| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "thread.h" |
| |
| #include <dynamic_annotations.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <sys/mman.h> |
| #include <sys/resource.h> |
| #include <sys/time.h> |
| |
| #include <algorithm> |
| #include <bitset> |
| #include <cerrno> |
| #include <iostream> |
| #include <list> |
| |
| #include "debugger.h" |
| #include "class_linker.h" |
| #include "class_loader.h" |
| #include "heap.h" |
| #include "jni_internal.h" |
| #include "monitor.h" |
| #include "oat/runtime/context.h" |
| #include "object.h" |
| #include "object_utils.h" |
| #include "reflection.h" |
| #include "runtime.h" |
| #include "runtime_support.h" |
| #include "ScopedLocalRef.h" |
| #include "scoped_jni_thread_state.h" |
| #include "shadow_frame.h" |
| #include "space.h" |
| #include "stack.h" |
| #include "stack_indirect_reference_table.h" |
| #include "thread_list.h" |
| #include "utils.h" |
| #include "verifier/gc_map.h" |
| |
| namespace art { |
| |
| pthread_key_t Thread::pthread_key_self_; |
| |
| static Class* gThreadGroup = NULL; |
| static Class* gThreadLock = NULL; |
| static Field* gThread_daemon = NULL; |
| static Field* gThread_group = NULL; |
| static Field* gThread_lock = NULL; |
| static Field* gThread_name = NULL; |
| static Field* gThread_priority = NULL; |
| static Field* gThread_uncaughtHandler = NULL; |
| static Field* gThread_vmData = NULL; |
| static Field* gThreadGroup_mMain = NULL; |
| static Field* gThreadGroup_mSystem = NULL; |
| static Field* gThreadGroup_name = NULL; |
| static Field* gThreadLock_thread = NULL; |
| static Method* gThread_run = NULL; |
| static Method* gThreadGroup_removeThread = NULL; |
| static Method* gUncaughtExceptionHandler_uncaughtException = NULL; |
| |
| static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; |
| |
| void Thread::InitCardTable() { |
| card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); |
| } |
| |
| #if !defined(__APPLE__) |
| static void UnimplementedEntryPoint() { |
| UNIMPLEMENTED(FATAL); |
| } |
| #endif |
| |
| void Thread::InitFunctionPointers() { |
| #if !defined(__APPLE__) // The Mac GCC is too old to accept this code. |
| // Insert a placeholder so we can easily tell if we call an unimplemented entry point. |
| uintptr_t* begin = reinterpret_cast<uintptr_t*>(&entrypoints_); |
| uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(entrypoints_)); |
| for (uintptr_t* it = begin; it != end; ++it) { |
| *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); |
| } |
| #endif |
| InitEntryPoints(&entrypoints_); |
| } |
| |
| void Thread::SetDebuggerUpdatesEnabled(bool enabled) { |
| LOG(INFO) << "Turning debugger updates " << (enabled ? "on" : "off") << " for " << *this; |
| #if !defined(ART_USE_LLVM_COMPILER) |
| ChangeDebuggerEntryPoint(&entrypoints_, enabled); |
| #else |
| UNIMPLEMENTED(FATAL); |
| #endif |
| } |
| |
| void Thread::InitTid() { |
| tid_ = ::art::GetTid(); |
| } |
| |
| void Thread::InitAfterFork() { |
| // One thread (us) survived the fork, but we have a new tid so we need to |
| // update the value stashed in this Thread*. |
| InitTid(); |
| } |
| |
| void* Thread::CreateCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| self->Init(); |
| |
| // Wait until it's safe to start running code. (There may have been a suspend-all |
| // in progress while we were starting up.) |
| Runtime* runtime = Runtime::Current(); |
| runtime->GetThreadList()->WaitForGo(); |
| |
| { |
| CHECK_EQ(self->GetState(), kRunnable); |
| SirtRef<String> thread_name(self->GetThreadName()); |
| self->SetThreadName(thread_name->ToModifiedUtf8().c_str()); |
| } |
| |
| Dbg::PostThreadStart(self); |
| |
| // Invoke the 'run' method of our java.lang.Thread. |
| CHECK(self->peer_ != NULL); |
| Object* receiver = self->peer_; |
| Method* m = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(gThread_run); |
| m->Invoke(self, receiver, NULL, NULL); |
| |
| // Detach. |
| runtime->GetThreadList()->Unregister(); |
| |
| return NULL; |
| } |
| |
| static void SetVmData(Object* managed_thread, Thread* native_thread) { |
| gThread_vmData->SetInt(managed_thread, reinterpret_cast<uintptr_t>(native_thread)); |
| } |
| |
| Thread* Thread::FromManagedThread(Object* thread_peer) { |
| return reinterpret_cast<Thread*>(static_cast<uintptr_t>(gThread_vmData->GetInt(thread_peer))); |
| } |
| |
| Thread* Thread::FromManagedThread(JNIEnv* env, jobject java_thread) { |
| return FromManagedThread(Decode<Object*>(env, java_thread)); |
| } |
| |
| static size_t FixStackSize(size_t stack_size) { |
| // A stack size of zero means "use the default". |
| if (stack_size == 0) { |
| stack_size = Runtime::Current()->GetDefaultStackSize(); |
| } |
| |
| // Dalvik used the bionic pthread default stack size for native threads, |
| // so include that here to support apps that expect large native stacks. |
| stack_size += 1 * MB; |
| |
| |
| // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. |
| if (stack_size < PTHREAD_STACK_MIN) { |
| stack_size = PTHREAD_STACK_MIN; |
| } |
| |
| // It's likely that callers are trying to ensure they have at least a certain amount of |
| // stack space, so we should add our reserved space on top of what they requested, rather |
| // than implicitly take it away from them. |
| stack_size += Thread::kStackOverflowReservedBytes; |
| |
| // Some systems require the stack size to be a multiple of the system page size, so round up. |
| stack_size = RoundUp(stack_size, kPageSize); |
| |
| return stack_size; |
| } |
| |
| static void SigAltStack(stack_t* new_stack, stack_t* old_stack) { |
| if (sigaltstack(new_stack, old_stack) == -1) { |
| PLOG(FATAL) << "sigaltstack failed"; |
| } |
| } |
| |
| static void SetUpAlternateSignalStack() { |
| // Create and set an alternate signal stack. |
| stack_t ss; |
| ss.ss_sp = new uint8_t[SIGSTKSZ]; |
| ss.ss_size = SIGSTKSZ; |
| ss.ss_flags = 0; |
| CHECK(ss.ss_sp != NULL); |
| SigAltStack(&ss, NULL); |
| |
| // Double-check that it worked. |
| ss.ss_sp = NULL; |
| SigAltStack(NULL, &ss); |
| VLOG(threads) << "Alternate signal stack is " << PrettySize(ss.ss_size) << " at " << ss.ss_sp; |
| } |
| |
| static void TearDownAlternateSignalStack() { |
| // Get the pointer so we can free the memory. |
| stack_t ss; |
| SigAltStack(NULL, &ss); |
| uint8_t* allocated_signal_stack = reinterpret_cast<uint8_t*>(ss.ss_sp); |
| |
| // Tell the kernel to stop using it. |
| ss.ss_sp = NULL; |
| ss.ss_flags = SS_DISABLE; |
| ss.ss_size = SIGSTKSZ; // Avoid ENOMEM failure with Mac OS' buggy libc. |
| SigAltStack(&ss, NULL); |
| |
| // Free it. |
| delete[] allocated_signal_stack; |
| } |
| |
| void Thread::Create(Object* peer, size_t stack_size) { |
| CHECK(peer != NULL); |
| |
| stack_size = FixStackSize(stack_size); |
| |
| Thread* native_thread = new Thread; |
| native_thread->peer_ = peer; |
| |
| // Thread.start is synchronized, so we know that vmData is 0, |
| // and know that we're not racing to assign it. |
| SetVmData(peer, native_thread); |
| |
| { |
| ScopedThreadStateChange tsc(Thread::Current(), kVmWait); |
| pthread_t new_pthread; |
| pthread_attr_t attr; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); |
| CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); |
| CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); |
| CHECK_PTHREAD_CALL(pthread_create, (&new_pthread, &attr, Thread::CreateCallback, native_thread), "new thread"); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); |
| } |
| |
| // Let the child know when it's safe to start running. |
| Runtime::Current()->GetThreadList()->SignalGo(native_thread); |
| } |
| |
| void Thread::Init() { |
| // This function does all the initialization that must be run by the native thread it applies to. |
| // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so |
| // we can handshake with the corresponding native thread when it's ready.) Check this native |
| // thread hasn't been through here already... |
| CHECK(Thread::Current() == NULL); |
| |
| SetUpAlternateSignalStack(); |
| InitCpu(); |
| InitFunctionPointers(); |
| InitCardTable(); |
| |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime != NULL); |
| |
| thin_lock_id_ = runtime->GetThreadList()->AllocThreadId(); |
| |
| InitTid(); |
| InitStackHwm(); |
| |
| CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach"); |
| |
| jni_env_ = new JNIEnvExt(this, runtime->GetJavaVM()); |
| |
| runtime->GetThreadList()->Register(); |
| } |
| |
| Thread* Thread::Attach(const char* thread_name, bool as_daemon, Object* thread_group) { |
| Thread* self = new Thread; |
| self->Init(); |
| |
