compiler) << "App image base=" << reinterpret_cast<void*>(image_base_);
}
image_writer_.reset(new ImageWriter(*driver_,
image_base_,
compiler_options_->GetCompilePic(),
IsAppImage(),
image_storage_mode_,
oat_filenames_,
dex_file_oat_filename_map_));
// We need to prepare method offsets in the image address space for direct method patching.
TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_);
if (!image_writer_->PrepareImageAddressSpace()) {
LOG(ERROR) << "Failed to prepare image address space.";
return false;
}
}
{
TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_);
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
std::unique_ptr<File>& oat_file = oat_files_[i];
std::unique_ptr<ElfWriter>& elf_writer = elf_writers_[i];
std::unique_ptr<OatWriter>& oat_writer = oat_writers_[i];
std::vector<const DexFile*>& dex_files = dex_files_per_oat_file_[i];
oat_writer->PrepareLayout(driver_.get(), image_writer_.get(), dex_files);
// We need to mirror the layout of the ELF file in the compressed debug-info.
// Therefore we need to propagate the sizes of at least those sections.
size_t rodata_size = oat_writer->GetOatHeader().GetExecutableOffset();
size_t text_size = oat_writer->GetSize() - rodata_size;
elf_writer->PrepareDebugInfo(rodata_size, text_size, oat_writer->GetMethodDebugInfo());
OutputStream*& rodata = rodata_[i];
DCHECK(rodata != nullptr);
if (!oat_writer->WriteRodata(rodata)) {
LOG(ERROR) << "Failed to write .rodata section to the ELF file " << oat_file->GetPath();
return false;
}
elf_writer->EndRoData(rodata);
rodata = nullptr;
OutputStream* text = elf_writer->StartText();
if (!oat_writer->WriteCode(text)) {
LOG(ERROR) << "Failed to write .text section to the ELF file " << oat_file->GetPath();
return false;
}
elf_writer->EndText(text);
if (!oat_writer->WriteHeader(elf_writer->GetStream(),
image_file_location_oat_checksum_,
image_file_location_oat_data_begin_,
image_patch_delta_)) {
LOG(ERROR) << "Failed to write oat header to the ELF file " << oat_file->GetPath();
return false;
}
elf_writer->SetBssSize(oat_writer->GetBssSize());
elf_writer->WriteDynamicSection();
elf_writer->WriteDebugInfo(oat_writer->GetMethodDebugInfo());
elf_writer->WritePatchLocations(oat_writer->GetAbsolutePatchLocations());
if (!elf_writer->End()) {
LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath();
return false;
}
// Flush the oat file.
if (oat_files_[i] != nullptr) {
if (oat_files_[i]->Flush() != 0) {
PLOG(ERROR) << "Failed to flush oat file: " << oat_filenames_[i];
oat_files_[i]->Erase();
return false;
}
}
if (IsImage()) {
// Update oat estimates.
DCHECK(image_writer_ != nullptr);
DCHECK_LT(i, oat_filenames_.size());
image_writer_->UpdateOatFile(oat_file.get(), oat_filenames_[i]);
}
VLOG(compiler) << "Oat file written successfully: " << oat_filenames_[i];
oat_writer.reset();
elf_writer.reset();
}
}
return true;
}
// If we are compiling an image, invoke the image creation routine. Else just skip.
bool HandleImage() {
if (IsImage()) {
TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_);
if (!CreateImageFile()) {
return false;
}
VLOG(compiler) << "Images written successfully";
}
return true;
}
// Create a copy from stripped to unstripped.
bool CopyStrippedToUnstripped() {
for (size_t i = 0; i < oat_unstripped_.size(); ++i) {
// If we don't want to strip in place, copy from stripped location to unstripped location.
