| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the Thumb2 ISA. */ |
| |
| #include "arch/instruction_set_features.h" |
| #include "arm64_lir.h" |
| #include "codegen_arm64.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "dex/reg_storage_eq.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "mirror/array-inl.h" |
| #include "utils.h" |
| |
| namespace art { |
| |
| LIR* Arm64Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) { |
| OpRegReg(kOpCmp, src1, src2); |
| return OpCondBranch(cond, target); |
| } |
| |
| LIR* Arm64Mir2Lir::OpIT(ConditionCode ccode, const char* guide) { |
| UNUSED(ccode, guide); |
| LOG(FATAL) << "Unexpected use of OpIT for Arm64"; |
| UNREACHABLE(); |
| } |
| |
| void Arm64Mir2Lir::OpEndIT(LIR* it) { |
| UNUSED(it); |
| LOG(FATAL) << "Unexpected use of OpEndIT for Arm64"; |
| } |
| |
| /* |
| * 64-bit 3way compare function. |
| * cmp xA, xB |
| * csinc wC, wzr, wzr, eq // wC = (xA == xB) ? 0 : 1 |
| * csneg wC, wC, wC, ge // wC = (xA >= xB) ? wC : -wC |
| */ |
| void Arm64Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) { |
| RegLocation rl_result; |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); |
| NewLIR4(kA64Csinc4rrrc, rl_result.reg.GetReg(), rwzr, rwzr, kArmCondEq); |
| NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_result.reg.GetReg(), |
| rl_result.reg.GetReg(), kArmCondGe); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_shift) { |
| OpKind op = kOpBkpt; |
| switch (opcode) { |
| case Instruction::SHL_LONG: |
| case Instruction::SHL_LONG_2ADDR: |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_LONG: |
| case Instruction::SHR_LONG_2ADDR: |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_LONG: |
| case Instruction::USHR_LONG_2ADDR: |
| op = kOpLsr; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected case: " << opcode; |
| } |
| rl_shift = LoadValue(rl_shift, kCoreReg); |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.reg, rl_src1.reg, As64BitReg(rl_shift.reg)); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| static constexpr bool kUseDeltaEncodingInGenSelect = false; |
| |
| void Arm64Mir2Lir::GenSelect(int32_t true_val, int32_t false_val, ConditionCode ccode, |
| RegStorage rs_dest, int result_reg_class) { |
| if (false_val == 0 || // 0 is better as first operand. |
| true_val == 1 || // Potentially Csinc. |
| true_val == -1 || // Potentially Csinv. |
| true_val == false_val + 1) { // Potentially Csinc. |
| ccode = NegateComparison(ccode); |
| std::swap(true_val, false_val); |
| } |
| |
| ArmConditionCode code = ArmConditionEncoding(ccode); |
| |
| int opcode; // The opcode. |
| RegStorage left_op = RegStorage::InvalidReg(); // The operands. |
| RegStorage right_op = RegStorage::InvalidReg(); // The operands. |
| |
| bool is_wide = rs_dest.Is64Bit(); |
| |
| RegStorage zero_reg = is_wide ? rs_xzr : rs_wzr; |
| |
| if (true_val == 0) { |
| left_op = zero_reg; |
| } else { |
| left_op = rs_dest; |
| LoadConstantNoClobber(rs_dest, true_val); |
| } |
| if (false_val == 1) { |
| right_op = zero_reg; |
| opcode = kA64Csinc4rrrc; |
| } else if (false_val == -1) { |
| right_op = zero_reg; |
| opcode = kA64Csinv4rrrc; |
| } else if (false_val == true_val + 1) { |
| right_op = left_op; |
| opcode = kA64Csinc4rrrc; |
| } else if (false_val == -true_val) { |
| right_op = left_op; |
| opcode = kA64Csneg4rrrc; |
| } else if (false_val == ~true_val) { |
| right_op = left_op; |
| opcode = kA64Csinv4rrrc; |
| } else if (true_val == 0) { |
| // left_op is zero_reg. |
| right_op = rs_dest; |
| LoadConstantNoClobber(rs_dest, false_val); |
| opcode = kA64Csel4rrrc; |
| } else { |
| // Generic case. |
| RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class); |
| if (is_wide) { |
| if (t_reg2.Is32Bit()) { |
| t_reg2 = As64BitReg(t_reg2); |
| } |
| } else { |
| if (t_reg2.Is64Bit()) { |
| t_reg2 = As32BitReg(t_reg2); |
| } |
| } |
| |
| if (kUseDeltaEncodingInGenSelect) { |
| int32_t delta = false_val - true_val; |
| uint32_t abs_val = delta < 0 ? -delta : delta; |
| |
| if (abs_val < 0x1000) { // TODO: Replace with InexpensiveConstant with opcode. |
| // Can encode as immediate to an add. |
| right_op = t_reg2; |
| OpRegRegImm(kOpAdd, t_reg2, left_op, delta); |
| } |
| } |
| |
| // Load as constant. |
| if (!right_op.Valid()) { |
| LoadConstantNoClobber(t_reg2, false_val); |
| right_op = t_reg2; |
| } |
| |
| opcode = kA64Csel4rrrc; |
| } |
| |
| DCHECK(left_op.Valid() && right_op.Valid()); |
| NewLIR4(is_wide ? WIDE(opcode) : opcode, rs_dest.GetReg(), left_op.GetReg(), right_op.GetReg(), |
| code); |
| } |
| |
| void Arm64Mir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code, |
| int32_t true_val, int32_t false_val, RegStorage rs_dest, |
| RegisterClass dest_reg_class) { |
| DCHECK(rs_dest.Valid()); |
| OpRegReg(kOpCmp, left_op, right_op); |
| GenSelect(true_val, false_val, code, rs_dest, dest_reg_class); |
| } |
| |
| void Arm64Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) { |
| UNUSED(bb); |
| RegLocation rl_src = mir_graph_->GetSrc(mir, 0); |
| rl_src = LoadValue(rl_src, rl_src.ref ? kRefReg : kCoreReg); |
| // rl_src may be aliased with rl_result/rl_dest, so do compare early. |
| OpRegImm(kOpCmp, rl_src.reg, 0); |
| |
| RegLocation rl_dest = mir_graph_->GetDest(mir); |
| |
| // The kMirOpSelect has two variants, one for constants and one for moves. |
| if (mir->ssa_rep->num_uses == 1) { |
| RegLocation rl_result = EvalLoc(rl_dest, rl_dest.ref ? kRefReg : kCoreReg, true); |
| GenSelect(mir->dalvikInsn.vB, mir->dalvikInsn.vC, mir->meta.ccode, rl_result.reg, |
| rl_dest.ref ? kRefReg : kCoreReg); |
| StoreValue(rl_dest, rl_result); |
| } else { |
| RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]]; |
| RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]]; |
| |
| RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg; |
| rl_true = LoadValue(rl_true, result_reg_class); |
| rl_false = LoadValue(rl_false, result_reg_class); |
| RegLocation rl_result = EvalLoc(rl_dest, result_reg_class, true); |
| |
| bool is_wide = rl_dest.ref || rl_dest.wide; |
| int opcode = is_wide ? WIDE(kA64Csel4rrrc) : kA64Csel4rrrc; |
| NewLIR4(opcode, rl_result.reg.GetReg(), |
| rl_true.reg.GetReg(), rl_false.reg.GetReg(), ArmConditionEncoding(mir->meta.ccode)); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| void Arm64Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) { |
| RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0); |
| RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2); |
| LIR* taken = &block_label_list_[bb->taken]; |
| LIR* not_taken = &block_label_list_[bb->fall_through]; |
| // Normalize such that if either operand is constant, src2 will be constant. |
| ConditionCode ccode = mir->meta.ccode; |
| if (rl_src1.is_const) { |
| std::swap(rl_src1, rl_src2); |
| ccode = FlipComparisonOrder(ccode); |
| } |
| |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| |
| if (rl_src2.is_const) { |
| // TODO: Optimize for rl_src1.is_const? (Does happen in the boot image at the moment.) |
| |
