| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "code_generator_arm64.h" | 
 |  | 
 | #include "arch/arm64/asm_support_arm64.h" | 
 | #include "arch/arm64/instruction_set_features_arm64.h" | 
 | #include "art_method.h" | 
 | #include "base/bit_utils.h" | 
 | #include "base/bit_utils_iterator.h" | 
 | #include "class_table.h" | 
 | #include "code_generator_utils.h" | 
 | #include "compiled_method.h" | 
 | #include "entrypoints/quick/quick_entrypoints.h" | 
 | #include "entrypoints/quick/quick_entrypoints_enum.h" | 
 | #include "gc/accounting/card_table.h" | 
 | #include "gc/space/image_space.h" | 
 | #include "heap_poisoning.h" | 
 | #include "intrinsics.h" | 
 | #include "intrinsics_arm64.h" | 
 | #include "linker/linker_patch.h" | 
 | #include "lock_word.h" | 
 | #include "mirror/array-inl.h" | 
 | #include "mirror/class-inl.h" | 
 | #include "offsets.h" | 
 | #include "thread.h" | 
 | #include "utils/arm64/assembler_arm64.h" | 
 | #include "utils/assembler.h" | 
 | #include "utils/stack_checks.h" | 
 |  | 
 | using namespace vixl::aarch64;  // NOLINT(build/namespaces) | 
 | using vixl::ExactAssemblyScope; | 
 | using vixl::CodeBufferCheckScope; | 
 | using vixl::EmissionCheckScope; | 
 |  | 
 | #ifdef __ | 
 | #error "ARM64 Codegen VIXL macro-assembler macro already defined." | 
 | #endif | 
 |  | 
 | namespace art { | 
 |  | 
 | template<class MirrorType> | 
 | class GcRoot; | 
 |  | 
 | namespace arm64 { | 
 |  | 
 | using helpers::ARM64EncodableConstantOrRegister; | 
 | using helpers::ArtVixlRegCodeCoherentForRegSet; | 
 | using helpers::CPURegisterFrom; | 
 | using helpers::DRegisterFrom; | 
 | using helpers::FPRegisterFrom; | 
 | using helpers::HeapOperand; | 
 | using helpers::HeapOperandFrom; | 
 | using helpers::InputCPURegisterOrZeroRegAt; | 
 | using helpers::InputFPRegisterAt; | 
 | using helpers::InputOperandAt; | 
 | using helpers::InputRegisterAt; | 
 | using helpers::Int64FromLocation; | 
 | using helpers::IsConstantZeroBitPattern; | 
 | using helpers::LocationFrom; | 
 | using helpers::OperandFromMemOperand; | 
 | using helpers::OutputCPURegister; | 
 | using helpers::OutputFPRegister; | 
 | using helpers::OutputRegister; | 
 | using helpers::QRegisterFrom; | 
 | using helpers::RegisterFrom; | 
 | using helpers::StackOperandFrom; | 
 | using helpers::VIXLRegCodeFromART; | 
 | using helpers::WRegisterFrom; | 
 | using helpers::XRegisterFrom; | 
 |  | 
 | // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump | 
 | // table version generates 7 instructions and num_entries literals. Compare/jump sequence will | 
 | // generates less code/data with a small num_entries. | 
 | static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; | 
 |  | 
 | // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle | 
 | // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions. | 
 | // For the Baker read barrier implementation using link-time generated thunks we need to split | 
 | // the offset explicitly. | 
 | constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB; | 
 |  | 
 | inline Condition ARM64Condition(IfCondition cond) { | 
 |   switch (cond) { | 
 |     case kCondEQ: return eq; | 
 |     case kCondNE: return ne; | 
 |     case kCondLT: return lt; | 
 |     case kCondLE: return le; | 
 |     case kCondGT: return gt; | 
 |     case kCondGE: return ge; | 
 |     case kCondB:  return lo; | 
 |     case kCondBE: return ls; | 
 |     case kCondA:  return hi; | 
 |     case kCondAE: return hs; | 
 |   } | 
 |   LOG(FATAL) << "Unreachable"; | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) { | 
 |   // The ARM64 condition codes can express all the necessary branches, see the | 
 |   // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual. | 
 |   // There is no dex instruction or HIR that would need the missing conditions | 
 |   // "equal or unordered" or "not equal". | 
 |   switch (cond) { | 
 |     case kCondEQ: return eq; | 
 |     case kCondNE: return ne /* unordered */; | 
 |     case kCondLT: return gt_bias ? cc : lt /* unordered */; | 
 |     case kCondLE: return gt_bias ? ls : le /* unordered */; | 
 |     case kCondGT: return gt_bias ? hi /* unordered */ : gt; | 
 |     case kCondGE: return gt_bias ? cs /* unordered */ : ge; | 
 |     default: | 
 |       LOG(FATAL) << "UNREACHABLE"; | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | Location ARM64ReturnLocation(DataType::Type return_type) { | 
 |   // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the | 
 |   // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`, | 
 |   // but we use the exact registers for clarity. | 
 |   if (return_type == DataType::Type::kFloat32) { | 
 |     return LocationFrom(s0); | 
 |   } else if (return_type == DataType::Type::kFloat64) { | 
 |     return LocationFrom(d0); | 
 |   } else if (return_type == DataType::Type::kInt64) { | 
 |     return LocationFrom(x0); | 
 |   } else if (return_type == DataType::Type::kVoid) { | 
 |     return Location::NoLocation(); | 
 |   } else { | 
 |     return LocationFrom(w0); | 
 |   } | 
 | } | 
 |  | 
 | Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) { | 
 |   return ARM64ReturnLocation(return_type); | 
 | } | 
 |  | 
 | static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   RegisterSet caller_saves = RegisterSet::Empty(); | 
 |   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); | 
 |   DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), | 
 |             RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference), | 
 |                          DataType::Type::kReference).GetCode()); | 
 |   return caller_saves; | 
 | } | 
 |  | 
 | // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. | 
 | #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->  // NOLINT | 
 | #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value() | 
 |  | 
 | // Calculate memory accessing operand for save/restore live registers. | 
 | static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen, | 
 |                                            LocationSummary* locations, | 
 |                                            int64_t spill_offset, | 
 |                                            bool is_save) { | 
 |   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); | 
 |   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); | 
 |   DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spills, | 
 |                                          codegen->GetNumberOfCoreRegisters(), | 
 |                                          fp_spills, | 
 |                                          codegen->GetNumberOfFloatingPointRegisters())); | 
 |  | 
 |   CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize, core_spills); | 
 |   unsigned v_reg_size = codegen->GetGraph()->HasSIMD() ? kQRegSize : kDRegSize; | 
 |   CPURegList fp_list = CPURegList(CPURegister::kVRegister, v_reg_size, fp_spills); | 
 |  | 
 |   MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler(); | 
 |   UseScratchRegisterScope temps(masm); | 
 |  | 
 |   Register base = masm->StackPointer(); | 
 |   int64_t core_spill_size = core_list.GetTotalSizeInBytes(); | 
 |   int64_t fp_spill_size = fp_list.GetTotalSizeInBytes(); | 
 |   int64_t reg_size = kXRegSizeInBytes; | 
 |   int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size; | 
 |   uint32_t ls_access_size = WhichPowerOf2(reg_size); | 
 |   if (((core_list.GetCount() > 1) || (fp_list.GetCount() > 1)) && | 
 |       !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) { | 
 |     // If the offset does not fit in the instruction's immediate field, use an alternate register | 
 |     // to compute the base address(float point registers spill base address). | 
 |     Register new_base = temps.AcquireSameSizeAs(base); | 
 |     __ Add(new_base, base, Operand(spill_offset + core_spill_size)); | 
 |     base = new_base; | 
 |     spill_offset = -core_spill_size; | 
 |     int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size; | 
 |     DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size)); | 
 |     DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size)); | 
 |   } | 
 |  | 
 |   if (is_save) { | 
 |     __ StoreCPURegList(core_list, MemOperand(base, spill_offset)); | 
 |     __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size)); | 
 |   } else { | 
 |     __ LoadCPURegList(core_list, MemOperand(base, spill_offset)); | 
 |     __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size)); | 
 |   } | 
 | } | 
 |  | 
 | void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { | 
 |   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); | 
 |   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); | 
 |   for (uint32_t i : LowToHighBits(core_spills)) { | 
 |     // If the register holds an object, update the stack mask. | 
 |     if (locations->RegisterContainsObject(i)) { | 
 |       locations->SetStackBit(stack_offset / kVRegSize); | 
 |     } | 
 |     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
 |     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); | 
 |     saved_core_stack_offsets_[i] = stack_offset; | 
 |     stack_offset += kXRegSizeInBytes; | 
 |   } | 
 |  | 
 |   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); | 
 |   for (uint32_t i : LowToHighBits(fp_spills)) { | 
 |     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); | 
 |     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); | 
 |     saved_fpu_stack_offsets_[i] = stack_offset; | 
 |     stack_offset += kDRegSizeInBytes; | 
 |   } | 
 |  | 
 |   SaveRestoreLiveRegistersHelper(codegen, | 
 |                                  locations, | 
 |                                  codegen->GetFirstRegisterSlotInSlowPath(), /* is_save= */ true); | 
 | } | 
 |  | 
 | void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { | 
 |   SaveRestoreLiveRegistersHelper(codegen, | 
 |                                  locations, | 
 |                                  codegen->GetFirstRegisterSlotInSlowPath(), /* is_save= */ false); | 
 | } | 
 |  | 
 | class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (instruction_->CanThrowIntoCatchBlock()) { | 
 |       // Live registers will be restored in the catch block if caught. | 
 |       SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     } | 
 |     // We're moving two locations to locations that could overlap, so we need a parallel | 
 |     // move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     codegen->EmitParallelMoves(locations->InAt(0), | 
 |                                LocationFrom(calling_convention.GetRegisterAt(0)), | 
 |                                DataType::Type::kInt32, | 
 |                                locations->InAt(1), | 
 |                                LocationFrom(calling_convention.GetRegisterAt(1)), | 
 |                                DataType::Type::kInt32); | 
 |     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() | 
 |         ? kQuickThrowStringBounds | 
 |         : kQuickThrowArrayBounds; | 
 |     arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); | 
 |     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const override { return true; } | 
 |  | 
 |   const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64); | 
 | }; | 
 |  | 
 | class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const override { return true; } | 
 |  | 
 |   const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64); | 
 | }; | 
 |  | 
 | class LoadClassSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at) | 
 |       : SlowPathCodeARM64(at), cls_(cls) { | 
 |     DCHECK(at->IsLoadClass() || at->IsClinitCheck()); | 
 |     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Location out = locations->Out(); | 
 |     const uint32_t dex_pc = instruction_->GetDexPc(); | 
 |     bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); | 
 |     bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); | 
 |  | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     if (must_resolve_type) { | 
 |       DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile())); | 
 |       dex::TypeIndex type_index = cls_->GetTypeIndex(); | 
 |       __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_); | 
 |       arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); | 
 |       CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); | 
 |       // If we also must_do_clinit, the resolved type is now in the correct register. | 
 |     } else { | 
 |       DCHECK(must_do_clinit); | 
 |       Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); | 
 |       arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), | 
 |                                   source, | 
 |                                   cls_->GetType()); | 
 |     } | 
 |     if (must_do_clinit) { | 
 |       arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); | 
 |       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>(); | 
 |     } | 
 |  | 
 |     // Move the class to the desired location. | 
 |     if (out.IsValid()) { | 
 |       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); | 
 |       DataType::Type type = instruction_->GetType(); | 
 |       arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); | 
 |     } | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "LoadClassSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   // The class this slow path will load. | 
 |   HLoadClass* const cls_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64); | 
 | }; | 
 |  | 
 | class LoadStringSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   explicit LoadStringSlowPathARM64(HLoadString* instruction) | 
 |       : SlowPathCodeARM64(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); | 
 |     __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_); | 
 |     arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
 |     DataType::Type type = instruction_->GetType(); | 
 |     arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |  | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "LoadStringSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64); | 
 | }; | 
 |  | 
 | class NullCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (instruction_->CanThrowIntoCatchBlock()) { | 
 |       // Live registers will be restored in the catch block if caught. | 
 |       SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     } | 
 |     arm64_codegen->InvokeRuntime(kQuickThrowNullPointer, | 
 |                                  instruction_, | 
 |                                  instruction_->GetDexPc(), | 
 |                                  this); | 
 |     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const override { return true; } | 
 |  | 
 |   const char* GetDescription() const override { return "NullCheckSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64); | 
 | }; | 
 |  | 
 | class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor) | 
 |       : SlowPathCodeARM64(instruction), successor_(successor) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations);  // Only saves live 128-bit regs for SIMD. | 
 |     arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickTestSuspend, void, void>(); | 
 |     RestoreLiveRegisters(codegen, locations);  // Only restores live 128-bit regs for SIMD. | 
 |     if (successor_ == nullptr) { | 
 |       __ B(GetReturnLabel()); | 
 |     } else { | 
 |       __ B(arm64_codegen->GetLabelOf(successor_)); | 
 |     } | 
 |   } | 
 |  | 
 |   vixl::aarch64::Label* GetReturnLabel() { | 
 |     DCHECK(successor_ == nullptr); | 
 |     return &return_label_; | 
 |   } | 
 |  | 
 |   HBasicBlock* GetSuccessor() const { | 
 |     return successor_; | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   // If not null, the block to branch to after the suspend check. | 
 |   HBasicBlock* const successor_; | 
 |  | 
 |   // If `successor_` is null, the label to branch to after the suspend check. | 
 |   vixl::aarch64::Label return_label_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64); | 
 | }; | 
 |  | 
 | class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal) | 
 |       : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |  | 
 |     DCHECK(instruction_->IsCheckCast() | 
 |            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     uint32_t dex_pc = instruction_->GetDexPc(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |  | 
 |     if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { | 
 |       SaveLiveRegisters(codegen, locations); | 
 |     } | 
 |  | 
 |     // We're moving two locations to locations that could overlap, so we need a parallel | 
 |     // move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     codegen->EmitParallelMoves(locations->InAt(0), | 
 |                                LocationFrom(calling_convention.GetRegisterAt(0)), | 
 |                                DataType::Type::kReference, | 
 |                                locations->InAt(1), | 
 |                                LocationFrom(calling_convention.GetRegisterAt(1)), | 
 |                                DataType::Type::kReference); | 
 |     if (instruction_->IsInstanceOf()) { | 
 |       arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); | 
 |       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); | 
 |       DataType::Type ret_type = instruction_->GetType(); | 
 |       Location ret_loc = calling_convention.GetReturnLocation(ret_type); | 
 |       arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); | 
 |     } else { | 
 |       DCHECK(instruction_->IsCheckCast()); | 
 |       arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); | 
 |       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); | 
 |     } | 
 |  | 
 |     if (!is_fatal_) { | 
 |       RestoreLiveRegisters(codegen, locations); | 
 |       __ B(GetExitLabel()); | 
 |     } | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; } | 
 |   bool IsFatal() const override { return is_fatal_; } | 
 |  | 
 |  private: | 
 |   const bool is_fatal_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64); | 
 | }; | 
 |  | 
 | class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction) | 
 |       : SlowPathCodeARM64(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     __ Mov(calling_convention.GetRegisterAt(0), | 
 |            static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); | 
 |     arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64); | 
 | }; | 
 |  | 
 | class ArraySetSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(0), | 
 |         LocationFrom(calling_convention.GetRegisterAt(0)), | 
 |         DataType::Type::kReference, | 
 |         nullptr); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(1), | 
 |         LocationFrom(calling_convention.GetRegisterAt(1)), | 
 |         DataType::Type::kInt32, | 
 |         nullptr); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(2), | 
 |         LocationFrom(calling_convention.GetRegisterAt(2)), | 
 |         DataType::Type::kReference, | 
 |         nullptr); | 
 |     codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |  | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "ArraySetSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64); | 
 | }; | 
 |  | 
 | void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) { | 
 |   uint32_t num_entries = switch_instr_->GetNumEntries(); | 
 |   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); | 
 |  | 
 |   // We are about to use the assembler to place literals directly. Make sure we have enough | 
 |   // underlying code buffer and we have generated the jump table with right size. | 
 |   EmissionCheckScope scope(codegen->GetVIXLAssembler(), | 
 |                            num_entries * sizeof(int32_t), | 
 |                            CodeBufferCheckScope::kExactSize); | 
 |  | 
 |   __ Bind(&table_start_); | 
 |   const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors(); | 
 |   for (uint32_t i = 0; i < num_entries; i++) { | 
 |     vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]); | 
 |     DCHECK(target_label->IsBound()); | 
 |     ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation(); | 
 |     DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min()); | 
 |     DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max()); | 
 |     Literal<int32_t> literal(jump_offset); | 
 |     __ place(&literal); | 
 |   } | 
 | } | 
 |  | 
 | // Slow path generating a read barrier for a heap reference. | 
 | class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction, | 
 |                                            Location out, | 
 |                                            Location ref, | 
 |                                            Location obj, | 
 |                                            uint32_t offset, | 
 |                                            Location index) | 
 |       : SlowPathCodeARM64(instruction), | 
 |         out_(out), | 
 |         ref_(ref), | 