| self->SetState(kNative); |
| |
| // If we're the main thread, ClassLinker won't be created until after we're attached, |
| // so that thread needs a two-stage attach. Regular threads don't need this hack. |
| // In the compiler, all threads need this hack, because no-one's going to be getting |
| // a native peer! |
| if (self->thin_lock_id_ != ThreadList::kMainId && !Runtime::Current()->IsCompiler()) { |
| self->CreatePeer(thread_name, as_daemon, thread_group); |
| } else { |
| // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. |
| if (thread_name != NULL) { |
| self->name_->assign(thread_name); |
| ::art::SetThreadName(thread_name); |
| } |
| } |
| |
| self->GetJniEnv()->locals.AssertEmpty(); |
| return self; |
| } |
| |
| Object* Thread::GetMainThreadGroup() { |
| if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(gThreadGroup, true, true)) { |
| return NULL; |
| } |
| return gThreadGroup_mMain->GetObject(NULL); |
| } |
| |
| Object* Thread::GetSystemThreadGroup() { |
| if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(gThreadGroup, true, true)) { |
| return NULL; |
| } |
| return gThreadGroup_mSystem->GetObject(NULL); |
| } |
| |
| void Thread::CreatePeer(const char* name, bool as_daemon, Object* thread_group) { |
| CHECK(Runtime::Current()->IsStarted()); |
| JNIEnv* env = jni_env_; |
| |
| if (thread_group == NULL) { |
| thread_group = Thread::GetMainThreadGroup(); |
| } |
| ScopedLocalRef<jobject> java_thread_group(env, AddLocalReference<jobject>(env, thread_group)); |
| ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); |
| jint thread_priority = GetNativePriority(); |
| jboolean thread_is_daemon = as_daemon; |
| |
| ScopedLocalRef<jclass> c(env, env->FindClass("java/lang/Thread")); |
| ScopedLocalRef<jobject> peer(env, env->AllocObject(c.get())); |
| peer_ = DecodeJObject(peer.get()); |
| if (peer_ == NULL) { |
| CHECK(IsExceptionPending()); |
| return; |
| } |
| jmethodID mid = env->GetMethodID(c.get(), "<init>", "(Ljava/lang/ThreadGroup;Ljava/lang/String;IZ)V"); |
| env->CallNonvirtualVoidMethod(peer.get(), c.get(), mid, java_thread_group.get(), thread_name.get(), thread_priority, thread_is_daemon); |
| CHECK(!IsExceptionPending()) << " " << PrettyTypeOf(GetException()); |
| SetVmData(peer_, Thread::Current()); |
| |
| SirtRef<String> peer_thread_name(GetThreadName()); |
| if (peer_thread_name.get() == NULL) { |
| // The Thread constructor should have set the Thread.name to a |
| // non-null value. However, because we can run without code |
| // available (in the compiler, in tests), we manually assign the |
| // fields the constructor should have set. |
| gThread_daemon->SetBoolean(peer_, thread_is_daemon); |
| gThread_group->SetObject(peer_, thread_group); |
| gThread_name->SetObject(peer_, Decode<Object*>(env, thread_name.get())); |
| gThread_priority->SetInt(peer_, thread_priority); |
| peer_thread_name.reset(GetThreadName()); |
| } |
| // thread_name may have been null, so don't trust this to be non-null |
| if (peer_thread_name.get() != NULL) { |
| SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); |
| } |
| |
| // Pre-allocate an OutOfMemoryError for the double-OOME case. |
| ThrowNewException("Ljava/lang/OutOfMemoryError;", |
| "OutOfMemoryError thrown while trying to throw OutOfMemoryError; no stack available"); |
| ScopedLocalRef<jthrowable> exception(env, env->ExceptionOccurred()); |
| env->ExceptionClear(); |
| pre_allocated_OutOfMemoryError_ = Decode<Throwable*>(env, exception.get()); |
| } |
| |
| void Thread::SetThreadName(const char* name) { |
| name_->assign(name); |
| ::art::SetThreadName(name); |
| Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); |
| } |
| |
| void Thread::InitStackHwm() { |
| void* stack_base; |
| size_t stack_size; |
| GetThreadStack(stack_base, stack_size); |
| |
| // TODO: include this in the thread dumps; potentially useful in SIGQUIT output? |
| VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str()); |
| |
| stack_begin_ = reinterpret_cast<byte*>(stack_base); |
| stack_size_ = stack_size; |
| |
| if (stack_size_ <= kStackOverflowReservedBytes) { |
| LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)"; |
| } |
| |
| // TODO: move this into the Linux GetThreadStack implementation. |
| #if !defined(__APPLE__) |
| // If we're the main thread, check whether we were run with an unlimited stack. In that case, |
| // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection |
| // will be broken because we'll die long before we get close to 2GB. |
| if (thin_lock_id_ == 1) { |
| rlimit stack_limit; |
| if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { |
| PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; |
| } |
| if (stack_limit.rlim_cur == RLIM_INFINITY) { |
| // Find the default stack size for new threads... |
| pthread_attr_t default_attributes; |
| size_t default_stack_size; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), |
| "default stack size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); |
| |
| // ...and use that as our limit. |
| size_t old_stack_size = stack_size_; |
| stack_size_ = default_stack_size; |
| stack_begin_ += (old_stack_size - stack_size_); |
| VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" |
| << " to " << PrettySize(stack_size_) |
| << " with base " << reinterpret_cast<void*>(stack_begin_); |
| } |
| } |
| #endif |
| |
| // Set stack_end_ to the bottom of the stack saving space of stack overflows |
| ResetDefaultStackEnd(); |
| |
| // Sanity check. |
| int stack_variable; |
| CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_)); |
| } |
| |
| void Thread::Dump(std::ostream& os, bool full) const { |
| if (full) { |
| DumpState(os); |
| DumpStack(os); |
| } else { |
| os << "Thread["; |
| if (GetThinLockId() != 0) { |
| // If we're in kStarting, we won't have a thin lock id or tid yet. |
| os << GetThinLockId() |
| << ",tid=" << GetTid() << ','; |
| } |
| os << GetState() |
| << ",Thread*=" << this |
| << ",peer=" << peer_ |
| << ",\"" << *name_ << "\"" |
| << "]"; |
| } |
| } |
| |
| String* Thread::GetThreadName() const { |
| return (peer_ != NULL) ? reinterpret_cast<String*>(gThread_name->GetObject(peer_)) : NULL; |
| } |
| |
| void Thread::GetThreadName(std::string& name) const { |
| name.assign(*name_); |
| } |
| |
| void Thread::DumpState(std::ostream& os) const { |
| std::string group_name; |
| int priority; |
| bool is_daemon = false; |
| |
| if (peer_ != NULL) { |
| priority = gThread_priority->GetInt(peer_); |
| is_daemon = gThread_daemon->GetBoolean(peer_); |
| |
| Object* thread_group = GetThreadGroup(); |
| if (thread_group != NULL) { |
| String* group_name_string = reinterpret_cast<String*>(gThreadGroup_name->GetObject(thread_group)); |
| group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>"; |
| } |
| } else { |
| priority = GetNativePriority(); |
| } |
| |
| int policy; |
| sched_param sp; |
| CHECK_PTHREAD_CALL(pthread_getschedparam, (pthread_self(), &policy, &sp), __FUNCTION__); |
| |
| std::string scheduler_group_name(GetSchedulerGroupName(GetTid())); |
| if (scheduler_group_name.empty()) { |
| scheduler_group_name = "default"; |
| } |
| |
| os << '"' << *name_ << '"'; |
| if (is_daemon) { |
| os << " daemon"; |
| } |
| os << " prio=" << priority |
| << " tid=" << GetThinLockId() |
| << " " << GetState() << "\n"; |
| |
| os << " | group=\"" << group_name << "\"" |
| << " sCount=" << suspend_count_ |
| << " dsCount=" << debug_suspend_count_ |
| << " obj=" << reinterpret_cast<void*>(peer_) |
| << " self=" << reinterpret_cast<const void*>(this) << "\n"; |
| os << " | sysTid=" << GetTid() |
| << " nice=" << getpriority(PRIO_PROCESS, GetTid()) |
| << " sched=" << policy << "/" << sp.sched_priority |
| << " cgrp=" << scheduler_group_name |
| << " handle=" << pthread_self() << "\n"; |
| |
| // Grab the scheduler stats for this thread. |
| std::string scheduler_stats; |
| if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", GetTid()), &scheduler_stats)) { |
| scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. |
| } else { |
| scheduler_stats = "0 0 0"; |
| } |
| |
| int utime = 0; |
| int stime = 0; |
| int task_cpu = 0; |
| GetTaskStats(GetTid(), utime, stime, task_cpu); |
| |
| os << " | schedstat=( " << scheduler_stats << " )" |
| << " utm=" << utime |
| << " stm=" << stime |
| << " core=" << task_cpu |
| << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; |
| |
| os << " | stackSize=" << PrettySize(stack_size_) |
| << " stack=" << reinterpret_cast<void*>(stack_begin_) << "-" << reinterpret_cast<void*>(stack_end_) << "\n"; |