| int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| // Special handling using cbz & cbnz. |
| if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) { |
| OpCmpImmBranch(ccode, rl_src1.reg, 0, taken); |
| OpCmpImmBranch(NegateComparison(ccode), rl_src1.reg, 0, not_taken); |
| return; |
| } |
| |
| // Only handle Imm if src2 is not already in a register. |
| rl_src2 = UpdateLocWide(rl_src2); |
| if (rl_src2.location != kLocPhysReg) { |
| OpRegImm64(kOpCmp, rl_src1.reg, val); |
| OpCondBranch(ccode, taken); |
| OpCondBranch(NegateComparison(ccode), not_taken); |
| return; |
| } |
| } |
| |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); |
| OpCondBranch(ccode, taken); |
| OpCondBranch(NegateComparison(ccode), not_taken); |
| } |
| |
| /* |
| * Generate a register comparison to an immediate and branch. Caller |
| * is responsible for setting branch target field. |
| */ |
| LIR* Arm64Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, |
| LIR* target) { |
| LIR* branch = nullptr; |
| ArmConditionCode arm_cond = ArmConditionEncoding(cond); |
| if (check_value == 0) { |
| if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) { |
| A64Opcode opcode = (arm_cond == kArmCondEq) ? kA64Cbz2rt : kA64Cbnz2rt; |
| A64Opcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0); |
| branch = NewLIR2(opcode | wide, reg.GetReg(), 0); |
| } else if (arm_cond == kArmCondLs) { |
| // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz. |
| // This case happens for a bounds check of array[0]. |
| A64Opcode opcode = kA64Cbz2rt; |
| A64Opcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0); |
| branch = NewLIR2(opcode | wide, reg.GetReg(), 0); |
| } else if (arm_cond == kArmCondLt || arm_cond == kArmCondGe) { |
| A64Opcode opcode = (arm_cond == kArmCondLt) ? kA64Tbnz3rht : kA64Tbz3rht; |
| A64Opcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0); |
| int value = reg.Is64Bit() ? 63 : 31; |
| branch = NewLIR3(opcode | wide, reg.GetReg(), value, 0); |
| } |
| } |
| |
| if (branch == nullptr) { |
| OpRegImm(kOpCmp, reg, check_value); |
| branch = NewLIR2(kA64B2ct, arm_cond, 0); |
| } |
| |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* Arm64Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, |
| RegStorage base_reg, int offset, int check_value, |
| LIR* target, LIR** compare) { |
| DCHECK(compare == nullptr); |
| // It is possible that temp register is 64-bit. (ArgReg or RefReg) |
| // Always compare 32-bit value no matter what temp_reg is. |
| if (temp_reg.Is64Bit()) { |
| temp_reg = As32BitReg(temp_reg); |
| } |
| Load32Disp(base_reg, offset, temp_reg); |
| LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target); |
| return branch; |
| } |
| |
| LIR* Arm64Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) { |
| bool dest_is_fp = r_dest.IsFloat(); |
| bool src_is_fp = r_src.IsFloat(); |
| A64Opcode opcode = kA64Brk1d; |
| LIR* res; |
| |
| if (LIKELY(dest_is_fp == src_is_fp)) { |
| if (LIKELY(!dest_is_fp)) { |
| DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit()); |
| |
| // Core/core copy. |
| // Copies involving the sp register require a different instruction. |
| opcode = UNLIKELY(A64_REG_IS_SP(r_dest.GetReg())) ? kA64Add4RRdT : kA64Mov2rr; |
| |
| // TODO(Arm64): kA64Add4RRdT formally has 4 args, but is used as a 2 args instruction. |
| // This currently works because the other arguments are set to 0 by default. We should |
| // rather introduce an alias kA64Mov2RR. |
| |
| // core/core copy. Do a x/x copy only if both registers are x. |
| if (r_dest.Is64Bit() && r_src.Is64Bit()) { |
| opcode = WIDE(opcode); |
| } |
| } else { |
| // Float/float copy. |
| bool dest_is_double = r_dest.IsDouble(); |
| bool src_is_double = r_src.IsDouble(); |
| |
| // We do not do float/double or double/float casts here. |
| DCHECK_EQ(dest_is_double, src_is_double); |
| |
| // Homogeneous float/float copy. |
| opcode = (dest_is_double) ? WIDE(kA64Fmov2ff) : kA64Fmov2ff; |
| } |
| } else { |
| // Inhomogeneous register copy. |
| if (dest_is_fp) { |
| if (r_dest.IsDouble()) { |
| opcode = kA64Fmov2Sx; |
| } else { |
| r_src = Check32BitReg(r_src); |
| opcode = kA64Fmov2sw; |
| } |
| } else { |
| if (r_src.IsDouble()) { |
| opcode = kA64Fmov2xS; |
| } else { |
| r_dest = Check32BitReg(r_dest); |
| opcode = kA64Fmov2ws; |
| } |
| } |
| } |
| |
| res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg()); |
| |
| if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) { |
| res->flags.is_nop = true; |
| } |
| |
| return res; |
| } |
| |
| void Arm64Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) { |
| if (r_dest != r_src) { |
| LIR* res = OpRegCopyNoInsert(r_dest, r_src); |
| AppendLIR(res); |
| } |
| } |
| |
| void Arm64Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) { |
| OpRegCopy(r_dest, r_src); |
| } |
| |
| // Table of magic divisors |
| struct MagicTable { |
| int magic64_base; |
| int magic64_eor; |
| uint64_t magic64; |
| uint32_t magic32; |
| uint32_t shift; |
| DividePattern pattern; |
| }; |
| |
| static const MagicTable magic_table[] = { |
| { 0, 0, 0, 0, 0, DivideNone}, // 0 |
| { 0, 0, 0, 0, 0, DivideNone}, // 1 |
| { 0, 0, 0, 0, 0, DivideNone}, // 2 |
| {0x3c, -1, 0x5555555555555556, 0x55555556, 0, Divide3}, // 3 |
| { 0, 0, 0, 0, 0, DivideNone}, // 4 |
| {0xf9, -1, 0x6666666666666667, 0x66666667, 1, Divide5}, // 5 |
| {0x7c, 0x1041, 0x2AAAAAAAAAAAAAAB, 0x2AAAAAAB, 0, Divide3}, // 6 |
| { -1, -1, 0x924924924924924A, 0x92492493, 2, Divide7}, // 7 |
| { 0, 0, 0, 0, 0, DivideNone}, // 8 |
| { -1, -1, 0x38E38E38E38E38E4, 0x38E38E39, 1, Divide5}, // 9 |
| {0xf9, -1, 0x6666666666666667, 0x66666667, 2, Divide5}, // 10 |
| { -1, -1, 0x2E8BA2E8BA2E8BA3, 0x2E8BA2E9, 1, Divide5}, // 11 |
| {0x7c, 0x1041, 0x2AAAAAAAAAAAAAAB, 0x2AAAAAAB, 1, Divide5}, // 12 |
| { -1, -1, 0x4EC4EC4EC4EC4EC5, 0x4EC4EC4F, 2, Divide5}, // 13 |
| { -1, -1, 0x924924924924924A, 0x92492493, 3, Divide7}, // 14 |
| {0x78, -1, 0x8888888888888889, 0x88888889, 3, Divide7}, // 15 |
| }; |
| |
| // Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4) |
| bool Arm64Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) { |
| UNUSED(dalvik_opcode); |
| if ((lit < 0) || (lit >= static_cast<int>(arraysize(magic_table)))) { |
| return false; |
| } |
| DividePattern pattern = magic_table[lit].pattern; |
| if (pattern == DivideNone) { |
| return false; |
| } |
| // Tuning: add rem patterns |
| if (!is_div) { |
| return false; |
| } |
| |
| RegStorage r_magic = AllocTemp(); |
| LoadConstant(r_magic, magic_table[lit].magic32); |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage r_long_mul = AllocTemp(); |
| NewLIR3(kA64Smull3xww, As64BitReg(r_long_mul).GetReg(), r_magic.GetReg(), rl_src.reg.GetReg()); |
| switch (pattern) { |
| case Divide3: |
| OpRegRegImm(kOpLsr, As64BitReg(r_long_mul), As64BitReg(r_long_mul), 32); |
| OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31)); |
| break; |
| case Divide5: |
| OpRegRegImm(kOpAsr, As64BitReg(r_long_mul), As64BitReg(r_long_mul), |
| 32 + magic_table[lit].shift); |
| OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31)); |
| break; |
| case Divide7: |
