blob: eb70d8cb95e25d09350d38e1aabbae3a4d328710 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains register alloction support. */
#include "dex/compiler_ir.h"
#include "dex/compiler_internals.h"
#include "mir_to_lir-inl.h"
namespace art {
/*
* Free all allocated temps in the temp pools. Note that this does
* not affect the "liveness" of a temp register, which will stay
* live until it is either explicitly killed or reallocated.
*/
void Mir2Lir::ResetRegPool() {
GrowableArray<RegisterInfo*>::Iterator iter(&tempreg_info_);
for (RegisterInfo* info = iter.Next(); info != NULL; info = iter.Next()) {
info->in_use = false;
}
// Reset temp tracking sanity check.
if (kIsDebugBuild) {
live_sreg_ = INVALID_SREG;
}
}
/*
* Set up temp & preserved register pools specialized by target.
* Note: num_regs may be zero.
*/
void Mir2Lir::CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num) {
for (int i = 0; i < num; i++) {
uint32_t reg_number = reg_nums[i];
regs[i].reg = reg_number;
regs[i].in_use = false;
regs[i].is_temp = false;
regs[i].pair = false;
regs[i].live = false;
regs[i].dirty = false;
regs[i].s_reg = INVALID_SREG;
size_t map_size = reginfo_map_.Size();
if (reg_number >= map_size) {
for (uint32_t i = 0; i < ((reg_number - map_size) + 1); i++) {
reginfo_map_.Insert(NULL);
}
}
reginfo_map_.Put(reg_number, &regs[i]);
}
}
void Mir2Lir::DumpRegPool(RegisterInfo* p, int num_regs) {
LOG(INFO) << "================================================";
for (int i = 0; i < num_regs; i++) {
LOG(INFO) << StringPrintf(
"R[%d]: T:%d, U:%d, P:%d, p:%d, LV:%d, D:%d, SR:%d",
p[i].reg, p[i].is_temp, p[i].in_use, p[i].pair, p[i].partner,
p[i].live, p[i].dirty, p[i].s_reg);
}
LOG(INFO) << "================================================";
}
void Mir2Lir::DumpCoreRegPool() {
DumpRegPool(reg_pool_->core_regs, reg_pool_->num_core_regs);
}
void Mir2Lir::DumpFpRegPool() {
DumpRegPool(reg_pool_->FPRegs, reg_pool_->num_fp_regs);
}
void Mir2Lir::ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg) {
for (int i = 0; i< num_regs; i++) {
if (p[i].s_reg == s_reg) {
if (p[i].is_temp) {
p[i].live = false;
}
p[i].def_start = NULL;
p[i].def_end = NULL;
}
}
}
/*
* Break the association between a Dalvik vreg and a physical temp register of either register
* class.
* TODO: Ideally, the public version of this code should not exist. Besides its local usage
* in the register utilities, is is also used by code gen routines to work around a deficiency in
* local register allocation, which fails to distinguish between the "in" and "out" identities
* of Dalvik vregs. This can result in useless register copies when the same Dalvik vreg
* is used both as the source and destination register of an operation in which the type
* changes (for example: INT_TO_FLOAT v1, v1). Revisit when improved register allocation is
* addressed.
*/
void Mir2Lir::ClobberSReg(int s_reg) {
/* Reset live temp tracking sanity checker */
if (kIsDebugBuild) {
if (s_reg == live_sreg_) {
live_sreg_ = INVALID_SREG;
}
}
ClobberSRegBody(reg_pool_->core_regs, reg_pool_->num_core_regs, s_reg);
ClobberSRegBody(reg_pool_->FPRegs, reg_pool_->num_fp_regs, s_reg);
}
/*
* SSA names associated with the initial definitions of Dalvik
* registers are the same as the Dalvik register number (and
* thus take the same position in the promotion_map. However,
* the special Method* and compiler temp resisters use negative
* v_reg numbers to distinguish them and can have an arbitrary
* ssa name (above the last original Dalvik register). This function
* maps SSA names to positions in the promotion_map array.
*/
int Mir2Lir::SRegToPMap(int s_reg) {
DCHECK_LT(s_reg, mir_graph_->GetNumSSARegs());
DCHECK_GE(s_reg, 0);
int v_reg = mir_graph_->SRegToVReg(s_reg);
if (v_reg >= 0) {
DCHECK_LT(v_reg, cu_->num_dalvik_registers);
return v_reg;
} else {
/*
* It must be the case that the v_reg for temporary is less than or equal to the
* base reg for temps. For that reason, "position" must be zero or positive.