 |         obj_(obj), | 
 |         offset_(offset), | 
 |         index_(index) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |     // If `obj` is equal to `out` or `ref`, it means the initial object | 
 |     // has been overwritten by (or after) the heap object reference load | 
 |     // to be instrumented, e.g.: | 
 |     // | 
 |     //   __ Ldr(out, HeapOperand(out, class_offset); | 
 |     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); | 
 |     // | 
 |     // In that case, we have lost the information about the original | 
 |     // object, and the emitted read barrier cannot work properly. | 
 |     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; | 
 |     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     DataType::Type type = DataType::Type::kReference; | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); | 
 |     DCHECK(instruction_->IsInstanceFieldGet() || | 
 |            instruction_->IsStaticFieldGet() || | 
 |            instruction_->IsArrayGet() || | 
 |            instruction_->IsInstanceOf() || | 
 |            instruction_->IsCheckCast() || | 
 |            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) | 
 |         << "Unexpected instruction in read barrier for heap reference slow path: " | 
 |         << instruction_->DebugName(); | 
 |     // The read barrier instrumentation of object ArrayGet | 
 |     // instructions does not support the HIntermediateAddress | 
 |     // instruction. | 
 |     DCHECK(!(instruction_->IsArrayGet() && | 
 |              instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |  | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     // We may have to change the index's value, but as `index_` is a | 
 |     // constant member (like other "inputs" of this slow path), | 
 |     // introduce a copy of it, `index`. | 
 |     Location index = index_; | 
 |     if (index_.IsValid()) { | 
 |       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. | 
 |       if (instruction_->IsArrayGet()) { | 
 |         // Compute the actual memory offset and store it in `index`. | 
 |         Register index_reg = RegisterFrom(index_, DataType::Type::kInt32); | 
 |         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg())); | 
 |         if (codegen->IsCoreCalleeSaveRegister(index_.reg())) { | 
 |           // We are about to change the value of `index_reg` (see the | 
 |           // calls to vixl::MacroAssembler::Lsl and | 
 |           // vixl::MacroAssembler::Mov below), but it has | 
 |           // not been saved by the previous call to | 
 |           // art::SlowPathCode::SaveLiveRegisters, as it is a | 
 |           // callee-save register -- | 
 |           // art::SlowPathCode::SaveLiveRegisters does not consider | 
 |           // callee-save registers, as it has been designed with the | 
 |           // assumption that callee-save registers are supposed to be | 
 |           // handled by the called function.  So, as a callee-save | 
 |           // register, `index_reg` _would_ eventually be saved onto | 
 |           // the stack, but it would be too late: we would have | 
 |           // changed its value earlier.  Therefore, we manually save | 
 |           // it here into another freely available register, | 
 |           // `free_reg`, chosen of course among the caller-save | 
 |           // registers (as a callee-save `free_reg` register would | 
 |           // exhibit the same problem). | 
 |           // | 
 |           // Note we could have requested a temporary register from | 
 |           // the register allocator instead; but we prefer not to, as | 
 |           // this is a slow path, and we know we can find a | 
 |           // caller-save register that is available. | 
 |           Register free_reg = FindAvailableCallerSaveRegister(codegen); | 
 |           __ Mov(free_reg.W(), index_reg); | 
 |           index_reg = free_reg; | 
 |           index = LocationFrom(index_reg); | 
 |         } else { | 
 |           // The initial register stored in `index_` has already been | 
 |           // saved in the call to art::SlowPathCode::SaveLiveRegisters | 
 |           // (as it is not a callee-save register), so we can freely | 
 |           // use it. | 
 |         } | 
 |         // Shifting the index value contained in `index_reg` by the scale | 
 |         // factor (2) cannot overflow in practice, as the runtime is | 
 |         // unable to allocate object arrays with a size larger than | 
 |         // 2^26 - 1 (that is, 2^28 - 4 bytes). | 
 |         __ Lsl(index_reg, index_reg, DataType::SizeShift(type)); | 
 |         static_assert( | 
 |             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |         __ Add(index_reg, index_reg, Operand(offset_)); | 
 |       } else { | 
 |         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile | 
 |         // intrinsics, `index_` is not shifted by a scale factor of 2 | 
 |         // (as in the case of ArrayGet), as it is actually an offset | 
 |         // to an object field within an object. | 
 |         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); | 
 |         DCHECK(instruction_->GetLocations()->Intrinsified()); | 
 |         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || | 
 |                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) | 
 |             << instruction_->AsInvoke()->GetIntrinsic(); | 
 |         DCHECK_EQ(offset_, 0u); | 
 |         DCHECK(index_.IsRegister()); | 
 |       } | 
 |     } | 
 |  | 
 |     // We're moving two or three locations to locations that could | 
 |     // overlap, so we need a parallel move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); | 
 |     parallel_move.AddMove(ref_, | 
 |                           LocationFrom(calling_convention.GetRegisterAt(0)), | 
 |                           type, | 
 |                           nullptr); | 
 |     parallel_move.AddMove(obj_, | 
 |                           LocationFrom(calling_convention.GetRegisterAt(1)), | 
 |                           type, | 
 |                           nullptr); | 
 |     if (index.IsValid()) { | 
 |       parallel_move.AddMove(index, | 
 |                             LocationFrom(calling_convention.GetRegisterAt(2)), | 
 |                             DataType::Type::kInt32, | 
 |                             nullptr); | 
 |       codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |     } else { | 
 |       codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |       arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_); | 
 |     } | 
 |     arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow, | 
 |                                  instruction_, | 
 |                                  instruction_->GetDexPc(), | 
 |                                  this); | 
 |     CheckEntrypointTypes< | 
 |         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); | 
 |     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |  | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { | 
 |     size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode()); | 
 |     size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode()); | 
 |     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { | 
 |       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { | 
 |         return Register(VIXLRegCodeFromART(i), kXRegSize); | 
 |       } | 
 |     } | 
 |     // We shall never fail to find a free caller-save register, as | 
 |     // there are more than two core caller-save registers on ARM64 | 
 |     // (meaning it is possible to find one which is different from | 
 |     // `ref` and `obj`). | 
 |     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); | 
 |     LOG(FATAL) << "Could not find a free register"; | 
 |     UNREACHABLE(); | 
 |   } | 
 |  | 
 |   const Location out_; | 
 |   const Location ref_; | 
 |   const Location obj_; | 
 |   const uint32_t offset_; | 
 |   // An additional location containing an index to an array. | 
 |   // Only used for HArrayGet and the UnsafeGetObject & | 
 |   // UnsafeGetObjectVolatile intrinsics. | 
 |   const Location index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64); | 
 | }; | 
 |  | 
 | // Slow path generating a read barrier for a GC root. | 
 | class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 { | 
 |  public: | 
 |   ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root) | 
 |       : SlowPathCodeARM64(instruction), out_(out), root_(root) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     DataType::Type type = DataType::Type::kReference; | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); | 
 |     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) | 
 |         << "Unexpected instruction in read barrier for GC root slow path: " | 
 |         << instruction_->DebugName(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); | 
 |     // The argument of the ReadBarrierForRootSlow is not a managed | 
 |     // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`; | 
 |     // thus we need a 64-bit move here, and we cannot use | 
 |     // | 
 |     //   arm64_codegen->MoveLocation( | 
 |     //       LocationFrom(calling_convention.GetRegisterAt(0)), | 
 |     //       root_, | 
 |     //       type); | 
 |     // | 
 |     // which would emit a 32-bit move, as `type` is a (32-bit wide) | 
 |     // reference type (`DataType::Type::kReference`). | 
 |     __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_)); | 
 |     arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, | 
 |                                  instruction_, | 
 |                                  instruction_->GetDexPc(), | 
 |                                  this); | 
 |     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); | 
 |     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; } | 
 |  | 
 |  private: | 
 |   const Location out_; | 
 |   const Location root_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64); | 
 | }; | 
 |  | 
 | #undef __ | 
 |  | 
 | Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) { | 
 |   Location next_location; | 
 |   if (type == DataType::Type::kVoid) { | 
 |     LOG(FATAL) << "Unreachable type " << type; | 
 |   } | 
 |  | 
 |   if (DataType::IsFloatingPointType(type) && | 
 |       (float_index_ < calling_convention.GetNumberOfFpuRegisters())) { | 
 |     next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); | 
 |   } else if (!DataType::IsFloatingPointType(type) && | 
 |              (gp_index_ < calling_convention.GetNumberOfRegisters())) { | 
 |     next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++)); | 
 |   } else { | 
 |     size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); | 
 |     next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) | 
 |                                                 : Location::StackSlot(stack_offset); | 
 |   } | 
 |  | 
 |   // Space on the stack is reserved for all arguments. | 
 |   stack_index_ += DataType::Is64BitType(type) ? 2 : 1; | 
 |   return next_location; | 
 | } | 
 |  | 
 | Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const { | 
 |   return LocationFrom(kArtMethodRegister); | 
 | } | 
 |  | 
 | CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph, | 
 |                                        const CompilerOptions& compiler_options, | 
 |                                        OptimizingCompilerStats* stats) | 
 |     : CodeGenerator(graph, | 
 |                     kNumberOfAllocatableRegisters, | 
 |                     kNumberOfAllocatableFPRegisters, | 
 |                     kNumberOfAllocatableRegisterPairs, | 
 |                     callee_saved_core_registers.GetList(), | 
 |                     callee_saved_fp_registers.GetList(), | 
 |                     compiler_options, | 
 |                     stats), | 
 |       block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       location_builder_(graph, this), | 
 |       instruction_visitor_(graph, this), | 
 |       move_resolver_(graph->GetAllocator(), this), | 
 |       assembler_(graph->GetAllocator(), | 
 |                  compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()), | 
 |       uint32_literals_(std::less<uint32_t>(), | 
 |                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       uint64_literals_(std::less<uint64_t>(), | 
 |                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       boot_image_intrinsic_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       jit_string_patches_(StringReferenceValueComparator(), | 
 |                           graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       jit_class_patches_(TypeReferenceValueComparator(), | 
 |                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(), | 
 |                                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { | 
 |   // Save the link register (containing the return address) to mimic Quick. | 
 |   AddAllocatedRegister(LocationFrom(lr)); | 
 | } | 
 |  | 
 | #define __ GetVIXLAssembler()-> | 
 |  | 
 | void CodeGeneratorARM64::EmitJumpTables() { | 
 |   for (auto&& jump_table : jump_tables_) { | 
 |     jump_table->EmitTable(this); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) { | 
 |   EmitJumpTables(); | 
 |  | 
 |   // Emit JIT baker read barrier slow paths. | 
 |   DCHECK(Runtime::Current()->UseJitCompilation() || jit_baker_read_barrier_slow_paths_.empty()); | 
 |   for (auto& entry : jit_baker_read_barrier_slow_paths_) { | 
 |     uint32_t encoded_data = entry.first; | 
 |     vixl::aarch64::Label* slow_path_entry = &entry.second.label; | 
 |     __ Bind(slow_path_entry); | 
 |     CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr); | 
 |   } | 
 |  | 
 |   // Ensure we emit the literal pool. | 
 |   __ FinalizeCode(); | 
 |  | 
 |   CodeGenerator::Finalize(allocator); | 
 |  | 
 |   // Verify Baker read barrier linker patches. | 
 |   if (kIsDebugBuild) { | 
 |     ArrayRef<const uint8_t> code = allocator->GetMemory(); | 
 |     for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { | 
 |       DCHECK(info.label.IsBound()); | 
 |       uint32_t literal_offset = info.label.GetLocation(); | 
 |       DCHECK_ALIGNED(literal_offset, 4u); | 
 |  | 
 |       auto GetInsn = [&code](uint32_t offset) { | 
 |         DCHECK_ALIGNED(offset, 4u); | 
 |         return | 
 |             (static_cast<uint32_t>(code[offset + 0]) << 0) + | 
 |             (static_cast<uint32_t>(code[offset + 1]) << 8) + | 
 |             (static_cast<uint32_t>(code[offset + 2]) << 16)+ | 
 |             (static_cast<uint32_t>(code[offset + 3]) << 24); | 
 |       }; | 
 |  | 
 |       const uint32_t encoded_data = info.custom_data; | 
 |       BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); | 
 |       // Check that the next instruction matches the expected LDR. | 
 |       switch (kind) { | 
 |         case BakerReadBarrierKind::kField: | 
 |         case BakerReadBarrierKind::kAcquire: { | 
 |           DCHECK_GE(code.size() - literal_offset, 8u); | 
 |           uint32_t next_insn = GetInsn(literal_offset + 4u); | 
 |           CheckValidReg(next_insn & 0x1fu);  // Check destination register. | 
 |           const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); | 
 |           if (kind == BakerReadBarrierKind::kField) { | 
 |             // LDR (immediate) with correct base_reg. | 
 |             CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5)); | 
 |           } else { | 
 |             DCHECK(kind == BakerReadBarrierKind::kAcquire); | 
 |             // LDAR with correct base_reg. | 
 |             CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5)); | 
 |           } | 
 |           break; | 
 |         } | 
 |         case BakerReadBarrierKind::kArray: { | 
 |           DCHECK_GE(code.size() - literal_offset, 8u); | 
 |           uint32_t next_insn = GetInsn(literal_offset + 4u); | 
 |           // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL), | 
 |           // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2]. | 
 |           CheckValidReg(next_insn & 0x1fu);  // Check destination register. | 
 |           const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); | 
 |           CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5)); | 
 |           CheckValidReg((next_insn >> 16) & 0x1f);  // Check index register | 
 |           break; | 
 |         } | 
 |         case BakerReadBarrierKind::kGcRoot: { | 
 |           DCHECK_GE(literal_offset, 4u); | 
 |           uint32_t prev_insn = GetInsn(literal_offset - 4u); | 
 |           const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); | 
 |           // Usually LDR (immediate) with correct root_reg but | 
 |           // we may have a "MOV marked, old_value" for UnsafeCASObject. | 
 |           if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) {    // MOV? | 
 |             CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg);  // LDR? | 
 |           } | 
 |           break; | 
 |         } | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ParallelMoveResolverARM64::PrepareForEmitNativeCode() { | 
 |   // Note: There are 6 kinds of moves: | 
 |   // 1. constant -> GPR/FPR (non-cycle) | 
 |   // 2. constant -> stack (non-cycle) | 
 |   // 3. GPR/FPR -> GPR/FPR | 
 |   // 4. GPR/FPR -> stack | 
 |   // 5. stack -> GPR/FPR | 
 |   // 6. stack -> stack (non-cycle) | 
 |   // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5 | 
 |   // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting | 
 |   // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the | 
 |   // dependency. | 
 |   vixl_temps_.Open(GetVIXLAssembler()); | 
 | } | 
 |  | 
 | void ParallelMoveResolverARM64::FinishEmitNativeCode() { | 
 |   vixl_temps_.Close(); | 
 | } | 
 |  | 
 | Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) { | 
 |   DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister | 
 |          || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot | 
 |          || kind == Location::kSIMDStackSlot); | 
 |   kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot) | 
 |       ? Location::kFpuRegister | 
 |       : Location::kRegister; | 
 |   Location scratch = GetScratchLocation(kind); | 
 |   if (!scratch.Equals(Location::NoLocation())) { | 
 |     return scratch; | 
 |   } | 
 |   // Allocate from VIXL temp registers. | 
 |   if (kind == Location::kRegister) { | 
 |     scratch = LocationFrom(vixl_temps_.AcquireX()); | 
 |   } else { | 
 |     DCHECK_EQ(kind, Location::kFpuRegister); | 
 |     scratch = LocationFrom(codegen_->GetGraph()->HasSIMD() | 
 |         ? vixl_temps_.AcquireVRegisterOfSize(kQRegSize) | 
 |         : vixl_temps_.AcquireD()); | 
 |   } | 
 |   AddScratchLocation(scratch); | 
 |   return scratch; | 
 | } | 
 |  | 
 | void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) { | 
 |   if (loc.IsRegister()) { | 
 |     vixl_temps_.Release(XRegisterFrom(loc)); | 
 |   } else { | 
 |     DCHECK(loc.IsFpuRegister()); | 
 |     vixl_temps_.Release(codegen_->GetGraph()->HasSIMD() ? QRegisterFrom(loc) : DRegisterFrom(loc)); | 
 |   } | 
 |   RemoveScratchLocation(loc); | 
 | } | 
 |  | 
 | void ParallelMoveResolverARM64::EmitMove(size_t index) { | 
 |   MoveOperands* move = moves_[index]; | 
 |   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateFrameEntry() { | 
 |   MacroAssembler* masm = GetVIXLAssembler(); | 
 |   __ Bind(&frame_entry_label_); | 
 |  | 
 |   if (GetCompilerOptions().CountHotnessInCompiledCode()) { | 
 |     UseScratchRegisterScope temps(masm); | 
 |     Register temp = temps.AcquireX(); | 
 |     __ Ldrh(temp, MemOperand(kArtMethodRegister, ArtMethod::HotnessCountOffset().Int32Value())); | 
 |     __ Add(temp, temp, 1); | 
 |     __ Strh(temp, MemOperand(kArtMethodRegister, ArtMethod::HotnessCountOffset().Int32Value())); | 
 |   } | 
 |  | 
 |   bool do_overflow_check = | 
 |       FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod(); | 
 |   if (do_overflow_check) { | 
 |     UseScratchRegisterScope temps(masm); | 
 |     Register temp = temps.AcquireX(); | 
 |     DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); | 
 |     __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64))); | 
 |     { | 
 |       // Ensure that between load and RecordPcInfo there are no pools emitted. | 
 |       ExactAssemblyScope eas(GetVIXLAssembler(), | 
 |                              kInstructionSize, | 
 |                              CodeBufferCheckScope::kExactSize); | 
 |       __ ldr(wzr, MemOperand(temp, 0)); | 
 |       RecordPcInfo(nullptr, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!HasEmptyFrame()) { | 
 |     int frame_size = GetFrameSize(); | 
 |     // Stack layout: | 
 |     //      sp[frame_size - 8]        : lr. | 
 |     //      ...                       : other preserved core registers. | 
 |     //      ...                       : other preserved fp registers. | 