| OpRegRegRegShift(kOpAdd, As64BitReg(r_long_mul), As64BitReg(rl_src.reg), |
| As64BitReg(r_long_mul), EncodeShift(kA64Lsr, 32)); |
| OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift); |
| OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31)); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected pattern: " << pattern; |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::SmallLiteralDivRem64(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int64_t lit) { |
| UNUSED(dalvik_opcode); |
| if ((lit < 0) || (lit >= static_cast<int>(arraysize(magic_table)))) { |
| return false; |
| } |
| DividePattern pattern = magic_table[lit].pattern; |
| if (pattern == DivideNone) { |
| return false; |
| } |
| // Tuning: add rem patterns |
| if (!is_div) { |
| return false; |
| } |
| |
| RegStorage r_magic = AllocTempWide(); |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| RegStorage r_long_mul = AllocTempWide(); |
| |
| if (magic_table[lit].magic64_base >= 0) { |
| // Check that the entry in the table is correct. |
| if (kIsDebugBuild) { |
| uint64_t reconstructed_imm; |
| uint64_t base = DecodeLogicalImmediate(/*is_wide*/true, magic_table[lit].magic64_base); |
| if (magic_table[lit].magic64_eor >= 0) { |
| uint64_t eor = DecodeLogicalImmediate(/*is_wide*/true, magic_table[lit].magic64_eor); |
| reconstructed_imm = base ^ eor; |
| } else { |
| reconstructed_imm = base + 1; |
| } |
| DCHECK_EQ(reconstructed_imm, magic_table[lit].magic64) << " for literal " << lit; |
| } |
| |
| // Load the magic constant in two instructions. |
| NewLIR3(WIDE(kA64Orr3Rrl), r_magic.GetReg(), rxzr, magic_table[lit].magic64_base); |
| if (magic_table[lit].magic64_eor >= 0) { |
| NewLIR3(WIDE(kA64Eor3Rrl), r_magic.GetReg(), r_magic.GetReg(), |
| magic_table[lit].magic64_eor); |
| } else { |
| NewLIR4(WIDE(kA64Add4RRdT), r_magic.GetReg(), r_magic.GetReg(), 1, 0); |
| } |
| } else { |
| LoadConstantWide(r_magic, magic_table[lit].magic64); |
| } |
| |
| NewLIR3(kA64Smulh3xxx, r_long_mul.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg()); |
| switch (pattern) { |
| case Divide3: |
| OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63)); |
| break; |
| case Divide5: |
| OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift); |
| OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63)); |
| break; |
| case Divide7: |
| OpRegRegReg(kOpAdd, r_long_mul, rl_src.reg, r_long_mul); |
| OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift); |
| OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63)); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected pattern: " << pattern; |
| } |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| |
| // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' |
| // and store the result in 'rl_dest'. |
| bool Arm64Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) { |
| return HandleEasyDivRem64(dalvik_opcode, is_div, rl_src, rl_dest, static_cast<int>(lit)); |
| } |
| |
| // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' |
| // and store the result in 'rl_dest'. |
| bool Arm64Mir2Lir::HandleEasyDivRem64(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int64_t lit) { |
| const bool is_64bit = rl_dest.wide; |
| const int nbits = (is_64bit) ? 64 : 32; |
| |
| if (lit < 2) { |
| return false; |
| } |
| if (!IsPowerOfTwo(lit)) { |
| if (is_64bit) { |
| return SmallLiteralDivRem64(dalvik_opcode, is_div, rl_src, rl_dest, lit); |
| } else { |
| return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, static_cast<int32_t>(lit)); |
| } |
| } |
| int k = LowestSetBit(lit); |
| if (k >= nbits - 2) { |
| // Avoid special cases. |
| return false; |
| } |
| |
| RegLocation rl_result; |
| RegStorage t_reg; |
| if (is_64bit) { |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| t_reg = AllocTempWide(); |
| } else { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| t_reg = AllocTemp(); |
| } |
| |
| int shift = EncodeShift(kA64Lsr, nbits - k); |
| if (is_div) { |
| if (lit == 2) { |
| // Division by 2 is by far the most common division by constant. |
| OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, rl_src.reg, shift); |
| OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); |
| } else { |
| OpRegRegImm(kOpAsr, t_reg, rl_src.reg, nbits - 1); |
| OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, t_reg, shift); |
| OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); |
| } |
| } else { |
| if (lit == 2) { |
| OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, rl_src.reg, shift); |
| OpRegRegImm64(kOpAnd, t_reg, t_reg, lit - 1); |
| OpRegRegRegShift(kOpSub, rl_result.reg, t_reg, rl_src.reg, shift); |
| } else { |
| RegStorage t_reg2 = (is_64bit) ? AllocTempWide() : AllocTemp(); |
| OpRegRegImm(kOpAsr, t_reg, rl_src.reg, nbits - 1); |
| OpRegRegRegShift(kOpAdd, t_reg2, rl_src.reg, t_reg, shift); |
| OpRegRegImm64(kOpAnd, t_reg2, t_reg2, lit - 1); |
| OpRegRegRegShift(kOpSub, rl_result.reg, t_reg2, t_reg, shift); |
| } |
| } |
| |
| if (is_64bit) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { |
| UNUSED(rl_src, rl_dest, lit); |
| LOG(FATAL) << "Unexpected use of EasyMultiply for Arm64"; |
| UNREACHABLE(); |
| } |
| |
| RegLocation Arm64Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, |
| bool is_div) { |
| UNUSED(rl_dest, rl_src1, lit, is_div); |
| LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm64"; |
| UNREACHABLE(); |
| } |
| |
| RegLocation Arm64Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) { |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| // Put the literal in a temp. |
| RegStorage lit_temp = AllocTemp(); |
| LoadConstant(lit_temp, lit); |
| // Use the generic case for div/rem with arg2 in a register. |
| // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure. |
| rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div); |
| FreeTemp(lit_temp); |
| |
| return rl_result; |
| } |
| |
| RegLocation Arm64Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2, bool is_div, int flags) { |
| UNUSED(rl_dest, rl_src1, rl_src2, is_div, flags); |
| LOG(FATAL) << "Unexpected use of GenDivRem for Arm64"; |
| UNREACHABLE(); |
| } |
| |
| RegLocation Arm64Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage r_src1, RegStorage r_src2, |
| bool is_div) { |
| CHECK_EQ(r_src1.Is64Bit(), r_src2.Is64Bit()); |
| |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (is_div) { |
| OpRegRegReg(kOpDiv, rl_result.reg, r_src1, r_src2); |
| } else { |
| // temp = r_src1 / r_src2 |
| // dest = r_src1 - temp * r_src2 |
| RegStorage temp; |
| A64Opcode wide; |
| if (rl_result.reg.Is64Bit()) { |
| temp = AllocTempWide(); |
| wide = WIDE(0); |
| } else { |
| temp = AllocTemp(); |
| wide = UNWIDE(0); |
| } |
| OpRegRegReg(kOpDiv, temp, r_src1, r_src2); |
| NewLIR4(kA64Msub4rrrr | wide, rl_result.reg.GetReg(), temp.GetReg(), |
| r_src2.GetReg(), r_src1.GetReg()); |
| FreeTemp(temp); |
| } |
| return rl_result; |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedAbsInt(CallInfo* info) { |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| // Compare the source value with zero. Write the negated value to the result if |