*/
unsigned int position = std::abs(v_reg) - std::abs(static_cast<int>(kVRegTempBaseReg));
// The temporaries are placed after dalvik registers in the promotion map
DCHECK_LT(position, mir_graph_->GetNumUsedCompilerTemps());
return cu_->num_dalvik_registers + position;
}
}
void Mir2Lir::RecordCorePromotion(int reg, int s_reg) {
int p_map_idx = SRegToPMap(s_reg);
int v_reg = mir_graph_->SRegToVReg(s_reg);
GetRegInfo(reg)->in_use = true;
core_spill_mask_ |= (1 << reg);
// Include reg for later sort
core_vmap_table_.push_back(reg << VREG_NUM_WIDTH | (v_reg & ((1 << VREG_NUM_WIDTH) - 1)));
num_core_spills_++;
promotion_map_[p_map_idx].core_location = kLocPhysReg;
promotion_map_[p_map_idx].core_reg = reg;
}
/* Reserve a callee-save register. Return -1 if none available */
int Mir2Lir::AllocPreservedCoreReg(int s_reg) {
int res = -1;
RegisterInfo* core_regs = reg_pool_->core_regs;
for (int i = 0; i < reg_pool_->num_core_regs; i++) {
if (!core_regs[i].is_temp && !core_regs[i].in_use) {
res = core_regs[i].reg;
RecordCorePromotion(res, s_reg);
break;
}
}
return res;
}
void Mir2Lir::RecordFpPromotion(int reg, int s_reg) {
int p_map_idx = SRegToPMap(s_reg);
int v_reg = mir_graph_->SRegToVReg(s_reg);
GetRegInfo(reg)->in_use = true;
MarkPreservedSingle(v_reg, reg);
promotion_map_[p_map_idx].fp_location = kLocPhysReg;
promotion_map_[p_map_idx].FpReg = reg;
}
// Reserve a callee-save fp single register.
int Mir2Lir::AllocPreservedSingle(int s_reg) {
int res = -1; // Return code if none available.
RegisterInfo* FPRegs = reg_pool_->FPRegs;
for (int i = 0; i < reg_pool_->num_fp_regs; i++) {
if (!FPRegs[i].is_temp && !FPRegs[i].in_use) {
res = FPRegs[i].reg;
RecordFpPromotion(res, s_reg);
break;
}
}
return res;
}
/*
* Somewhat messy code here. We want to allocate a pair of contiguous
* physical single-precision floating point registers starting with
* an even numbered reg. It is possible that the paired s_reg (s_reg+1)
* has already been allocated - try to fit if possible. Fail to
* allocate if we can't meet the requirements for the pair of
* s_reg<=sX[even] & (s_reg+1)<= sX+1.
*/
int Mir2Lir::AllocPreservedDouble(int s_reg) {
int res = -1; // Assume failure
int v_reg = mir_graph_->SRegToVReg(s_reg);
int p_map_idx = SRegToPMap(s_reg);
if (promotion_map_[p_map_idx+1].fp_location == kLocPhysReg) {
// Upper reg is already allocated. Can we fit?
int high_reg = promotion_map_[p_map_idx+1].FpReg;
if ((high_reg & 1) == 0) {
// High reg is even - fail.
return res;
}
// Is the low reg of the pair free?
RegisterInfo* p = GetRegInfo(high_reg-1);
if (p->in_use || p->is_temp) {
// Already allocated or not preserved - fail.
return res;
}
// OK - good to go.
res = p->reg;
p->in_use = true;
DCHECK_EQ((res & 1), 0);
MarkPreservedSingle(v_reg, res);
} else {
RegisterInfo* FPRegs = reg_pool_->FPRegs;
for (int i = 0; i < reg_pool_->num_fp_regs; i++) {
if (!FPRegs[i].is_temp && !FPRegs[i].in_use &&
((FPRegs[i].reg & 0x1) == 0x0) &&
!FPRegs[i+1].is_temp && !FPRegs[i+1].in_use &&
((FPRegs[i+1].reg & 0x1) == 0x1) &&
(FPRegs[i].reg + 1) == FPRegs[i+1].reg) {
res = FPRegs[i].reg;
FPRegs[i].in_use = true;
MarkPreservedSingle(v_reg, res);
FPRegs[i+1].in_use = true;
DCHECK_EQ(res + 1, FPRegs[i+1].reg);
MarkPreservedSingle(v_reg+1, res+1);
break;
}
}
}
if (res != -1) {
promotion_map_[p_map_idx].fp_location = kLocPhysReg;
promotion_map_[p_map_idx].FpReg = res;
promotion_map_[p_map_idx+1].fp_location = kLocPhysReg;
promotion_map_[p_map_idx+1].FpReg = res + 1;
}
return res;
}
int Mir2Lir::AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp,
bool required) {
int next = *next_temp;
for (int i = 0; i< num_regs; i++) {
if (next >= num_regs)
next = 0;
if (p[next].is_temp && !p[next].in_use && !p[next].live) {
Clobber(p[next].reg);
p[next].in_use = true;
p[next].pair = false;
*next_temp = next + 1;
return p[next].reg;
}
next++;
}
next = *next_temp;
for (int i = 0; i< num_regs; i++) {
if (next >= num_regs)
next = 0;
if (p[next].is_temp && !p[next].in_use) {
Clobber(p[next].reg);
p[next].in_use = true;
p[next].pair = false;
*next_temp = next + 1;
return p[next].reg;
}
next++;
}
if (required) {
CodegenDump();
DumpRegPool(reg_pool_->core_regs,
reg_pool_->num_core_regs);
LOG(FATAL) << "No free temp registers";
}
return -1; // No register available
}
// REDO: too many assumptions.
