blob: fdf09a50a641fce9f2da62a9107b6b058670875d [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_COMMON_COMPILER_TEST_H_
#define ART_COMPILER_COMMON_COMPILER_TEST_H_
#include "compiler.h"
#include "compiler_callbacks.h"
#include "common_runtime_test.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/verification_results.h"
#include "driver/compiler_callbacks_impl.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
namespace art {
#if defined(__arm__)
#include <sys/ucontext.h>
// A signal handler called when have an illegal instruction. We record the fact in
// a global boolean and then increment the PC in the signal context to return to
// the next instruction. We know the instruction is an sdiv (4 bytes long).
static inline void baddivideinst(int signo, siginfo *si, void *data) {
UNUSED(signo);
UNUSED(si);
struct ucontext *uc = (struct ucontext *)data;
struct sigcontext *sc = &uc->uc_mcontext;
sc->arm_r0 = 0; // set R0 to #0 to signal error
sc->arm_pc += 4; // skip offending instruction
}
// This is in arch/arm/arm_sdiv.S. It does the following:
// mov r1,#1
// sdiv r0,r1,r1
// bx lr
//
// the result will be the value 1 if sdiv is supported. If it is not supported
// a SIGILL signal will be raised and the signal handler (baddivideinst) called.
// The signal handler sets r0 to #0 and then increments pc beyond the failed instruction.
// Thus if the instruction is not supported, the result of this function will be #0
extern "C" bool CheckForARMSDIVInstruction();
static inline InstructionSetFeatures GuessInstructionFeatures() {
InstructionSetFeatures f;
// Uncomment this for processing of /proc/cpuinfo.
if (false) {
// Look in /proc/cpuinfo for features we need. Only use this when we can guarantee that
// the kernel puts the appropriate feature flags in here. Sometimes it doesn't.
std::ifstream in("/proc/cpuinfo");
if (in) {
while (!in.eof()) {
std::string line;
std::getline(in, line);
if (!in.eof()) {
if (line.find("Features") != std::string::npos) {
if (line.find("idivt") != std::string::npos) {
f.SetHasDivideInstruction(true);
}
}
}
in.close();
}
} else {
LOG(INFO) << "Failed to open /proc/cpuinfo";
}
}
// See if have a sdiv instruction. Register a signal handler and try to execute
// an sdiv instruction. If we get a SIGILL then it's not supported. We can't use
// the /proc/cpuinfo method for this because Krait devices don't always put the idivt
// feature in the list.
struct sigaction sa, osa;
sa.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO;
sa.sa_sigaction = baddivideinst;
sigaction(SIGILL, &sa, &osa);
if (CheckForARMSDIVInstruction()) {
f.SetHasDivideInstruction(true);
}
// Restore the signal handler.
sigaction(SIGILL, &osa, nullptr);
// Other feature guesses in here.
return f;
}
#endif
// Given a set of instruction features from the build, parse it. The
// input 'str' is a comma separated list of feature names. Parse it and
// return the InstructionSetFeatures object.
static inline InstructionSetFeatures ParseFeatureList(std::string str) {
InstructionSetFeatures result;
typedef std::vector<std::string> FeatureList;
FeatureList features;
Split(str, ',', features);
for (FeatureList::iterator i = features.begin(); i != features.end(); i++) {
std::string feature = Trim(*i);
if (feature == "default") {
// Nothing to do.
} else if (feature == "div") {
// Supports divide instruction.
result.SetHasDivideInstruction(true);
} else if (feature == "nodiv") {
// Turn off support for divide instruction.
result.SetHasDivideInstruction(false);
} else {
LOG(FATAL) << "Unknown instruction set feature: '" << feature << "'";
}
}
// Others...
return result;
}
class CommonCompilerTest : public CommonRuntimeTest {
public:
static void MakeExecutable(const std::vector<uint8_t>& code) {
CHECK_NE(code.size(), 0U);
MakeExecutable(&code[0], code.size());
}
// Create an OatMethod based on pointers (for unit tests).
OatFile::OatMethod CreateOatMethod(const void* code,
const size_t frame_size_in_bytes,
const uint32_t core_spill_mask,
const uint32_t fp_spill_mask,
const uint8_t* mapping_table,
const uint8_t* vmap_table,
const uint8_t* gc_map) {
const byte* base;
uint32_t code_offset, mapping_table_offset, vmap_table_offset, gc_map_offset;
if (mapping_table == nullptr && vmap_table == nullptr && gc_map == nullptr) {
base = reinterpret_cast<const byte*>(code); // Base of data points at code.
base -= kPointerSize; // Move backward so that code_offset != 0.
code_offset = kPointerSize;
mapping_table_offset = 0;
vmap_table_offset = 0;
gc_map_offset = 0;
} else {
// TODO: 64bit support.
base = nullptr; // Base of data in oat file, ie 0.