| // negative, otherwise write the original value. |
| OpRegImm(kOpCmp, rl_src.reg, 0); |
| NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_src.reg.GetReg(), rl_src.reg.GetReg(), |
| kArmCondPl); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedAbsLong(CallInfo* info) { |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_dest = InlineTargetWide(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| // Compare the source value with zero. Write the negated value to the result if |
| // negative, otherwise write the original value. |
| OpRegImm(kOpCmp, rl_src.reg, 0); |
| NewLIR4(WIDE(kA64Csneg4rrrc), rl_result.reg.GetReg(), rl_src.reg.GetReg(), |
| rl_src.reg.GetReg(), kArmCondPl); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) { |
| DCHECK_EQ(cu_->instruction_set, kArm64); |
| RegLocation rl_src1 = info->args[0]; |
| RegLocation rl_src2 = (is_long) ? info->args[2] : info->args[1]; |
| rl_src1 = (is_long) ? LoadValueWide(rl_src1, kCoreReg) : LoadValue(rl_src1, kCoreReg); |
| rl_src2 = (is_long) ? LoadValueWide(rl_src2, kCoreReg) : LoadValue(rl_src2, kCoreReg); |
| RegLocation rl_dest = (is_long) ? InlineTargetWide(info) : InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); |
| NewLIR4((is_long) ? WIDE(kA64Csel4rrrc) : kA64Csel4rrrc, rl_result.reg.GetReg(), |
| rl_src1.reg.GetReg(), rl_src2.reg.GetReg(), (is_min) ? kArmCondLt : kArmCondGt); |
| (is_long) ? StoreValueWide(rl_dest, rl_result) :StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) { |
| RegLocation rl_src_address = info->args[0]; // long address |
| RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info); |
| RegLocation rl_address = LoadValueWide(rl_src_address, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile); |
| if (size == k64) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) { |
| RegLocation rl_src_address = info->args[0]; // long address |
| RegLocation rl_src_value = info->args[2]; // [size] value |
| RegLocation rl_address = LoadValueWide(rl_src_address, kCoreReg); |
| |
| RegLocation rl_value; |
| if (size == k64) { |
| rl_value = LoadValueWide(rl_src_value, kCoreReg); |
| } else { |
| DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); |
| rl_value = LoadValue(rl_src_value, kCoreReg); |
| } |
| StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile); |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) { |
| DCHECK_EQ(cu_->instruction_set, kArm64); |
| // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| RegLocation rl_src_obj = info->args[1]; // Object - known non-null |
| RegLocation rl_src_offset = info->args[2]; // long low |
| RegLocation rl_src_expected = info->args[4]; // int, long or Object |
| // If is_long, high half is in info->args[5] |
| RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object |
| // If is_long, high half is in info->args[7] |
| RegLocation rl_dest = InlineTarget(info); // boolean place for result |
| |
| // Load Object and offset |
| RegLocation rl_object = LoadValue(rl_src_obj, kRefReg); |
| RegLocation rl_offset = LoadValueWide(rl_src_offset, kCoreReg); |
| |
| RegLocation rl_new_value; |
| RegLocation rl_expected; |
| if (is_long) { |
| rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg); |
| rl_expected = LoadValueWide(rl_src_expected, kCoreReg); |
| } else { |
| rl_new_value = LoadValue(rl_src_new_value, is_object ? kRefReg : kCoreReg); |
| rl_expected = LoadValue(rl_src_expected, is_object ? kRefReg : kCoreReg); |
| } |
| |
| if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) { |
| // Mark card for object assuming new value is stored. |
| MarkGCCard(0, rl_new_value.reg, rl_object.reg); |
| } |
| |
| RegStorage r_ptr = AllocTempRef(); |
| OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg); |
| |
| // Free now unneeded rl_object and rl_offset to give more temps. |
| ClobberSReg(rl_object.s_reg_low); |
| FreeTemp(rl_object.reg); |
| ClobberSReg(rl_offset.s_reg_low); |
| FreeTemp(rl_offset.reg); |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); |
| // result = tmp != 0; |
| |
| RegStorage r_tmp; |
| RegStorage r_tmp_stored; |
| RegStorage rl_new_value_stored = rl_new_value.reg; |
| A64Opcode wide = UNWIDE(0); |
| if (is_long) { |
| r_tmp_stored = r_tmp = AllocTempWide(); |
| wide = WIDE(0); |
| } else if (is_object) { |
| // References use 64-bit registers, but are stored as compressed 32-bit values. |
| // This means r_tmp_stored != r_tmp. |
| r_tmp = AllocTempRef(); |
| r_tmp_stored = As32BitReg(r_tmp); |
| rl_new_value_stored = As32BitReg(rl_new_value_stored); |
| } else { |
| r_tmp_stored = r_tmp = AllocTemp(); |
| } |
| |
| RegStorage r_tmp32 = (r_tmp.Is32Bit()) ? r_tmp : As32BitReg(r_tmp); |
| LIR* loop = NewLIR0(kPseudoTargetLabel); |
| NewLIR2(kA64Ldaxr2rX | wide, r_tmp_stored.GetReg(), r_ptr.GetReg()); |
| OpRegReg(kOpCmp, r_tmp, rl_expected.reg); |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| LIR* early_exit = OpCondBranch(kCondNe, NULL); |
| NewLIR3(kA64Stlxr3wrX | wide, r_tmp32.GetReg(), rl_new_value_stored.GetReg(), r_ptr.GetReg()); |
| NewLIR3(kA64Cmp3RdT, r_tmp32.GetReg(), 0, ENCODE_NO_SHIFT); |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| OpCondBranch(kCondNe, loop); |
| |
| LIR* exit_loop = NewLIR0(kPseudoTargetLabel); |
| early_exit->target = exit_loop; |
| |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| NewLIR4(kA64Csinc4rrrc, rl_result.reg.GetReg(), rwzr, rwzr, kArmCondNe); |
| |
| FreeTemp(r_tmp); // Now unneeded. |
| FreeTemp(r_ptr); // Now unneeded. |
| |
| StoreValue(rl_dest, rl_result); |
| |
| return true; |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { |
| constexpr int kLargeArrayThreshold = 512; |
| |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_src_pos = info->args[1]; |
| RegLocation rl_dst = info->args[2]; |
| RegLocation rl_dst_pos = info->args[3]; |
| RegLocation rl_length = info->args[4]; |
| // Compile time check, handle exception by non-inline method to reduce related meta-data. |
| if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) || |
| (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) || |
| (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) { |
| return false; |
| } |
| |
| ClobberCallerSave(); |
| LockCallTemps(); // Prepare for explicit register usage. |
| RegStorage rs_src = rs_x0; |
| RegStorage rs_dst = rs_x1; |
| LoadValueDirectFixed(rl_src, rs_src); |
| LoadValueDirectFixed(rl_dst, rs_dst); |
| |
| // Handle null pointer exception in slow-path. |
| LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr); |
| LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr); |
| // Handle potential overlapping in slow-path. |
| // TUNING: Support overlapping cases. |
| LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr); |
| // Handle exception or big length in slow-path. |
| RegStorage rs_length = rs_w2; |
| LoadValueDirectFixed(rl_length, rs_length); |
| LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr); |
| // Src bounds check. |
| RegStorage rs_src_pos = rs_w3; |