int Mir2Lir::AllocTempDouble() {
RegisterInfo* p = reg_pool_->FPRegs;
int num_regs = reg_pool_->num_fp_regs;
/* Start looking at an even reg */
int next = reg_pool_->next_fp_reg & ~0x1;
// First try to avoid allocating live registers
for (int i = 0; i < num_regs; i+=2) {
if (next >= num_regs)
next = 0;
if ((p[next].is_temp && !p[next].in_use && !p[next].live) &&
(p[next+1].is_temp && !p[next+1].in_use && !p[next+1].live)) {
Clobber(p[next].reg);
Clobber(p[next+1].reg);
p[next].in_use = true;
p[next+1].in_use = true;
DCHECK_EQ((p[next].reg+1), p[next+1].reg);
DCHECK_EQ((p[next].reg & 0x1), 0);
reg_pool_->next_fp_reg = next + 2;
if (reg_pool_->next_fp_reg >= num_regs) {
reg_pool_->next_fp_reg = 0;
}
return p[next].reg;
}
next += 2;
}
next = reg_pool_->next_fp_reg & ~0x1;
// No choice - find a pair and kill it.
for (int i = 0; i < num_regs; i+=2) {
if (next >= num_regs)
next = 0;
if (p[next].is_temp && !p[next].in_use && p[next+1].is_temp &&
!p[next+1].in_use) {
Clobber(p[next].reg);
Clobber(p[next+1].reg);
p[next].in_use = true;
p[next+1].in_use = true;
DCHECK_EQ((p[next].reg+1), p[next+1].reg);
DCHECK_EQ((p[next].reg & 0x1), 0);
reg_pool_->next_fp_reg = next + 2;
if (reg_pool_->next_fp_reg >= num_regs) {
reg_pool_->next_fp_reg = 0;
}
return p[next].reg;
}
next += 2;
}
LOG(FATAL) << "No free temp registers (pair)";
return -1;
}
/* Return a temp if one is available, -1 otherwise */
int Mir2Lir::AllocFreeTemp() {
return AllocTempBody(reg_pool_->core_regs,
reg_pool_->num_core_regs,
&reg_pool_->next_core_reg, false);
}
int Mir2Lir::AllocTemp() {
return AllocTempBody(reg_pool_->core_regs,
reg_pool_->num_core_regs,
&reg_pool_->next_core_reg, true);
}
int Mir2Lir::AllocTempFloat() {
return AllocTempBody(reg_pool_->FPRegs,
reg_pool_->num_fp_regs,
&reg_pool_->next_fp_reg, true);
}
Mir2Lir::RegisterInfo* Mir2Lir::AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg) {
if (s_reg == -1)
return NULL;
for (int i = 0; i < num_regs; i++) {
if ((p[i].s_reg == s_reg) && p[i].live) {
if (p[i].is_temp)
p[i].in_use = true;
return &p[i];
}
}
return NULL;
}
Mir2Lir::RegisterInfo* Mir2Lir::AllocLive(int s_reg, int reg_class) {
RegisterInfo* res = NULL;
switch (reg_class) {
case kAnyReg:
res = AllocLiveBody(reg_pool_->FPRegs,
reg_pool_->num_fp_regs, s_reg);
if (res)
break;
/* Intentional fallthrough */
case kCoreReg:
res = AllocLiveBody(reg_pool_->core_regs,
reg_pool_->num_core_regs, s_reg);
break;
case kFPReg:
res = AllocLiveBody(reg_pool_->FPRegs,
reg_pool_->num_fp_regs, s_reg);
break;
default:
LOG(FATAL) << "Invalid register type";
}
return res;
}
void Mir2Lir::FreeTemp(int reg) {
RegisterInfo* p = GetRegInfo(reg);
if (p->is_temp) {
p->in_use = false;
}
p->pair = false;
}
Mir2Lir::RegisterInfo* Mir2Lir::IsLive(int reg) {
RegisterInfo* p = GetRegInfo(reg);
return p->live ? p : NULL;
}
Mir2Lir::RegisterInfo* Mir2Lir::IsTemp(int reg) {
RegisterInfo* p = GetRegInfo(reg);
return (p->is_temp) ? p : NULL;
}
Mir2Lir::RegisterInfo* Mir2Lir::IsPromoted(int reg) {
RegisterInfo* p = GetRegInfo(reg);
return (p->is_temp) ? NULL : p;
}
bool Mir2Lir::IsDirty(int reg) {
RegisterInfo* p = GetRegInfo(reg);
return p->dirty;
}
/*
* Similar to AllocTemp(), but forces the allocation of a specific
* register. No check is made to see if the register was previously
* allocated. Use with caution.