 |     //      ...                       : reserved frame space. | 
 |     //      sp[0]                     : current method. | 
 |  | 
 |     // Save the current method if we need it. Note that we do not | 
 |     // do this in HCurrentMethod, as the instruction might have been removed | 
 |     // in the SSA graph. | 
 |     if (RequiresCurrentMethod()) { | 
 |       __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex)); | 
 |     } else { | 
 |       __ Claim(frame_size); | 
 |     } | 
 |     GetAssembler()->cfi().AdjustCFAOffset(frame_size); | 
 |     GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(), | 
 |         frame_size - GetCoreSpillSize()); | 
 |     GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(), | 
 |         frame_size - FrameEntrySpillSize()); | 
 |  | 
 |     if (GetGraph()->HasShouldDeoptimizeFlag()) { | 
 |       // Initialize should_deoptimize flag to 0. | 
 |       Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize); | 
 |       __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag())); | 
 |     } | 
 |   } | 
 |  | 
 |   MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateFrameExit() { | 
 |   GetAssembler()->cfi().RememberState(); | 
 |   if (!HasEmptyFrame()) { | 
 |     int frame_size = GetFrameSize(); | 
 |     GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(), | 
 |         frame_size - FrameEntrySpillSize()); | 
 |     GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(), | 
 |         frame_size - GetCoreSpillSize()); | 
 |     __ Drop(frame_size); | 
 |     GetAssembler()->cfi().AdjustCFAOffset(-frame_size); | 
 |   } | 
 |   __ Ret(); | 
 |   GetAssembler()->cfi().RestoreState(); | 
 |   GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); | 
 | } | 
 |  | 
 | CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const { | 
 |   DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0)); | 
 |   return CPURegList(CPURegister::kRegister, kXRegSize, | 
 |                     core_spill_mask_); | 
 | } | 
 |  | 
 | CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const { | 
 |   DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_, | 
 |                                          GetNumberOfFloatingPointRegisters())); | 
 |   return CPURegList(CPURegister::kFPRegister, kDRegSize, | 
 |                     fpu_spill_mask_); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::Bind(HBasicBlock* block) { | 
 |   __ Bind(GetLabelOf(block)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) { | 
 |   DCHECK(location.IsRegister()); | 
 |   __ Mov(RegisterFrom(location, DataType::Type::kInt32), value); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) { | 
 |   if (location.IsRegister()) { | 
 |     locations->AddTemp(location); | 
 |   } else { | 
 |     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) { | 
 |   UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |   Register card = temps.AcquireX(); | 
 |   Register temp = temps.AcquireW();   // Index within the CardTable - 32bit. | 
 |   vixl::aarch64::Label done; | 
 |   if (value_can_be_null) { | 
 |     __ Cbz(value, &done); | 
 |   } | 
 |   // Load the address of the card table into `card`. | 
 |   __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value())); | 
 |   // Calculate the offset (in the card table) of the card corresponding to | 
 |   // `object`. | 
 |   __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); | 
 |   // Write the `art::gc::accounting::CardTable::kCardDirty` value into the | 
 |   // `object`'s card. | 
 |   // | 
 |   // Register `card` contains the address of the card table. Note that the card | 
 |   // table's base is biased during its creation so that it always starts at an | 
 |   // address whose least-significant byte is equal to `kCardDirty` (see | 
 |   // art::gc::accounting::CardTable::Create). Therefore the STRB instruction | 
 |   // below writes the `kCardDirty` (byte) value into the `object`'s card | 
 |   // (located at `card + object >> kCardShift`). | 
 |   // | 
 |   // This dual use of the value in register `card` (1. to calculate the location | 
 |   // of the card to mark; and 2. to load the `kCardDirty` value) saves a load | 
 |   // (no need to explicitly load `kCardDirty` as an immediate value). | 
 |   __ Strb(card, MemOperand(card, temp.X())); | 
 |   if (value_can_be_null) { | 
 |     __ Bind(&done); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::SetupBlockedRegisters() const { | 
 |   // Blocked core registers: | 
 |   //      lr        : Runtime reserved. | 
 |   //      tr        : Runtime reserved. | 
 |   //      mr        : Runtime reserved. | 
 |   //      ip1       : VIXL core temp. | 
 |   //      ip0       : VIXL core temp. | 
 |   //      x18       : Platform register. | 
 |   // | 
 |   // Blocked fp registers: | 
 |   //      d31       : VIXL fp temp. | 
 |   CPURegList reserved_core_registers = vixl_reserved_core_registers; | 
 |   reserved_core_registers.Combine(runtime_reserved_core_registers); | 
 |   while (!reserved_core_registers.IsEmpty()) { | 
 |     blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true; | 
 |   } | 
 |   blocked_core_registers_[X18] = true; | 
 |  | 
 |   CPURegList reserved_fp_registers = vixl_reserved_fp_registers; | 
 |   while (!reserved_fp_registers.IsEmpty()) { | 
 |     blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true; | 
 |   } | 
 |  | 
 |   if (GetGraph()->IsDebuggable()) { | 
 |     // Stubs do not save callee-save floating point registers. If the graph | 
 |     // is debuggable, we need to deal with these registers differently. For | 
 |     // now, just block them. | 
 |     CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers; | 
 |     while (!reserved_fp_registers_debuggable.IsEmpty()) { | 
 |       blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { | 
 |   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); | 
 |   __ Str(reg, MemOperand(sp, stack_index)); | 
 |   return kArm64WordSize; | 
 | } | 
 |  | 
 | size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { | 
 |   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); | 
 |   __ Ldr(reg, MemOperand(sp, stack_index)); | 
 |   return kArm64WordSize; | 
 | } | 
 |  | 
 | size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
 |   FPRegister reg = FPRegister(reg_id, kDRegSize); | 
 |   __ Str(reg, MemOperand(sp, stack_index)); | 
 |   return kArm64WordSize; | 
 | } | 
 |  | 
 | size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
 |   FPRegister reg = FPRegister(reg_id, kDRegSize); | 
 |   __ Ldr(reg, MemOperand(sp, stack_index)); | 
 |   return kArm64WordSize; | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const { | 
 |   stream << XRegister(reg); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { | 
 |   stream << DRegister(reg); | 
 | } | 
 |  | 
 | const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const { | 
 |   return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures(); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) { | 
 |   if (constant->IsIntConstant()) { | 
 |     __ Mov(Register(destination), constant->AsIntConstant()->GetValue()); | 
 |   } else if (constant->IsLongConstant()) { | 
 |     __ Mov(Register(destination), constant->AsLongConstant()->GetValue()); | 
 |   } else if (constant->IsNullConstant()) { | 
 |     __ Mov(Register(destination), 0); | 
 |   } else if (constant->IsFloatConstant()) { | 
 |     __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue()); | 
 |   } else { | 
 |     DCHECK(constant->IsDoubleConstant()); | 
 |     __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static bool CoherentConstantAndType(Location constant, DataType::Type type) { | 
 |   DCHECK(constant.IsConstant()); | 
 |   HConstant* cst = constant.GetConstant(); | 
 |   return (cst->IsIntConstant() && type == DataType::Type::kInt32) || | 
 |          // Null is mapped to a core W register, which we associate with kPrimInt. | 
 |          (cst->IsNullConstant() && type == DataType::Type::kInt32) || | 
 |          (cst->IsLongConstant() && type == DataType::Type::kInt64) || | 
 |          (cst->IsFloatConstant() && type == DataType::Type::kFloat32) || | 
 |          (cst->IsDoubleConstant() && type == DataType::Type::kFloat64); | 
 | } | 
 |  | 
 | // Allocate a scratch register from the VIXL pool, querying first | 
 | // the floating-point register pool, and then the core register | 
 | // pool. This is essentially a reimplementation of | 
 | // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize | 
 | // using a different allocation strategy. | 
 | static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm, | 
 |                                                     vixl::aarch64::UseScratchRegisterScope* temps, | 
 |                                                     int size_in_bits) { | 
 |   return masm->GetScratchFPRegisterList()->IsEmpty() | 
 |       ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits)) | 
 |       : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::MoveLocation(Location destination, | 
 |                                       Location source, | 
 |                                       DataType::Type dst_type) { | 
 |   if (source.Equals(destination)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // A valid move can always be inferred from the destination and source | 
 |   // locations. When moving from and to a register, the argument type can be | 
 |   // used to generate 32bit instead of 64bit moves. In debug mode we also | 
 |   // checks the coherency of the locations and the type. | 
 |   bool unspecified_type = (dst_type == DataType::Type::kVoid); | 
 |  | 
 |   if (destination.IsRegister() || destination.IsFpuRegister()) { | 
 |     if (unspecified_type) { | 
 |       HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; | 
 |       if (source.IsStackSlot() || | 
 |           (src_cst != nullptr && (src_cst->IsIntConstant() | 
 |                                   || src_cst->IsFloatConstant() | 
 |                                   || src_cst->IsNullConstant()))) { | 
 |         // For stack slots and 32bit constants, a 64bit type is appropriate. | 
 |         dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32; | 
 |       } else { | 
 |         // If the source is a double stack slot or a 64bit constant, a 64bit | 
 |         // type is appropriate. Else the source is a register, and since the | 
 |         // type has not been specified, we chose a 64bit type to force a 64bit | 
 |         // move. | 
 |         dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64; | 
 |       } | 
 |     } | 
 |     DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) || | 
 |            (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type))); | 
 |     CPURegister dst = CPURegisterFrom(destination, dst_type); | 
 |     if (source.IsStackSlot() || source.IsDoubleStackSlot()) { | 
 |       DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot()); | 
 |       __ Ldr(dst, StackOperandFrom(source)); | 
 |     } else if (source.IsSIMDStackSlot()) { | 
 |       __ Ldr(QRegisterFrom(destination), StackOperandFrom(source)); | 
 |     } else if (source.IsConstant()) { | 
 |       DCHECK(CoherentConstantAndType(source, dst_type)); | 
 |       MoveConstant(dst, source.GetConstant()); | 
 |     } else if (source.IsRegister()) { | 
 |       if (destination.IsRegister()) { | 
 |         __ Mov(Register(dst), RegisterFrom(source, dst_type)); | 
 |       } else { | 
 |         DCHECK(destination.IsFpuRegister()); | 
 |         DataType::Type source_type = DataType::Is64BitType(dst_type) | 
 |             ? DataType::Type::kInt64 | 
 |             : DataType::Type::kInt32; | 
 |         __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type)); | 
 |       } | 
 |     } else { | 
 |       DCHECK(source.IsFpuRegister()); | 
 |       if (destination.IsRegister()) { | 
 |         DataType::Type source_type = DataType::Is64BitType(dst_type) | 
 |             ? DataType::Type::kFloat64 | 
 |             : DataType::Type::kFloat32; | 
 |         __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type)); | 
 |       } else { | 
 |         DCHECK(destination.IsFpuRegister()); | 
 |         if (GetGraph()->HasSIMD()) { | 
 |           __ Mov(QRegisterFrom(destination), QRegisterFrom(source)); | 
 |         } else { | 
 |           __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } else if (destination.IsSIMDStackSlot()) { | 
 |     if (source.IsFpuRegister()) { | 
 |       __ Str(QRegisterFrom(source), StackOperandFrom(destination)); | 
 |     } else { | 
 |       DCHECK(source.IsSIMDStackSlot()); | 
 |       UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |       if (GetVIXLAssembler()->GetScratchFPRegisterList()->IsEmpty()) { | 
 |         Register temp = temps.AcquireX(); | 
 |         __ Ldr(temp, MemOperand(sp, source.GetStackIndex())); | 
 |         __ Str(temp, MemOperand(sp, destination.GetStackIndex())); | 
 |         __ Ldr(temp, MemOperand(sp, source.GetStackIndex() + kArm64WordSize)); | 
 |         __ Str(temp, MemOperand(sp, destination.GetStackIndex() + kArm64WordSize)); | 
 |       } else { | 
 |         FPRegister temp = temps.AcquireVRegisterOfSize(kQRegSize); | 
 |         __ Ldr(temp, StackOperandFrom(source)); | 
 |         __ Str(temp, StackOperandFrom(destination)); | 
 |       } | 
 |     } | 
 |   } else {  // The destination is not a register. It must be a stack slot. | 
 |     DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); | 
 |     if (source.IsRegister() || source.IsFpuRegister()) { | 
 |       if (unspecified_type) { | 
 |         if (source.IsRegister()) { | 
 |           dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64; | 
 |         } else { | 
 |           dst_type = | 
 |               destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64; | 
 |         } | 
 |       } | 
 |       DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) && | 
 |              (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type))); | 
 |       __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination)); | 
 |     } else if (source.IsConstant()) { | 
 |       DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type)) | 
 |           << source << " " << dst_type; | 
 |       UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |       HConstant* src_cst = source.GetConstant(); | 
 |       CPURegister temp; | 
 |       if (src_cst->IsZeroBitPattern()) { | 
 |         temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant()) | 
 |             ? Register(xzr) | 
 |             : Register(wzr); | 
 |       } else { | 
 |         if (src_cst->IsIntConstant()) { | 
 |           temp = temps.AcquireW(); | 
 |         } else if (src_cst->IsLongConstant()) { | 
 |           temp = temps.AcquireX(); | 
 |         } else if (src_cst->IsFloatConstant()) { | 
 |           temp = temps.AcquireS(); | 
 |         } else { | 
 |           DCHECK(src_cst->IsDoubleConstant()); | 
 |           temp = temps.AcquireD(); | 
 |         } | 
 |         MoveConstant(temp, src_cst); | 
 |       } | 
 |       __ Str(temp, StackOperandFrom(destination)); | 
 |     } else { | 
 |       DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); | 
 |       DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot()); | 
 |       UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |       // Use any scratch register (a core or a floating-point one) | 
 |       // from VIXL scratch register pools as a temporary. | 
 |       // | 
 |       // We used to only use the FP scratch register pool, but in some | 
 |       // rare cases the only register from this pool (D31) would | 
 |       // already be used (e.g. within a ParallelMove instruction, when | 
 |       // a move is blocked by a another move requiring a scratch FP | 
 |       // register, which would reserve D31). To prevent this issue, we | 
 |       // ask for a scratch register of any type (core or FP). | 
 |       // | 
 |       // Also, we start by asking for a FP scratch register first, as the | 
 |       // demand of scratch core registers is higher. This is why we | 
 |       // use AcquireFPOrCoreCPURegisterOfSize instead of | 
 |       // UseScratchRegisterScope::AcquireCPURegisterOfSize, which | 
 |       // allocates core scratch registers first. | 
 |       CPURegister temp = AcquireFPOrCoreCPURegisterOfSize( | 
 |           GetVIXLAssembler(), | 
 |           &temps, | 
 |           (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize)); | 
 |       __ Ldr(temp, StackOperandFrom(source)); | 
 |       __ Str(temp, StackOperandFrom(destination)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::Load(DataType::Type type, | 
 |                               CPURegister dst, | 
 |                               const MemOperand& src) { | 
 |   switch (type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |       __ Ldrb(Register(dst), src); | 
 |       break; | 
 |     case DataType::Type::kInt8: | 
 |       __ Ldrsb(Register(dst), src); | 
 |       break; | 
 |     case DataType::Type::kUint16: | 
 |       __ Ldrh(Register(dst), src); | 
 |       break; | 
 |     case DataType::Type::kInt16: | 
 |       __ Ldrsh(Register(dst), src); | 
 |       break; | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kReference: | 
 |     case DataType::Type::kInt64: | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); | 
 |       __ Ldr(dst, src); | 
 |       break; | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unreachable type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction, | 
 |                                      CPURegister dst, | 
 |                                      const MemOperand& src, | 
 |                                      bool needs_null_check) { | 
 |   MacroAssembler* masm = GetVIXLAssembler(); | 
 |   UseScratchRegisterScope temps(masm); | 
 |   Register temp_base = temps.AcquireX(); | 
 |   DataType::Type type = instruction->GetType(); | 
 |  | 
 |   DCHECK(!src.IsPreIndex()); | 
 |   DCHECK(!src.IsPostIndex()); | 
 |  | 
 |   // TODO(vixl): Let the MacroAssembler handle MemOperand. | 
 |   __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src)); | 
 |   { | 
 |     // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |     MemOperand base = MemOperand(temp_base); | 
 |     switch (type) { | 
 |       case DataType::Type::kBool: | 
 |       case DataType::Type::kUint8: | 
 |       case DataType::Type::kInt8: | 
 |         { | 
 |           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |           __ ldarb(Register(dst), base); | 
 |           if (needs_null_check) { | 
 |             MaybeRecordImplicitNullCheck(instruction); | 
 |           } | 
 |         } | 
 |         if (type == DataType::Type::kInt8) { | 
 |           __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); | 
 |         } | 
 |         break; | 
 |       case DataType::Type::kUint16: | 
 |       case DataType::Type::kInt16: | 
 |         { | 
 |           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |           __ ldarh(Register(dst), base); | 
 |           if (needs_null_check) { | 
 |             MaybeRecordImplicitNullCheck(instruction); | 
 |           } | 
 |         } | 
 |         if (type == DataType::Type::kInt16) { | 
 |           __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); | 
 |         } | 
 |         break; | 
 |       case DataType::Type::kInt32: | 
 |       case DataType::Type::kReference: | 
 |       case DataType::Type::kInt64: | 
 |         DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); | 
 |         { | 
 |           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |           __ ldar(Register(dst), base); | 
 |           if (needs_null_check) { | 
 |             MaybeRecordImplicitNullCheck(instruction); | 
 |           } | 
 |         } | 
 |         break; | 
 |       case DataType::Type::kFloat32: | 
 |       case DataType::Type::kFloat64: { | 
 |         DCHECK(dst.IsFPRegister()); | 
 |         DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); | 
 |  | 
 |         Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); | 
 |         { | 
 |           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |           __ ldar(temp, base); | 
 |           if (needs_null_check) { | 
 |             MaybeRecordImplicitNullCheck(instruction); | 
 |           } | 
 |         } | 
 |         __ Fmov(FPRegister(dst), temp); | 
 |         break; | 
 |       } | 
 |       case DataType::Type::kUint32: | 
 |       case DataType::Type::kUint64: | 
 |       case DataType::Type::kVoid: | 
 |         LOG(FATAL) << "Unreachable type " << type; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::Store(DataType::Type type, | 
 |                                CPURegister src, | 
 |                                const MemOperand& dst) { | 
 |   switch (type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |       __ Strb(Register(src), dst); | 