| RegStorage rs_arr_length = rs_w4; |
| LoadValueDirectFixed(rl_src_pos, rs_src_pos); |
| LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_src_pos, 0, nullptr); |
| Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); |
| OpRegReg(kOpSub, rs_arr_length, rs_src_pos); |
| LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); |
| // Dst bounds check. |
| RegStorage rs_dst_pos = rs_w5; |
| LoadValueDirectFixed(rl_dst_pos, rs_dst_pos); |
| LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_dst_pos, 0, nullptr); |
| Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); |
| OpRegReg(kOpSub, rs_arr_length, rs_dst_pos); |
| LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); |
| |
| // Everything is checked now. |
| // Set rs_src to the address of the first element to be copied. |
| rs_src_pos = As64BitReg(rs_src_pos); |
| OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value()); |
| OpRegRegImm(kOpLsl, rs_src_pos, rs_src_pos, 1); |
| OpRegReg(kOpAdd, rs_src, rs_src_pos); |
| // Set rs_src to the address of the first element to be copied. |
| rs_dst_pos = As64BitReg(rs_dst_pos); |
| OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value()); |
| OpRegRegImm(kOpLsl, rs_dst_pos, rs_dst_pos, 1); |
| OpRegReg(kOpAdd, rs_dst, rs_dst_pos); |
| |
| // rs_arr_length won't be not used anymore. |
| RegStorage rs_tmp = rs_arr_length; |
| // Use 64-bit view since rs_length will be used as index. |
| rs_length = As64BitReg(rs_length); |
| OpRegRegImm(kOpLsl, rs_length, rs_length, 1); |
| |
| // Copy one element. |
| LIR* jmp_to_copy_two = NewLIR3(WIDE(kA64Tbz3rht), rs_length.GetReg(), 1, 0); |
| OpRegImm(kOpSub, rs_length, 2); |
| LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf); |
| StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf); |
| |
| // Copy two elements. |
| LIR *copy_two = NewLIR0(kPseudoTargetLabel); |
| LIR* jmp_to_copy_four = NewLIR3(WIDE(kA64Tbz3rht), rs_length.GetReg(), 2, 0); |
| OpRegImm(kOpSub, rs_length, 4); |
| LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32); |
| StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32); |
| |
| // Copy four elements. |
| LIR *copy_four = NewLIR0(kPseudoTargetLabel); |
| LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr); |
| LIR *begin_loop = NewLIR0(kPseudoTargetLabel); |
| OpRegImm(kOpSub, rs_length, 8); |
| rs_tmp = As64BitReg(rs_tmp); |
| LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k64); |
| StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k64); |
| LIR* jmp_to_loop = OpCmpImmBranch(kCondNe, rs_length, 0, nullptr); |
| LIR* loop_finished = OpUnconditionalBranch(nullptr); |
| |
| LIR *check_failed = NewLIR0(kPseudoTargetLabel); |
| LIR* launchpad_branch = OpUnconditionalBranch(nullptr); |
| LIR* return_point = NewLIR0(kPseudoTargetLabel); |
| |
| src_check_branch->target = check_failed; |
| dst_check_branch->target = check_failed; |
| src_dst_same->target = check_failed; |
| len_neg_or_too_big->target = check_failed; |
| src_pos_negative->target = check_failed; |
| src_bad_len->target = check_failed; |
| dst_pos_negative->target = check_failed; |
| dst_bad_len->target = check_failed; |
| jmp_to_copy_two->target = copy_two; |
| jmp_to_copy_four->target = copy_four; |
| jmp_to_ret->target = return_point; |
| jmp_to_loop->target = begin_loop; |
| loop_finished->target = return_point; |
| |
| AddIntrinsicSlowPath(info, launchpad_branch, return_point); |
| ClobberCallerSave(); // We must clobber everything because slow path will return here |
| |
| return true; |
| } |
| |
| LIR* Arm64Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); |
| return RawLIR(current_dalvik_offset_, kA64Ldr2rp, As32BitReg(reg).GetReg(), 0, 0, 0, 0, target); |
| } |
| |
| LIR* Arm64Mir2Lir::OpVldm(RegStorage r_base, int count) { |
| UNUSED(r_base, count); |
| LOG(FATAL) << "Unexpected use of OpVldm for Arm64"; |
| UNREACHABLE(); |
| } |
| |
| LIR* Arm64Mir2Lir::OpVstm(RegStorage r_base, int count) { |
| UNUSED(r_base, count); |
| LOG(FATAL) << "Unexpected use of OpVstm for Arm64"; |
| UNREACHABLE(); |
| } |
| |
| void Arm64Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, |
| RegLocation rl_result, int lit ATTRIBUTE_UNUSED, |
| int first_bit, int second_bit) { |
| OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg, EncodeShift(kA64Lsl, second_bit - first_bit)); |
| if (first_bit != 0) { |
| OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit); |
| } |
| } |
| |
| void Arm64Mir2Lir::GenDivZeroCheckWide(RegStorage reg ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unexpected use of GenDivZero for Arm64"; |
| } |
| |
| // Test suspend flag, return target of taken suspend branch |
| LIR* Arm64Mir2Lir::OpTestSuspend(LIR* target) { |
| NewLIR3(kA64Subs3rRd, rwSUSPEND, rwSUSPEND, 1); |
| return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target); |
| } |
| |
| // Decrement register and branch on condition |
| LIR* Arm64Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) { |
| // Combine sub & test using sub setflags encoding here. We need to make sure a |
| // subtract form that sets carry is used, so generate explicitly. |
| // TODO: might be best to add a new op, kOpSubs, and handle it generically. |
| A64Opcode opcode = reg.Is64Bit() ? WIDE(kA64Subs3rRd) : UNWIDE(kA64Subs3rRd); |
| NewLIR3(opcode, reg.GetReg(), reg.GetReg(), 1); // For value == 1, this should set flags. |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| return OpCondBranch(c_code, target); |
| } |
| |
| bool Arm64Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { |
| if (!cu_->GetInstructionSetFeatures()->IsSmp()) { |
| return false; |
| } |
| // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one. |
| LIR* barrier = last_lir_insn_; |
| |
| int dmb_flavor; |
| // TODO: revisit Arm barrier kinds |
| switch (barrier_kind) { |
| case kAnyStore: dmb_flavor = kISH; break; |
| case kLoadAny: dmb_flavor = kISH; break; |
| // We conjecture that kISHLD is insufficient. It is documented |
| // to provide LoadLoad | StoreStore ordering. But if this were used |
| // to implement volatile loads, we suspect that the lack of store |
| // atomicity on ARM would cause us to allow incorrect results for |
| // the canonical IRIW example. But we're not sure. |
| // We should be using acquire loads instead. |
| case kStoreStore: dmb_flavor = kISHST; break; |
| case kAnyAny: dmb_flavor = kISH; break; |
| default: |
| LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind; |
| dmb_flavor = kSY; // quiet gcc. |
| break; |
| } |
| |
| bool ret = false; |
| |
| // If the same barrier already exists, don't generate another. |
| if (barrier == nullptr |
| || (barrier->opcode != kA64Dmb1B || barrier->operands[0] != dmb_flavor)) { |
| barrier = NewLIR1(kA64Dmb1B, dmb_flavor); |
| ret = true; |
| } |
| |
| // At this point we must have a memory barrier. Mark it as a scheduling barrier as well. |
| DCHECK(!barrier->flags.use_def_invalid); |
| barrier->u.m.def_mask = &kEncodeAll; |
| return ret; |
| } |
| |
| void Arm64Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation rl_result; |