| } |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| void Thread::PushNativeToManagedRecord(NativeToManagedRecord* record) { |
| Method **sp = top_of_managed_stack_.GetSP(); |
| #ifndef NDEBUG |
| if (sp != NULL) { |
| Method* m = *sp; |
| Runtime::Current()->GetHeap()->VerifyObject(m); |
| DCHECK((m == NULL) || m->IsMethod()); |
| } |
| #endif |
| record->last_top_of_managed_stack_ = reinterpret_cast<void*>(sp); |
| record->last_top_of_managed_stack_pc_ = top_of_managed_stack_pc_; |
| record->link_ = native_to_managed_record_; |
| native_to_managed_record_ = record; |
| top_of_managed_stack_.SetSP(NULL); |
| } |
| #else |
| void Thread::PushNativeToManagedRecord(NativeToManagedRecord*) { |
| LOG(FATAL) << "Called non-LLVM method with LLVM"; |
| } |
| #endif |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| void Thread::PopNativeToManagedRecord(const NativeToManagedRecord& record) { |
| native_to_managed_record_ = record.link_; |
| top_of_managed_stack_.SetSP(reinterpret_cast<Method**>(record.last_top_of_managed_stack_)); |
| top_of_managed_stack_pc_ = record.last_top_of_managed_stack_pc_; |
| } |
| #else |
| void Thread::PopNativeToManagedRecord(const NativeToManagedRecord&) { |
| LOG(FATAL) << "Called non-LLVM method with LLVM"; |
| } |
| #endif |
| |
| struct StackDumpVisitor : public Thread::StackVisitor { |
| StackDumpVisitor(std::ostream& os, const Thread* thread) |
| : last_method(NULL), last_line_number(0), repetition_count(0), os(os), thread(thread), |
| frame_count(0) { |
| } |
| |
| virtual ~StackDumpVisitor() { |
| if (frame_count == 0) { |
| os << " (no managed stack frames)\n"; |
| } |
| } |
| |
| bool VisitFrame(const Frame& frame, uintptr_t pc) { |
| if (!frame.HasMethod()) { |
| return true; |
| } |
| const int kMaxRepetition = 3; |
| Method* m = frame.GetMethod(); |
| Class* c = m->GetDeclaringClass(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const DexCache* dex_cache = c->GetDexCache(); |
| int line_number = -1; |
| if (dex_cache != NULL) { // be tolerant of bad input |
| const DexFile& dex_file = class_linker->FindDexFile(dex_cache); |
| line_number = dex_file.GetLineNumFromPC(m, m->ToDexPC(pc)); |
| } |
| if (line_number == last_line_number && last_method == m) { |
| repetition_count++; |
| } else { |
| if (repetition_count >= kMaxRepetition) { |
| os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; |
| } |
| repetition_count = 0; |
| last_line_number = line_number; |
| last_method = m; |
| } |
| if (repetition_count < kMaxRepetition) { |
| os << " at " << PrettyMethod(m, false); |
| if (m->IsNative()) { |
| os << "(Native method)"; |
| } else { |
| mh.ChangeMethod(m); |
| const char* source_file(mh.GetDeclaringClassSourceFile()); |
| os << "(" << (source_file != NULL ? source_file : "unavailable") |
| << ":" << line_number << ")"; |
| } |
| os << "\n"; |
| } |
| |
| if (frame_count++ == 0) { |
| Monitor::DescribeWait(os, thread); |
| } |
| return true; |
| } |
| MethodHelper mh; |
| Method* last_method; |
| int last_line_number; |
| int repetition_count; |
| std::ostream& os; |
| const Thread* thread; |
| int frame_count; |
| }; |
| |
| void Thread::DumpStack(std::ostream& os) const { |
| // If we're currently in native code, dump that stack before dumping the managed stack. |
| if (GetState() == kNative || GetState() == kVmWait) { |
| DumpKernelStack(os); |
| DumpNativeStack(os); |
| } |
| StackDumpVisitor dumper(os, this); |
| WalkStack(&dumper); |
| } |
| |
| #if !defined(__APPLE__) |
| void Thread::DumpKernelStack(std::ostream& os) const { |
| std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", GetTid())); |
| std::string kernel_stack; |
| if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) { |
| os << " (couldn't read " << kernel_stack_filename << ")"; |
| } |
| |
| std::vector<std::string> kernel_stack_frames; |
| Split(kernel_stack, '\n', kernel_stack_frames); |
| // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff", |
| // which looking at the source appears to be the kernel's way of saying "that's all, folks!". |
| kernel_stack_frames.pop_back(); |
| for (size_t i = 0; i < kernel_stack_frames.size(); ++i) { |
| os << " kernel: " << kernel_stack_frames[i] << "\n"; |
| } |
| } |
| #else |
| // TODO: can we get the kernel stack on Mac OS? |
| void Thread::DumpKernelStack(std::ostream&) const {} |
| #endif |
| |
| void Thread::SetStateWithoutSuspendCheck(ThreadState new_state) { |
| volatile void* raw = reinterpret_cast<volatile void*>(&state_); |
| volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw); |
| android_atomic_release_store(new_state, addr); |
| } |
| |
| ThreadState Thread::SetState(ThreadState new_state) { |
| ThreadState old_state = state_; |
| if (old_state == new_state) { |
| return old_state; |
| } |
| |
| volatile void* raw = reinterpret_cast<volatile void*>(&state_); |
| volatile int32_t* addr = reinterpret_cast<volatile int32_t*>(raw); |
| |
| if (new_state == kRunnable) { |
| /* |
| * Change our status to kRunnable. The transition requires |
| * that we check for pending suspension, because the runtime considers |
| * us to be "asleep" in all other states, and another thread could |
| * be performing a GC now. |
| * |
| * The order of operations is very significant here. One way to |
| * do this wrong is: |
| * |
| * GCing thread Our thread (in kNative) |
| * ------------ ---------------------- |
| * check suspend count (== 0) |
| * SuspendAllThreads() |
| * grab suspend-count lock |
| * increment all suspend counts |
| * release suspend-count lock |
| * check thread state (== kNative) |
| * all are suspended, begin GC |
| * set state to kRunnable |
| * (continue executing) |
| * |
| * We can correct this by grabbing the suspend-count lock and |
| * performing both of our operations (check suspend count, set |
| * state) while holding it, now we need to grab a mutex on every |
| * transition to kRunnable. |
| * |
| * What we do instead is change the order of operations so that |
| * the transition to kRunnable happens first. If we then detect |
| * that the suspend count is nonzero, we switch to kSuspended. |
| * |
| * Appropriate compiler and memory barriers are required to ensure |
| * that the operations are observed in the expected order. |
| * |
| * This does create a small window of opportunity where a GC in |
| * progress could observe what appears to be a running thread (if |
| * it happens to look between when we set to kRunnable and when we |
| * switch to kSuspended). At worst this only affects assertions |
| * and thread logging. (We could work around it with some sort |
| * of intermediate "pre-running" state that is generally treated |
| * as equivalent to running, but that doesn't seem worthwhile.) |
| * |
| * We can also solve this by combining the "status" and "suspend |
| * count" fields into a single 32-bit value. This trades the |
| * store/load barrier on transition to kRunnable for an atomic RMW |
| * op on all transitions and all suspend count updates (also, all |
| * accesses to status or the thread count require bit-fiddling). |
| * It also eliminates the brief transition through kRunnable when |
| * the thread is supposed to be suspended. This is possibly faster |
| * on SMP and slightly more correct, but less convenient. |
| */ |
| android_atomic_acquire_store(new_state, addr); |
| ANNOTATE_IGNORE_READS_BEGIN(); |
| int suspend_count = suspend_count_; |
| ANNOTATE_IGNORE_READS_END(); |
| if (suspend_count != 0) { |
| Runtime::Current()->GetThreadList()->FullSuspendCheck(this); |
| } |
| } else { |
| /* |
| * Not changing to kRunnable. No additional work required. |
| * |
| * We use a releasing store to ensure that, if we were runnable, |
| * any updates we previously made to objects on the managed heap |
| * will be observed before the state change. |
| */ |
| android_atomic_release_store(new_state, addr); |
| } |
| |
| return old_state; |
| } |
| |
| bool Thread::IsSuspended() { |
| ANNOTATE_IGNORE_READS_BEGIN(); |
| int suspend_count = suspend_count_; |
| ANNOTATE_IGNORE_READS_END(); |
| return suspend_count != 0 && GetState() != kRunnable; |
| } |
| |
| static void ReportThreadSuspendTimeout(Thread* waiting_thread) { |
| Runtime* runtime = Runtime::Current(); |
| std::ostringstream ss; |
| ss << "Thread suspend timeout waiting for thread " << *waiting_thread << "\n"; |
| runtime->DumpLockHolders(ss); |
| ss << "\n"; |
| runtime->GetThreadList()->DumpLocked(ss); |
| LOG(FATAL) << ss.str(); |
| } |
| |
| void Thread::WaitUntilSuspended() { |
| static const useconds_t kTimeoutUs = 30 * 1000000; // 30s. |
| |
| useconds_t total_delay = 0; |
| useconds_t delay = 0; |
| while (GetState() == kRunnable) { |