*/
void Mir2Lir::LockTemp(int reg) {
RegisterInfo* p = GetRegInfo(reg);
DCHECK(p->is_temp);
p->in_use = true;
p->live = false;
}
void Mir2Lir::ResetDef(int reg) {
ResetDefBody(GetRegInfo(reg));
}
void Mir2Lir::NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2) {
if (start && finish) {
LIR *p;
DCHECK_EQ(s_reg1, s_reg2);
for (p = start; ; p = p->next) {
NopLIR(p);
if (p == finish)
break;
}
}
}
/*
* Mark the beginning and end LIR of a def sequence. Note that
* on entry start points to the LIR prior to the beginning of the
* sequence.
*/
void Mir2Lir::MarkDef(RegLocation rl, LIR *start, LIR *finish) {
DCHECK(!rl.wide);
DCHECK(start && start->next);
DCHECK(finish);
RegisterInfo* p = GetRegInfo(rl.low_reg);
p->def_start = start->next;
p->def_end = finish;
}
/*
* Mark the beginning and end LIR of a def sequence. Note that
* on entry start points to the LIR prior to the beginning of the
* sequence.
*/
void Mir2Lir::MarkDefWide(RegLocation rl, LIR *start, LIR *finish) {
DCHECK(rl.wide);
DCHECK(start && start->next);
DCHECK(finish);
RegisterInfo* p = GetRegInfo(rl.low_reg);
ResetDef(rl.high_reg); // Only track low of pair
p->def_start = start->next;
p->def_end = finish;
}
RegLocation Mir2Lir::WideToNarrow(RegLocation rl) {
DCHECK(rl.wide);
if (rl.location == kLocPhysReg) {
RegisterInfo* info_lo = GetRegInfo(rl.low_reg);
RegisterInfo* info_hi = GetRegInfo(rl.high_reg);
if (info_lo->is_temp) {
info_lo->pair = false;
info_lo->def_start = NULL;
info_lo->def_end = NULL;
}
if (info_hi->is_temp) {
info_hi->pair = false;
info_hi->def_start = NULL;
info_hi->def_end = NULL;
}
}
rl.wide = false;
return rl;
}
void Mir2Lir::ResetDefLoc(RegLocation rl) {
DCHECK(!rl.wide);
RegisterInfo* p = IsTemp(rl.low_reg);
if (p && !(cu_->disable_opt & (1 << kSuppressLoads))) {
DCHECK(!p->pair);
NullifyRange(p->def_start, p->def_end, p->s_reg, rl.s_reg_low);
}
ResetDef(rl.low_reg);
}
void Mir2Lir::ResetDefLocWide(RegLocation rl) {
DCHECK(rl.wide);
RegisterInfo* p_low = IsTemp(rl.low_reg);
RegisterInfo* p_high = IsTemp(rl.high_reg);
if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
DCHECK(p_low->pair);
NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
}
if (p_high && !(cu_->disable_opt & (1 << kSuppressLoads))) {
DCHECK(p_high->pair);
}
ResetDef(rl.low_reg);
ResetDef(rl.high_reg);
}
void Mir2Lir::ResetDefTracking() {
for (int i = 0; i< reg_pool_->num_core_regs; i++) {
ResetDefBody(&reg_pool_->core_regs[i]);
}
for (int i = 0; i< reg_pool_->num_fp_regs; i++) {
ResetDefBody(&reg_pool_->FPRegs[i]);
}
}
void Mir2Lir::ClobberAllRegs() {
GrowableArray<RegisterInfo*>::Iterator iter(&tempreg_info_);
for (RegisterInfo* info = iter.Next(); info != NULL; info = iter.Next()) {
info->live = false;
info->s_reg = INVALID_SREG;
info->def_start = NULL;
info->def_end = NULL;
info->pair = false;
}
}
// Make sure nothing is live and dirty
void Mir2Lir::FlushAllRegsBody(RegisterInfo* info, int num_regs) {
for (int i = 0; i < num_regs; i++) {
if (info[i].live && info[i].dirty) {
if (info[i].pair) {
FlushRegWide(info[i].reg, info[i].partner);
} else {
FlushReg(info[i].reg);
}
}
}
}
void Mir2Lir::FlushAllRegs() {
FlushAllRegsBody(reg_pool_->core_regs,
reg_pool_->num_core_regs);
FlushAllRegsBody(reg_pool_->FPRegs,
reg_pool_->num_fp_regs);
ClobberAllRegs();
}
// TUNING: rewrite all of this reg stuff. Probably use an attribute table
bool Mir2Lir::RegClassMatches(int reg_class, int reg) {
if (reg_class == kAnyReg) {
return true;
} else if (reg_class == kCoreReg) {
return !IsFpReg(reg);
} else {
return IsFpReg(reg);
}
}
void Mir2Lir::MarkLive(int reg, int s_reg) {
RegisterInfo* info = GetRegInfo(reg);