| |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| NewLIR4(WIDE(kA64Sbfm4rrdd), rl_result.reg.GetReg(), As64BitReg(rl_src.reg).GetReg(), 0, 31); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::GenDivRemLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2, bool is_div, int flags) { |
| if (rl_src2.is_const) { |
| DCHECK(rl_src2.wide); |
| int64_t lit = mir_graph_->ConstantValueWide(rl_src2); |
| if (HandleEasyDivRem64(opcode, is_div, rl_src1, rl_dest, lit)) { |
| return; |
| } |
| } |
| |
| RegLocation rl_result; |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) { |
| GenDivZeroCheck(rl_src2.reg); |
| } |
| rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, is_div); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::GenLongOp(OpKind op, RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) { |
| RegLocation rl_result; |
| |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| OpRegRegRegShift(op, rl_result.reg, rl_src1.reg, rl_src2.reg, ENCODE_NO_SHIFT); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation rl_result; |
| |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| OpRegRegShift(kOpNeg, rl_result.reg, rl_src.reg, ENCODE_NO_SHIFT); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation rl_result; |
| |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| OpRegRegShift(kOpMvn, rl_result.reg, rl_src.reg, ENCODE_NO_SHIFT); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2, int flags) { |
| switch (opcode) { |
| case Instruction::NOT_LONG: |
| GenNotLong(rl_dest, rl_src2); |
| return; |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| GenLongOp(kOpAdd, rl_dest, rl_src1, rl_src2); |
| return; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| GenLongOp(kOpSub, rl_dest, rl_src1, rl_src2); |
| return; |
| case Instruction::MUL_LONG: |
| case Instruction::MUL_LONG_2ADDR: |
| GenLongOp(kOpMul, rl_dest, rl_src1, rl_src2); |
| return; |
| case Instruction::DIV_LONG: |
| case Instruction::DIV_LONG_2ADDR: |
| GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true, flags); |
| return; |
| case Instruction::REM_LONG: |
| case Instruction::REM_LONG_2ADDR: |
| GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false, flags); |
| return; |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::AND_LONG: |
| GenLongOp(kOpAnd, rl_dest, rl_src1, rl_src2); |
| return; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| GenLongOp(kOpOr, rl_dest, rl_src1, rl_src2); |
| return; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| GenLongOp(kOpXor, rl_dest, rl_src1, rl_src2); |
| return; |
| case Instruction::NEG_LONG: { |
| GenNegLong(rl_dest, rl_src2); |
| return; |
| } |
| default: |
| LOG(FATAL) << "Invalid long arith op"; |
| return; |
| } |
| } |
| |
| /* |
| * Generate array load |
| */ |
| void Arm64Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_dest, int scale) { |
| RegisterClass reg_class = RegClassBySize(size); |
| int len_offset = mirror::Array::LengthOffset().Int32Value(); |
| int data_offset; |
| RegLocation rl_result; |
| bool constant_index = rl_index.is_const; |
| rl_array = LoadValue(rl_array, kRefReg); |
| if (!constant_index) { |
| rl_index = LoadValue(rl_index, kCoreReg); |
| } |
| |
| if (rl_dest.wide) { |
| data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| /* null object? */ |
| GenNullCheck(rl_array.reg, opt_flags); |
| |
| bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); |
| RegStorage reg_len; |
| if (needs_range_check) { |
| reg_len = AllocTemp(); |
| /* Get len */ |
| Load32Disp(rl_array.reg, len_offset, reg_len); |
| MarkPossibleNullPointerException(opt_flags); |
| } else { |
| ForceImplicitNullCheck(rl_array.reg, opt_flags); |
| } |
| if (constant_index) { |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| |
| if (needs_range_check) { |
| GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); |
| FreeTemp(reg_len); |
| } |
| // Fold the constant index into the data offset. |
| data_offset += mir_graph_->ConstantValue(rl_index) << scale; |
| if (rl_result.ref) { |
| LoadRefDisp(rl_array.reg, data_offset, rl_result.reg, kNotVolatile); |
| } else { |
| LoadBaseDisp(rl_array.reg, data_offset, rl_result.reg, size, kNotVolatile); |
| } |
| } else { |
| // Offset base, then use indexed load. |
| RegStorage reg_ptr = AllocTempRef(); |
| OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); |
| FreeTemp(rl_array.reg); |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| |
| if (needs_range_check) { |
| GenArrayBoundsCheck(rl_index.reg, reg_len); |
| FreeTemp(reg_len); |
| } |
| if (rl_result.ref) { |
| LoadRefIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale); |
| } else { |
| LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size); |
| } |
| FreeTemp(reg_ptr); |
| } |
| if (rl_dest.wide) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* |
| * Generate array store |
| * |
| */ |
| void Arm64Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) { |
| RegisterClass reg_class = RegClassBySize(size); |
| int len_offset = mirror::Array::LengthOffset().Int32Value(); |
| bool constant_index = rl_index.is_const; |
| |
| int data_offset; |
| if (size == k64 || size == kDouble) { |
| data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| rl_array = LoadValue(rl_array, kRefReg); |
| if (!constant_index) { |
| rl_index = LoadValue(rl_index, kCoreReg); |
| } |
| |
| RegStorage reg_ptr; |
| bool allocated_reg_ptr_temp = false; |
| if (constant_index) { |
| reg_ptr = rl_array.reg; |
| } else if (IsTemp(rl_array.reg) && !card_mark) { |
| Clobber(rl_array.reg); |
| reg_ptr = rl_array.reg; |
| } else { |
| allocated_reg_ptr_temp = true; |
| reg_ptr = AllocTempRef(); |
| } |
| |
| /* null object? */ |
| GenNullCheck(rl_array.reg, opt_flags); |
| |
| bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); |
| RegStorage reg_len; |
| if (needs_range_check) { |
| reg_len = AllocTemp(); |
| // NOTE: max live temps(4) here. |
| /* Get len */ |
| Load32Disp(rl_array.reg, len_offset, reg_len); |
| MarkPossibleNullPointerException(opt_flags); |
| } else { |
| ForceImplicitNullCheck(rl_array.reg, opt_flags); |
| } |
| /* at this point, reg_ptr points to array, 2 live temps */ |
| if (rl_src.wide) { |
| rl_src = LoadValueWide(rl_src, reg_class); |
| } else { |
| rl_src = LoadValue(rl_src, reg_class); |
| } |
| if (constant_index) { |
| if (needs_range_check) { |
| GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); |
| FreeTemp(reg_len); |
| } |
| // Fold the constant index into the data offset. |
| data_offset += mir_graph_->ConstantValue(rl_index) << scale; |
| if (rl_src.ref) { |
| StoreRefDisp(reg_ptr, data_offset, rl_src.reg, kNotVolatile); |
| } else { |
| StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile); |
| } |
| } else { |
| /* reg_ptr -> array data */ |
| OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); |
| if (needs_range_check) { |
| GenArrayBoundsCheck(rl_index.reg, reg_len); |
| FreeTemp(reg_len); |
| } |
| if (rl_src.ref) { |
| StoreRefIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale); |
| } else { |
| StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size); |
| } |
| } |
| if (allocated_reg_ptr_temp) { |
| FreeTemp(reg_ptr); |
| } |
| if (card_mark) { |
| MarkGCCard(opt_flags, rl_src.reg, rl_array.reg); |
| } |
| } |
| |
| void Arm64Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, |
| RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift, |
| int flags ATTRIBUTE_UNUSED) { |
| OpKind op = kOpBkpt; |
| // Per spec, we only care about low 6 bits of shift amount. |
| int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f; |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| if (shift_amount == 0) { |
| StoreValueWide(rl_dest, rl_src); |
| return; |
| } |
| |
| RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| switch (opcode) { |
| case Instruction::SHL_LONG: |
| case Instruction::SHL_LONG_2ADDR: |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_LONG: |
| case Instruction::SHR_LONG_2ADDR: |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_LONG: |
| case Instruction::USHR_LONG_2ADDR: |
| op = kOpLsr; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected case"; |
| } |
| OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Arm64Mir2Lir::GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2, int flags) { |
| OpKind op = kOpBkpt; |
| switch (opcode) { |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| op = kOpAdd; |
| break; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| op = kOpSub; |
| break; |
| case Instruction::AND_LONG: |
| case Instruction::AND_LONG_2ADDR: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| op = kOpXor; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected opcode"; |
| } |
| |
| if (op == kOpSub) { |
| if (!rl_src2.is_const) { |
| return GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags); |
| } |
| } else { |
| // Associativity. |
| if (!rl_src2.is_const) { |
| DCHECK(rl_src1.is_const); |
| std::swap(rl_src1, rl_src2); |
| } |
| } |
| DCHECK(rl_src2.is_const); |
| int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| OpRegRegImm64(op, rl_result.reg, rl_src1.reg, val); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| static uint32_t ExtractReg(uint32_t reg_mask, int* reg) { |
| // Find first register. |
| int first_bit_set = CTZ(reg_mask) + 1; |
| *reg = *reg + first_bit_set; |
| reg_mask >>= first_bit_set; |
| return reg_mask; |
| } |
| |
| /** |
| * @brief Split a register list in pairs or registers. |
| * |
| * Given a list of registers in @p reg_mask, split the list in pairs. Use as follows: |
| * @code |
| * int reg1 = -1, reg2 = -1; |
| * while (reg_mask) { |
| * reg_mask = GenPairWise(reg_mask, & reg1, & reg2); |
| * if (UNLIKELY(reg2 < 0)) { |
| * // Single register in reg1. |
| * } else { |
| * // Pair in reg1, reg2. |
| * } |
| * } |
| * @endcode |
| */ |
| static uint32_t GenPairWise(uint32_t reg_mask, int* reg1, int* reg2) { |
| // Find first register. |
| int first_bit_set = CTZ(reg_mask) + 1; |
| int reg = *reg1 + first_bit_set; |
| reg_mask >>= first_bit_set; |
| |
| if (LIKELY(reg_mask)) { |
| // Save the first register, find the second and use the pair opcode. |
| int second_bit_set = CTZ(reg_mask) + 1; |
| *reg2 = reg; |
| reg_mask >>= second_bit_set; |
| *reg1 = reg + second_bit_set; |
| return reg_mask; |
| } |
| |
| // Use the single opcode, as we just have one register. |
| *reg1 = reg; |
| *reg2 = -1; |
| return reg_mask; |
| } |
| |
| static void SpillCoreRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { |
| int reg1 = -1, reg2 = -1; |
| const int reg_log2_size = 3; |
| |
| for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { |
| reg_mask = GenPairWise(reg_mask, & reg1, & reg2); |
| if (UNLIKELY(reg2 < 0)) { |
| m2l->NewLIR3(WIDE(kA64Str3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); |
| } else { |
| m2l->NewLIR4(WIDE(kA64Stp4rrXD), RegStorage::Solo64(reg2).GetReg(), |
| RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); |
| } |
| } |
| } |
| |
| // TODO(Arm64): consider using ld1 and st1? |
| static void SpillFPRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { |
| int reg1 = -1, reg2 = -1; |
| const int reg_log2_size = 3; |
| |
| for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { |
| reg_mask = GenPairWise(reg_mask, & reg1, & reg2); |
| if (UNLIKELY(reg2 < 0)) { |
| m2l->NewLIR3(WIDE(kA64Str3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), |
| offset); |
| } else { |
| m2l->NewLIR4(WIDE(kA64Stp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), |
| RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset); |
| } |
| } |
| } |
| |
| static int SpillRegsPreSub(Arm64Mir2Lir* m2l, uint32_t core_reg_mask, uint32_t fp_reg_mask, |
| int frame_size) { |
| m2l->OpRegRegImm(kOpSub, rs_sp, rs_sp, frame_size); |
| |
| int core_count = POPCOUNT(core_reg_mask); |
| |
| if (fp_reg_mask != 0) { |
| // Spill FP regs. |
| int fp_count = POPCOUNT(fp_reg_mask); |
| int spill_offset = frame_size - (core_count + fp_count) * kArm64PointerSize; |
| SpillFPRegs(m2l, rs_sp, spill_offset, fp_reg_mask); |
| } |
| |
| if (core_reg_mask != 0) { |
| // Spill core regs. |
| int spill_offset = frame_size - (core_count * kArm64PointerSize); |
| SpillCoreRegs(m2l, rs_sp, spill_offset, core_reg_mask); |
| } |
| |
| return frame_size; |
| } |
| |
| static int SpillRegsPreIndexed(Arm64Mir2Lir* m2l, RegStorage base, uint32_t core_reg_mask, |
| uint32_t fp_reg_mask) { |
| // Otherwise, spill both core and fp regs at the same time. |
| // The very first instruction will be an stp with pre-indexed address, moving the stack pointer |
| // down. From then on, we fill upwards. This will generate overall the same number of instructions |
| // as the specialized code above in most cases (exception being odd number of core and even |
| // non-zero fp spills), but is more flexible, as the offsets are guaranteed small. |
| // |
| // Some demonstrative fill cases : (c) = core, (f) = fp |
| // cc 44 cc 44 cc 22 cc 33 fc => 1[1/2] |
| // fc => 23 fc => 23 ff => 11 ff => 22 |
| // ff 11 f 11 f 11 |
| // |
| int reg1 = -1, reg2 = -1; |
| int core_count = POPCOUNT(core_reg_mask); |
| int fp_count = POPCOUNT(fp_reg_mask); |
| |
| int combined = fp_count + core_count; |
| int all_offset = RoundUp(combined, 2); // Needs to be 16B = 2-reg aligned. |
| |
| int cur_offset = 2; // What's the starting offset after the first stp? We expect the base slot |
| // to be filled. |
| |
| // First figure out whether the bottom is FP or core. |
| if (fp_count > 0) { |
| // Some FP spills. |
| // |
| // Four cases: (d0 is dummy to fill up stp) |
| // 1) Single FP, even number of core -> stp d0, fp_reg |
| // 2) Single FP, odd number of core -> stp fp_reg, d0 |
| // 3) More FP, even number combined -> stp fp_reg1, fp_reg2 |
| // 4) More FP, odd number combined -> stp d0, fp_reg |
| if (fp_count == 1) { |
| fp_reg_mask = ExtractReg(fp_reg_mask, ®1); |
| DCHECK_EQ(fp_reg_mask, 0U); |
| if (core_count % 2 == 0) { |
| m2l->NewLIR4(WIDE(kA64StpPre4ffXD), |
| RegStorage::FloatSolo64(reg1).GetReg(), |
| RegStorage::FloatSolo64(reg1).GetReg(), |
| base.GetReg(), -all_offset); |