// We need to strip after image creation because FixupElf needs to use .strtab.
if (strcmp(oat_unstripped_[i], oat_filenames_[i]) != 0) {
// If the oat file is still open, flush it.
if (oat_files_[i].get() != nullptr && oat_files_[i]->IsOpened()) {
if (!FlushCloseOatFile(i)) {
return false;
}
}
TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_);
std::unique_ptr<File> in(OS::OpenFileForReading(oat_filenames_[i]));
std::unique_ptr<File> out(OS::CreateEmptyFile(oat_unstripped_[i]));
size_t buffer_size = 8192;
std::unique_ptr<uint8_t[]> buffer(new uint8_t[buffer_size]);
while (true) {
int bytes_read = TEMP_FAILURE_RETRY(read(in->Fd(), buffer.get(), buffer_size));
if (bytes_read <= 0) {
break;
}
bool write_ok = out->WriteFully(buffer.get(), bytes_read);
CHECK(write_ok);
}
if (out->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_unstripped_[i];
return false;
}
VLOG(compiler) << "Oat file copied successfully (unstripped): " << oat_unstripped_[i];
}
}
return true;
}
bool FlushOatFiles() {
TimingLogger::ScopedTiming t2("dex2oat Flush ELF", timings_);
for (size_t i = 0; i < oat_files_.size(); ++i) {
if (oat_files_[i].get() != nullptr) {
if (oat_files_[i]->Flush() != 0) {
PLOG(ERROR) << "Failed to flush oat file: " << oat_filenames_[i];
oat_files_[i]->Erase();
return false;
}
}
}
return true;
}
bool FlushCloseOatFile(size_t i) {
if (oat_files_[i].get() != nullptr) {
std::unique_ptr<File> tmp(oat_files_[i].release());
if (tmp->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close oat file: " << oat_filenames_[i];
return false;
}
}
return true;
}
bool FlushCloseOatFiles() {
bool result = true;
for (size_t i = 0; i < oat_files_.size(); ++i) {
result &= FlushCloseOatFile(i);
}
return result;
}
void DumpTiming() {
if (dump_timing_ || (dump_slow_timing_ && timings_->GetTotalNs() > MsToNs(1000))) {
LOG(INFO) << Dumpable<TimingLogger>(*timings_);
}
if (dump_passes_) {
LOG(INFO) << Dumpable<CumulativeLogger>(*driver_->GetTimingsLogger());
}
}
CompilerOptions* GetCompilerOptions() const {
return compiler_options_.get();
}
bool IsImage() const {
return IsAppImage() || IsBootImage();
}
bool IsAppImage() const {
return app_image_;
}
bool IsBootImage() const {
return boot_image_;
}
bool IsHost() const {
return is_host_;
}
bool UseProfileGuidedCompilation() const {
return !profile_file_.empty() || (profile_file_fd_ != kInvalidFd);
}
bool LoadProfile() {
DCHECK(UseProfileGuidedCompilation());
profile_compilation_info_.reset(new ProfileCompilationInfo());
ScopedFlock flock;
bool success = false;
std::string error;
if (profile_file_fd_ != -1) {
// The file doesn't need to be flushed so don't check the usage.
// Pass a bogus path so that we can easily attribute any reported error.
File file(profile_file_fd_, "profile", /*check_usage*/ false, /*read_only_mode*/ true);
if (flock.Init(&file, &error)) {
success = profile_compilation_info_->Load(profile_file_fd_);
}
} else {
if (flock.Init(profile_file_.c_str(), O_RDONLY, /* block */ true, &error)) {
success = profile_compilation_info_->Load(flock.GetFile()->Fd());
}
}
if (!error.empty()) {
LOG(WARNING) << "Cannot lock profiles: " << error;
}
if (!success) {
profile_compilation_info_.reset(nullptr);
}
return success;
}
private:
template <typename T>
static std::vector<T*> MakeNonOwningPointerVector(const std::vector<std::unique_ptr<T>>& src) {
std::vector<T*> result;
result.reserve(src.size());
for (const std::unique_ptr<T>& t : src) {
result.push_back(t.get());
}
return result;
}
std::string GetMultiImageBootClassPath() {
DCHECK(IsBootImage());
DCHECK_GT(oat_filenames_.size(), 1u);
// If the image filename was adapted (e.g., for our tests), we need to change this here,
// too, but need to strip all path components (they will be re-established when loading).
std::ostringstream bootcp_oss;
bool first_bootcp = true;
for (size_t i = 0; i < dex_locations_.size(); ++i) {
if (!first_bootcp) {
bootcp_oss << ":";
}
std::string dex_loc = dex_locations_[i];
std::string image_filename = image_filenames_[i];
// Use the dex_loc path, but the image_filename name (without path elements).