| if (total_delay >= kTimeoutUs) { |
| ReportThreadSuspendTimeout(this); |
| } |
| useconds_t new_delay = delay * 2; |
| CHECK_GE(new_delay, delay); |
| delay = new_delay; |
| if (delay == 0) { |
| sched_yield(); |
| delay = 10000; |
| } else { |
| usleep(delay); |
| total_delay += delay; |
| } |
| } |
| } |
| |
| void Thread::ThreadExitCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; |
| } |
| |
| void Thread::Startup() { |
| // Allocate a TLS slot. |
| CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); |
| |
| // Double-check the TLS slot allocation. |
| if (pthread_getspecific(pthread_key_self_) != NULL) { |
| LOG(FATAL) << "Newly-created pthread TLS slot is not NULL"; |
| } |
| } |
| |
| // TODO: make more accessible? |
| static Class* FindClassOrDie(ClassLinker* class_linker, const char* descriptor) { |
| Class* c = class_linker->FindSystemClass(descriptor); |
| CHECK(c != NULL) << descriptor; |
| return c; |
| } |
| |
| // TODO: make more accessible? |
| static Field* FindFieldOrDie(Class* c, const char* name, const char* descriptor) { |
| Field* f = c->FindDeclaredInstanceField(name, descriptor); |
| CHECK(f != NULL) << PrettyClass(c) << " " << name << " " << descriptor; |
| return f; |
| } |
| |
| // TODO: make more accessible? |
| static Method* FindMethodOrDie(Class* c, const char* name, const char* signature) { |
| Method* m = c->FindVirtualMethod(name, signature); |
| CHECK(m != NULL) << PrettyClass(c) << " " << name << " " << signature; |
| return m; |
| } |
| |
| // TODO: make more accessible? |
| static Field* FindStaticFieldOrDie(Class* c, const char* name, const char* descriptor) { |
| Field* f = c->FindDeclaredStaticField(name, descriptor); |
| CHECK(f != NULL) << PrettyClass(c) << " " << name << " " << descriptor; |
| return f; |
| } |
| |
| void Thread::FinishStartup() { |
| CHECK(Runtime::Current()->IsStarted()); |
| Thread* self = Thread::Current(); |
| |
| // Need to be kRunnable for FindClass |
| ScopedThreadStateChange tsc(self, kRunnable); |
| |
| // Now the ClassLinker is ready, we can find the various Class*, Field*, and Method*s we need. |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| |
| Class* Thread_class = FindClassOrDie(class_linker, "Ljava/lang/Thread;"); |
| Class* UncaughtExceptionHandler_class = FindClassOrDie(class_linker, "Ljava/lang/Thread$UncaughtExceptionHandler;"); |
| gThreadGroup = FindClassOrDie(class_linker, "Ljava/lang/ThreadGroup;"); |
| gThreadLock = FindClassOrDie(class_linker, "Ljava/lang/ThreadLock;"); |
| |
| gThread_daemon = FindFieldOrDie(Thread_class, "daemon", "Z"); |
| gThread_group = FindFieldOrDie(Thread_class, "group", "Ljava/lang/ThreadGroup;"); |
| gThread_lock = FindFieldOrDie(Thread_class, "lock", "Ljava/lang/ThreadLock;"); |
| gThread_name = FindFieldOrDie(Thread_class, "name", "Ljava/lang/String;"); |
| gThread_priority = FindFieldOrDie(Thread_class, "priority", "I"); |
| gThread_uncaughtHandler = FindFieldOrDie(Thread_class, "uncaughtHandler", "Ljava/lang/Thread$UncaughtExceptionHandler;"); |
| gThread_vmData = FindFieldOrDie(Thread_class, "vmData", "I"); |
| gThreadGroup_name = FindFieldOrDie(gThreadGroup, "name", "Ljava/lang/String;"); |
| gThreadGroup_mMain = FindStaticFieldOrDie(gThreadGroup, "mMain", "Ljava/lang/ThreadGroup;"); |
| gThreadGroup_mSystem = FindStaticFieldOrDie(gThreadGroup, "mSystem", "Ljava/lang/ThreadGroup;"); |
| gThreadLock_thread = FindFieldOrDie(gThreadLock, "thread", "Ljava/lang/Thread;"); |
| |
| gThread_run = FindMethodOrDie(Thread_class, "run", "()V"); |
| gThreadGroup_removeThread = FindMethodOrDie(gThreadGroup, "removeThread", "(Ljava/lang/Thread;)V"); |
| gUncaughtExceptionHandler_uncaughtException = FindMethodOrDie(UncaughtExceptionHandler_class, |
| "uncaughtException", "(Ljava/lang/Thread;Ljava/lang/Throwable;)V"); |
| |
| // Finish attaching the main thread. |
| Thread::Current()->CreatePeer("main", false, Thread::GetMainThreadGroup()); |
| |
| InitBoxingMethods(); |
| class_linker->RunRootClinits(); |
| } |
| |
| void Thread::Shutdown() { |
| CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); |
| } |
| |
| uint32_t Thread::LockOwnerFromThreadLock(Object* thread_lock) { |
| if (thread_lock == NULL || thread_lock->GetClass() != gThreadLock) { |
| return ThreadList::kInvalidId; |
| } |
| Object* managed_thread = gThreadLock_thread->GetObject(thread_lock); |
| if (managed_thread == NULL) { |
| return ThreadList::kInvalidId; |
| } |
| uintptr_t vmData = static_cast<uintptr_t>(gThread_vmData->GetInt(managed_thread)); |
| Thread* thread = reinterpret_cast<Thread*>(vmData); |
| if (thread == NULL) { |
| return ThreadList::kInvalidId; |
| } |
| return thread->GetThinLockId(); |
| } |
| |
| Thread::Thread() |
| : thin_lock_id_(0), |
| tid_(0), |
| peer_(NULL), |
| top_of_managed_stack_(), |
| top_of_managed_stack_pc_(0), |
| wait_mutex_(new Mutex("a thread wait mutex")), |
| wait_cond_(new ConditionVariable("a thread wait condition variable")), |
| wait_monitor_(NULL), |
| interrupted_(false), |
| wait_next_(NULL), |
| monitor_enter_object_(NULL), |
| card_table_(0), |
| stack_end_(NULL), |
| native_to_managed_record_(NULL), |
| top_sirt_(NULL), |
| top_shadow_frame_(NULL), |
| jni_env_(NULL), |
| state_(kNative), |
| self_(NULL), |
| runtime_(NULL), |
| exception_(NULL), |
| suspend_count_(0), |
| debug_suspend_count_(0), |
| class_loader_override_(NULL), |
| long_jump_context_(NULL), |
| throwing_OutOfMemoryError_(false), |
| pre_allocated_OutOfMemoryError_(NULL), |
| debug_invoke_req_(new DebugInvokeReq), |
| trace_stack_(new std::vector<TraceStackFrame>), |
| name_(new std::string(kThreadNameDuringStartup)) { |
| CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); |
| memset(&held_mutexes_[0], 0, sizeof(held_mutexes_)); |
| } |
| |
| bool Thread::IsStillStarting() const { |
| // You might think you can check whether the state is kStarting, but for much of thread startup, |
| // the thread might also be in kVmWait. |
| // You might think you can check whether the peer is NULL, but the peer is actually created and |
| // assigned fairly early on, and needs to be. |
| // It turns out that the last thing to change is the thread name; that's a good proxy for "has |
| // this thread _ever_ entered kRunnable". |
| return (*name_ == kThreadNameDuringStartup); |
| } |
| |
| static void MonitorExitVisitor(const Object* object, void*) { |
| Object* entered_monitor = const_cast<Object*>(object); |
| LOG(WARNING) << "Calling MonitorExit on object " << object << " (" << PrettyTypeOf(object) << ")" |
| << " left locked by native thread " << *Thread::Current() << " which is detaching"; |
| entered_monitor->MonitorExit(Thread::Current()); |
| } |
| |
| void Thread::Destroy() { |
| // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. |
| if (jni_env_ != NULL) { |
| jni_env_->monitors.VisitRoots(MonitorExitVisitor, NULL); |
| } |
| |
| if (peer_ != NULL) { |
| Thread* self = this; |
| |
| // We may need to call user-supplied managed code. |
| SetState(kRunnable); |
| |
| HandleUncaughtExceptions(); |
| RemoveFromThreadGroup(); |
| |
| // this.vmData = 0; |
| SetVmData(peer_, NULL); |
| |
| Dbg::PostThreadDeath(self); |
| |
| // Thread.join() is implemented as an Object.wait() on the Thread.lock |
| // object. Signal anyone who is waiting. |
| Object* lock = gThread_lock->GetObject(peer_); |
| // (This conditional is only needed for tests, where Thread.lock won't have been set.) |
| if (lock != NULL) { |
| lock->MonitorEnter(self); |
| lock->NotifyAll(); |
| lock->MonitorExit(self); |
| } |
| } |
| } |
| |
| Thread::~Thread() { |
| delete jni_env_; |
| jni_env_ = NULL; |
| |
| SetState(kTerminated); |
| |
| delete wait_cond_; |
| delete wait_mutex_; |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| delete long_jump_context_; |
| #endif |
| |
| delete debug_invoke_req_; |
| delete trace_stack_; |
| delete name_; |
| |
| TearDownAlternateSignalStack(); |
| } |
| |
| void Thread::HandleUncaughtExceptions() { |
| if (!IsExceptionPending()) { |
| return; |
| } |
| |
| // Get and clear the exception. |
| Object* exception = GetException(); |
| ClearException(); |
| |
| // If the thread has its own handler, use that. |
| Object* handler = gThread_uncaughtHandler->GetObject(peer_); |
| if (handler == NULL) { |
| // Otherwise use the thread group's default handler. |
| handler = GetThreadGroup(); |
| } |
| |
| // Call the handler. |
| Method* m = handler->GetClass()->FindVirtualMethodForVirtualOrInterface(gUncaughtExceptionHandler_uncaughtException); |
| JValue args[2]; |
| args[0].SetL(peer_); |
| args[1].SetL(exception); |