| } else { |
| m2l->NewLIR4(WIDE(kA64StpPre4ffXD), |
| RegStorage::FloatSolo64(reg1).GetReg(), |
| RegStorage::FloatSolo64(reg1).GetReg(), |
| base.GetReg(), -all_offset); |
| cur_offset = 0; // That core reg needs to go into the upper half. |
| } |
| } else { |
| if (combined % 2 == 0) { |
| fp_reg_mask = GenPairWise(fp_reg_mask, ®1, ®2); |
| m2l->NewLIR4(WIDE(kA64StpPre4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), |
| RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), -all_offset); |
| } else { |
| fp_reg_mask = ExtractReg(fp_reg_mask, ®1); |
| m2l->NewLIR4(WIDE(kA64StpPre4ffXD), rs_d0.GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), |
| base.GetReg(), -all_offset); |
| } |
| } |
| } else { |
| // No FP spills. |
| // |
| // Two cases: |
| // 1) Even number of core -> stp core1, core2 |
| // 2) Odd number of core -> stp xzr, core1 |
| if (core_count % 2 == 1) { |
| core_reg_mask = ExtractReg(core_reg_mask, ®1); |
| m2l->NewLIR4(WIDE(kA64StpPre4rrXD), rs_xzr.GetReg(), |
| RegStorage::Solo64(reg1).GetReg(), base.GetReg(), -all_offset); |
| } else { |
| core_reg_mask = GenPairWise(core_reg_mask, ®1, ®2); |
| m2l->NewLIR4(WIDE(kA64StpPre4rrXD), RegStorage::Solo64(reg2).GetReg(), |
| RegStorage::Solo64(reg1).GetReg(), base.GetReg(), -all_offset); |
| } |
| } |
| |
| if (fp_count != 0) { |
| for (; fp_reg_mask != 0;) { |
| // Have some FP regs to do. |
| fp_reg_mask = GenPairWise(fp_reg_mask, ®1, ®2); |
| if (UNLIKELY(reg2 < 0)) { |
| m2l->NewLIR3(WIDE(kA64Str3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), |
| cur_offset); |
| // Do not increment offset here, as the second half will be filled by a core reg. |
| } else { |
| m2l->NewLIR4(WIDE(kA64Stp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), |
| RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), cur_offset); |
| cur_offset += 2; |
| } |
| } |
| |
| // Reset counting. |
| reg1 = -1; |
| |
| // If there is an odd number of core registers, we need to store the bottom now. |
| if (core_count % 2 == 1) { |
| core_reg_mask = ExtractReg(core_reg_mask, ®1); |
| m2l->NewLIR3(WIDE(kA64Str3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), |
| cur_offset + 1); |
| cur_offset += 2; // Half-slot filled now. |
| } |
| } |
| |
| // Spill the rest of the core regs. They are guaranteed to be even. |
| DCHECK_EQ(POPCOUNT(core_reg_mask) % 2, 0); |
| for (; core_reg_mask != 0; cur_offset += 2) { |
| core_reg_mask = GenPairWise(core_reg_mask, ®1, ®2); |
| m2l->NewLIR4(WIDE(kA64Stp4rrXD), RegStorage::Solo64(reg2).GetReg(), |
| RegStorage::Solo64(reg1).GetReg(), base.GetReg(), cur_offset); |
| } |
| |
| DCHECK_EQ(cur_offset, all_offset); |
| |
| return all_offset * 8; |
| } |
| |
| int Arm64Mir2Lir::SpillRegs(RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask, |
| int frame_size) { |
| // If the frame size is small enough that all offsets would fit into the immediates, use that |
| // setup, as it decrements sp early (kind of instruction scheduling), and is not worse |
| // instruction-count wise than the complicated code below. |
| // |
| // This case is also optimal when we have an odd number of core spills, and an even (non-zero) |
| // number of fp spills. |
| if ((RoundUp(frame_size, 8) / 8 <= 63)) { |
| return SpillRegsPreSub(this, core_reg_mask, fp_reg_mask, frame_size); |
| } else { |
| return SpillRegsPreIndexed(this, base, core_reg_mask, fp_reg_mask); |
| } |
| } |
| |
| static void UnSpillCoreRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { |
| int reg1 = -1, reg2 = -1; |
| const int reg_log2_size = 3; |
| |
| for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { |
| reg_mask = GenPairWise(reg_mask, & reg1, & reg2); |
| if (UNLIKELY(reg2 < 0)) { |
| m2l->NewLIR3(WIDE(kA64Ldr3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); |
| } else { |
| DCHECK_LE(offset, 63); |
| m2l->NewLIR4(WIDE(kA64Ldp4rrXD), RegStorage::Solo64(reg2).GetReg(), |
| RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); |
| } |
| } |
| } |
| |
| static void UnSpillFPRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { |
| int reg1 = -1, reg2 = -1; |
| const int reg_log2_size = 3; |
| |
| for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { |
| reg_mask = GenPairWise(reg_mask, & reg1, & reg2); |
| if (UNLIKELY(reg2 < 0)) { |
| m2l->NewLIR3(WIDE(kA64Ldr3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), |
| offset); |
| } else { |
| m2l->NewLIR4(WIDE(kA64Ldp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), |
| RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset); |
| } |
| } |
| } |
| |
| void Arm64Mir2Lir::UnspillRegs(RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask, |
| int frame_size) { |
| DCHECK_EQ(base, rs_sp); |
| // Restore saves and drop stack frame. |
| // 2 versions: |
| // |
| // 1. (Original): Try to address directly, then drop the whole frame. |
| // Limitation: ldp is a 7b signed immediate. |
| // |
| // 2. (New): Drop the non-save-part. Then do similar to original, which is now guaranteed to be |
| // in range. Then drop the rest. |
| // |
| // TODO: In methods with few spills but huge frame, it would be better to do non-immediate loads |
| // in variant 1. |
| |
| // "Magic" constant, 63 (max signed 7b) * 8. |
| static constexpr int kMaxFramesizeForOffset = 63 * kArm64PointerSize; |
| |
| const int num_core_spills = POPCOUNT(core_reg_mask); |
| const int num_fp_spills = POPCOUNT(fp_reg_mask); |
| |
| int early_drop = 0; |
| |
| if (frame_size > kMaxFramesizeForOffset) { |
| // Second variant. Drop the frame part. |
| |
| // TODO: Always use the first formula, as num_fp_spills would be zero? |
| if (fp_reg_mask != 0) { |
| early_drop = frame_size - kArm64PointerSize * (num_fp_spills + num_core_spills); |
| } else { |
| early_drop = frame_size - kArm64PointerSize * num_core_spills; |
| } |
| |
| // Drop needs to be 16B aligned, so that SP keeps aligned. |
| early_drop = RoundDown(early_drop, 16); |
| |
| OpRegImm64(kOpAdd, rs_sp, early_drop); |
| } |
| |
| // Unspill. |
| if (fp_reg_mask != 0) { |
| int offset = frame_size - early_drop - kArm64PointerSize * (num_fp_spills + num_core_spills); |
| UnSpillFPRegs(this, rs_sp, offset, fp_reg_mask); |
| } |
| if (core_reg_mask != 0) { |
| int offset = frame_size - early_drop - kArm64PointerSize * num_core_spills; |
| UnSpillCoreRegs(this, rs_sp, offset, core_reg_mask); |
| } |
| |
| // Drop the (rest of) the frame. |
| OpRegImm64(kOpAdd, rs_sp, frame_size - early_drop); |
| } |
| |
| bool Arm64Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) { |
| A64Opcode wide = IsWide(size) ? WIDE(0) : UNWIDE(0); |
| RegLocation rl_src_i = info->args[0]; |
| RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info); // result reg |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegLocation rl_i = IsWide(size) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg); |
| NewLIR2(kA64Rbit2rr | wide, rl_result.reg.GetReg(), rl_i.reg.GetReg()); |
| IsWide(size) ? StoreValueWide(rl_dest, rl_result) : StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| } // namespace art |