 |       break; | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |       __ Strh(Register(src), dst); | 
 |       break; | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kReference: | 
 |     case DataType::Type::kInt64: | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); | 
 |       __ Str(src, dst); | 
 |       break; | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unreachable type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::StoreRelease(HInstruction* instruction, | 
 |                                       DataType::Type type, | 
 |                                       CPURegister src, | 
 |                                       const MemOperand& dst, | 
 |                                       bool needs_null_check) { | 
 |   MacroAssembler* masm = GetVIXLAssembler(); | 
 |   UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |   Register temp_base = temps.AcquireX(); | 
 |  | 
 |   DCHECK(!dst.IsPreIndex()); | 
 |   DCHECK(!dst.IsPostIndex()); | 
 |  | 
 |   // TODO(vixl): Let the MacroAssembler handle this. | 
 |   Operand op = OperandFromMemOperand(dst); | 
 |   __ Add(temp_base, dst.GetBaseRegister(), op); | 
 |   MemOperand base = MemOperand(temp_base); | 
 |   // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |   switch (type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |       { | 
 |         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |         __ stlrb(Register(src), base); | 
 |         if (needs_null_check) { | 
 |           MaybeRecordImplicitNullCheck(instruction); | 
 |         } | 
 |       } | 
 |       break; | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |       { | 
 |         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |         __ stlrh(Register(src), base); | 
 |         if (needs_null_check) { | 
 |           MaybeRecordImplicitNullCheck(instruction); | 
 |         } | 
 |       } | 
 |       break; | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kReference: | 
 |     case DataType::Type::kInt64: | 
 |       DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); | 
 |       { | 
 |         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |         __ stlr(Register(src), base); | 
 |         if (needs_null_check) { | 
 |           MaybeRecordImplicitNullCheck(instruction); | 
 |         } | 
 |       } | 
 |       break; | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); | 
 |       Register temp_src; | 
 |       if (src.IsZero()) { | 
 |         // The zero register is used to avoid synthesizing zero constants. | 
 |         temp_src = Register(src); | 
 |       } else { | 
 |         DCHECK(src.IsFPRegister()); | 
 |         temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); | 
 |         __ Fmov(temp_src, FPRegister(src)); | 
 |       } | 
 |       { | 
 |         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |         __ stlr(temp_src, base); | 
 |         if (needs_null_check) { | 
 |           MaybeRecordImplicitNullCheck(instruction); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unreachable type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint, | 
 |                                        HInstruction* instruction, | 
 |                                        uint32_t dex_pc, | 
 |                                        SlowPathCode* slow_path) { | 
 |   ValidateInvokeRuntime(entrypoint, instruction, slow_path); | 
 |  | 
 |   __ Ldr(lr, MemOperand(tr, GetThreadOffset<kArm64PointerSize>(entrypoint).Int32Value())); | 
 |   { | 
 |     // Ensure the pc position is recorded immediately after the `blr` instruction. | 
 |     ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |     __ blr(lr); | 
 |     if (EntrypointRequiresStackMap(entrypoint)) { | 
 |       RecordPcInfo(instruction, dex_pc, slow_path); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, | 
 |                                                              HInstruction* instruction, | 
 |                                                              SlowPathCode* slow_path) { | 
 |   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); | 
 |   __ Ldr(lr, MemOperand(tr, entry_point_offset)); | 
 |   __ Blr(lr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path, | 
 |                                                                      Register class_reg) { | 
 |   UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |   Register temp = temps.AcquireW(); | 
 |   constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); | 
 |   const size_t status_byte_offset = | 
 |       mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte); | 
 |   constexpr uint32_t shifted_initialized_value = | 
 |       enum_cast<uint32_t>(ClassStatus::kInitialized) << (status_lsb_position % kBitsPerByte); | 
 |  | 
 |   // Even if the initialized flag is set, we need to ensure consistent memory ordering. | 
 |   // TODO(vixl): Let the MacroAssembler handle MemOperand. | 
 |   __ Add(temp, class_reg, status_byte_offset); | 
 |   __ Ldarb(temp, HeapOperand(temp)); | 
 |   __ Cmp(temp, shifted_initialized_value); | 
 |   __ B(lo, slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare( | 
 |     HTypeCheckInstruction* check, vixl::aarch64::Register temp) { | 
 |   uint32_t path_to_root = check->GetBitstringPathToRoot(); | 
 |   uint32_t mask = check->GetBitstringMask(); | 
 |   DCHECK(IsPowerOfTwo(mask + 1)); | 
 |   size_t mask_bits = WhichPowerOf2(mask + 1); | 
 |  | 
 |   if (mask_bits == 16u) { | 
 |     // Load only the bitstring part of the status word. | 
 |     __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset())); | 
 |   } else { | 
 |     // /* uint32_t */ temp = temp->status_ | 
 |     __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset())); | 
 |     // Extract the bitstring bits. | 
 |     __ Ubfx(temp, temp, 0, mask_bits); | 
 |   } | 
 |   // Compare the bitstring bits to `path_to_root`. | 
 |   __ Cmp(temp, path_to_root); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) { | 
 |   BarrierType type = BarrierAll; | 
 |  | 
 |   switch (kind) { | 
 |     case MemBarrierKind::kAnyAny: | 
 |     case MemBarrierKind::kAnyStore: { | 
 |       type = BarrierAll; | 
 |       break; | 
 |     } | 
 |     case MemBarrierKind::kLoadAny: { | 
 |       type = BarrierReads; | 
 |       break; | 
 |     } | 
 |     case MemBarrierKind::kStoreStore: { | 
 |       type = BarrierWrites; | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected memory barrier " << kind; | 
 |   } | 
 |   __ Dmb(InnerShareable, type); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction, | 
 |                                                          HBasicBlock* successor) { | 
 |   SuspendCheckSlowPathARM64* slow_path = | 
 |       down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath()); | 
 |   if (slow_path == nullptr) { | 
 |     slow_path = | 
 |         new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor); | 
 |     instruction->SetSlowPath(slow_path); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     if (successor != nullptr) { | 
 |       DCHECK(successor->IsLoopHeader()); | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(slow_path->GetSuccessor(), successor); | 
 |   } | 
 |  | 
 |   UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); | 
 |   Register temp = temps.AcquireW(); | 
 |  | 
 |   __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue())); | 
 |   if (successor == nullptr) { | 
 |     __ Cbnz(temp, slow_path->GetEntryLabel()); | 
 |     __ Bind(slow_path->GetReturnLabel()); | 
 |   } else { | 
 |     __ Cbz(temp, codegen_->GetLabelOf(successor)); | 
 |     __ B(slow_path->GetEntryLabel()); | 
 |     // slow_path will return to GetLabelOf(successor). | 
 |   } | 
 | } | 
 |  | 
 | InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph, | 
 |                                                              CodeGeneratorARM64* codegen) | 
 |       : InstructionCodeGenerator(graph, codegen), | 
 |         assembler_(codegen->GetAssembler()), | 
 |         codegen_(codegen) {} | 
 |  | 
 | void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) { | 
 |   DCHECK_EQ(instr->InputCount(), 2U); | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); | 
 |   DataType::Type type = instr->GetResultType(); | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr)); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction, | 
 |                                            const FieldInfo& field_info) { | 
 |   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); | 
 |  | 
 |   bool object_field_get_with_read_barrier = | 
 |       kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, | 
 |                                                        object_field_get_with_read_barrier | 
 |                                                            ? LocationSummary::kCallOnSlowPath | 
 |                                                            : LocationSummary::kNoCall); | 
 |   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |     // We need a temporary register for the read barrier load in | 
 |     // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() | 
 |     // only if the field is volatile or the offset is too big. | 
 |     if (field_info.IsVolatile() || | 
 |         field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) { | 
 |       locations->AddTemp(FixedTempLocation()); | 
 |     } | 
 |   } | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (DataType::IsFloatingPointType(instruction->GetType())) { | 
 |     locations->SetOut(Location::RequiresFpuRegister()); | 
 |   } else { | 
 |     // The output overlaps for an object field get when read barriers | 
 |     // are enabled: we do not want the load to overwrite the object's | 
 |     // location, as we need it to emit the read barrier. | 
 |     locations->SetOut( | 
 |         Location::RequiresRegister(), | 
 |         object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction, | 
 |                                                    const FieldInfo& field_info) { | 
 |   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location base_loc = locations->InAt(0); | 
 |   Location out = locations->Out(); | 
 |   uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
 |   DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); | 
 |   DataType::Type load_type = instruction->GetType(); | 
 |   MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset()); | 
 |  | 
 |   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && | 
 |       load_type == DataType::Type::kReference) { | 
 |     // Object FieldGet with Baker's read barrier case. | 
 |     // /* HeapReference<Object> */ out = *(base + offset) | 
 |     Register base = RegisterFrom(base_loc, DataType::Type::kReference); | 
 |     Location maybe_temp = | 
 |         (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); | 
 |     // Note that potential implicit null checks are handled in this | 
 |     // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call. | 
 |     codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |         instruction, | 
 |         out, | 
 |         base, | 
 |         offset, | 
 |         maybe_temp, | 
 |         /* needs_null_check= */ true, | 
 |         field_info.IsVolatile()); | 
 |   } else { | 
 |     // General case. | 
 |     if (field_info.IsVolatile()) { | 
 |       // Note that a potential implicit null check is handled in this | 
 |       // CodeGeneratorARM64::LoadAcquire call. | 
 |       // NB: LoadAcquire will record the pc info if needed. | 
 |       codegen_->LoadAcquire( | 
 |           instruction, OutputCPURegister(instruction), field, /* needs_null_check= */ true); | 
 |     } else { | 
 |       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |       codegen_->Load(load_type, OutputCPURegister(instruction), field); | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |     } | 
 |     if (load_type == DataType::Type::kReference) { | 
 |       // If read barriers are enabled, emit read barriers other than | 
 |       // Baker's using a slow path (and also unpoison the loaded | 
 |       // reference, if heap poisoning is enabled). | 
 |       codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (IsConstantZeroBitPattern(instruction->InputAt(1))) { | 
 |     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
 |   } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) { | 
 |     locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |   } else { | 
 |     locations->SetInAt(1, Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction, | 
 |                                                    const FieldInfo& field_info, | 
 |                                                    bool value_can_be_null) { | 
 |   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); | 
 |  | 
 |   Register obj = InputRegisterAt(instruction, 0); | 
 |   CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1); | 
 |   CPURegister source = value; | 
 |   Offset offset = field_info.GetFieldOffset(); | 
 |   DataType::Type field_type = field_info.GetFieldType(); | 
 |  | 
 |   { | 
 |     // We use a block to end the scratch scope before the write barrier, thus | 
 |     // freeing the temporary registers so they can be used in `MarkGCCard`. | 
 |     UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |  | 
 |     if (kPoisonHeapReferences && field_type == DataType::Type::kReference) { | 
 |       DCHECK(value.IsW()); | 
 |       Register temp = temps.AcquireW(); | 
 |       __ Mov(temp, value.W()); | 
 |       GetAssembler()->PoisonHeapReference(temp.W()); | 
 |       source = temp; | 
 |     } | 
 |  | 
 |     if (field_info.IsVolatile()) { | 
 |       codegen_->StoreRelease( | 
 |           instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true); | 
 |     } else { | 
 |       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |       codegen_->Store(field_type, source, HeapOperand(obj, offset)); | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |     } | 
 |   } | 
 |  | 
 |   if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { | 
 |     codegen_->MarkGCCard(obj, Register(value), value_can_be_null); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) { | 
 |   DataType::Type type = instr->GetType(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: { | 
 |       Register dst = OutputRegister(instr); | 
 |       Register lhs = InputRegisterAt(instr, 0); | 
 |       Operand rhs = InputOperandAt(instr, 1); | 
 |       if (instr->IsAdd()) { | 
 |         __ Add(dst, lhs, rhs); | 
 |       } else if (instr->IsAnd()) { | 
 |         __ And(dst, lhs, rhs); | 
 |       } else if (instr->IsOr()) { | 
 |         __ Orr(dst, lhs, rhs); | 
 |       } else if (instr->IsSub()) { | 
 |         __ Sub(dst, lhs, rhs); | 
 |       } else if (instr->IsRor()) { | 
 |         if (rhs.IsImmediate()) { | 
 |           uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1); | 
 |           __ Ror(dst, lhs, shift); | 
 |         } else { | 
 |           // Ensure shift distance is in the same size register as the result. If | 
 |           // we are rotating a long and the shift comes in a w register originally, | 
 |           // we don't need to sxtw for use as an x since the shift distances are | 
 |           // all & reg_bits - 1. | 
 |           __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type)); | 
 |         } | 
 |       } else if (instr->IsMin() || instr->IsMax()) { | 
 |           __ Cmp(lhs, rhs); | 
 |           __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt); | 
 |       } else { | 
 |         DCHECK(instr->IsXor()); | 
 |         __ Eor(dst, lhs, rhs); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       FPRegister dst = OutputFPRegister(instr); | 
 |       FPRegister lhs = InputFPRegisterAt(instr, 0); | 
 |       FPRegister rhs = InputFPRegisterAt(instr, 1); | 
 |       if (instr->IsAdd()) { | 
 |         __ Fadd(dst, lhs, rhs); | 
 |       } else if (instr->IsSub()) { | 
 |         __ Fsub(dst, lhs, rhs); | 
 |       } else if (instr->IsMin()) { | 
 |         __ Fmin(dst, lhs, rhs); | 
 |       } else if (instr->IsMax()) { | 
 |         __ Fmax(dst, lhs, rhs); | 
 |       } else { | 
 |         LOG(FATAL) << "Unexpected floating-point binary operation"; | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected binary operation type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) { | 
 |   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); | 
 |  | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); | 
 |   DataType::Type type = instr->GetResultType(); | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected shift type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) { | 
 |   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); | 
 |  | 
 |   DataType::Type type = instr->GetType(); | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: { | 
 |       Register dst = OutputRegister(instr); | 
 |       Register lhs = InputRegisterAt(instr, 0); | 
 |       Operand rhs = InputOperandAt(instr, 1); | 
 |       if (rhs.IsImmediate()) { | 
 |         uint32_t shift_value = rhs.GetImmediate() & | 
 |             (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance); | 
 |         if (instr->IsShl()) { | 
 |           __ Lsl(dst, lhs, shift_value); | 
 |         } else if (instr->IsShr()) { | 
 |           __ Asr(dst, lhs, shift_value); | 
 |         } else { | 
 |           __ Lsr(dst, lhs, shift_value); | 
 |         } | 
 |       } else { | 
 |         Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W(); | 
 |  | 
 |         if (instr->IsShl()) { | 
 |           __ Lsl(dst, lhs, rhs_reg); | 
 |         } else if (instr->IsShr()) { | 
 |           __ Asr(dst, lhs, rhs_reg); | 
 |         } else { | 
 |           __ Lsr(dst, lhs, rhs_reg); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected shift operation type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitAdd(HAdd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitAnd(HAnd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { | 
 |   DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType(); | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   // There is no immediate variant of negated bitwise instructions in AArch64. | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { | 
 |   Register dst = OutputRegister(instr); | 
 |   Register lhs = InputRegisterAt(instr, 0); | 
 |   Register rhs = InputRegisterAt(instr, 1); | 
 |  | 
 |   switch (instr->GetOpKind()) { | 
 |     case HInstruction::kAnd: | 
 |       __ Bic(dst, lhs, rhs); | 
 |       break; | 
 |     case HInstruction::kOr: | 
 |       __ Orn(dst, lhs, rhs); | 
 |       break; | 
 |     case HInstruction::kXor: | 
 |       __ Eon(dst, lhs, rhs); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unreachable"; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitDataProcWithShifterOp( | 
 |     HDataProcWithShifterOp* instruction) { | 
 |   DCHECK(instruction->GetType() == DataType::Type::kInt32 || | 
 |          instruction->GetType() == DataType::Type::kInt64); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   if (instruction->GetInstrKind() == HInstruction::kNeg) { | 
 |     locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant())); | 
 |   } else { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp( | 
 |     HDataProcWithShifterOp* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   HInstruction::InstructionKind kind = instruction->GetInstrKind(); | 
 |   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); | 
 |   Register out = OutputRegister(instruction); | 
 |   Register left; | 
 |   if (kind != HInstruction::kNeg) { | 
 |     left = InputRegisterAt(instruction, 0); | 
 |   } | 
 |   // If this `HDataProcWithShifterOp` was created by merging a type conversion as the | 
 |   // shifter operand operation, the IR generating `right_reg` (input to the type | 
 |   // conversion) can have a different type from the current instruction's type, | 
 |   // so we manually indicate the type. | 
 |   Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type); | 
 |   Operand right_operand(0); | 
 |  | 
 |   HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); | 
 |   if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { | 
 |     right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind)); | 
 |   } else { | 
 |     right_operand = Operand(right_reg, | 
 |                             helpers::ShiftFromOpKind(op_kind), | 
 |                             instruction->GetShiftAmount()); | 
 |   } | 
 |  | 
 |   // Logical binary operations do not support extension operations in the | 
 |   // operand. Note that VIXL would still manage if it was passed by generating | 
 |   // the extension as a separate instruction. | 
 |   // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`. | 
 |   DCHECK(!right_operand.IsExtendedRegister() || | 
 |          (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor && | 