| m->Invoke(this, handler, args, NULL); |
| |
| // If the handler threw, clear that exception too. |
| ClearException(); |
| } |
| |
| Object* Thread::GetThreadGroup() const { |
| return gThread_group->GetObject(peer_); |
| } |
| |
| void Thread::RemoveFromThreadGroup() { |
| // this.group.removeThread(this); |
| // group can be null if we're in the compiler or a test. |
| Object* group = GetThreadGroup(); |
| if (group != NULL) { |
| Method* m = group->GetClass()->FindVirtualMethodForVirtualOrInterface(gThreadGroup_removeThread); |
| JValue args[1]; |
| args[0].SetL(peer_); |
| m->Invoke(this, group, args, NULL); |
| } |
| } |
| |
| size_t Thread::NumSirtReferences() { |
| size_t count = 0; |
| for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { |
| count += cur->NumberOfReferences(); |
| } |
| return count; |
| } |
| |
| size_t Thread::NumShadowFrameReferences() { |
| size_t count = 0; |
| for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) { |
| count += cur->NumberOfReferences(); |
| } |
| return count; |
| } |
| |
| bool Thread::SirtContains(jobject obj) { |
| Object** sirt_entry = reinterpret_cast<Object**>(obj); |
| for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { |
| if (cur->Contains(sirt_entry)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Thread::ShadowFrameContains(jobject obj) { |
| Object** shadow_frame_entry = reinterpret_cast<Object**>(obj); |
| for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) { |
| if (cur->Contains(shadow_frame_entry)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Thread::StackReferencesContain(jobject obj) { |
| return SirtContains(obj) || ShadowFrameContains(obj); |
| } |
| |
| void Thread::SirtVisitRoots(Heap::RootVisitor* visitor, void* arg) { |
| for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { |
| size_t num_refs = cur->NumberOfReferences(); |
| for (size_t j = 0; j < num_refs; j++) { |
| Object* object = cur->GetReference(j); |
| if (object != NULL) { |
| visitor(object, arg); |
| } |
| } |
| } |
| } |
| |
| void Thread::ShadowFrameVisitRoots(Heap::RootVisitor* visitor, void* arg) { |
| for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) { |
| size_t num_refs = cur->NumberOfReferences(); |
| for (size_t j = 0; j < num_refs; j++) { |
| Object* object = cur->GetReference(j); |
| if (object != NULL) { |
| visitor(object, arg); |
| } |
| } |
| } |
| } |
| |
| Object* Thread::DecodeJObject(jobject obj) { |
| DCHECK(CanAccessDirectReferences()); |
| if (obj == NULL) { |
| return NULL; |
| } |
| IndirectRef ref = reinterpret_cast<IndirectRef>(obj); |
| IndirectRefKind kind = GetIndirectRefKind(ref); |
| Object* result; |
| switch (kind) { |
| case kLocal: |
| { |
| IndirectReferenceTable& locals = jni_env_->locals; |
| result = const_cast<Object*>(locals.Get(ref)); |
| break; |
| } |
| case kGlobal: |
| { |
| JavaVMExt* vm = Runtime::Current()->GetJavaVM(); |
| IndirectReferenceTable& globals = vm->globals; |
| MutexLock mu(vm->globals_lock); |
| result = const_cast<Object*>(globals.Get(ref)); |
| break; |
| } |
| case kWeakGlobal: |
| { |
| JavaVMExt* vm = Runtime::Current()->GetJavaVM(); |
| IndirectReferenceTable& weak_globals = vm->weak_globals; |
| MutexLock mu(vm->weak_globals_lock); |
| result = const_cast<Object*>(weak_globals.Get(ref)); |
| if (result == kClearedJniWeakGlobal) { |
| // This is a special case where it's okay to return NULL. |
| return NULL; |
| } |
| break; |
| } |
| case kSirtOrInvalid: |
| default: |
| // TODO: make stack indirect reference table lookup more efficient |
| // Check if this is a local reference in the SIRT |
| if (StackReferencesContain(obj)) { |
| result = *reinterpret_cast<Object**>(obj); // Read from SIRT |
| } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) { |
| // Assume an invalid local reference is actually a direct pointer. |
| result = reinterpret_cast<Object*>(obj); |
| } else { |
| result = kInvalidIndirectRefObject; |
| } |
| } |
| |
| if (result == NULL) { |
| LOG(ERROR) << "JNI ERROR (app bug): use of deleted " << kind << ": " << obj; |
| JniAbort(NULL); |
| } else { |
| if (result != kInvalidIndirectRefObject) { |
| Runtime::Current()->GetHeap()->VerifyObject(result); |
| } |
| } |
| return result; |
| } |
| |
| class CountStackDepthVisitor : public Thread::StackVisitor { |
| public: |
| CountStackDepthVisitor() : depth_(0), skip_depth_(0), skipping_(true) {} |
| |
| bool VisitFrame(const Frame& frame, uintptr_t /*pc*/) { |
| // We want to skip frames up to and including the exception's constructor. |
| // Note we also skip the frame if it doesn't have a method (namely the callee |
| // save frame) |
| if (skipping_ && frame.HasMethod() && |
| !Throwable::GetJavaLangThrowable()->IsAssignableFrom(frame.GetMethod()->GetDeclaringClass())) { |
| skipping_ = false; |
| } |
| if (!skipping_) { |
| if (frame.HasMethod()) { // ignore callee save frames |
| ++depth_; |
| } |
| } else { |
| ++skip_depth_; |
| } |
| return true; |
| } |
| |
| int GetDepth() const { |
| return depth_; |
| } |
| |
| int GetSkipDepth() const { |
| return skip_depth_; |
| } |
| |
| private: |
| uint32_t depth_; |
| uint32_t skip_depth_; |
| bool skipping_; |
| }; |
| |
| class BuildInternalStackTraceVisitor : public Thread::StackVisitor { |
| public: |
| explicit BuildInternalStackTraceVisitor(int skip_depth) |
| : skip_depth_(skip_depth), count_(0), pc_trace_(NULL), method_trace_(NULL), local_ref_(NULL) { |
| } |
| |
| bool Init(int depth, ScopedJniThreadState& ts) { |
| // Allocate method trace with an extra slot that will hold the PC trace |
| method_trace_ = Runtime::Current()->GetClassLinker()->AllocObjectArray<Object>(depth + 1); |
| if (method_trace_ == NULL) { |
| return false; |
| } |
| // Register a local reference as IntArray::Alloc may trigger GC |
| local_ref_ = AddLocalReference<jobject>(ts.Env(), method_trace_); |
| pc_trace_ = IntArray::Alloc(depth); |
| if (pc_trace_ == NULL) { |
| return false; |
| } |
| #ifdef MOVING_GARBAGE_COLLECTOR |
| // Re-read after potential GC |
| method_trace_ = Decode<ObjectArray<Object>*>(ts.Env(), local_ref_); |
| #endif |
| // Save PC trace in last element of method trace, also places it into the |
| // object graph. |
| method_trace_->Set(depth, pc_trace_); |
| return true; |
| } |
| |
| virtual ~BuildInternalStackTraceVisitor() {} |
| |
| bool VisitFrame(const Frame& frame, uintptr_t pc) { |
| if (method_trace_ == NULL || pc_trace_ == NULL) { |
| return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. |
| } |
| if (skip_depth_ > 0) { |
| skip_depth_--; |
| return true; |
| } |
| if (!frame.HasMethod()) { |
| return true; // ignore callee save frames |
| } |
| method_trace_->Set(count_, frame.GetMethod()); |
| pc_trace_->Set(count_, pc); |
| ++count_; |
| return true; |
| } |
| |
| jobject GetInternalStackTrace() const { |
| return local_ref_; |
| } |
| |
| private: |
| // How many more frames to skip. |
| int32_t skip_depth_; |
| // Current position down stack trace |
| uint32_t count_; |
| // Array of return PC values |
| IntArray* pc_trace_; |
| // An array of the methods on the stack, the last entry is a reference to the |
| // PC trace |
| ObjectArray<Object>* method_trace_; |
| // Local indirect reference table entry for method trace |
| jobject local_ref_; |
| }; |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| // TODO: remove this. |
| static uintptr_t ManglePc(uintptr_t pc) { |
| // Move the PC back 2 bytes as a call will frequently terminate the |
| // decoding of a particular instruction and we want to make sure we |
| // get the Dex PC of the instruction with the call and not the |
| // instruction following. |
| if (pc > 0) { pc -= 2; } |
| return pc; |
| } |
| #endif |
| |
| // TODO: remove this. |
| static uintptr_t DemanglePc(uintptr_t pc) { |
| // Revert mangling for the case where we need the PC to return to the upcall |
| if (pc > 0) { pc += 2; } |
| return pc; |
| } |
| |
| void Thread::PushShadowFrame(ShadowFrame* frame) { |
| frame->SetLink(top_shadow_frame_); |
| top_shadow_frame_ = frame; |
| } |
| |
| ShadowFrame* Thread::PopShadowFrame() { |
| CHECK(top_shadow_frame_ != NULL); |
| ShadowFrame* frame = top_shadow_frame_; |
| top_shadow_frame_ = frame->GetLink(); |
| return frame; |
| } |
| |
| void Thread::PushSirt(StackIndirectReferenceTable* sirt) { |
| sirt->SetLink(top_sirt_); |
| top_sirt_ = sirt; |
| } |
| |
| StackIndirectReferenceTable* Thread::PopSirt() { |
| CHECK(top_sirt_ != NULL); |
| StackIndirectReferenceTable* sirt = top_sirt_; |
| top_sirt_ = top_sirt_->GetLink(); |
| return sirt; |
| } |
| |
| #if !defined(ART_USE_LLVM_COMPILER) // LLVM use ShadowFrame |