size_t dex_last_slash = dex_loc.rfind('/');
// npos is max(size_t). That makes this a bit ugly.
size_t image_last_slash = image_filename.rfind('/');
size_t image_last_at = image_filename.rfind('@');
size_t image_last_sep = (image_last_slash == std::string::npos)
? image_last_at
: (image_last_at == std::string::npos)
? std::string::npos
: std::max(image_last_slash, image_last_at);
// Note: whenever image_last_sep == npos, +1 overflow means using the full string.
if (dex_last_slash == std::string::npos) {
dex_loc = image_filename.substr(image_last_sep + 1);
} else {
dex_loc = dex_loc.substr(0, dex_last_slash + 1) +
image_filename.substr(image_last_sep + 1);
}
// Image filenames already end with .art, no need to replace.
bootcp_oss << dex_loc;
first_bootcp = false;
}
return bootcp_oss.str();
}
std::vector<std::string> GetClassPathLocations(const std::string& class_path) {
// This function is used only for apps and for an app we have exactly one oat file.
DCHECK(!IsBootImage());
DCHECK_EQ(oat_writers_.size(), 1u);
std::vector<std::string> dex_files_canonical_locations;
for (const char* location : oat_writers_[0]->GetSourceLocations()) {
dex_files_canonical_locations.push_back(DexFile::GetDexCanonicalLocation(location));
}
std::vector<std::string> parsed;
Split(class_path, ':', &parsed);
auto kept_it = std::remove_if(parsed.begin(),
parsed.end(),
[dex_files_canonical_locations](const std::string& location) {
return ContainsElement(dex_files_canonical_locations,
DexFile::GetDexCanonicalLocation(location.c_str()));
});
parsed.erase(kept_it, parsed.end());
return parsed;
}
// Opens requested class path files and appends them to opened_dex_files.
static void OpenClassPathFiles(const std::vector<std::string>& class_path_locations,
std::vector<std::unique_ptr<const DexFile>>* opened_dex_files) {
DCHECK(opened_dex_files != nullptr) << "OpenClassPathFiles out-param is nullptr";
for (const std::string& location : class_path_locations) {
std::string error_msg;
if (!DexFile::Open(location.c_str(), location.c_str(), &error_msg, opened_dex_files)) {
LOG(WARNING) << "Failed to open dex file '" << location << "': " << error_msg;
}
}
}
bool PrepareImageClasses() {
// If --image-classes was specified, calculate the full list of classes to include in the image.
if (image_classes_filename_ != nullptr) {
image_classes_ =
ReadClasses(image_classes_zip_filename_, image_classes_filename_, "image");
if (image_classes_ == nullptr) {
return false;
}
} else if (IsBootImage()) {
image_classes_.reset(new std::unordered_set<std::string>);
}
return true;
}
bool PrepareCompiledClasses() {
// If --compiled-classes was specified, calculate the full list of classes to compile in the
// image.
if (compiled_classes_filename_ != nullptr) {
compiled_classes_ =
ReadClasses(compiled_classes_zip_filename_, compiled_classes_filename_, "compiled");
if (compiled_classes_ == nullptr) {
return false;
}
} else {
compiled_classes_.reset(nullptr); // By default compile everything.
}
return true;
}
static std::unique_ptr<std::unordered_set<std::string>> ReadClasses(const char* zip_filename,
const char* classes_filename,
const char* tag) {
std::unique_ptr<std::unordered_set<std::string>> classes;
std::string error_msg;
if (zip_filename != nullptr) {
classes.reset(ReadImageClassesFromZip(zip_filename, classes_filename, &error_msg));
} else {
classes.reset(ReadImageClassesFromFile(classes_filename));
}
if (classes == nullptr) {
LOG(ERROR) << "Failed to create list of " << tag << " classes from '"
<< classes_filename << "': " << error_msg;
}
return classes;
}
bool PrepareCompiledMethods() {
// If --compiled-methods was specified, read the methods to compile from the given file(s).
if (compiled_methods_filename_ != nullptr) {
std::string error_msg;
if (compiled_methods_zip_filename_ != nullptr) {
compiled_methods_.reset(ReadCommentedInputFromZip(compiled_methods_zip_filename_,
compiled_methods_filename_,
nullptr, // No post-processing.