if ((info->reg == reg) && (info->s_reg == s_reg) && info->live) {
return; /* already live */
} else if (s_reg != INVALID_SREG) {
ClobberSReg(s_reg);
if (info->is_temp) {
info->live = true;
}
} else {
/* Can't be live if no associated s_reg */
DCHECK(info->is_temp);
info->live = false;
}
info->s_reg = s_reg;
}
void Mir2Lir::MarkTemp(int reg) {
RegisterInfo* info = GetRegInfo(reg);
tempreg_info_.Insert(info);
info->is_temp = true;
}
void Mir2Lir::UnmarkTemp(int reg) {
RegisterInfo* info = GetRegInfo(reg);
tempreg_info_.Delete(info);
info->is_temp = false;
}
void Mir2Lir::MarkPair(int low_reg, int high_reg) {
DCHECK_NE(low_reg, high_reg);
RegisterInfo* info_lo = GetRegInfo(low_reg);
RegisterInfo* info_hi = GetRegInfo(high_reg);
info_lo->pair = info_hi->pair = true;
info_lo->partner = high_reg;
info_hi->partner = low_reg;
}
void Mir2Lir::MarkClean(RegLocation loc) {
RegisterInfo* info = GetRegInfo(loc.low_reg);
info->dirty = false;
if (loc.wide) {
info = GetRegInfo(loc.high_reg);
info->dirty = false;
}
}
void Mir2Lir::MarkDirty(RegLocation loc) {
if (loc.home) {
// If already home, can't be dirty
return;
}
RegisterInfo* info = GetRegInfo(loc.low_reg);
info->dirty = true;
if (loc.wide) {
info = GetRegInfo(loc.high_reg);
info->dirty = true;
}
}
void Mir2Lir::MarkInUse(int reg) {
RegisterInfo* info = GetRegInfo(reg);
info->in_use = true;
}
void Mir2Lir::CopyRegInfo(int new_reg, int old_reg) {
RegisterInfo* new_info = GetRegInfo(new_reg);
RegisterInfo* old_info = GetRegInfo(old_reg);
// Target temp status must not change
bool is_temp = new_info->is_temp;
*new_info = *old_info;
// Restore target's temp status
new_info->is_temp = is_temp;
new_info->reg = new_reg;
}
bool Mir2Lir::CheckCorePoolSanity() {
for (static int i = 0; i < reg_pool_->num_core_regs; i++) {
if (reg_pool_->core_regs[i].pair) {
static int my_reg = reg_pool_->core_regs[i].reg;
static int my_sreg = reg_pool_->core_regs[i].s_reg;
static int partner_reg = reg_pool_->core_regs[i].partner;
static RegisterInfo* partner = GetRegInfo(partner_reg);
DCHECK(partner != NULL);
DCHECK(partner->pair);
DCHECK_EQ(my_reg, partner->partner);
static int partner_sreg = partner->s_reg;
if (my_sreg == INVALID_SREG) {
DCHECK_EQ(partner_sreg, INVALID_SREG);
} else {
int diff = my_sreg - partner_sreg;
DCHECK((diff == -1) || (diff == 1));
}
}
if (!reg_pool_->core_regs[i].live) {
DCHECK(reg_pool_->core_regs[i].def_start == NULL);
DCHECK(reg_pool_->core_regs[i].def_end == NULL);
}
}
return true;
}
/*
* Return an updated location record with current in-register status.
* If the value lives in live temps, reflect that fact. No code
* is generated. If the live value is part of an older pair,
* clobber both low and high.
* TUNING: clobbering both is a bit heavy-handed, but the alternative
* is a bit complex when dealing with FP regs. Examine code to see
* if it's worthwhile trying to be more clever here.
*/
RegLocation Mir2Lir::UpdateLoc(RegLocation loc) {
DCHECK(!loc.wide);
DCHECK(CheckCorePoolSanity());
if (loc.location != kLocPhysReg) {
DCHECK((loc.location == kLocDalvikFrame) ||
(loc.location == kLocCompilerTemp));
RegisterInfo* info_lo = AllocLive(loc.s_reg_low, kAnyReg);
if (info_lo) {
if (info_lo->pair) {
Clobber(info_lo->reg);
Clobber(info_lo->partner);
FreeTemp(info_lo->reg);
} else {
loc.low_reg = info_lo->reg;
loc.location = kLocPhysReg;
}
}
}
return loc;
}
/* see comments for update_loc */
RegLocation Mir2Lir::UpdateLocWide(RegLocation loc) {
DCHECK(loc.wide);
DCHECK(CheckCorePoolSanity());
if (loc.location != kLocPhysReg) {
DCHECK((loc.location == kLocDalvikFrame) ||
(loc.location == kLocCompilerTemp));
// Are the dalvik regs already live in physical registers?