| |
| void Thread::WalkStack(StackVisitor* visitor, bool include_upcalls) const { |
| Frame frame = GetTopOfStack(); |
| uintptr_t pc = ManglePc(top_of_managed_stack_pc_); |
| uint32_t trace_stack_depth = 0; |
| // TODO: enable this CHECK after native_to_managed_record_ is initialized during startup. |
| // CHECK(native_to_managed_record_ != NULL); |
| NativeToManagedRecord* record = native_to_managed_record_; |
| bool method_tracing_active = Runtime::Current()->IsMethodTracingActive(); |
| while (frame.GetSP() != NULL) { |
| for ( ; frame.GetMethod() != NULL; frame.Next()) { |
| frame.GetMethod()->AssertPcIsWithinCode(pc); |
| bool should_continue = visitor->VisitFrame(frame, pc); |
| if (UNLIKELY(!should_continue)) { |
| return; |
| } |
| uintptr_t return_pc = frame.GetReturnPC(); |
| if (LIKELY(!method_tracing_active)) { |
| pc = ManglePc(return_pc); |
| } else { |
| // While profiling, the return pc is restored from the side stack, except when walking |
| // the stack for an exception where the side stack will be unwound in VisitFrame. |
| if (IsTraceExitPc(return_pc) && !include_upcalls) { |
| TraceStackFrame trace_frame = GetTraceStackFrame(trace_stack_depth++); |
| CHECK(trace_frame.method_ == frame.GetMethod()); |
| pc = ManglePc(trace_frame.return_pc_); |
| } else { |
| pc = ManglePc(return_pc); |
| } |
| } |
| } |
| if (include_upcalls) { |
| bool should_continue = visitor->VisitFrame(frame, pc); |
| if (!should_continue) { |
| return; |
| } |
| } |
| if (record == NULL) { |
| return; |
| } |
| // last_tos should return Frame instead of sp? |
| frame.SetSP(reinterpret_cast<Method**>(record->last_top_of_managed_stack_)); |
| pc = ManglePc(record->last_top_of_managed_stack_pc_); |
| record = record->link_; |
| } |
| } |
| |
| #else // defined(ART_USE_LLVM_COMPILER) // LLVM uses ShadowFrame |
| |
| void Thread::WalkStack(StackVisitor* visitor, bool /*include_upcalls*/) const { |
| for (ShadowFrame* cur = top_shadow_frame_; cur; cur = cur->GetLink()) { |
| Frame frame; |
| frame.SetSP(reinterpret_cast<Method**>(reinterpret_cast<byte*>(cur) + |
| ShadowFrame::MethodOffset())); |
| bool should_continue = visitor->VisitFrame(frame, cur->GetDexPC()); |
| if (!should_continue) { |
| return; |
| } |
| } |
| } |
| |
| /* |
| * | | |
| * | | |
| * | | |
| * | . | |
| * | . | |
| * | . | |
| * | . | |
| * | Method* | |
| * | . | |
| * | . | <-- top_shadow_frame_ (ShadowFrame*) |
| * / +------------------------+ |
| * ->| . | |
| * . | . | |
| * . | . | |
| * /+------------------------+ |
| * / | . | |
| * / | . | |
| * --- | | . | |
| * | | | . | |
| * | | Method* | <-- frame.GetSP() (Method**) |
| * ShadowFrame \ | . | |
| * | ->| . | <-- cur (ShadowFrame*) |
| * --- /+------------------------+ |
| * / | . | |
| * / | . | |
| * --- | | . | |
| * | cur->GetLink() | | . | |
| * | | Method* | |
| * ShadowFrame \ | . | |
| * | ->| . | |
| * --- +------------------------+ |
| * | . | |
| * | . | |
| * | . | |
| * +========================+ |
| */ |
| |
| #endif |
| |
| jobject Thread::CreateInternalStackTrace(JNIEnv* env) const { |
| // Compute depth of stack |
| CountStackDepthVisitor count_visitor; |
| WalkStack(&count_visitor); |
| int32_t depth = count_visitor.GetDepth(); |
| int32_t skip_depth = count_visitor.GetSkipDepth(); |
| |
| // Transition into runnable state to work on Object*/Array* |
| ScopedJniThreadState ts(env); |
| |
| // Build internal stack trace |
| BuildInternalStackTraceVisitor build_trace_visitor(skip_depth); |
| if (!build_trace_visitor.Init(depth, ts)) { |
| return NULL; // Allocation failed |
| } |
| WalkStack(&build_trace_visitor); |
| return build_trace_visitor.GetInternalStackTrace(); |
| } |
| |
| jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal, |
| jobjectArray output_array, int* stack_depth) { |
| // Transition into runnable state to work on Object*/Array* |
| ScopedJniThreadState ts(env); |
| // Decode the internal stack trace into the depth, method trace and PC trace |
| ObjectArray<Object>* method_trace = |
| down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal)); |
| int32_t depth = method_trace->GetLength() - 1; |
| IntArray* pc_trace = down_cast<IntArray*>(method_trace->Get(depth)); |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| |
| jobjectArray result; |
| ObjectArray<StackTraceElement>* java_traces; |
| if (output_array != NULL) { |
| // Reuse the array we were given. |
| result = output_array; |
| java_traces = reinterpret_cast<ObjectArray<StackTraceElement>*>(Decode<Array*>(env, |
| output_array)); |
| // ...adjusting the number of frames we'll write to not exceed the array length. |
| depth = std::min(depth, java_traces->GetLength()); |
| } else { |
| // Create java_trace array and place in local reference table |
| java_traces = class_linker->AllocStackTraceElementArray(depth); |
| if (java_traces == NULL) { |
| return NULL; |
| } |
| result = AddLocalReference<jobjectArray>(ts.Env(), java_traces); |
| } |
| |
| if (stack_depth != NULL) { |
| *stack_depth = depth; |
| } |
| |
| MethodHelper mh; |
| for (int32_t i = 0; i < depth; ++i) { |
| // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) |
| Method* method = down_cast<Method*>(method_trace->Get(i)); |
| mh.ChangeMethod(method); |
| uint32_t native_pc = pc_trace->Get(i); |
| int32_t line_number = mh.GetLineNumFromNativePC(native_pc); |
| // Allocate element, potentially triggering GC |
| // TODO: reuse class_name_object via Class::name_? |
| const char* descriptor = mh.GetDeclaringClassDescriptor(); |
| CHECK(descriptor != NULL); |
| std::string class_name(PrettyDescriptor(descriptor)); |
| SirtRef<String> class_name_object(String::AllocFromModifiedUtf8(class_name.c_str())); |
| if (class_name_object.get() == NULL) { |
| return NULL; |
| } |
| const char* method_name = mh.GetName(); |
| CHECK(method_name != NULL); |
| SirtRef<String> method_name_object(String::AllocFromModifiedUtf8(method_name)); |
| if (method_name_object.get() == NULL) { |
| return NULL; |
| } |
| const char* source_file = mh.GetDeclaringClassSourceFile(); |
| SirtRef<String> source_name_object(String::AllocFromModifiedUtf8(source_file)); |
| StackTraceElement* obj = StackTraceElement::Alloc(class_name_object.get(), |
| method_name_object.get(), |
| source_name_object.get(), |
| line_number); |
| if (obj == NULL) { |
| return NULL; |
| } |
| #ifdef MOVING_GARBAGE_COLLECTOR |
| // Re-read after potential GC |
| java_traces = Decode<ObjectArray<Object>*>(ts.Env(), result); |
| method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(ts.Env(), internal)); |
| pc_trace = down_cast<IntArray*>(method_trace->Get(depth)); |
| #endif |
| java_traces->Set(i, obj); |
| } |
| return result; |
| } |
| |
| void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { |
| va_list args; |
| va_start(args, fmt); |
| ThrowNewExceptionV(exception_class_descriptor, fmt, args); |
| va_end(args); |
| } |
| |
| void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) { |
| std::string msg; |
| StringAppendV(&msg, fmt, ap); |
| ThrowNewException(exception_class_descriptor, msg.c_str()); |
| } |
| |
| void Thread::ThrowNewException(const char* exception_class_descriptor, const char* msg) { |
| // Convert "Ljava/lang/Exception;" into JNI-style "java/lang/Exception". |
| CHECK_EQ('L', exception_class_descriptor[0]); |
| std::string descriptor(exception_class_descriptor + 1); |
| CHECK_EQ(';', descriptor[descriptor.length() - 1]); |
| descriptor.erase(descriptor.length() - 1); |
| |
| JNIEnv* env = GetJniEnv(); |
| ScopedLocalRef<jclass> exception_class(env, env->FindClass(descriptor.c_str())); |
| if (exception_class.get() == NULL) { |
| LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI FindClass failed: " |
| << PrettyTypeOf(GetException()); |
| CHECK(IsExceptionPending()); |
| return; |
| } |
| if (!Runtime::Current()->IsStarted()) { |
| // Something is trying to throw an exception without a started |
| // runtime, which is the common case in the compiler. We won't be |
| // able to invoke the constructor of the exception, so use |
| // AllocObject which will not invoke a constructor. |
| ScopedLocalRef<jthrowable> exception( |
| env, reinterpret_cast<jthrowable>(env->AllocObject(exception_class.get()))); |
| if (exception.get() != NULL) { |
| ScopedJniThreadState ts(env); |
| Throwable* t = reinterpret_cast<Throwable*>(ts.Self()->DecodeJObject(exception.get())); |
| t->SetDetailMessage(String::AllocFromModifiedUtf8(msg)); |
| ts.Self()->SetException(t); |
| } else { |
| LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI AllocObject failed: " |
| << PrettyTypeOf(GetException()); |