&error_msg));
} else {
compiled_methods_.reset(ReadCommentedInputFromFile(compiled_methods_filename_,
nullptr)); // No post-processing.
}
if (compiled_methods_.get() == nullptr) {
LOG(ERROR) << "Failed to create list of compiled methods from '"
<< compiled_methods_filename_ << "': " << error_msg;
return false;
}
} else {
compiled_methods_.reset(nullptr); // By default compile everything.
}
return true;
}
void PruneNonExistentDexFiles() {
DCHECK_EQ(dex_filenames_.size(), dex_locations_.size());
size_t kept = 0u;
for (size_t i = 0, size = dex_filenames_.size(); i != size; ++i) {
if (!OS::FileExists(dex_filenames_[i])) {
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filenames_[i] << "'";
} else {
dex_filenames_[kept] = dex_filenames_[i];
dex_locations_[kept] = dex_locations_[i];
++kept;
}
}
dex_filenames_.resize(kept);
dex_locations_.resize(kept);
}
bool AddDexFileSources() {
TimingLogger::ScopedTiming t2("AddDexFileSources", timings_);
if (zip_fd_ != -1) {
DCHECK_EQ(oat_writers_.size(), 1u);
if (!oat_writers_[0]->AddZippedDexFilesSource(ScopedFd(zip_fd_), zip_location_.c_str())) {
return false;
}
} else if (oat_writers_.size() > 1u) {
// Multi-image.
DCHECK_EQ(oat_writers_.size(), dex_filenames_.size());
DCHECK_EQ(oat_writers_.size(), dex_locations_.size());
for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) {
if (!oat_writers_[i]->AddDexFileSource(dex_filenames_[i], dex_locations_[i])) {
return false;
}
}
} else {
DCHECK_EQ(oat_writers_.size(), 1u);
DCHECK_EQ(dex_filenames_.size(), dex_locations_.size());
DCHECK_NE(dex_filenames_.size(), 0u);
for (size_t i = 0; i != dex_filenames_.size(); ++i) {
if (!oat_writers_[0]->AddDexFileSource(dex_filenames_[i], dex_locations_[i])) {
return false;
}
}
}
return true;
}
void CreateOatWriters() {
TimingLogger::ScopedTiming t2("CreateOatWriters", timings_);
elf_writers_.reserve(oat_files_.size());
oat_writers_.reserve(oat_files_.size());
for (const std::unique_ptr<File>& oat_file : oat_files_) {
elf_writers_.emplace_back(
CreateElfWriterQuick(instruction_set_, compiler_options_.get(), oat_file.get()));
elf_writers_.back()->Start();
oat_writers_.emplace_back(new OatWriter(IsBootImage(), timings_));
}
}
void SaveDexInput() {
for (size_t i = 0; i < dex_files_.size(); ++i) {
const DexFile* dex_file = dex_files_[i];
std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex",
getpid(), i));
std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str()));
if (tmp_file.get() == nullptr) {
PLOG(ERROR) << "Failed to open file " << tmp_file_name
<< ". Try: adb shell chmod 777 /data/local/tmp";
continue;
}
// This is just dumping files for debugging. Ignore errors, and leave remnants.
UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size()));
UNUSED(tmp_file->Flush());
UNUSED(tmp_file->Close());
LOG(INFO) << "Wrote input to " << tmp_file_name;
}
}
bool PrepareRuntimeOptions(RuntimeArgumentMap* runtime_options) {
RuntimeOptions raw_options;
if (boot_image_filename_.empty()) {
std::string boot_class_path = "-Xbootclasspath:";
boot_class_path += Join(dex_filenames_, ':');
raw_options.push_back(std::make_pair(boot_class_path, nullptr));
std::string boot_class_path_locations = "-Xbootclasspath-locations:";
boot_class_path_locations += Join(dex_locations_, ':');
raw_options.push_back(std::make_pair(boot_class_path_locations, nullptr));
} else {
std::string boot_image_option = "-Ximage:";
boot_image_option += boot_image_filename_;
raw_options.push_back(std::make_pair(boot_image_option, nullptr));
}
for (size_t i = 0; i < runtime_args_.size(); i++) {
raw_options.push_back(std::make_pair(runtime_args_[i], nullptr));
}
raw_options.push_back(std::make_pair("compilercallbacks", callbacks_.get()));
raw_options.push_back(
std::make_pair("imageinstructionset", GetInstructionSetString(instruction_set_)));
// Only allow no boot image for the runtime if we're compiling one. When we compile an app,
// we don't want fallback mode, it will abort as we do not push a boot classpath (it might
// have been stripped in preopting, anyways).