code_offset = PointerToLowMemUInt32(code);
mapping_table_offset = PointerToLowMemUInt32(mapping_table);
vmap_table_offset = PointerToLowMemUInt32(vmap_table);
gc_map_offset = PointerToLowMemUInt32(gc_map);
}
return OatFile::OatMethod(base,
code_offset,
frame_size_in_bytes,
core_spill_mask,
fp_spill_mask,
mapping_table_offset,
vmap_table_offset,
gc_map_offset);
}
void MakeExecutable(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(method != nullptr);
const CompiledMethod* compiled_method = nullptr;
if (!method->IsAbstract()) {
mirror::DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache();
const DexFile& dex_file = *dex_cache->GetDexFile();
compiled_method =
compiler_driver_->GetCompiledMethod(MethodReference(&dex_file,
method->GetDexMethodIndex()));
}
if (compiled_method != nullptr) {
const std::vector<uint8_t>* code = compiled_method->GetQuickCode();
if (code == nullptr) {
code = compiled_method->GetPortableCode();
}
MakeExecutable(*code);
const void* method_code = CompiledMethod::CodePointer(&(*code)[0],
compiled_method->GetInstructionSet());
LOG(INFO) << "MakeExecutable " << PrettyMethod(method) << " code=" << method_code;
OatFile::OatMethod oat_method = CreateOatMethod(method_code,
compiled_method->GetFrameSizeInBytes(),
compiled_method->GetCoreSpillMask(),
compiled_method->GetFpSpillMask(),
&compiled_method->GetMappingTable()[0],
&compiled_method->GetVmapTable()[0],
nullptr);
oat_method.LinkMethod(method);
method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
} else {
// No code? You must mean to go into the interpreter.
// Or the generic JNI...
if (!method->IsNative()) {
const void* method_code = kUsePortableCompiler ? GetPortableToInterpreterBridge()
: GetQuickToInterpreterBridge();
OatFile::OatMethod oat_method = CreateOatMethod(method_code,
kStackAlignment,
0,
0,
nullptr,
nullptr,
nullptr);
oat_method.LinkMethod(method);
method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge);
} else {
const void* method_code = GetQuickGenericJniTrampoline();
mirror::ArtMethod* callee_save_method = runtime_->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
// Compute Sirt size, as Sirt goes into frame
MethodHelper mh(method);
uint32_t sirt_refs = mh.GetNumberOfReferenceArgsWithoutReceiver() + 1;
uint32_t sirt_size = StackIndirectReferenceTable::SizeOf(sirt_refs);
OatFile::OatMethod oat_method = CreateOatMethod(method_code,
callee_save_method->GetFrameSizeInBytes() +
sirt_size,
callee_save_method->GetCoreSpillMask(),
callee_save_method->GetFpSpillMask(),
nullptr,
nullptr,
nullptr);
oat_method.LinkMethod(method);
method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
}
}
// Create bridges to transition between different kinds of compiled bridge.
if (method->GetEntryPointFromPortableCompiledCode() == nullptr) {
method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge());
} else {
CHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
method->SetEntryPointFromQuickCompiledCode(GetQuickToPortableBridge());
method->SetIsPortableCompiled();
}
}
static void MakeExecutable(const void* code_start, size_t code_length) {
CHECK(code_start != nullptr);
CHECK_NE(code_length, 0U);
uintptr_t data = reinterpret_cast<uintptr_t>(code_start);
uintptr_t base = RoundDown(data, kPageSize);
uintptr_t limit = RoundUp(data + code_length, kPageSize);
uintptr_t len = limit - base;
int result = mprotect(reinterpret_cast<void*>(base), len, PROT_READ | PROT_WRITE | PROT_EXEC);
CHECK_EQ(result, 0);
// Flush instruction cache
// Only uses __builtin___clear_cache if GCC >= 4.3.3
#if GCC_VERSION >= 40303
__builtin___clear_cache(reinterpret_cast<void*>(base), reinterpret_cast<void*>(base + len));
#else
LOG(WARNING) << "UNIMPLEMENTED: cache flush";
#endif
}
void MakeExecutable(mirror::ClassLoader* class_loader, const char* class_name)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::string class_descriptor(DotToDescriptor(class_name));
Thread* self = Thread::Current();
SirtRef<mirror::ClassLoader> loader(self, class_loader);
mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), loader);
CHECK(klass != nullptr) << "Class not found " << class_name;
for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
MakeExecutable(klass->GetDirectMethod(i));
}
for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
MakeExecutable(klass->GetVirtualMethod(i));
}
}
protected:
virtual void SetUp() {
CommonRuntimeTest::SetUp();
{
ScopedObjectAccess soa(Thread::Current());
InstructionSet instruction_set = kNone;
// Take the default set of instruction features from the build.
InstructionSetFeatures instruction_set_features =
ParseFeatureList(Runtime::GetDefaultInstructionSetFeatures());
#if defined(__arm__)
instruction_set = kThumb2;
InstructionSetFeatures runtime_features = GuessInstructionFeatures();
// for ARM, do a runtime check to make sure that the features we are passed from
// the build match the features we actually determine at runtime.