| CHECK(IsExceptionPending()); |
| } |
| return; |
| } |
| int rc = env->ThrowNew(exception_class.get(), msg); |
| if (rc != JNI_OK) { |
| LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI ThrowNew failed: " |
| << PrettyTypeOf(GetException()); |
| CHECK(IsExceptionPending()); |
| } |
| } |
| |
| void Thread::ThrowOutOfMemoryError(const char* msg) { |
| LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", |
| msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : "")); |
| if (!throwing_OutOfMemoryError_) { |
| throwing_OutOfMemoryError_ = true; |
| ThrowNewException("Ljava/lang/OutOfMemoryError;", NULL); |
| } else { |
| SetException(pre_allocated_OutOfMemoryError_); |
| } |
| throwing_OutOfMemoryError_ = false; |
| } |
| |
| |
| Thread* Thread::CurrentFromGdb() { |
| return Thread::Current(); |
| } |
| |
| void Thread::DumpFromGdb() const { |
| std::ostringstream ss; |
| Dump(ss); |
| std::string str(ss.str()); |
| // log to stderr for debugging command line processes |
| std::cerr << str; |
| #ifdef HAVE_ANDROID_OS |
| // log to logcat for debugging frameworks processes |
| LOG(INFO) << str; |
| #endif |
| } |
| |
| struct EntryPointInfo { |
| uint32_t offset; |
| const char* name; |
| }; |
| #define ENTRY_POINT_INFO(x) { ENTRYPOINT_OFFSET(x), #x } |
| static const EntryPointInfo gThreadEntryPointInfo[] = { |
| ENTRY_POINT_INFO(pAllocArrayFromCode), |
| ENTRY_POINT_INFO(pAllocArrayFromCodeWithAccessCheck), |
| ENTRY_POINT_INFO(pAllocObjectFromCode), |
| ENTRY_POINT_INFO(pAllocObjectFromCodeWithAccessCheck), |
| ENTRY_POINT_INFO(pCheckAndAllocArrayFromCode), |
| ENTRY_POINT_INFO(pCheckAndAllocArrayFromCodeWithAccessCheck), |
| ENTRY_POINT_INFO(pInstanceofNonTrivialFromCode), |
| ENTRY_POINT_INFO(pCanPutArrayElementFromCode), |
| ENTRY_POINT_INFO(pCheckCastFromCode), |
| ENTRY_POINT_INFO(pDebugMe), |
| ENTRY_POINT_INFO(pUpdateDebuggerFromCode), |
| ENTRY_POINT_INFO(pInitializeStaticStorage), |
| ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccessFromCode), |
| ENTRY_POINT_INFO(pInitializeTypeFromCode), |
| ENTRY_POINT_INFO(pResolveStringFromCode), |
| ENTRY_POINT_INFO(pSet32Instance), |
| ENTRY_POINT_INFO(pSet32Static), |
| ENTRY_POINT_INFO(pSet64Instance), |
| ENTRY_POINT_INFO(pSet64Static), |
| ENTRY_POINT_INFO(pSetObjInstance), |
| ENTRY_POINT_INFO(pSetObjStatic), |
| ENTRY_POINT_INFO(pGet32Instance), |
| ENTRY_POINT_INFO(pGet32Static), |
| ENTRY_POINT_INFO(pGet64Instance), |
| ENTRY_POINT_INFO(pGet64Static), |
| ENTRY_POINT_INFO(pGetObjInstance), |
| ENTRY_POINT_INFO(pGetObjStatic), |
| ENTRY_POINT_INFO(pHandleFillArrayDataFromCode), |
| ENTRY_POINT_INFO(pDecodeJObjectInThread), |
| ENTRY_POINT_INFO(pFindNativeMethod), |
| ENTRY_POINT_INFO(pLockObjectFromCode), |
| ENTRY_POINT_INFO(pUnlockObjectFromCode), |
| ENTRY_POINT_INFO(pCmpgDouble), |
| ENTRY_POINT_INFO(pCmpgFloat), |
| ENTRY_POINT_INFO(pCmplDouble), |
| ENTRY_POINT_INFO(pCmplFloat), |
| ENTRY_POINT_INFO(pDadd), |
| ENTRY_POINT_INFO(pDdiv), |
| ENTRY_POINT_INFO(pDmul), |
| ENTRY_POINT_INFO(pDsub), |
| ENTRY_POINT_INFO(pF2d), |
| ENTRY_POINT_INFO(pFmod), |
| ENTRY_POINT_INFO(pI2d), |
| ENTRY_POINT_INFO(pL2d), |
| ENTRY_POINT_INFO(pD2f), |
| ENTRY_POINT_INFO(pFadd), |
| ENTRY_POINT_INFO(pFdiv), |
| ENTRY_POINT_INFO(pFmodf), |
| ENTRY_POINT_INFO(pFmul), |
| ENTRY_POINT_INFO(pFsub), |
| ENTRY_POINT_INFO(pI2f), |
| ENTRY_POINT_INFO(pL2f), |
| ENTRY_POINT_INFO(pD2iz), |
| ENTRY_POINT_INFO(pF2iz), |
| ENTRY_POINT_INFO(pIdivmod), |
| ENTRY_POINT_INFO(pD2l), |
| ENTRY_POINT_INFO(pF2l), |
| ENTRY_POINT_INFO(pLdiv), |
| ENTRY_POINT_INFO(pLdivmod), |
| ENTRY_POINT_INFO(pLmul), |
| ENTRY_POINT_INFO(pShlLong), |
| ENTRY_POINT_INFO(pShrLong), |
| ENTRY_POINT_INFO(pUshrLong), |
| ENTRY_POINT_INFO(pIndexOf), |
| ENTRY_POINT_INFO(pMemcmp16), |
| ENTRY_POINT_INFO(pStringCompareTo), |
| ENTRY_POINT_INFO(pMemcpy), |
| ENTRY_POINT_INFO(pUnresolvedDirectMethodTrampolineFromCode), |
| ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeInterfaceTrampoline), |
| ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pCheckSuspendFromCode), |
| ENTRY_POINT_INFO(pTestSuspendFromCode), |
| ENTRY_POINT_INFO(pDeliverException), |
| ENTRY_POINT_INFO(pThrowAbstractMethodErrorFromCode), |
| ENTRY_POINT_INFO(pThrowArrayBoundsFromCode), |
| ENTRY_POINT_INFO(pThrowDivZeroFromCode), |
| ENTRY_POINT_INFO(pThrowNoSuchMethodFromCode), |
| ENTRY_POINT_INFO(pThrowNullPointerFromCode), |
| ENTRY_POINT_INFO(pThrowStackOverflowFromCode), |
| ENTRY_POINT_INFO(pThrowVerificationErrorFromCode), |
| }; |
| #undef ENTRY_POINT_INFO |
| |
| void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) { |
| CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets. |
| |
| #define DO_THREAD_OFFSET(x) if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { os << # x; return; } |
| DO_THREAD_OFFSET(card_table_); |
| DO_THREAD_OFFSET(exception_); |
| DO_THREAD_OFFSET(jni_env_); |
| DO_THREAD_OFFSET(self_); |
| DO_THREAD_OFFSET(stack_end_); |
| DO_THREAD_OFFSET(state_); |
| DO_THREAD_OFFSET(suspend_count_); |
| DO_THREAD_OFFSET(thin_lock_id_); |
| DO_THREAD_OFFSET(top_of_managed_stack_); |
| DO_THREAD_OFFSET(top_of_managed_stack_pc_); |
| DO_THREAD_OFFSET(top_sirt_); |
| #undef DO_THREAD_OFFSET |
| |
| size_t entry_point_count = arraysize(gThreadEntryPointInfo); |
| CHECK_EQ(entry_point_count * size_of_pointers, sizeof(EntryPoints)); |
| uint32_t expected_offset = OFFSETOF_MEMBER(Thread, entrypoints_); |
| for (size_t i = 0; i < entry_point_count; ++i) { |
| CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset); |
| expected_offset += size_of_pointers; |
| if (gThreadEntryPointInfo[i].offset == offset) { |
| os << gThreadEntryPointInfo[i].name; |
| return; |
| } |
| } |
| os << offset; |
| } |
| |
| class CatchBlockStackVisitor : public Thread::StackVisitor { |
| public: |
| CatchBlockStackVisitor(Class* to_find, Context* ljc) |
| : to_find_(to_find), long_jump_context_(ljc), native_method_count_(0), |
| method_tracing_active_(Runtime::Current()->IsMethodTracingActive()) { |
| #ifndef NDEBUG |
| handler_pc_ = 0xEBADC0DE; |
| handler_frame_.SetSP(reinterpret_cast<Method**>(0xEBADF00D)); |
| #endif |
| } |
| |
| bool VisitFrame(const Frame& fr, uintptr_t pc) { |
| Method* method = fr.GetMethod(); |
| if (method == NULL) { |
| // This is the upcall, we remember the frame and last_pc so that we may |
| // long jump to them |
| handler_pc_ = DemanglePc(pc); |
| handler_frame_ = fr; |
| return false; // End stack walk. |
| } |
| uint32_t dex_pc = DexFile::kDexNoIndex; |
| if (method->IsRuntimeMethod()) { |
| // ignore callee save method |
| DCHECK(method->IsCalleeSaveMethod()); |
| } else if (method->IsNative()) { |
| native_method_count_++; |
| } else { |
| // Unwind stack when an exception occurs during method tracing |
| if (UNLIKELY(method_tracing_active_)) { |
| #if !defined(ART_USE_LLVM_COMPILER) |
| if (IsTraceExitPc(DemanglePc(pc))) { |
| pc = ManglePc(TraceMethodUnwindFromCode(Thread::Current())); |
| } |
| #else |
| UNIMPLEMENTED(FATAL); |
| #endif |
| } |
| dex_pc = method->ToDexPC(pc); |
| } |
| if (dex_pc != DexFile::kDexNoIndex) { |
| uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc); |
| if (found_dex_pc != DexFile::kDexNoIndex) { |
| handler_pc_ = method->ToNativePC(found_dex_pc); |
| handler_frame_ = fr; |
| return false; // End stack walk. |
| } |
| } |
| #if !defined(ART_USE_LLVM_COMPILER) |
| // Caller may be handler, fill in callee saves in context |
| long_jump_context_->FillCalleeSaves(fr); |
| #endif |
| return true; // Continue stack walk. |
| } |
| |
| // The type of the exception catch block to find |
| Class* to_find_; |
| // Frame with found handler or last frame if no handler found |
| Frame handler_frame_; |
| // PC to branch to for the handler |
| uintptr_t handler_pc_; |
| // Context that will be the target of the long jump |
| Context* long_jump_context_; |
| // Number of native methods passed in crawl (equates to number of SIRTs to pop) |
| uint32_t native_method_count_; |
| // Is method tracing active? |
| const bool method_tracing_active_; |
| }; |
| |
| void Thread::DeliverException() { |
| #if !defined(ART_USE_LLVM_COMPILER) |
| const bool kDebugExceptionDelivery = false; |
| Throwable* exception = GetException(); // Get exception from thread |
| CHECK(exception != NULL); |
| // Don't leave exception visible while we try to find the handler, which may cause class |
| // resolution. |
| ClearException(); |
| if (kDebugExceptionDelivery) { |
| String* msg = exception->GetDetailMessage(); |
| std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : ""); |
| DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception) |