if (!IsBootImage()) {
raw_options.push_back(std::make_pair("-Xno-dex-file-fallback", nullptr));
}
// Disable libsigchain. We don't don't need it during compilation and it prevents us
// from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT).
raw_options.push_back(std::make_pair("-Xno-sig-chain", nullptr));
// Disable Hspace compaction to save heap size virtual space.
// Only need disable Hspace for OOM becasue background collector is equal to
// foreground collector by default for dex2oat.
raw_options.push_back(std::make_pair("-XX:DisableHSpaceCompactForOOM", nullptr));
// If we're asked to be deterministic, ensure non-concurrent GC for determinism. Also
// force the free-list implementation for large objects.
if (compiler_options_->IsForceDeterminism()) {
raw_options.push_back(std::make_pair("-Xgc:nonconcurrent", nullptr));
raw_options.push_back(std::make_pair("-XX:LargeObjectSpace=freelist", nullptr));
// We also need to turn off the nonmoving space. For that, we need to disable HSpace
// compaction (done above) and ensure that neither foreground nor background collectors
// are concurrent.
raw_options.push_back(std::make_pair("-XX:BackgroundGC=nonconcurrent", nullptr));
// To make identity hashcode deterministic, set a known seed.
mirror::Object::SetHashCodeSeed(987654321U);
}
if (!Runtime::ParseOptions(raw_options, false, runtime_options)) {
LOG(ERROR) << "Failed to parse runtime options";
return false;
}
return true;
}
// Create a runtime necessary for compilation.
bool CreateRuntime(RuntimeArgumentMap&& runtime_options) {
TimingLogger::ScopedTiming t_runtime("Create runtime", timings_);
if (!Runtime::Create(std::move(runtime_options))) {
LOG(ERROR) << "Failed to create runtime";
return false;
}
runtime_.reset(Runtime::Current());
runtime_->SetInstructionSet(instruction_set_);
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
if (!runtime_->HasCalleeSaveMethod(type)) {
runtime_->SetCalleeSaveMethod(runtime_->CreateCalleeSaveMethod(), type);
}
}
runtime_->GetClassLinker()->FixupDexCaches(runtime_->GetResolutionMethod());
// Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this
// set up.
interpreter::UnstartedRuntime::Initialize();
runtime_->GetClassLinker()->RunRootClinits();
// Runtime::Create acquired the mutator_lock_ that is normally given away when we
// Runtime::Start, give it away now so that we don't starve GC.
Thread* self = Thread::Current();
self->TransitionFromRunnableToSuspended(kNative);
return true;
}
// Let the ImageWriter write the image files. If we do not compile PIC, also fix up the oat files.
bool CreateImageFile()
REQUIRES(!Locks::mutator_lock_) {
CHECK(image_writer_ != nullptr);
if (!IsBootImage()) {
CHECK(image_filenames_.empty());
image_filenames_.push_back(app_image_file_name_.c_str());
}
if (!image_writer_->Write(app_image_fd_,
image_filenames_,
oat_fd_,
oat_filenames_,
oat_location_)) {
LOG(ERROR) << "Failure during image file creation";
return false;
}
// We need the OatDataBegin entries.
std::map<const char*, uintptr_t> oat_data_begins;
for (const char* oat_filename : oat_filenames_) {
oat_data_begins.emplace(oat_filename, image_writer_->GetOatDataBegin(oat_filename));
}
// Destroy ImageWriter before doing FixupElf.