 |           kind != HInstruction::kNeg)); | 
 |   switch (kind) { | 
 |     case HInstruction::kAdd: | 
 |       __ Add(out, left, right_operand); | 
 |       break; | 
 |     case HInstruction::kAnd: | 
 |       __ And(out, left, right_operand); | 
 |       break; | 
 |     case HInstruction::kNeg: | 
 |       DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero()); | 
 |       __ Neg(out, right_operand); | 
 |       break; | 
 |     case HInstruction::kOr: | 
 |       __ Orr(out, left, right_operand); | 
 |       break; | 
 |     case HInstruction::kSub: | 
 |       __ Sub(out, left, right_operand); | 
 |       break; | 
 |     case HInstruction::kXor: | 
 |       __ Eor(out, left, right_operand); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected operation kind: " << kind; | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction)); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { | 
 |   __ Add(OutputRegister(instruction), | 
 |          InputRegisterAt(instruction, 0), | 
 |          Operand(InputOperandAt(instruction, 1))); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |  | 
 |   HIntConstant* shift = instruction->GetShift()->AsIntConstant(); | 
 |  | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   // For byte case we don't need to shift the index variable so we can encode the data offset into | 
 |   // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist | 
 |   // data offset constant generation out of the loop and reduce the critical path length in the | 
 |   // loop. | 
 |   locations->SetInAt(1, shift->GetValue() == 0 | 
 |                         ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant()) | 
 |                         : Location::RequiresRegister()); | 
 |   locations->SetInAt(2, Location::ConstantLocation(shift)); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex( | 
 |     HIntermediateAddressIndex* instruction) { | 
 |   Register index_reg = InputRegisterAt(instruction, 0); | 
 |   uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2)); | 
 |   uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue(); | 
 |  | 
 |   if (shift == 0) { | 
 |     __ Add(OutputRegister(instruction), index_reg, offset); | 
 |   } else { | 
 |     Register offset_reg = InputRegisterAt(instruction, 1); | 
 |     __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift)); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall); | 
 |   HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); | 
 |   if (instr->GetOpKind() == HInstruction::kSub && | 
 |       accumulator->IsConstant() && | 
 |       accumulator->AsConstant()->IsArithmeticZero()) { | 
 |     // Don't allocate register for Mneg instruction. | 
 |   } else { | 
 |     locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, | 
 |                        Location::RequiresRegister()); | 
 |   } | 
 |   locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); | 
 |   locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { | 
 |   Register res = OutputRegister(instr); | 
 |   Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); | 
 |   Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); | 
 |  | 
 |   // Avoid emitting code that could trigger Cortex A53's erratum 835769. | 
 |   // This fixup should be carried out for all multiply-accumulate instructions: | 
 |   // madd, msub, smaddl, smsubl, umaddl and umsubl. | 
 |   if (instr->GetType() == DataType::Type::kInt64 && | 
 |       codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) { | 
 |     MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler(); | 
 |     vixl::aarch64::Instruction* prev = | 
 |         masm->GetCursorAddress<vixl::aarch64::Instruction*>() - kInstructionSize; | 
 |     if (prev->IsLoadOrStore()) { | 
 |       // Make sure we emit only exactly one nop. | 
 |       ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |       __ nop(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (instr->GetOpKind() == HInstruction::kAdd) { | 
 |     Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); | 
 |     __ Madd(res, mul_left, mul_right, accumulator); | 
 |   } else { | 
 |     DCHECK(instr->GetOpKind() == HInstruction::kSub); | 
 |     HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); | 
 |     if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) { | 
 |       __ Mneg(res, mul_left, mul_right); | 
 |     } else { | 
 |       Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); | 
 |       __ Msub(res, mul_left, mul_right, accumulator); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) { | 
 |   bool object_array_get_with_read_barrier = | 
 |       kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, | 
 |                                                        object_array_get_with_read_barrier | 
 |                                                            ? LocationSummary::kCallOnSlowPath | 
 |                                                            : LocationSummary::kNoCall); | 
 |   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |     if (instruction->GetIndex()->IsConstant()) { | 
 |       // Array loads with constant index are treated as field loads. | 
 |       // We need a temporary register for the read barrier load in | 
 |       // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() | 
 |       // only if the offset is too big. | 
 |       uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); | 
 |       uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue(); | 
 |       offset += index << DataType::SizeShift(DataType::Type::kReference); | 
 |       if (offset >= kReferenceLoadMinFarOffset) { | 
 |         locations->AddTemp(FixedTempLocation()); | 
 |       } | 
 |     } else if (!instruction->GetArray()->IsIntermediateAddress()) { | 
 |       // We need a non-scratch temporary for the array data pointer in | 
 |       // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no | 
 |       // intermediate address. | 
 |       locations->AddTemp(Location::RequiresRegister()); | 
 |     } | 
 |   } | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |   if (DataType::IsFloatingPointType(instruction->GetType())) { | 
 |     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |   } else { | 
 |     // The output overlaps in the case of an object array get with | 
 |     // read barriers enabled: we do not want the move to overwrite the | 
 |     // array's location, as we need it to emit the read barrier. | 
 |     locations->SetOut( | 
 |         Location::RequiresRegister(), | 
 |         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   Register obj = InputRegisterAt(instruction, 0); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location index = locations->InAt(1); | 
 |   Location out = locations->Out(); | 
 |   uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); | 
 |   const bool maybe_compressed_char_at = mirror::kUseStringCompression && | 
 |                                         instruction->IsStringCharAt(); | 
 |   MacroAssembler* masm = GetVIXLAssembler(); | 
 |   UseScratchRegisterScope temps(masm); | 
 |  | 
 |   // The non-Baker read barrier instrumentation of object ArrayGet instructions | 
 |   // does not support the HIntermediateAddress instruction. | 
 |   DCHECK(!((type == DataType::Type::kReference) && | 
 |            instruction->GetArray()->IsIntermediateAddress() && | 
 |            kEmitCompilerReadBarrier && | 
 |            !kUseBakerReadBarrier)); | 
 |  | 
 |   if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |     // Object ArrayGet with Baker's read barrier case. | 
 |     // Note that a potential implicit null check is handled in the | 
 |     // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call. | 
 |     DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); | 
 |     if (index.IsConstant()) { | 
 |       DCHECK(!instruction->GetArray()->IsIntermediateAddress()); | 
 |       // Array load with a constant index can be treated as a field load. | 
 |       offset += Int64FromLocation(index) << DataType::SizeShift(type); | 
 |       Location maybe_temp = | 
 |           (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
 |                                                       out, | 
 |                                                       obj.W(), | 
 |                                                       offset, | 
 |                                                       maybe_temp, | 
 |                                                       /* needs_null_check= */ false, | 
 |                                                       /* use_load_acquire= */ false); | 
 |     } else { | 
 |       codegen_->GenerateArrayLoadWithBakerReadBarrier( | 
 |           instruction, out, obj.W(), offset, index, /* needs_null_check= */ false); | 
 |     } | 
 |   } else { | 
 |     // General case. | 
 |     MemOperand source = HeapOperand(obj); | 
 |     Register length; | 
 |     if (maybe_compressed_char_at) { | 
 |       uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); | 
 |       length = temps.AcquireW(); | 
 |       { | 
 |         // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |  | 
 |         if (instruction->GetArray()->IsIntermediateAddress()) { | 
 |           DCHECK_LT(count_offset, offset); | 
 |           int64_t adjusted_offset = | 
 |               static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset); | 
 |           // Note that `adjusted_offset` is negative, so this will be a LDUR. | 
 |           __ Ldr(length, MemOperand(obj.X(), adjusted_offset)); | 
 |         } else { | 
 |           __ Ldr(length, HeapOperand(obj, count_offset)); | 
 |         } | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       } | 
 |     } | 
 |     if (index.IsConstant()) { | 
 |       if (maybe_compressed_char_at) { | 
 |         vixl::aarch64::Label uncompressed_load, done; | 
 |         static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
 |                       "Expecting 0=compressed, 1=uncompressed"); | 
 |         __ Tbnz(length.W(), 0, &uncompressed_load); | 
 |         __ Ldrb(Register(OutputCPURegister(instruction)), | 
 |                 HeapOperand(obj, offset + Int64FromLocation(index))); | 
 |         __ B(&done); | 
 |         __ Bind(&uncompressed_load); | 
 |         __ Ldrh(Register(OutputCPURegister(instruction)), | 
 |                 HeapOperand(obj, offset + (Int64FromLocation(index) << 1))); | 
 |         __ Bind(&done); | 
 |       } else { | 
 |         offset += Int64FromLocation(index) << DataType::SizeShift(type); | 
 |         source = HeapOperand(obj, offset); | 
 |       } | 
 |     } else { | 
 |       Register temp = temps.AcquireSameSizeAs(obj); | 
 |       if (instruction->GetArray()->IsIntermediateAddress()) { | 
 |         // We do not need to compute the intermediate address from the array: the | 
 |         // input instruction has done it already. See the comment in | 
 |         // `TryExtractArrayAccessAddress()`. | 
 |         if (kIsDebugBuild) { | 
 |           HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); | 
 |           DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset); | 
 |         } | 
 |         temp = obj; | 
 |       } else { | 
 |         __ Add(temp, obj, offset); | 
 |       } | 
 |       if (maybe_compressed_char_at) { | 
 |         vixl::aarch64::Label uncompressed_load, done; | 
 |         static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
 |                       "Expecting 0=compressed, 1=uncompressed"); | 
 |         __ Tbnz(length.W(), 0, &uncompressed_load); | 
 |         __ Ldrb(Register(OutputCPURegister(instruction)), | 
 |                 HeapOperand(temp, XRegisterFrom(index), LSL, 0)); | 
 |         __ B(&done); | 
 |         __ Bind(&uncompressed_load); | 
 |         __ Ldrh(Register(OutputCPURegister(instruction)), | 
 |                 HeapOperand(temp, XRegisterFrom(index), LSL, 1)); | 
 |         __ Bind(&done); | 
 |       } else { | 
 |         source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type)); | 
 |       } | 
 |     } | 
 |     if (!maybe_compressed_char_at) { | 
 |       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |       codegen_->Load(type, OutputCPURegister(instruction), source); | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |     } | 
 |  | 
 |     if (type == DataType::Type::kReference) { | 
 |       static_assert( | 
 |           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |       Location obj_loc = locations->InAt(0); | 
 |       if (index.IsConstant()) { | 
 |         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset); | 
 |       } else { | 
 |         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) { | 
 |   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); | 
 |   vixl::aarch64::Register out = OutputRegister(instruction); | 
 |   { | 
 |     // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |     __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset)); | 
 |     codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |   } | 
 |   // Mask out compression flag from String's array length. | 
 |   if (mirror::kUseStringCompression && instruction->IsStringLength()) { | 
 |     __ Lsr(out.W(), out.W(), 1u); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) { | 
 |   DataType::Type value_type = instruction->GetComponentType(); | 
 |  | 
 |   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, | 
 |       may_need_runtime_call_for_type_check ? | 
 |           LocationSummary::kCallOnSlowPath : | 
 |           LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |   if (IsConstantZeroBitPattern(instruction->InputAt(2))) { | 
 |     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
 |   } else if (DataType::IsFloatingPointType(value_type)) { | 
 |     locations->SetInAt(2, Location::RequiresFpuRegister()); | 
 |   } else { | 
 |     locations->SetInAt(2, Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) { | 
 |   DataType::Type value_type = instruction->GetComponentType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
 |   bool needs_write_barrier = | 
 |       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
 |  | 
 |   Register array = InputRegisterAt(instruction, 0); | 
 |   CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2); | 
 |   CPURegister source = value; | 
 |   Location index = locations->InAt(1); | 
 |   size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value(); | 
 |   MemOperand destination = HeapOperand(array); | 
 |   MacroAssembler* masm = GetVIXLAssembler(); | 
 |  | 
 |   if (!needs_write_barrier) { | 
 |     DCHECK(!may_need_runtime_call_for_type_check); | 
 |     if (index.IsConstant()) { | 
 |       offset += Int64FromLocation(index) << DataType::SizeShift(value_type); | 
 |       destination = HeapOperand(array, offset); | 
 |     } else { | 
 |       UseScratchRegisterScope temps(masm); | 
 |       Register temp = temps.AcquireSameSizeAs(array); | 
 |       if (instruction->GetArray()->IsIntermediateAddress()) { | 
 |         // We do not need to compute the intermediate address from the array: the | 
 |         // input instruction has done it already. See the comment in | 
 |         // `TryExtractArrayAccessAddress()`. | 
 |         if (kIsDebugBuild) { | 
 |           HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); | 
 |           DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset); | 
 |         } | 
 |         temp = array; | 
 |       } else { | 
 |         __ Add(temp, array, offset); | 
 |       } | 
 |       destination = HeapOperand(temp, | 
 |                                 XRegisterFrom(index), | 
 |                                 LSL, | 
 |                                 DataType::SizeShift(value_type)); | 
 |     } | 
 |     { | 
 |       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |       codegen_->Store(value_type, value, destination); | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |     } | 
 |   } else { | 
 |     DCHECK(!instruction->GetArray()->IsIntermediateAddress()); | 
 |     vixl::aarch64::Label done; | 
 |     SlowPathCodeARM64* slow_path = nullptr; | 
 |     { | 
 |       // We use a block to end the scratch scope before the write barrier, thus | 
 |       // freeing the temporary registers so they can be used in `MarkGCCard`. | 
 |       UseScratchRegisterScope temps(masm); | 
 |       Register temp = temps.AcquireSameSizeAs(array); | 
 |       if (index.IsConstant()) { | 
 |         offset += Int64FromLocation(index) << DataType::SizeShift(value_type); | 
 |         destination = HeapOperand(array, offset); | 
 |       } else { | 
 |         destination = HeapOperand(temp, | 
 |                                   XRegisterFrom(index), | 
 |                                   LSL, | 
 |                                   DataType::SizeShift(value_type)); | 
 |       } | 
 |  | 
 |       uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |       uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |       uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |  | 
 |       if (may_need_runtime_call_for_type_check) { | 
 |         slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction); | 
 |         codegen_->AddSlowPath(slow_path); | 
 |         if (instruction->GetValueCanBeNull()) { | 
 |           vixl::aarch64::Label non_zero; | 
 |           __ Cbnz(Register(value), &non_zero); | 
 |           if (!index.IsConstant()) { | 
 |             __ Add(temp, array, offset); | 
 |           } | 
 |           { | 
 |             // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools | 
 |             // emitted. | 
 |             EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |             __ Str(wzr, destination); | 
 |             codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           } | 
 |           __ B(&done); | 
 |           __ Bind(&non_zero); | 
 |         } | 
 |  | 
 |         // Note that when Baker read barriers are enabled, the type | 
 |         // checks are performed without read barriers.  This is fine, | 
 |         // even in the case where a class object is in the from-space | 
 |         // after the flip, as a comparison involving such a type would | 
 |         // not produce a false positive; it may of course produce a | 
 |         // false negative, in which case we would take the ArraySet | 
 |         // slow path. | 
 |  | 
 |         Register temp2 = temps.AcquireSameSizeAs(array); | 
 |         // /* HeapReference<Class> */ temp = array->klass_ | 
 |         { | 
 |           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |           __ Ldr(temp, HeapOperand(array, class_offset)); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         } | 
 |         GetAssembler()->MaybeUnpoisonHeapReference(temp); | 
 |  | 
 |         // /* HeapReference<Class> */ temp = temp->component_type_ | 
 |         __ Ldr(temp, HeapOperand(temp, component_offset)); | 
 |         // /* HeapReference<Class> */ temp2 = value->klass_ | 
 |         __ Ldr(temp2, HeapOperand(Register(value), class_offset)); | 
 |         // If heap poisoning is enabled, no need to unpoison `temp` | 
 |         // nor `temp2`, as we are comparing two poisoned references. | 
 |         __ Cmp(temp, temp2); | 
 |         temps.Release(temp2); | 
 |  | 
 |         if (instruction->StaticTypeOfArrayIsObjectArray()) { | 
 |           vixl::aarch64::Label do_put; | 
 |           __ B(eq, &do_put); | 
 |           // If heap poisoning is enabled, the `temp` reference has | 
 |           // not been unpoisoned yet; unpoison it now. | 
 |           GetAssembler()->MaybeUnpoisonHeapReference(temp); | 
 |  | 
 |           // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |           __ Ldr(temp, HeapOperand(temp, super_offset)); | 
 |           // If heap poisoning is enabled, no need to unpoison | 
 |           // `temp`, as we are comparing against null below. | 
 |           __ Cbnz(temp, slow_path->GetEntryLabel()); | 
 |           __ Bind(&do_put); | 
 |         } else { | 
 |           __ B(ne, slow_path->GetEntryLabel()); | 
 |         } | 
 |       } | 
 |  | 
 |       if (kPoisonHeapReferences) { | 
 |         Register temp2 = temps.AcquireSameSizeAs(array); | 
 |           DCHECK(value.IsW()); | 
 |         __ Mov(temp2, value.W()); | 
 |         GetAssembler()->PoisonHeapReference(temp2); | 
 |         source = temp2; | 
 |       } | 
 |  | 
 |       if (!index.IsConstant()) { | 
 |         __ Add(temp, array, offset); | 
 |       } else { | 
 |         // We no longer need the `temp` here so release it as the store below may | 
 |         // need a scratch register (if the constant index makes the offset too large) | 
 |         // and the poisoned `source` could be using the other scratch register. | 
 |         temps.Release(temp); | 
 |       } | 
 |       { | 
 |         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |         __ Str(source, destination); | 
 |  | 