RegisterInfo* info_lo = AllocLive(loc.s_reg_low, kAnyReg);
RegisterInfo* info_hi = AllocLive(GetSRegHi(loc.s_reg_low), kAnyReg);
bool match = true;
match = match && (info_lo != NULL);
match = match && (info_hi != NULL);
// Are they both core or both FP?
match = match && (IsFpReg(info_lo->reg) == IsFpReg(info_hi->reg));
// If a pair of floating point singles, are they properly aligned?
if (match && IsFpReg(info_lo->reg)) {
match &= ((info_lo->reg & 0x1) == 0);
match &= ((info_hi->reg - info_lo->reg) == 1);
}
// If previously used as a pair, it is the same pair?
if (match && (info_lo->pair || info_hi->pair)) {
match = (info_lo->pair == info_hi->pair);
match &= ((info_lo->reg == info_hi->partner) &&
(info_hi->reg == info_lo->partner));
}
if (match) {
// Can reuse - update the register usage info
loc.low_reg = info_lo->reg;
loc.high_reg = info_hi->reg;
loc.location = kLocPhysReg;
MarkPair(loc.low_reg, loc.high_reg);
DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
return loc;
}
// Can't easily reuse - clobber and free any overlaps
if (info_lo) {
Clobber(info_lo->reg);
FreeTemp(info_lo->reg);
if (info_lo->pair)
Clobber(info_lo->partner);
}
if (info_hi) {
Clobber(info_hi->reg);
FreeTemp(info_hi->reg);
if (info_hi->pair)
Clobber(info_hi->partner);
}
}
return loc;
}
/* For use in cases we don't know (or care) width */
RegLocation Mir2Lir::UpdateRawLoc(RegLocation loc) {
if (loc.wide)
return UpdateLocWide(loc);
else
return UpdateLoc(loc);
}
RegLocation Mir2Lir::EvalLocWide(RegLocation loc, int reg_class, bool update) {
DCHECK(loc.wide);
int32_t new_regs;
int32_t low_reg;
int32_t high_reg;
loc = UpdateLocWide(loc);
/* If already in registers, we can assume proper form. Right reg class? */
if (loc.location == kLocPhysReg) {
DCHECK_EQ(IsFpReg(loc.low_reg), IsFpReg(loc.high_reg));
DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
if (!RegClassMatches(reg_class, loc.low_reg)) {
/* Wrong register class. Reallocate and copy */
new_regs = AllocTypedTempPair(loc.fp, reg_class);
low_reg = new_regs & 0xff;
high_reg = (new_regs >> 8) & 0xff;
OpRegCopyWide(low_reg, high_reg, loc.low_reg, loc.high_reg);
CopyRegInfo(low_reg, loc.low_reg);
CopyRegInfo(high_reg, loc.high_reg);
Clobber(loc.low_reg);
Clobber(loc.high_reg);
loc.low_reg = low_reg;
loc.high_reg = high_reg;
MarkPair(loc.low_reg, loc.high_reg);
DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
}
return loc;
}
DCHECK_NE(loc.s_reg_low, INVALID_SREG);
DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG);
new_regs = AllocTypedTempPair(loc.fp, reg_class);
loc.low_reg = new_regs & 0xff;
loc.high_reg = (new_regs >> 8) & 0xff;
MarkPair(loc.low_reg, loc.high_reg);
if (update) {
loc.location = kLocPhysReg;
MarkLive(loc.low_reg, loc.s_reg_low);
// Does this wide value live in two registers or one vector register?
if (loc.low_reg != loc.high_reg) {
MarkLive(loc.high_reg, GetSRegHi(loc.s_reg_low));
}
}
DCHECK(!IsFpReg(loc.low_reg) || ((loc.low_reg & 0x1) == 0));
return loc;
}
RegLocation Mir2Lir::EvalLoc(RegLocation loc, int reg_class, bool update) {
int new_reg;
if (loc.wide)
return EvalLocWide(loc, reg_class, update);
loc = UpdateLoc(loc);
if (loc.location == kLocPhysReg) {
if (!RegClassMatches(reg_class, loc.low_reg)) {
/* Wrong register class. Realloc, copy and transfer ownership */
new_reg = AllocTypedTemp(loc.fp, reg_class);
OpRegCopy(new_reg, loc.low_reg);
CopyRegInfo(new_reg, loc.low_reg);
Clobber(loc.low_reg);
loc.low_reg = new_reg;
}
return loc;
}
DCHECK_NE(loc.s_reg_low, INVALID_SREG);
new_reg = AllocTypedTemp(loc.fp, reg_class);
loc.low_reg = new_reg;
if (update) {
loc.location = kLocPhysReg;
MarkLive(loc.low_reg, loc.s_reg_low);
}
return loc;
}
/* USE SSA names to count references of base Dalvik v_regs. */
void Mir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) {
for (int i = 0; i < mir_graph_->GetNumSSARegs(); i++) {
RegLocation loc = mir_graph_->reg_location_[i];
RefCounts* counts = loc.fp ? fp_counts : core_counts;
int p_map_idx = SRegToPMap(loc.s_reg_low);
if (loc.fp) {
if (loc.wide) {
// Treat doubles as a unit, using upper half of fp_counts array.
counts[p_map_idx + num_regs].count += mir_graph_->GetUseCount(i);
i++;
} else {
counts[p_map_idx].count += mir_graph_->GetUseCount(i);
}
} else if (!IsInexpensiveConstant(loc)) {
counts[p_map_idx].count += mir_graph_->GetUseCount(i);
}
}
}
/* qsort callback function, sort descending */
static int SortCounts(const void *val1, const void *val2) {
const Mir2Lir::RefCounts* op1 = reinterpret_cast<const Mir2Lir::RefCounts*>(val1);
const Mir2Lir::RefCounts* op2 = reinterpret_cast<const Mir2Lir::RefCounts*>(val2);
// Note that we fall back to sorting on reg so we get stable output
// on differing qsort implementations (such as on host and target or
// between local host and build servers).