image_writer_.reset();
for (const char* oat_filename : oat_filenames_) {
// Do not fix up the ELF file if we are --compile-pic or compiling the app image
if (!compiler_options_->GetCompilePic() && IsBootImage()) {
std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename));
if (oat_file.get() == nullptr) {
PLOG(ERROR) << "Failed to open ELF file: " << oat_filename;
return false;
}
uintptr_t oat_data_begin = oat_data_begins.find(oat_filename)->second;
if (!ElfWriter::Fixup(oat_file.get(), oat_data_begin)) {
oat_file->Erase();
LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath();
return false;
}
if (oat_file->FlushCloseOrErase()) {
PLOG(ERROR) << "Failed to flush and close fixed ELF file " << oat_file->GetPath();
return false;
}
}
}
return true;
}
// Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;)
static std::unordered_set<std::string>* ReadImageClassesFromFile(
const char* image_classes_filename) {
std::function<std::string(const char*)> process = DotToDescriptor;
return ReadCommentedInputFromFile(image_classes_filename, &process);
}
// Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;)
static std::unordered_set<std::string>* ReadImageClassesFromZip(
const char* zip_filename,
const char* image_classes_filename,
std::string* error_msg) {
std::function<std::string(const char*)> process = DotToDescriptor;
return ReadCommentedInputFromZip(zip_filename, image_classes_filename, &process, error_msg);
}
// Read lines from the given file, dropping comments and empty lines. Post-process each line with
// the given function.
static std::unordered_set<std::string>* ReadCommentedInputFromFile(
const char* input_filename, std::function<std::string(const char*)>* process) {
std::unique_ptr<std::ifstream> input_file(new std::ifstream(input_filename, std::ifstream::in));
if (input_file.get() == nullptr) {
LOG(ERROR) << "Failed to open input file " << input_filename;
return nullptr;
}
std::unique_ptr<std::unordered_set<std::string>> result(
ReadCommentedInputStream(*input_file, process));
input_file->close();
return result.release();
}
// Read lines from the given file from the given zip file, dropping comments and empty lines.
// Post-process each line with the given function.
static std::unordered_set<std::string>* ReadCommentedInputFromZip(
const char* zip_filename,
const char* input_filename,
std::function<std::string(const char*)>* process,
std::string* error_msg) {
std::unique_ptr<ZipArchive> zip_archive(ZipArchive::Open(zip_filename, error_msg));
if (zip_archive.get() == nullptr) {
return nullptr;
}
std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(input_filename, error_msg));
if (zip_entry.get() == nullptr) {
*error_msg = StringPrintf("Failed to find '%s' within '%s': %s", input_filename,
zip_filename, error_msg->c_str());
return nullptr;
}
std::unique_ptr<MemMap> input_file(zip_entry->ExtractToMemMap(zip_filename,
input_filename,
error_msg));
if (input_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", input_filename,
zip_filename, error_msg->c_str());
return nullptr;
}
const std::string input_string(reinterpret_cast<char*>(input_file->Begin()),
input_file->Size());
std::istringstream input_stream(input_string);
return ReadCommentedInputStream(input_stream, process);
}
// Read lines from the given stream, dropping comments and empty lines. Post-process each line
// with the given function.
static std::unordered_set<std::string>* ReadCommentedInputStream(
std::istream& in_stream,
std::function<std::string(const char*)>* process) {
std::unique_ptr<std::unordered_set<std::string>> image_classes(
new std::unordered_set<std::string>);
while (in_stream.good()) {
std::string dot;
std::getline(in_stream, dot);
if (StartsWith(dot, "#") || dot.empty()) {
continue;
}
if (process != nullptr) {
std::string descriptor((*process)(dot.c_str()));
image_classes->insert(descriptor);
} else {
image_classes->insert(dot);
}
}
return image_classes.release();
}
void LogCompletionTime() {
// Note: when creation of a runtime fails, e.g., when trying to compile an app but when there
// is no image, there won't be a Runtime::Current().
// Note: driver creation can fail when loading an invalid dex file.
LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_)
<< " (threads: " << thread_count_ << ") "
<< ((Runtime::Current() != nullptr && driver_ != nullptr) ?
driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) :
"");
}
std::string StripIsaFrom(const char* image_filename, InstructionSet isa) {
std::string res(image_filename);
size_t last_slash = res.rfind('/');
if (last_slash == std::string::npos || last_slash == 0) {
return res;
}
size_t penultimate_slash = res.rfind('/', last_slash - 1);
if (penultimate_slash == std::string::npos) {
return res;
}
// Check that the string in-between is the expected one.
if (res.substr(penultimate_slash + 1, last_slash - penultimate_slash - 1) !=
GetInstructionSetString(isa)) {
LOG(WARNING) << "Unexpected string when trying to strip isa: " << res;
return res;
}
return res.substr(0, penultimate_slash) + res.substr(last_slash);
}
std::unique_ptr<CompilerOptions> compiler_options_;
Compiler::Kind compiler_kind_;
InstructionSet instruction_set_;
std::unique_ptr<const InstructionSetFeatures> instruction_set_features_;
uint32_t image_file_location_oat_checksum_;
uintptr_t image_file_location_oat_data_begin_;
int32_t image_patch_delta_;
std::unique_ptr<SafeMap<std::string, std::string> > key_value_store_;
std::unique_ptr<VerificationResults> verification_results_;
DexFileToMethodInlinerMap method_inliner_map_;
std::unique_ptr<QuickCompilerCallbacks> callbacks_;
std::unique_ptr<Runtime> runtime_;
// Ownership for the class path files.
std::vector<std::unique_ptr<const DexFile>> class_path_files_;
size_t thread_count_;
uint64_t start_ns_;
std::unique_ptr<WatchDog> watchdog_;
std::vector<std::unique_ptr<File>> oat_files_;
std::string oat_location_;
std::vector<const char*> oat_filenames_;
std::vector<const char*> oat_unstripped_;
int oat_fd_;
std::vector<const char*> dex_filenames_;
std::vector<const char*> dex_locations_;
int zip_fd_;
std::string zip_location_;
std::string boot_image_filename_;
std::vector<const char*> runtime_args_;
std::vector<const char*> image_filenames_;
uintptr_t image_base_;
const char* image_classes_zip_filename_;
const char* image_classes_filename_;
ImageHeader::StorageMode image_storage_mode_;
const char* compiled_classes_zip_filename_;
const char* compiled_classes_filename_;
const char* compiled_methods_zip_filename_;
const char* compiled_methods_filename_;
std::unique_ptr<std::unordered_set<std::string>> image_classes_;
std::unique_ptr<std::unordered_set<std::string>> compiled_classes_;
std::unique_ptr<std::unordered_set<std::string>> compiled_methods_;
bool app_image_;
bool boot_image_;
bool multi_image_;
bool is_host_;
std::string android_root_;
std::vector<const DexFile*> dex_files_;
std::string no_inline_from_string_;
std::vector<jobject> dex_caches_;
jobject class_loader_;
std::vector<std::unique_ptr<ElfWriter>> elf_writers_;
std::vector<std::unique_ptr<OatWriter>> oat_writers_;
std::vector<OutputStream*> rodata_;
std::unique_ptr<ImageWriter> image_writer_;
std::unique_ptr<CompilerDriver> driver_;
std::vector<std::unique_ptr<MemMap>> opened_dex_files_maps_;
std::vector<std::unique_ptr<const DexFile>> opened_dex_files_;
std::vector<const DexFile*> no_inline_from_dex_files_;
std::vector<std::string> verbose_methods_;
bool dump_stats_;
bool dump_passes_;
bool dump_timing_;
bool dump_slow_timing_;
std::string swap_file_name_;
int swap_fd_;
std::string app_image_file_name_;
int app_image_fd_;
std::string profile_file_;
int profile_file_fd_;
std::unique_ptr<ProfileCompilationInfo> profile_compilation_info_;
TimingLogger* timings_;
std::unique_ptr<CumulativeLogger> compiler_phases_timings_;
std::vector<std::vector<const DexFile*>> dex_files_per_oat_file_;
std::unordered_map<const DexFile*, const char*> dex_file_oat_filename_map_;
// Backing storage.
std::vector<std::string> char_backing_storage_;
// See CompilerOptions.force_determinism_.
bool force_determinism_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat);
};
static void b13564922() {
#if defined(__linux__) && defined(__arm__)
int major, minor;
struct utsname uts;
if (uname(&uts) != -1 &&
sscanf(uts.release, "%d.%d", &major, &minor) == 2 &&
((major < 3) || ((major == 3) && (minor < 4)))) {
// Kernels before 3.4 don't handle the ASLR well and we can run out of address
// space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization.