 |         if (!may_need_runtime_call_for_type_check) { | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull()); | 
 |  | 
 |     if (done.IsLinked()) { | 
 |       __ Bind(&done); | 
 |     } | 
 |  | 
 |     if (slow_path != nullptr) { | 
 |       __ Bind(slow_path->GetExitLabel()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) { | 
 |   RegisterSet caller_saves = RegisterSet::Empty(); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); | 
 |   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode())); | 
 |   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) { | 
 |   BoundsCheckSlowPathARM64* slow_path = | 
 |       new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1)); | 
 |   __ B(slow_path->GetEntryLabel(), hs); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (check->HasUses()) { | 
 |     locations->SetOut(Location::SameAsFirstInput()); | 
 |   } | 
 |   // Rely on the type initialization to save everything we need. | 
 |   locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) { | 
 |   // We assume the class is not null. | 
 |   SlowPathCodeARM64* slow_path = | 
 |       new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); | 
 | } | 
 |  | 
 | static bool IsFloatingPointZeroConstant(HInstruction* inst) { | 
 |   return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero())) | 
 |       || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero())); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) { | 
 |   FPRegister lhs_reg = InputFPRegisterAt(instruction, 0); | 
 |   Location rhs_loc = instruction->GetLocations()->InAt(1); | 
 |   if (rhs_loc.IsConstant()) { | 
 |     // 0.0 is the only immediate that can be encoded directly in | 
 |     // an FCMP instruction. | 
 |     // | 
 |     // Both the JLS (section 15.20.1) and the JVMS (section 6.5) | 
 |     // specify that in a floating-point comparison, positive zero | 
 |     // and negative zero are considered equal, so we can use the | 
 |     // literal 0.0 for both cases here. | 
 |     // | 
 |     // Note however that some methods (Float.equal, Float.compare, | 
 |     // Float.compareTo, Double.equal, Double.compare, | 
 |     // Double.compareTo, Math.max, Math.min, StrictMath.max, | 
 |     // StrictMath.min) consider 0.0 to be (strictly) greater than | 
 |     // -0.0. So if we ever translate calls to these methods into a | 
 |     // HCompare instruction, we must handle the -0.0 case with | 
 |     // care here. | 
 |     DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant())); | 
 |     __ Fcmp(lhs_reg, 0.0); | 
 |   } else { | 
 |     __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1)); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitCompare(HCompare* compare) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); | 
 |   DataType::Type in_type = compare->InputAt(0)->GetType(); | 
 |   switch (in_type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare)); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, | 
 |                          IsFloatingPointZeroConstant(compare->InputAt(1)) | 
 |                              ? Location::ConstantLocation(compare->InputAt(1)->AsConstant()) | 
 |                              : Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresRegister()); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for compare operation " << in_type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) { | 
 |   DataType::Type in_type = compare->InputAt(0)->GetType(); | 
 |  | 
 |   //  0 if: left == right | 
 |   //  1 if: left  > right | 
 |   // -1 if: left  < right | 
 |   switch (in_type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: { | 
 |       Register result = OutputRegister(compare); | 
 |       Register left = InputRegisterAt(compare, 0); | 
 |       Operand right = InputOperandAt(compare, 1); | 
 |       __ Cmp(left, right); | 
 |       __ Cset(result, ne);          // result == +1 if NE or 0 otherwise | 
 |       __ Cneg(result, result, lt);  // result == -1 if LT or unchanged otherwise | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       Register result = OutputRegister(compare); | 
 |       GenerateFcmp(compare); | 
 |       __ Cset(result, ne); | 
 |       __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias())); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unimplemented compare type " << in_type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::HandleCondition(HCondition* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |  | 
 |   if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { | 
 |     locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |     locations->SetInAt(1, | 
 |                        IsFloatingPointZeroConstant(instruction->InputAt(1)) | 
 |                            ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant()) | 
 |                            : Location::RequiresFpuRegister()); | 
 |   } else { | 
 |     // Integer cases. | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |     locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); | 
 |   } | 
 |  | 
 |   if (!instruction->IsEmittedAtUseSite()) { | 
 |     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) { | 
 |   if (instruction->IsEmittedAtUseSite()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Register res = RegisterFrom(locations->Out(), instruction->GetType()); | 
 |   IfCondition if_cond = instruction->GetCondition(); | 
 |  | 
 |   if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { | 
 |     GenerateFcmp(instruction); | 
 |     __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias())); | 
 |   } else { | 
 |     // Integer cases. | 
 |     Register lhs = InputRegisterAt(instruction, 0); | 
 |     Operand rhs = InputOperandAt(instruction, 1); | 
 |     __ Cmp(lhs, rhs); | 
 |     __ Cset(res, ARM64Condition(if_cond)); | 
 |   } | 
 | } | 
 |  | 
 | #define FOR_EACH_CONDITION_INSTRUCTION(M)                                                \ | 
 |   M(Equal)                                                                               \ | 
 |   M(NotEqual)                                                                            \ | 
 |   M(LessThan)                                                                            \ | 
 |   M(LessThanOrEqual)                                                                     \ | 
 |   M(GreaterThan)                                                                         \ | 
 |   M(GreaterThanOrEqual)                                                                  \ | 
 |   M(Below)                                                                               \ | 
 |   M(BelowOrEqual)                                                                        \ | 
 |   M(Above)                                                                               \ | 
 |   M(AboveOrEqual) | 
 | #define DEFINE_CONDITION_VISITORS(Name)                                                  \ | 
 | void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }         \ | 
 | void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } | 
 | FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS) | 
 | #undef DEFINE_CONDITION_VISITORS | 
 | #undef FOR_EACH_CONDITION_INSTRUCTION | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) { | 
 |   int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
 |   uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); | 
 |   DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; | 
 |  | 
 |   Register out = OutputRegister(instruction); | 
 |   Register dividend = InputRegisterAt(instruction, 0); | 
 |  | 
 |   if (abs_imm == 2) { | 
 |     int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte; | 
 |     __ Add(out, dividend, Operand(dividend, LSR, bits - 1)); | 
 |   } else { | 
 |     UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |     Register temp = temps.AcquireSameSizeAs(out); | 
 |     __ Add(temp, dividend, abs_imm - 1); | 
 |     __ Cmp(dividend, 0); | 
 |     __ Csel(out, temp, dividend, lt); | 
 |   } | 
 |  | 
 |   int ctz_imm = CTZ(abs_imm); | 
 |   if (imm > 0) { | 
 |     __ Asr(out, out, ctz_imm); | 
 |   } else { | 
 |     __ Neg(out, Operand(out, ASR, ctz_imm)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location second = locations->InAt(1); | 
 |   DCHECK(second.IsConstant()); | 
 |  | 
 |   Register out = OutputRegister(instruction); | 
 |   Register dividend = InputRegisterAt(instruction, 0); | 
 |   int64_t imm = Int64FromConstant(second.GetConstant()); | 
 |  | 
 |   DataType::Type type = instruction->GetResultType(); | 
 |   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); | 
 |  | 
 |   int64_t magic; | 
 |   int shift; | 
 |   CalculateMagicAndShiftForDivRem( | 
 |       imm, /* is_long= */ type == DataType::Type::kInt64, &magic, &shift); | 
 |  | 
 |   UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |   Register temp = temps.AcquireSameSizeAs(out); | 
 |  | 
 |   // temp = get_high(dividend * magic) | 
 |   __ Mov(temp, magic); | 
 |   if (type == DataType::Type::kInt64) { | 
 |     __ Smulh(temp, dividend, temp); | 
 |   } else { | 
 |     __ Smull(temp.X(), dividend, temp); | 
 |     __ Lsr(temp.X(), temp.X(), 32); | 
 |   } | 
 |  | 
 |   if (imm > 0 && magic < 0) { | 
 |     __ Add(temp, temp, dividend); | 
 |   } else if (imm < 0 && magic > 0) { | 
 |     __ Sub(temp, temp, dividend); | 
 |   } | 
 |  | 
 |   if (shift != 0) { | 
 |     __ Asr(temp, temp, shift); | 
 |   } | 
 |  | 
 |   if (instruction->IsDiv()) { | 
 |     __ Sub(out, temp, Operand(temp, ASR, type == DataType::Type::kInt64 ? 63 : 31)); | 
 |   } else { | 
 |     __ Sub(temp, temp, Operand(temp, ASR, type == DataType::Type::kInt64 ? 63 : 31)); | 
 |     // TODO: Strength reduction for msub. | 
 |     Register temp_imm = temps.AcquireSameSizeAs(out); | 
 |     __ Mov(temp_imm, imm); | 
 |     __ Msub(out, temp, temp_imm, dividend); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) { | 
 |   int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
 |  | 
 |   if (imm == 0) { | 
 |     // Do not generate anything. DivZeroCheck would prevent any code to be executed. | 
 |     return; | 
 |   } | 
 |  | 
 |   if (IsPowerOfTwo(AbsOrMin(imm))) { | 
 |     GenerateIntDivForPower2Denom(instruction); | 
 |   } else { | 
 |     // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier. | 
 |     DCHECK(imm < -2 || imm > 2) << imm; | 
 |     GenerateDivRemWithAnyConstant(instruction); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) { | 
 |   DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) | 
 |        << instruction->GetResultType(); | 
 |  | 
 |   if (instruction->GetLocations()->InAt(1).IsConstant()) { | 
 |     GenerateIntDivForConstDenom(instruction); | 
 |   } else { | 
 |     Register out = OutputRegister(instruction); | 
 |     Register dividend = InputRegisterAt(instruction, 0); | 
 |     Register divisor = InputRegisterAt(instruction, 1); | 
 |     __ Sdiv(out, dividend, divisor); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitDiv(HDiv* div) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall); | 
 |   switch (div->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected div type " << div->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) { | 
 |   DataType::Type type = div->GetResultType(); | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       GenerateIntDiv(div); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1)); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected div type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
 |   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
 |   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
 |   SlowPathCodeARM64* slow_path = | 
 |       new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   Location value = instruction->GetLocations()->InAt(0); | 
 |  | 
 |   DataType::Type type = instruction->GetType(); | 
 |  | 
 |   if (!DataType::IsIntegralType(type)) { | 
 |     LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; | 
 |     UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (value.IsConstant()) { | 
 |     int64_t divisor = Int64FromLocation(value); | 
 |     if (divisor == 0) { | 
 |       __ B(slow_path->GetEntryLabel()); | 
 |     } else { | 
 |       // A division by a non-null constant is valid. We don't need to perform | 
 |       // any check, so simply fall through. | 
 |     } | 
 |   } else { | 
 |     __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitDoubleConstant( | 
 |     HDoubleConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitExit(HExit* exit) { | 
 |   exit->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) { | 
 |   if (successor->IsExitBlock()) { | 
 |     DCHECK(got->GetPrevious()->AlwaysThrows()); | 
 |     return;  // no code needed | 
 |   } | 
 |  | 
 |   HBasicBlock* block = got->GetBlock(); | 
 |   HInstruction* previous = got->GetPrevious(); | 
 |   HLoopInformation* info = block->GetLoopInformation(); | 
 |  | 
 |   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { | 
 |     if (codegen_->GetCompilerOptions().CountHotnessInCompiledCode()) { | 
 |       UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |       Register temp1 = temps.AcquireX(); | 
 |       Register temp2 = temps.AcquireX(); | 
 |       __ Ldr(temp1, MemOperand(sp, 0)); | 
 |       __ Ldrh(temp2, MemOperand(temp1, ArtMethod::HotnessCountOffset().Int32Value())); | 
 |       __ Add(temp2, temp2, 1); | 
 |       __ Strh(temp2, MemOperand(temp1, ArtMethod::HotnessCountOffset().Int32Value())); | 
 |     } | 
 |     GenerateSuspendCheck(info->GetSuspendCheck(), successor); | 
 |     return; | 
 |   } | 
 |   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { | 
 |     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); | 
 |     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 |   } | 
 |   if (!codegen_->GoesToNextBlock(block, successor)) { | 
 |     __ B(codegen_->GetLabelOf(successor)); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitGoto(HGoto* got) { | 
 |   got->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) { | 
 |   HandleGoto(got, got->GetSuccessor()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) { | 
 |   try_boundary->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) { | 
 |   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); | 
 |   if (!successor->IsExitBlock()) { | 
 |     HandleGoto(try_boundary, successor); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction, | 
 |                                                           size_t condition_input_index, | 
 |                                                           vixl::aarch64::Label* true_target, | 
 |                                                           vixl::aarch64::Label* false_target) { | 
 |   HInstruction* cond = instruction->InputAt(condition_input_index); | 
 |  | 
 |   if (true_target == nullptr && false_target == nullptr) { | 
 |     // Nothing to do. The code always falls through. | 
 |     return; | 
 |   } else if (cond->IsIntConstant()) { | 
 |     // Constant condition, statically compared against "true" (integer value 1). | 
 |     if (cond->AsIntConstant()->IsTrue()) { | 
 |       if (true_target != nullptr) { | 
 |         __ B(true_target); | 
 |       } | 
 |     } else { | 
 |       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); | 
 |       if (false_target != nullptr) { | 
 |         __ B(false_target); | 
 |       } | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // The following code generates these patterns: | 
 |   //  (1) true_target == nullptr && false_target != nullptr | 
 |   //        - opposite condition true => branch to false_target | 
 |   //  (2) true_target != nullptr && false_target == nullptr | 
 |   //        - condition true => branch to true_target | 
 |   //  (3) true_target != nullptr && false_target != nullptr | 
 |   //        - condition true => branch to true_target | 
 |   //        - branch to false_target | 
 |   if (IsBooleanValueOrMaterializedCondition(cond)) { | 
 |     // The condition instruction has been materialized, compare the output to 0. | 
 |     Location cond_val = instruction->GetLocations()->InAt(condition_input_index); | 
 |     DCHECK(cond_val.IsRegister()); | 
 |       if (true_target == nullptr) { | 
 |       __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target); | 
 |     } else { | 
 |       __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target); | 
 |     } | 
 |   } else { | 
 |     // The condition instruction has not been materialized, use its inputs as | 
 |     // the comparison and its condition as the branch condition. | 
 |     HCondition* condition = cond->AsCondition(); | 
 |  | 
 |     DataType::Type type = condition->InputAt(0)->GetType(); | 
 |     if (DataType::IsFloatingPointType(type)) { | 
 |       GenerateFcmp(condition); | 
 |       if (true_target == nullptr) { | 
 |         IfCondition opposite_condition = condition->GetOppositeCondition(); | 
 |         __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target); | 
 |       } else { | 
 |         __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target); | 
 |       } | 
 |     } else { | 
 |       // Integer cases. | 
 |       Register lhs = InputRegisterAt(condition, 0); | 
 |       Operand rhs = InputOperandAt(condition, 1); | 
 |  | 
 |       Condition arm64_cond; | 
 |       vixl::aarch64::Label* non_fallthrough_target; | 
 |       if (true_target == nullptr) { | 
 |         arm64_cond = ARM64Condition(condition->GetOppositeCondition()); | 
 |         non_fallthrough_target = false_target; | 
 |       } else { | 
 |         arm64_cond = ARM64Condition(condition->GetCondition()); | 
 |         non_fallthrough_target = true_target; | 
 |       } | 
 |  | 
 |       if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) && | 
 |           rhs.IsImmediate() && (rhs.GetImmediate() == 0)) { | 
 |         switch (arm64_cond) { | 
 |           case eq: | 
 |             __ Cbz(lhs, non_fallthrough_target); | 
 |             break; | 
 |           case ne: | 
 |             __ Cbnz(lhs, non_fallthrough_target); | 
 |             break; | 
 |           case lt: | 
 |             // Test the sign bit and branch accordingly. | 
 |             __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); | 
 |             break; | 
 |           case ge: | 
 |             // Test the sign bit and branch accordingly. | 
 |             __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); | 
 |             break; | 
 |           default: | 
 |             // Without the `static_cast` the compiler throws an error for | 
 |             // `-Werror=sign-promo`. | 
 |             LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond); | 
 |         } | 
 |       } else { | 
 |         __ Cmp(lhs, rhs); | 
 |         __ B(arm64_cond, non_fallthrough_target); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If neither branch falls through (case 3), the conditional branch to `true_target` | 
 |   // was already emitted (case 2) and we need to emit a jump to `false_target`. | 
 |   if (true_target != nullptr && false_target != nullptr) { | 
 |     __ B(false_target); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitIf(HIf* if_instr) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); | 
 |   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) { | 
 |   HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); | 
 |   HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); | 
 |   vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor); | 
 |   if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) { | 
 |     true_target = nullptr; | 
 |   } | 
 |   vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor); | 
 |   if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) { | 
 |     false_target = nullptr; | 
 |   } | 
 |   GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) | 
 |       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   RegisterSet caller_saves = RegisterSet::Empty(); | 
 |   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); | 
 |   locations->SetCustomSlowPathCallerSaves(caller_saves); | 
 |   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) { | 
 |   SlowPathCodeARM64* slow_path = | 
 |       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize); | 
 |   GenerateTestAndBranch(deoptimize, | 
 |                         /* condition_input_index= */ 0, | 
 |                         slow_path->GetEntryLabel(), | 
 |                         /* false_target= */ nullptr); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) | 
 |       LocationSummary(flag, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
 |   __ Ldr(OutputRegister(flag), | 
 |          MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); | 
 | } | 
 |  | 
 | static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) { | 
 |   return condition->IsCondition() && | 