| << ": " << str_msg << std::endl); |
| } |
| |
| Context* long_jump_context = GetLongJumpContext(); |
| CatchBlockStackVisitor catch_finder(exception->GetClass(), long_jump_context); |
| WalkStack(&catch_finder, true); |
| |
| Method** sp; |
| uintptr_t throw_native_pc; |
| Method* throw_method = GetCurrentMethod(&throw_native_pc, &sp); |
| uintptr_t catch_native_pc = catch_finder.handler_pc_; |
| Method* catch_method = catch_finder.handler_frame_.GetMethod(); |
| Dbg::PostException(sp, throw_method, throw_native_pc, catch_method, catch_native_pc, exception); |
| |
| if (kDebugExceptionDelivery) { |
| if (catch_method == NULL) { |
| LOG(INFO) << "Handler is upcall"; |
| } else { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const DexFile& dex_file = |
| class_linker->FindDexFile(catch_method->GetDeclaringClass()->GetDexCache()); |
| int line_number = dex_file.GetLineNumFromPC(catch_method, |
| catch_method->ToDexPC(catch_finder.handler_pc_)); |
| LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")"; |
| } |
| } |
| SetException(exception); |
| CHECK_NE(catch_native_pc, 0u); |
| long_jump_context->SetSP(reinterpret_cast<uintptr_t>(catch_finder.handler_frame_.GetSP())); |
| long_jump_context->SetPC(catch_native_pc); |
| long_jump_context->SmashCallerSaves(); |
| long_jump_context->DoLongJump(); |
| #endif |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| |
| Context* Thread::GetLongJumpContext() { |
| Context* result = long_jump_context_; |
| #if !defined(ART_USE_LLVM_COMPILER) |
| if (result == NULL) { |
| result = Context::Create(); |
| long_jump_context_ = result; |
| } |
| #endif |
| return result; |
| } |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| Method* Thread::GetCurrentMethod(uintptr_t* pc, Method*** sp) const { |
| Frame f = top_of_managed_stack_; |
| Method* m = f.GetMethod(); |
| uintptr_t native_pc = top_of_managed_stack_pc_; |
| |
| // We use JNI internally for exception throwing, so it's possible to arrive |
| // here via a "FromCode" function, in which case there's a synthetic |
| // callee-save method at the top of the stack. These shouldn't be user-visible, |
| // so if we find one, skip it and return the compiled method underneath. |
| if (m != NULL && m->IsCalleeSaveMethod()) { |
| native_pc = f.GetReturnPC(); |
| f.Next(); |
| m = f.GetMethod(); |
| } |
| if (pc != NULL) { |
| *pc = (m != NULL) ? ManglePc(native_pc) : 0; |
| } |
| if (sp != NULL) { |
| *sp = f.GetSP(); |
| } |
| return m; |
| } |
| #else |
| Method* Thread::GetCurrentMethod(uintptr_t*, Method***) const { |
| ShadowFrame* frame = top_shadow_frame_; |
| if (frame == NULL) { |
| return NULL; |
| } |
| return frame->GetMethod(); |
| } |
| #endif |
| |
| bool Thread::HoldsLock(Object* object) { |
| if (object == NULL) { |
| return false; |
| } |
| return object->GetThinLockId() == thin_lock_id_; |
| } |
| |
| bool Thread::IsDaemon() { |
| return gThread_daemon->GetBoolean(peer_); |
| } |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| class ReferenceMapVisitor : public Thread::StackVisitor { |
| public: |
| ReferenceMapVisitor(Context* context, Heap::RootVisitor* root_visitor, void* arg) : |
| context_(context), root_visitor_(root_visitor), arg_(arg) { |
| } |
| |
| bool VisitFrame(const Frame& frame, uintptr_t pc) { |
| Method* m = frame.GetMethod(); |
| if (false) { |
| LOG(INFO) << "Visiting stack roots in " << PrettyMethod(m) |
| << StringPrintf("@ PC:%04x", m->ToDexPC(pc)); |
| } |
| // Process register map (which native and callee save methods don't have) |
| if (!m->IsNative() && !m->IsCalleeSaveMethod() && !m->IsProxyMethod()) { |
| CHECK(m->GetGcMap() != NULL) << PrettyMethod(m); |
| CHECK_NE(0U, m->GetGcMapLength()) << PrettyMethod(m); |
| verifier::PcToReferenceMap map(m->GetGcMap(), m->GetGcMapLength()); |
| const uint8_t* reg_bitmap = map.FindBitMap(m->ToDexPC(pc)); |
| CHECK(reg_bitmap != NULL); |
| const VmapTable vmap_table(m->GetVmapTableRaw()); |
| const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem(); |
| DCHECK(code_item != NULL); // can't be NULL or how would we compile its instructions? |
| uint32_t core_spills = m->GetCoreSpillMask(); |
| uint32_t fp_spills = m->GetFpSpillMask(); |
| size_t frame_size = m->GetFrameSizeInBytes(); |
| // For all dex registers in the bitmap |
| size_t num_regs = std::min(map.RegWidth() * 8, |
| static_cast<size_t>(code_item->registers_size_)); |
| for (size_t reg = 0; reg < num_regs; ++reg) { |
| // Does this register hold a reference? |
| if (TestBitmap(reg, reg_bitmap)) { |
| uint32_t vmap_offset; |
| Object* ref; |
| if (vmap_table.IsInContext(reg, vmap_offset)) { |
| // Compute the register we need to load from the context |
| uint32_t spill_mask = m->GetCoreSpillMask(); |
| CHECK_LT(vmap_offset, static_cast<uint32_t>(__builtin_popcount(spill_mask))); |
| uint32_t matches = 0; |
| uint32_t spill_shifts = 0; |
| while (matches != (vmap_offset + 1)) { |
| DCHECK_NE(spill_mask, 0u); |
| matches += spill_mask & 1; // Add 1 if the low bit is set |
| spill_mask >>= 1; |
| spill_shifts++; |
| } |
| spill_shifts--; // wind back one as we want the last match |
| ref = reinterpret_cast<Object*>(context_->GetGPR(spill_shifts)); |
| } else { |
| ref = reinterpret_cast<Object*>(frame.GetVReg(code_item, core_spills, fp_spills, |
| frame_size, reg)); |
| } |
| if (ref != NULL) { |
| root_visitor_(ref, arg_); |
| } |
| } |
| } |
| } |
| context_->FillCalleeSaves(frame); |
| return true; |
| } |
| |
| private: |
| bool TestBitmap(int reg, const uint8_t* reg_vector) { |
| return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0; |
| } |
| |
| // Context used to build up picture of callee saves |
| Context* context_; |
| // Call-back when we visit a root |
| Heap::RootVisitor* root_visitor_; |
| // Argument to call-back |
| void* arg_; |
| }; |
| #endif |
| |
| void Thread::VisitRoots(Heap::RootVisitor* visitor, void* arg) { |
| if (exception_ != NULL) { |
| visitor(exception_, arg); |
| } |
| if (peer_ != NULL) { |
| visitor(peer_, arg); |
| } |
| if (pre_allocated_OutOfMemoryError_ != NULL) { |
| visitor(pre_allocated_OutOfMemoryError_, arg); |
| } |
| if (class_loader_override_ != NULL) { |
| visitor(class_loader_override_, arg); |
| } |
| jni_env_->locals.VisitRoots(visitor, arg); |
| jni_env_->monitors.VisitRoots(visitor, arg); |
| |
| SirtVisitRoots(visitor, arg); |
| ShadowFrameVisitRoots(visitor, arg); |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| // Cheat and steal the long jump context. Assume that we are not doing a GC during exception |
| // delivery. |
| Context* context = GetLongJumpContext(); |
| // Visit roots on this thread's stack |
| ReferenceMapVisitor mapper(context, visitor, arg); |
| WalkStack(&mapper); |
| #endif |
| } |
| |
| #if VERIFY_OBJECT_ENABLED |
| static void VerifyObject(const Object* obj, void*) { |
| Runtime::Current()->GetHeap()->VerifyObject(obj); |
| } |
| |
| void Thread::VerifyStack() { |
| #if !defined(ART_USE_LLVM_COMPILER) |
| UniquePtr<Context> context(Context::Create()); |
| ReferenceMapVisitor mapper(context.get(), VerifyObject, NULL); |
| WalkStack(&mapper); |
| #endif |
| } |
| #endif |
| |
| std::ostream& operator<<(std::ostream& os, const Thread& thread) { |
| thread.Dump(os, false); |
| return os; |
| } |
| |
| void Thread::CheckSafeToLockOrUnlock(MutexRank rank, bool is_locking) { |
| if (this == NULL) { |
| CHECK(Runtime::Current()->IsShuttingDown()); |
| return; |
| } |
| if (is_locking) { |
| if (held_mutexes_[rank] == 0) { |
| bool bad_mutexes_held = false; |
| for (int i = kMaxMutexRank; i > rank; --i) { |
| if (held_mutexes_[i] != 0) { |
| LOG(ERROR) << "holding " << static_cast<MutexRank>(i) << " while " << (is_locking ? "locking" : "unlocking") << " " << rank; |
| bad_mutexes_held = true; |
| } |
| } |
| CHECK(!bad_mutexes_held) << rank; |
| } |
| ++held_mutexes_[rank]; |
| } else { |
| CHECK_GT(held_mutexes_[rank], 0U) << rank; |
| --held_mutexes_[rank]; |
| } |
| } |
| |
| void Thread::CheckSafeToWait(MutexRank rank) { |
| if (this == NULL) { |
| CHECK(Runtime::Current()->IsShuttingDown()); |
| return; |
| } |
| bool bad_mutexes_held = false; |
| for (int i = kMaxMutexRank; i >= 0; --i) { |
| if (i != rank && held_mutexes_[i] != 0) { |
| LOG(ERROR) << "holding " << static_cast<MutexRank>(i) << " while doing condition variable wait on " << rank; |
| bad_mutexes_held = true; |
| } |
| } |
| if (held_mutexes_[rank] == 0) { |
| LOG(ERROR) << "*not* holding " << rank << " while doing condition variable wait on it"; |
| bad_mutexes_held = true; |
| } |
| CHECK(!bad_mutexes_held); |
| } |
| |
| } // namespace art |