int old_personality = personality(0xffffffff);
if ((old_personality & ADDR_NO_RANDOMIZE) == 0) {
int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE);
if (new_personality == -1) {
LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed.";
}
}
}
#endif
}
static int CompileImage(Dex2Oat& dex2oat) {
dex2oat.LoadClassProfileDescriptors();
dex2oat.Compile();
if (!dex2oat.WriteOatFiles()) {
dex2oat.EraseOatFiles();
return EXIT_FAILURE;
}
// Flush boot.oat. We always expect the output file by name, and it will be re-opened from the
// unstripped name. Do not close the file if we are compiling the image with an oat fd since the
// image writer will require this fd to generate the image.
if (dex2oat.ShouldKeepOatFileOpen()) {
if (!dex2oat.FlushOatFiles()) {
return EXIT_FAILURE;
}
} else if (!dex2oat.FlushCloseOatFiles()) {
return EXIT_FAILURE;
}
// Creates the boot.art and patches the oat files.
if (!dex2oat.HandleImage()) {
return EXIT_FAILURE;
}
// When given --host, finish early without stripping.
if (dex2oat.IsHost()) {
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
// Copy stripped to unstripped location, if necessary.
if (!dex2oat.CopyStrippedToUnstripped()) {
return EXIT_FAILURE;
}
// FlushClose again, as stripping might have re-opened the oat files.
if (!dex2oat.FlushCloseOatFiles()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
static int CompileApp(Dex2Oat& dex2oat) {
dex2oat.Compile();
if (!dex2oat.WriteOatFiles()) {
dex2oat.EraseOatFiles();
return EXIT_FAILURE;
}
// Do not close the oat files here. We might have gotten the output file by file descriptor,
// which we would lose.
// When given --host, finish early without stripping.
if (dex2oat.IsHost()) {
if (!dex2oat.FlushCloseOatFiles()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
// Copy stripped to unstripped location, if necessary. This will implicitly flush & close the
// stripped versions. If this is given, we expect to be able to open writable files by name.
if (!dex2oat.CopyStrippedToUnstripped()) {
return EXIT_FAILURE;
}
// Flush and close the files.
if (!dex2oat.FlushCloseOatFiles()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
static int dex2oat(int argc, char** argv) {
b13564922();
TimingLogger timings("compiler", false, false);
Dex2Oat dex2oat(&timings);
// Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError.
dex2oat.ParseArgs(argc, argv);
// If needed, process profile information for profile guided compilation.
// This operation involves I/O.
if (dex2oat.UseProfileGuidedCompilation()) {
if (!dex2oat.LoadProfile()) {
LOG(ERROR) << "Failed to process profile file";
return EXIT_FAILURE;
}
}
// Check early that the result of compilation can be written
if (!dex2oat.OpenFile()) {
return EXIT_FAILURE;
}
// Print the complete line when any of the following is true:
// 1) Debug build
// 2) Compiling an image
// 3) Compiling with --host
// 4) Compiling on the host (not a target build)
// Otherwise, print a stripped command line.
if (kIsDebugBuild || dex2oat.IsBootImage() || dex2oat.IsHost() || !kIsTargetBuild) {
LOG(INFO) << CommandLine();
} else {
LOG(INFO) << StrippedCommandLine();
}
if (!dex2oat.Setup()) {
dex2oat.EraseOatFiles();
return EXIT_FAILURE;
}
bool result;
if (dex2oat.IsImage()) {
result = CompileImage(dex2oat);
} else {
result = CompileApp(dex2oat);
}
dex2oat.Shutdown();
return result;
}
} // namespace art
int main(int argc, char** argv) {
int result = art::dex2oat(argc, argv);
// Everything was done, do an explicit exit here to avoid running Runtime destructors that take
// time (bug 10645725) unless we're a debug build or running on valgrind. Note: The Dex2Oat class
// should not destruct the runtime in this case.
if (!art::kIsDebugBuild && (RUNNING_ON_MEMORY_TOOL == 0)) {
exit(result);
}
return result;
}