 |          DataType::IsFloatingPointType(condition->InputAt(0)->GetType()); | 
 | } | 
 |  | 
 | static inline Condition GetConditionForSelect(HCondition* condition) { | 
 |   IfCondition cond = condition->AsCondition()->GetCondition(); | 
 |   return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias()) | 
 |                                                      : ARM64Condition(cond); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitSelect(HSelect* select) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); | 
 |   if (DataType::IsFloatingPointType(select->GetType())) { | 
 |     locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |     locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |   } else { | 
 |     HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); | 
 |     HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); | 
 |     bool is_true_value_constant = cst_true_value != nullptr; | 
 |     bool is_false_value_constant = cst_false_value != nullptr; | 
 |     // Ask VIXL whether we should synthesize constants in registers. | 
 |     // We give an arbitrary register to VIXL when dealing with non-constant inputs. | 
 |     Operand true_op = is_true_value_constant ? | 
 |         Operand(Int64FromConstant(cst_true_value)) : Operand(x1); | 
 |     Operand false_op = is_false_value_constant ? | 
 |         Operand(Int64FromConstant(cst_false_value)) : Operand(x2); | 
 |     bool true_value_in_register = false; | 
 |     bool false_value_in_register = false; | 
 |     MacroAssembler::GetCselSynthesisInformation( | 
 |         x0, true_op, false_op, &true_value_in_register, &false_value_in_register); | 
 |     true_value_in_register |= !is_true_value_constant; | 
 |     false_value_in_register |= !is_false_value_constant; | 
 |  | 
 |     locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister() | 
 |                                                  : Location::ConstantLocation(cst_true_value)); | 
 |     locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister() | 
 |                                                   : Location::ConstantLocation(cst_false_value)); | 
 |     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |   } | 
 |  | 
 |   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { | 
 |     locations->SetInAt(2, Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) { | 
 |   HInstruction* cond = select->GetCondition(); | 
 |   Condition csel_cond; | 
 |  | 
 |   if (IsBooleanValueOrMaterializedCondition(cond)) { | 
 |     if (cond->IsCondition() && cond->GetNext() == select) { | 
 |       // Use the condition flags set by the previous instruction. | 
 |       csel_cond = GetConditionForSelect(cond->AsCondition()); | 
 |     } else { | 
 |       __ Cmp(InputRegisterAt(select, 2), 0); | 
 |       csel_cond = ne; | 
 |     } | 
 |   } else if (IsConditionOnFloatingPointValues(cond)) { | 
 |     GenerateFcmp(cond); | 
 |     csel_cond = GetConditionForSelect(cond->AsCondition()); | 
 |   } else { | 
 |     __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1)); | 
 |     csel_cond = GetConditionForSelect(cond->AsCondition()); | 
 |   } | 
 |  | 
 |   if (DataType::IsFloatingPointType(select->GetType())) { | 
 |     __ Fcsel(OutputFPRegister(select), | 
 |              InputFPRegisterAt(select, 1), | 
 |              InputFPRegisterAt(select, 0), | 
 |              csel_cond); | 
 |   } else { | 
 |     __ Csel(OutputRegister(select), | 
 |             InputOperandAt(select, 1), | 
 |             InputOperandAt(select, 0), | 
 |             csel_cond); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) { | 
 |   new (GetGraph()->GetAllocator()) LocationSummary(info); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) { | 
 |   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateNop() { | 
 |   __ Nop(); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
 |   HandleFieldSet(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
 | } | 
 |  | 
 | // Temp is used for read barrier. | 
 | static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { | 
 |   if (kEmitCompilerReadBarrier && | 
 |       (kUseBakerReadBarrier || | 
 |           type_check_kind == TypeCheckKind::kAbstractClassCheck || | 
 |           type_check_kind == TypeCheckKind::kClassHierarchyCheck || | 
 |           type_check_kind == TypeCheckKind::kArrayObjectCheck)) { | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Interface case has 3 temps, one for holding the number of interfaces, one for the current | 
 | // interface pointer, one for loading the current interface. | 
 | // The other checks have one temp for loading the object's class. | 
 | static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { | 
 |   if (type_check_kind == TypeCheckKind::kInterfaceCheck) { | 
 |     return 3; | 
 |   } | 
 |   return 1 + NumberOfInstanceOfTemps(type_check_kind); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) { | 
 |   LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   bool baker_read_barrier_slow_path = false; | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: | 
 |     case TypeCheckKind::kAbstractClassCheck: | 
 |     case TypeCheckKind::kClassHierarchyCheck: | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); | 
 |       call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; | 
 |       baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; | 
 |       break; | 
 |     } | 
 |     case TypeCheckKind::kArrayCheck: | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: | 
 |       call_kind = LocationSummary::kCallOnSlowPath; | 
 |       break; | 
 |     case TypeCheckKind::kBitstringCheck: | 
 |       break; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); | 
 |   if (baker_read_barrier_slow_path) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (type_check_kind == TypeCheckKind::kBitstringCheck) { | 
 |     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
 |     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
 |     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); | 
 |   } else { | 
 |     locations->SetInAt(1, Location::RequiresRegister()); | 
 |   } | 
 |   // The "out" register is used as a temporary, so it overlaps with the inputs. | 
 |   // Note that TypeCheckSlowPathARM64 uses this register too. | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
 |   // Add temps if necessary for read barriers. | 
 |   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = InputRegisterAt(instruction, 0); | 
 |   Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) | 
 |       ? Register() | 
 |       : InputRegisterAt(instruction, 1); | 
 |   Location out_loc = locations->Out(); | 
 |   Register out = OutputRegister(instruction); | 
 |   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); | 
 |   DCHECK_LE(num_temps, 1u); | 
 |   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
 |  | 
 |   vixl::aarch64::Label done, zero; | 
 |   SlowPathCodeARM64* slow_path = nullptr; | 
 |  | 
 |   // Return 0 if `obj` is null. | 
 |   // Avoid null check if we know `obj` is not null. | 
 |   if (instruction->MustDoNullCheck()) { | 
 |     __ Cbz(obj, &zero); | 
 |   } | 
 |  | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       __ Cmp(out, cls); | 
 |       __ Cset(out, eq); | 
 |       if (zero.IsLinked()) { | 
 |         __ B(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kAbstractClassCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       // If the class is abstract, we eagerly fetch the super class of the | 
 |       // object to avoid doing a comparison we know will fail. | 
 |       vixl::aarch64::Label loop, success; | 
 |       __ Bind(&loop); | 
 |       // /* HeapReference<Class> */ out = out->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        out_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp_loc, | 
 |                                        read_barrier_option); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ Cbz(out, &done); | 
 |       __ Cmp(out, cls); | 
 |       __ B(ne, &loop); | 
 |       __ Mov(out, 1); | 
 |       if (zero.IsLinked()) { | 
 |         __ B(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kClassHierarchyCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       // Walk over the class hierarchy to find a match. | 
 |       vixl::aarch64::Label loop, success; | 
 |       __ Bind(&loop); | 
 |       __ Cmp(out, cls); | 
 |       __ B(eq, &success); | 
 |       // /* HeapReference<Class> */ out = out->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        out_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp_loc, | 
 |                                        read_barrier_option); | 
 |       __ Cbnz(out, &loop); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ B(&done); | 
 |       __ Bind(&success); | 
 |       __ Mov(out, 1); | 
 |       if (zero.IsLinked()) { | 
 |         __ B(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       // Do an exact check. | 
 |       vixl::aarch64::Label exact_check; | 
 |       __ Cmp(out, cls); | 
 |       __ B(eq, &exact_check); | 
 |       // Otherwise, we need to check that the object's class is a non-primitive array. | 
 |       // /* HeapReference<Class> */ out = out->component_type_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        out_loc, | 
 |                                        component_offset, | 
 |                                        maybe_temp_loc, | 
 |                                        read_barrier_option); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ Cbz(out, &done); | 
 |       __ Ldrh(out, HeapOperand(out, primitive_offset)); | 
 |       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |       __ Cbnz(out, &zero); | 
 |       __ Bind(&exact_check); | 
 |       __ Mov(out, 1); | 
 |       __ B(&done); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayCheck: { | 
 |       // No read barrier since the slow path will retry upon failure. | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       __ Cmp(out, cls); | 
 |       DCHECK(locations->OnlyCallsOnSlowPath()); | 
 |       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( | 
 |           instruction, /* is_fatal= */ false); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ B(ne, slow_path->GetEntryLabel()); | 
 |       __ Mov(out, 1); | 
 |       if (zero.IsLinked()) { | 
 |         __ B(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: { | 
 |       // Note that we indeed only call on slow path, but we always go | 
 |       // into the slow path for the unresolved and interface check | 
 |       // cases. | 
 |       // | 
 |       // We cannot directly call the InstanceofNonTrivial runtime | 
 |       // entry point without resorting to a type checking slow path | 
 |       // here (i.e. by calling InvokeRuntime directly), as it would | 
 |       // require to assign fixed registers for the inputs of this | 
 |       // HInstanceOf instruction (following the runtime calling | 
 |       // convention), which might be cluttered by the potential first | 
 |       // read barrier emission at the beginning of this method. | 
 |       // | 
 |       // TODO: Introduce a new runtime entry point taking the object | 
 |       // to test (instead of its class) as argument, and let it deal | 
 |       // with the read barrier issues. This will let us refactor this | 
 |       // case of the `switch` code as it was previously (with a direct | 
 |       // call to the runtime not using a type checking slow path). | 
 |       // This should also be beneficial for the other cases above. | 
 |       DCHECK(locations->OnlyCallsOnSlowPath()); | 
 |       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( | 
 |           instruction, /* is_fatal= */ false); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ B(slow_path->GetEntryLabel()); | 
 |       if (zero.IsLinked()) { | 
 |         __ B(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kBitstringCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       GenerateBitstringTypeCheckCompare(instruction, out); | 
 |       __ Cset(out, eq); | 
 |       if (zero.IsLinked()) { | 
 |         __ B(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (zero.IsLinked()) { | 
 |     __ Bind(&zero); | 
 |     __ Mov(out, 0); | 
 |   } | 
 |  | 
 |   if (done.IsLinked()) { | 
 |     __ Bind(&done); | 
 |   } | 
 |  | 
 |   if (slow_path != nullptr) { | 
 |     __ Bind(slow_path->GetExitLabel()); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (type_check_kind == TypeCheckKind::kBitstringCheck) { | 
 |     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
 |     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
 |     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); | 
 |   } else { | 
 |     locations->SetInAt(1, Location::RequiresRegister()); | 
 |   } | 
 |   // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64. | 
 |   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = InputRegisterAt(instruction, 0); | 
 |   Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) | 
 |       ? Register() | 
 |       : InputRegisterAt(instruction, 1); | 
 |   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); | 
 |   DCHECK_GE(num_temps, 1u); | 
 |   DCHECK_LE(num_temps, 3u); | 
 |   Location temp_loc = locations->GetTemp(0); | 
 |   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); | 
 |   Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); | 
 |   Register temp = WRegisterFrom(temp_loc); | 
 |   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
 |   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); | 
 |   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); | 
 |   const uint32_t object_array_data_offset = | 
 |       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); | 
 |  | 
 |   bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); | 
 |   SlowPathCodeARM64* type_check_slow_path = | 
 |       new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( | 
 |           instruction, is_type_check_slow_path_fatal); | 
 |   codegen_->AddSlowPath(type_check_slow_path); | 
 |  | 
 |   vixl::aarch64::Label done; | 
 |   // Avoid null check if we know obj is not null. | 
 |   if (instruction->MustDoNullCheck()) { | 
 |     __ Cbz(obj, &done); | 
 |   } | 
 |  | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: | 
 |     case TypeCheckKind::kArrayCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       __ Cmp(temp, cls); | 
 |       // Jump to slow path for throwing the exception or doing a | 
 |       // more involved array check. | 
 |       __ B(ne, type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kAbstractClassCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       // If the class is abstract, we eagerly fetch the super class of the | 
 |       // object to avoid doing a comparison we know will fail. | 
 |       vixl::aarch64::Label loop; | 
 |       __ Bind(&loop); | 
 |       // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        temp_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp2_loc, | 
 |                                        kWithoutReadBarrier); | 
 |  | 
 |       // If the class reference currently in `temp` is null, jump to the slow path to throw the | 
 |       // exception. | 
 |       __ Cbz(temp, type_check_slow_path->GetEntryLabel()); | 
 |       // Otherwise, compare classes. | 
 |       __ Cmp(temp, cls); | 
 |       __ B(ne, &loop); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kClassHierarchyCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       // Walk over the class hierarchy to find a match. | 
 |       vixl::aarch64::Label loop; | 
 |       __ Bind(&loop); | 
 |       __ Cmp(temp, cls); | 
 |       __ B(eq, &done); | 
 |  | 
 |       // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        temp_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp2_loc, | 
 |                                        kWithoutReadBarrier); | 
 |  | 
 |       // If the class reference currently in `temp` is not null, jump | 
 |       // back at the beginning of the loop. | 
 |       __ Cbnz(temp, &loop); | 
 |       // Otherwise, jump to the slow path to throw the exception. | 
 |       __ B(type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       // Do an exact check. | 
 |       __ Cmp(temp, cls); | 
 |       __ B(eq, &done); | 
 |  | 
 |       // Otherwise, we need to check that the object's class is a non-primitive array. | 
 |       // /* HeapReference<Class> */ temp = temp->component_type_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        temp_loc, | 
 |                                        component_offset, | 
 |                                        maybe_temp2_loc, | 
 |                                        kWithoutReadBarrier); | 
 |  | 
 |       // If the component type is null, jump to the slow path to throw the exception. | 
 |       __ Cbz(temp, type_check_slow_path->GetEntryLabel()); | 
 |       // Otherwise, the object is indeed an array. Further check that this component type is not a | 
 |       // primitive type. | 
 |       __ Ldrh(temp, HeapOperand(temp, primitive_offset)); | 
 |       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |       __ Cbnz(temp, type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |       // We always go into the type check slow path for the unresolved check cases. | 
 |       // | 
 |       // We cannot directly call the CheckCast runtime entry point | 
 |       // without resorting to a type checking slow path here (i.e. by | 
 |       // calling InvokeRuntime directly), as it would require to | 
 |       // assign fixed registers for the inputs of this HInstanceOf | 
 |       // instruction (following the runtime calling convention), which | 
 |       // might be cluttered by the potential first read barrier | 
 |       // emission at the beginning of this method. | 
 |       __ B(type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     case TypeCheckKind::kInterfaceCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       // /* HeapReference<Class> */ temp = temp->iftable_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         temp_loc, | 
 |                                         iftable_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       // Iftable is never null. | 
 |       __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset)); | 
 |       // Loop through the iftable and check if any class matches. | 
 |       vixl::aarch64::Label start_loop; | 
 |       __ Bind(&start_loop); | 
 |       __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel()); | 
 |       __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset)); | 
 |       GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc)); | 
 |       // Go to next interface. | 
 |       __ Add(temp, temp, 2 * kHeapReferenceSize); | 
 |       __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2); | 
 |       // Compare the classes and continue the loop if they do not match. | 
 |       __ Cmp(cls, WRegisterFrom(maybe_temp3_loc)); | 
 |       __ B(ne, &start_loop); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kBitstringCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       GenerateBitstringTypeCheckCompare(instruction, temp); | 
 |       __ B(ne, type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |   } | 
 |   __ Bind(&done); | 
 |  | 
 |   __ Bind(type_check_slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
 |   // The trampoline uses the same calling convention as dex calling conventions, | 
 |   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain | 
 |   // the method_idx. | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
 |   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) { | 
 |   InvokeDexCallingConventionVisitorARM64 calling_convention_visitor; | 
 |   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) { | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) { | 
 |   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   Register temp = XRegisterFrom(locations->GetTemp(0)); | 
 |   Location receiver = locations->InAt(0); | 
 |   Offset class_offset = mirror::Object::ClassOffset(); | 
 |   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); | 
 |  | 
 |   // The register ip1 is required to be used for the hidden argument in | 
 |   // art_quick_imt_conflict_trampoline, so prevent VIXL from using it. | 
 |   MacroAssembler* masm = GetVIXLAssembler(); | 
 |   UseScratchRegisterScope scratch_scope(masm); | 
 |   scratch_scope.Exclude(ip1); | 
 |   __ Mov(ip1, invoke->GetDexMethodIndex()); | 
 |  | 
 |   // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |   if (receiver.IsStackSlot()) { | 
 |     __ Ldr(temp.W(), StackOperandFrom(receiver)); | 
 |     { | 
 |       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |       // /* HeapReference<Class> */ temp = temp->klass_ | 
 |       __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset)); | 