return (op1->count == op2->count)
? (op1->s_reg - op2->s_reg)
: (op1->count < op2->count ? 1 : -1);
}
void Mir2Lir::DumpCounts(const RefCounts* arr, int size, const char* msg) {
LOG(INFO) << msg;
for (int i = 0; i < size; i++) {
if ((arr[i].s_reg & STARTING_DOUBLE_SREG) != 0) {
LOG(INFO) << "s_reg[D" << (arr[i].s_reg & ~STARTING_DOUBLE_SREG) << "]: " << arr[i].count;
} else {
LOG(INFO) << "s_reg[" << arr[i].s_reg << "]: " << arr[i].count;
}
}
}
/*
* Note: some portions of this code required even if the kPromoteRegs
* optimization is disabled.
*/
void Mir2Lir::DoPromotion() {
int dalvik_regs = cu_->num_dalvik_registers;
int num_regs = dalvik_regs + mir_graph_->GetNumUsedCompilerTemps();
const int promotion_threshold = 1;
// Allocate the promotion map - one entry for each Dalvik vReg or compiler temp
promotion_map_ = static_cast<PromotionMap*>
(arena_->Alloc(num_regs * sizeof(promotion_map_[0]), ArenaAllocator::kAllocRegAlloc));
// Allow target code to add any special registers
AdjustSpillMask();
/*
* Simple register promotion. Just do a static count of the uses
* of Dalvik registers. Note that we examine the SSA names, but
* count based on original Dalvik register name. Count refs
* separately based on type in order to give allocation
* preference to fp doubles - which must be allocated sequential
* physical single fp registers starting with an even-numbered
* reg.
* TUNING: replace with linear scan once we have the ability
* to describe register live ranges for GC.
*/
RefCounts *core_regs =
static_cast<RefCounts*>(arena_->Alloc(sizeof(RefCounts) * num_regs,
ArenaAllocator::kAllocRegAlloc));
RefCounts *FpRegs =
static_cast<RefCounts *>(arena_->Alloc(sizeof(RefCounts) * num_regs * 2,
ArenaAllocator::kAllocRegAlloc));
// Set ssa names for original Dalvik registers
for (int i = 0; i < dalvik_regs; i++) {
core_regs[i].s_reg = FpRegs[i].s_reg = i;
}
// Set ssa names for compiler temporaries
for (unsigned int ct_idx = 0; ct_idx < mir_graph_->GetNumUsedCompilerTemps(); ct_idx++) {
CompilerTemp* ct = mir_graph_->GetCompilerTemp(ct_idx);
core_regs[dalvik_regs + ct_idx].s_reg = ct->s_reg_low;
FpRegs[dalvik_regs + ct_idx].s_reg = ct->s_reg_low;
FpRegs[num_regs + dalvik_regs + ct_idx].s_reg = ct->s_reg_low;
}
// Duplicate in upper half to represent possible fp double starting sregs.
for (int i = 0; i < num_regs; i++) {
FpRegs[num_regs + i].s_reg = FpRegs[i].s_reg | STARTING_DOUBLE_SREG;
}
// Sum use counts of SSA regs by original Dalvik vreg.
CountRefs(core_regs, FpRegs, num_regs);
// Sort the count arrays
qsort(core_regs, num_regs, sizeof(RefCounts), SortCounts);
qsort(FpRegs, num_regs * 2, sizeof(RefCounts), SortCounts);
if (cu_->verbose) {
DumpCounts(core_regs, num_regs, "Core regs after sort");
DumpCounts(FpRegs, num_regs * 2, "Fp regs after sort");
}
if (!(cu_->disable_opt & (1 << kPromoteRegs))) {
// Promote FpRegs
for (int i = 0; (i < (num_regs * 2)) && (FpRegs[i].count >= promotion_threshold); i++) {
int p_map_idx = SRegToPMap(FpRegs[i].s_reg & ~STARTING_DOUBLE_SREG);
if ((FpRegs[i].s_reg & STARTING_DOUBLE_SREG) != 0) {
if ((promotion_map_[p_map_idx].fp_location != kLocPhysReg) &&
(promotion_map_[p_map_idx + 1].fp_location != kLocPhysReg)) {
int low_sreg = FpRegs[i].s_reg & ~STARTING_DOUBLE_SREG;
// Ignore result - if can't alloc double may still be able to alloc singles.
AllocPreservedDouble(low_sreg);
}
} else if (promotion_map_[p_map_idx].fp_location != kLocPhysReg) {
int reg = AllocPreservedSingle(FpRegs[i].s_reg);
if (reg < 0) {
break; // No more left.