ASSERT_LE(instruction_set_features, runtime_features);
#elif defined(__aarch64__)
instruction_set = kArm64;
// TODO: arm64 compilation support.
compiler_options_->SetCompilerFilter(CompilerOptions::kInterpretOnly);
#elif defined(__mips__)
instruction_set = kMips;
#elif defined(__i386__)
instruction_set = kX86;
#elif defined(__x86_64__)
instruction_set = kX86_64;
// TODO: x86_64 compilation support.
compiler_options_->SetCompilerFilter(CompilerOptions::kInterpretOnly);
#endif
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
if (!runtime_->HasCalleeSaveMethod(type)) {
runtime_->SetCalleeSaveMethod(
runtime_->CreateCalleeSaveMethod(instruction_set, type), type);
}
}
// TODO: make selectable
Compiler::Kind compiler_kind
= (kUsePortableCompiler) ? Compiler::kPortable : Compiler::kQuick;
timer_.reset(new CumulativeLogger("Compilation times"));
compiler_driver_.reset(new CompilerDriver(compiler_options_.get(),
verification_results_.get(),
method_inliner_map_.get(),
compiler_kind, instruction_set,
instruction_set_features,
true, new CompilerDriver::DescriptorSet,
2, true, true, timer_.get()));
}
// We typically don't generate an image in unit tests, disable this optimization by default.
compiler_driver_->SetSupportBootImageFixup(false);
}
virtual void SetUpRuntimeOptions(Runtime::Options *options) {
CommonRuntimeTest::SetUpRuntimeOptions(options);
compiler_options_.reset(new CompilerOptions);
verification_results_.reset(new VerificationResults(compiler_options_.get()));
method_inliner_map_.reset(new DexFileToMethodInlinerMap);
callbacks_.reset(new CompilerCallbacksImpl(verification_results_.get(),
method_inliner_map_.get()));
options->push_back(std::make_pair("compilercallbacks", callbacks_.get()));
}
virtual void TearDown() {
timer_.reset();
compiler_driver_.reset();
callbacks_.reset();
method_inliner_map_.reset();
verification_results_.reset();
compiler_options_.reset();
CommonRuntimeTest::TearDown();
}
void CompileClass(mirror::ClassLoader* class_loader, const char* class_name)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::string class_descriptor(DotToDescriptor(class_name));
Thread* self = Thread::Current();
SirtRef<mirror::ClassLoader> loader(self, class_loader);
mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), loader);
CHECK(klass != nullptr) << "Class not found " << class_name;
for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
CompileMethod(klass->GetDirectMethod(i));
}
for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
CompileMethod(klass->GetVirtualMethod(i));
}
}
void CompileMethod(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(method != nullptr);
TimingLogger timings("CommonTest::CompileMethod", false, false);
timings.StartSplit("CompileOne");
compiler_driver_->CompileOne(method, &timings);
MakeExecutable(method);
timings.EndSplit();
}
void CompileDirectMethod(SirtRef<mirror::ClassLoader>& class_loader, const char* class_name,
const char* method_name, const char* signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::string class_descriptor(DotToDescriptor(class_name));
Thread* self = Thread::Current();
mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), class_loader);
CHECK(klass != nullptr) << "Class not found " << class_name;
mirror::ArtMethod* method = klass->FindDirectMethod(method_name, signature);
CHECK(method != nullptr) << "Direct method not found: "
<< class_name << "." << method_name << signature;
CompileMethod(method);
}
void CompileVirtualMethod(SirtRef<mirror::ClassLoader>& class_loader, const char* class_name,
const char* method_name, const char* signature)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::string class_descriptor(DotToDescriptor(class_name));
Thread* self = Thread::Current();
mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), class_loader);
CHECK(klass != nullptr) << "Class not found " << class_name;
mirror::ArtMethod* method = klass->FindVirtualMethod(method_name, signature);
CHECK(method != NULL) << "Virtual method not found: "
<< class_name << "." << method_name << signature;
CompileMethod(method);
}
void ReserveImageSpace() {
// Reserve where the image will be loaded up front so that other parts of test set up don't
// accidentally end up colliding with the fixed memory address when we need to load the image.
std::string error_msg;
image_reservation_.reset(MemMap::MapAnonymous("image reservation",
reinterpret_cast<byte*>(ART_BASE_ADDRESS),
(size_t)100 * 1024 * 1024, // 100MB
PROT_NONE,
false /* no need for 4gb flag with fixed mmap*/,
&error_msg));
CHECK(image_reservation_.get() != nullptr) << error_msg;
}
void UnreserveImageSpace() {
image_reservation_.reset();
}
UniquePtr<CompilerOptions> compiler_options_;
UniquePtr<VerificationResults> verification_results_;
UniquePtr<DexFileToMethodInlinerMap> method_inliner_map_;
UniquePtr<CompilerCallbacksImpl> callbacks_;
UniquePtr<CompilerDriver> compiler_driver_;
UniquePtr<CumulativeLogger> timer_;
private:
UniquePtr<MemMap> image_reservation_;
};
} // namespace art
#endif // ART_COMPILER_COMMON_COMPILER_TEST_H_