}
}
}
// Promote core regs
for (int i = 0; (i < num_regs) &&
(core_regs[i].count >= promotion_threshold); i++) {
int p_map_idx = SRegToPMap(core_regs[i].s_reg);
if (promotion_map_[p_map_idx].core_location !=
kLocPhysReg) {
int reg = AllocPreservedCoreReg(core_regs[i].s_reg);
if (reg < 0) {
break; // No more left
}
}
}
}
// Now, update SSA names to new home locations
for (int i = 0; i < mir_graph_->GetNumSSARegs(); i++) {
RegLocation *curr = &mir_graph_->reg_location_[i];
int p_map_idx = SRegToPMap(curr->s_reg_low);
if (!curr->wide) {
if (curr->fp) {
if (promotion_map_[p_map_idx].fp_location == kLocPhysReg) {
curr->location = kLocPhysReg;
curr->low_reg = promotion_map_[p_map_idx].FpReg;
curr->home = true;
}
} else {
if (promotion_map_[p_map_idx].core_location == kLocPhysReg) {
curr->location = kLocPhysReg;
curr->low_reg = promotion_map_[p_map_idx].core_reg;
curr->home = true;
}
}
curr->high_reg = INVALID_REG;
} else {
if (curr->high_word) {
continue;
}
if (curr->fp) {
if ((promotion_map_[p_map_idx].fp_location == kLocPhysReg) &&
(promotion_map_[p_map_idx+1].fp_location ==
kLocPhysReg)) {
int low_reg = promotion_map_[p_map_idx].FpReg;
int high_reg = promotion_map_[p_map_idx+1].FpReg;
// Doubles require pair of singles starting at even reg
if (((low_reg & 0x1) == 0) && ((low_reg + 1) == high_reg)) {
curr->location = kLocPhysReg;
curr->low_reg = low_reg;
curr->high_reg = high_reg;
curr->home = true;
}
}
} else {
if ((promotion_map_[p_map_idx].core_location == kLocPhysReg)
&& (promotion_map_[p_map_idx+1].core_location ==
kLocPhysReg)) {
curr->location = kLocPhysReg;
curr->low_reg = promotion_map_[p_map_idx].core_reg;
curr->high_reg = promotion_map_[p_map_idx+1].core_reg;
curr->home = true;
}
}
}
}
if (cu_->verbose) {
DumpPromotionMap();
}
}
/* Returns sp-relative offset in bytes for a VReg */
int Mir2Lir::VRegOffset(int v_reg) {
return StackVisitor::GetVRegOffset(cu_->code_item, core_spill_mask_,
fp_spill_mask_, frame_size_, v_reg);
}
/* Returns sp-relative offset in bytes for a SReg */
int Mir2Lir::SRegOffset(int s_reg) {
return VRegOffset(mir_graph_->SRegToVReg(s_reg));
}
/* Mark register usage state and return long retloc */
RegLocation Mir2Lir::GetReturnWide(bool is_double) {
RegLocation gpr_res = LocCReturnWide();
RegLocation fpr_res = LocCReturnDouble();
RegLocation res = is_double ? fpr_res : gpr_res;
Clobber(res.low_reg);
Clobber(res.high_reg);
LockTemp(res.low_reg);
LockTemp(res.high_reg);
// Does this wide value live in two registers or one vector register?
if (res.low_reg != res.high_reg) {
MarkPair(res.low_reg, res.high_reg);
}
return res;
}
RegLocation Mir2Lir::GetReturn(bool is_float) {
RegLocation gpr_res = LocCReturn();
RegLocation fpr_res = LocCReturnFloat();
RegLocation res = is_float ? fpr_res : gpr_res;
Clobber(res.low_reg);
if (cu_->instruction_set == kMips) {
MarkInUse(res.low_reg);
} else {
LockTemp(res.low_reg);
}
return res;
}
void Mir2Lir::SimpleRegAlloc() {
DoPromotion();
if (cu_->verbose && !(cu_->disable_opt & (1 << kPromoteRegs))) {
LOG(INFO) << "After Promotion";
mir_graph_->DumpRegLocTable(mir_graph_->reg_location_, mir_graph_->GetNumSSARegs());
}
/* Set the frame size */
frame_size_ = ComputeFrameSize();
}
/*
* Get the "real" sreg number associated with an s_reg slot. In general,
* s_reg values passed through codegen are the SSA names created by
* dataflow analysis and refer to slot numbers in the mir_graph_->reg_location
* array. However, renaming is accomplished by simply replacing RegLocation
* entries in the reglocation[] array. Therefore, when location
* records for operands are first created, we need to ask the locRecord
* identified by the dataflow pass what it's new name is.
*/
int Mir2Lir::GetSRegHi(int lowSreg) {
return (lowSreg == INVALID_SREG) ? INVALID_SREG : lowSreg + 1;
}
bool Mir2Lir::oat_live_out(int s_reg) {
// For now.
return true;
}
int Mir2Lir::oatSSASrc(MIR* mir, int num) {
DCHECK_GT(mir->ssa_rep->num_uses, num);
return mir->ssa_rep->uses[num];
}
} // namespace art