 |       codegen_->MaybeRecordImplicitNullCheck(invoke); | 
 |     } | 
 |   } else { | 
 |     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |     // /* HeapReference<Class> */ temp = receiver->klass_ | 
 |     __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset)); | 
 |     codegen_->MaybeRecordImplicitNullCheck(invoke); | 
 |   } | 
 |  | 
 |   // Instead of simply (possibly) unpoisoning `temp` here, we should | 
 |   // emit a read barrier for the previous class reference load. | 
 |   // However this is not required in practice, as this is an | 
 |   // intermediate/temporary reference and because the current | 
 |   // concurrent copying collector keeps the from-space memory | 
 |   // intact/accessible until the end of the marking phase (the | 
 |   // concurrent copying collector may not in the future). | 
 |   GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); | 
 |   __ Ldr(temp, | 
 |       MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); | 
 |   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
 |       invoke->GetImtIndex(), kArm64PointerSize)); | 
 |   // temp = temp->GetImtEntryAt(method_offset); | 
 |   __ Ldr(temp, MemOperand(temp, method_offset)); | 
 |   // lr = temp->GetEntryPoint(); | 
 |   __ Ldr(lr, MemOperand(temp, entry_point.Int32Value())); | 
 |  | 
 |   { | 
 |     // Ensure the pc position is recorded immediately after the `blr` instruction. | 
 |     ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |  | 
 |     // lr(); | 
 |     __ blr(lr); | 
 |     DCHECK(!codegen_->IsLeafMethod()); | 
 |     codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
 |   } | 
 |  | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
 |   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); | 
 |   if (intrinsic.TryDispatch(invoke)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
 |   // Explicit clinit checks triggered by static invokes must have been pruned by | 
 |   // art::PrepareForRegisterAllocation. | 
 |   DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
 |  | 
 |   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); | 
 |   if (intrinsic.TryDispatch(invoke)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) { | 
 |   if (invoke->GetLocations()->Intrinsified()) { | 
 |     IntrinsicCodeGeneratorARM64 intrinsic(codegen); | 
 |     intrinsic.Dispatch(invoke); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch( | 
 |       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, | 
 |       ArtMethod* method ATTRIBUTE_UNUSED) { | 
 |   // On ARM64 we support all dispatch types. | 
 |   return desired_dispatch_info; | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateStaticOrDirectCall( | 
 |     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { | 
 |   // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention. | 
 |   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp. | 
 |   switch (invoke->GetMethodLoadKind()) { | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { | 
 |       uint32_t offset = | 
 |           GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); | 
 |       // temp = thread->string_init_entrypoint | 
 |       __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset)); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: | 
 |       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: { | 
 |       DCHECK(GetCompilerOptions().IsBootImage()); | 
 |       // Add ADRP with its PC-relative method patch. | 
 |       vixl::aarch64::Label* adrp_label = NewBootImageMethodPatch(invoke->GetTargetMethod()); | 
 |       EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); | 
 |       // Add ADD with its PC-relative method patch. | 
 |       vixl::aarch64::Label* add_label = | 
 |           NewBootImageMethodPatch(invoke->GetTargetMethod(), adrp_label); | 
 |       EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp)); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: { | 
 |       // Add ADRP with its PC-relative .data.bimg.rel.ro patch. | 
 |       uint32_t boot_image_offset = GetBootImageOffset(invoke); | 
 |       vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset); | 
 |       EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); | 
 |       // Add LDR with its PC-relative .data.bimg.rel.ro patch. | 
 |       vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label); | 
 |       // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load. | 
 |       EmitLdrOffsetPlaceholder(ldr_label, WRegisterFrom(temp), XRegisterFrom(temp)); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: { | 
 |       // Add ADRP with its PC-relative .bss entry patch. | 
 |       MethodReference target_method(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()); | 
 |       vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(target_method); | 
 |       EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); | 
 |       // Add LDR with its PC-relative .bss entry patch. | 
 |       vixl::aarch64::Label* ldr_label = | 
 |           NewMethodBssEntryPatch(target_method, adrp_label); | 
 |       EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp)); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress: | 
 |       // Load method address from literal pool. | 
 |       __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress())); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: { | 
 |       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); | 
 |       return;  // No code pointer retrieval; the runtime performs the call directly. | 
 |     } | 
 |   } | 
 |  | 
 |   switch (invoke->GetCodePtrLocation()) { | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: | 
 |       { | 
 |         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. | 
 |         ExactAssemblyScope eas(GetVIXLAssembler(), | 
 |                                kInstructionSize, | 
 |                                CodeBufferCheckScope::kExactSize); | 
 |         __ bl(&frame_entry_label_); | 
 |         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
 |       } | 
 |       break; | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: | 
 |       // LR = callee_method->entry_point_from_quick_compiled_code_; | 
 |       __ Ldr(lr, MemOperand( | 
 |           XRegisterFrom(callee_method), | 
 |           ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize).Int32Value())); | 
 |       { | 
 |         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. | 
 |         ExactAssemblyScope eas(GetVIXLAssembler(), | 
 |                                kInstructionSize, | 
 |                                CodeBufferCheckScope::kExactSize); | 
 |         // lr() | 
 |         __ blr(lr); | 
 |         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
 |       } | 
 |       break; | 
 |   } | 
 |  | 
 |   DCHECK(!IsLeafMethod()); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateVirtualCall( | 
 |     HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) { | 
 |   // Use the calling convention instead of the location of the receiver, as | 
 |   // intrinsics may have put the receiver in a different register. In the intrinsics | 
 |   // slow path, the arguments have been moved to the right place, so here we are | 
 |   // guaranteed that the receiver is the first register of the calling convention. | 
 |   InvokeDexCallingConvention calling_convention; | 
 |   Register receiver = calling_convention.GetRegisterAt(0); | 
 |   Register temp = XRegisterFrom(temp_in); | 
 |   size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
 |       invoke->GetVTableIndex(), kArm64PointerSize).SizeValue(); | 
 |   Offset class_offset = mirror::Object::ClassOffset(); | 
 |   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); | 
 |  | 
 |   DCHECK(receiver.IsRegister()); | 
 |  | 
 |   { | 
 |     // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. | 
 |     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |     // /* HeapReference<Class> */ temp = receiver->klass_ | 
 |     __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset)); | 
 |     MaybeRecordImplicitNullCheck(invoke); | 
 |   } | 
 |   // Instead of simply (possibly) unpoisoning `temp` here, we should | 
 |   // emit a read barrier for the previous class reference load. | 
 |   // intermediate/temporary reference and because the current | 
 |   // concurrent copying collector keeps the from-space memory | 
 |   // intact/accessible until the end of the marking phase (the | 
 |   // concurrent copying collector may not in the future). | 
 |   GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); | 
 |   // temp = temp->GetMethodAt(method_offset); | 
 |   __ Ldr(temp, MemOperand(temp, method_offset)); | 
 |   // lr = temp->GetEntryPoint(); | 
 |   __ Ldr(lr, MemOperand(temp, entry_point.SizeValue())); | 
 |   { | 
 |     // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. | 
 |     ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); | 
 |     // lr(); | 
 |     __ blr(lr); | 
 |     RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { | 
 |   codegen_->GenerateInvokePolymorphicCall(invoke); | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) { | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) { | 
 |   codegen_->GenerateInvokeCustomCall(invoke); | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch( | 
 |     uint32_t intrinsic_data, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch( | 
 |       /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_intrinsic_patches_); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch( | 
 |     uint32_t boot_image_offset, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch( | 
 |       /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_method_patches_); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch( | 
 |     MethodReference target_method, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch( | 
 |       target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch( | 
 |     MethodReference target_method, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch( | 
 |       target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch( | 
 |     const DexFile& dex_file, | 
 |     dex::TypeIndex type_index, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch( | 
 |     const DexFile& dex_file, | 
 |     dex::TypeIndex type_index, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &type_bss_entry_patches_); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch( | 
 |     const DexFile& dex_file, | 
 |     dex::StringIndex string_index, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch( | 
 |       &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_); | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch( | 
 |     const DexFile& dex_file, | 
 |     dex::StringIndex string_index, | 
 |     vixl::aarch64::Label* adrp_label) { | 
 |   return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) { | 
 |   DCHECK(!__ AllowMacroInstructions());  // In ExactAssemblyScope. | 
 |   if (Runtime::Current()->UseJitCompilation()) { | 
 |     auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data); | 
 |     vixl::aarch64::Label* slow_path_entry = &it->second.label; | 
 |     __ cbnz(mr, slow_path_entry); | 
 |   } else { | 
 |     baker_read_barrier_patches_.emplace_back(custom_data); | 
 |     vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label; | 
 |     __ bind(cbnz_label); | 
 |     __ cbnz(mr, static_cast<int64_t>(0));  // Placeholder, patched at link-time. | 
 |   } | 
 | } | 
 |  | 
 | vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch( | 
 |     const DexFile* dex_file, | 
 |     uint32_t offset_or_index, | 
 |     vixl::aarch64::Label* adrp_label, | 
 |     ArenaDeque<PcRelativePatchInfo>* patches) { | 
 |   // Add a patch entry and return the label. | 
 |   patches->emplace_back(dex_file, offset_or_index); | 
 |   PcRelativePatchInfo* info = &patches->back(); | 
 |   vixl::aarch64::Label* label = &info->label; | 
 |   // If adrp_label is null, this is the ADRP patch and needs to point to its own label. | 
 |   info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label; | 
 |   return label; | 
 | } | 
 |  | 
 | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral( | 
 |     uint64_t address) { | 
 |   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address)); | 
 | } | 
 |  | 
 | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral( | 
 |     const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) { | 
 |   ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); | 
 |   return jit_string_patches_.GetOrCreate( | 
 |       StringReference(&dex_file, string_index), | 
 |       [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); }); | 
 | } | 
 |  | 
 | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral( | 
 |     const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) { | 
 |   ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); | 
 |   return jit_class_patches_.GetOrCreate( | 
 |       TypeReference(&dex_file, type_index), | 
 |       [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); }); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label, | 
 |                                              vixl::aarch64::Register reg) { | 
 |   DCHECK(reg.IsX()); | 
 |   SingleEmissionCheckScope guard(GetVIXLAssembler()); | 
 |   __ Bind(fixup_label); | 
 |   __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label, | 
 |                                             vixl::aarch64::Register out, | 
 |                                             vixl::aarch64::Register base) { | 
 |   DCHECK(out.IsX()); | 
 |   DCHECK(base.IsX()); | 
 |   SingleEmissionCheckScope guard(GetVIXLAssembler()); | 
 |   __ Bind(fixup_label); | 
 |   __ add(out, base, Operand(/* offset placeholder */ 0)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label, | 
 |                                                   vixl::aarch64::Register out, | 
 |                                                   vixl::aarch64::Register base) { | 
 |   DCHECK(base.IsX()); | 
 |   SingleEmissionCheckScope guard(GetVIXLAssembler()); | 
 |   __ Bind(fixup_label); | 
 |   __ ldr(out, MemOperand(base, /* offset placeholder */ 0)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg, | 
 |                                               uint32_t boot_image_reference) { | 
 |   if (GetCompilerOptions().IsBootImage()) { | 
 |     // Add ADRP with its PC-relative type patch. | 
 |     vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference); | 
 |     EmitAdrpPlaceholder(adrp_label, reg.X()); | 
 |     // Add ADD with its PC-relative type patch. | 
 |     vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label); | 
 |     EmitAddPlaceholder(add_label, reg.X(), reg.X()); | 
 |   } else if (GetCompilerOptions().GetCompilePic()) { | 
 |     // Add ADRP with its PC-relative .data.bimg.rel.ro patch. | 
 |     vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_reference); | 
 |     EmitAdrpPlaceholder(adrp_label, reg.X()); | 
 |     // Add LDR with its PC-relative .data.bimg.rel.ro patch. | 
 |     vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_reference, adrp_label); | 
 |     EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X()); | 
 |   } else { | 
 |     DCHECK(Runtime::Current()->UseJitCompilation()); | 
 |     gc::Heap* heap = Runtime::Current()->GetHeap(); | 
 |     DCHECK(!heap->GetBootImageSpaces().empty()); | 
 |     const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; | 
 |     __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address))); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke, | 
 |                                                       uint32_t boot_image_offset) { | 
 |   DCHECK(invoke->IsStatic()); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   Register argument = calling_convention.GetRegisterAt(0); | 
 |   if (GetCompilerOptions().IsBootImage()) { | 
 |     DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference); | 
 |     // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. | 
 |     MethodReference target_method = invoke->GetTargetMethod(); | 
 |     dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; | 
 |     // Add ADRP with its PC-relative type patch. | 
 |     vixl::aarch64::Label* adrp_label = NewBootImageTypePatch(*target_method.dex_file, type_idx); | 
 |     EmitAdrpPlaceholder(adrp_label, argument.X()); | 
 |     // Add ADD with its PC-relative type patch. | 
 |     vixl::aarch64::Label* add_label = | 
 |         NewBootImageTypePatch(*target_method.dex_file, type_idx, adrp_label); | 
 |     EmitAddPlaceholder(add_label, argument.X(), argument.X()); | 
 |   } else { | 
 |     LoadBootImageAddress(argument, boot_image_offset); | 
 |   } | 
 |   InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); | 
 | } | 
 |  | 
 | template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> | 
 | inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches( | 
 |     const ArenaDeque<PcRelativePatchInfo>& infos, | 
 |     ArenaVector<linker::LinkerPatch>* linker_patches) { | 
 |   for (const PcRelativePatchInfo& info : infos) { | 
 |     linker_patches->push_back(Factory(info.label.GetLocation(), | 
 |                                       info.target_dex_file, | 
 |                                       info.pc_insn_label->GetLocation(), | 
 |                                       info.offset_or_index)); | 
 |   } | 
 | } | 
 |  | 
 | template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)> | 
 | linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, | 
 |                                      const DexFile* target_dex_file, | 
 |                                      uint32_t pc_insn_offset, | 
 |                                      uint32_t boot_image_offset) { | 
 |   DCHECK(target_dex_file == nullptr);  // Unused for these patches, should be null. | 
 |   return Factory(literal_offset, pc_insn_offset, boot_image_offset); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { | 
 |   DCHECK(linker_patches->empty()); | 
 |   size_t size = | 
 |       boot_image_method_patches_.size() + | 
 |       method_bss_entry_patches_.size() + | 
 |       boot_image_type_patches_.size() + | 
 |       type_bss_entry_patches_.size() + | 
 |       boot_image_string_patches_.size() + | 
 |       string_bss_entry_patches_.size() + | 
 |       boot_image_intrinsic_patches_.size() + | 
 |       baker_read_barrier_patches_.size(); | 
 |   linker_patches->reserve(size); | 
 |   if (GetCompilerOptions().IsBootImage()) { | 
 |     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( | 
 |         boot_image_method_patches_, linker_patches); | 
 |     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( | 
 |         boot_image_type_patches_, linker_patches); | 
 |     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( | 
 |         boot_image_string_patches_, linker_patches); | 
 |     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>( | 
 |         boot_image_intrinsic_patches_, linker_patches); | 
 |   } else { | 
 |     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>( | 
 |         boot_image_method_patches_, linker_patches); | 
 |     DCHECK(boot_image_type_patches_.empty()); | 
 |     DCHECK(boot_image_string_patches_.empty()); | 
 |     DCHECK(boot_image_intrinsic_patches_.empty()); | 
 |   } | 
 |   EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( | 
 |       method_bss_entry_patches_, linker_patches); | 
 |   EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( | 
 |       type_bss_entry_patches_, linker_patches); | 
 |   EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( | 
 |       string_bss_entry_patches_, linker_patches); | 
 |   for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { | 
 |     linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch( | 
 |         info.label.GetLocation(), info.custom_data)); | 
 |   } | 
 |   DCHECK_EQ(size, linker_patches->size()); | 
 | } | 
 |  | 
 | bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const { | 
 |   return patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch || | 
 |          patch.GetType() == linker::LinkerPatch::Type::kCallRelative; | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch, | 
 |                                        /*out*/ ArenaVector<uint8_t>* code, | 
 |                                        /*out*/ std::string* debug_name) { | 
 |   Arm64Assembler assembler(GetGraph()->GetAllocator()); | 
 |   switch (patch.GetType()) { | 
 |     case linker::LinkerPatch::Type::kCallRelative: { | 
 |       // The thunk just uses the entry point in the ArtMethod. This works even for calls | 
 |       // to the generic JNI and interpreter trampolines. | 
 |       Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset( | 
 |           kArm64PointerSize).Int32Value()); | 
 |       assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0)); | 
 |       if (GetCompilerOptions().GenerateAnyDebugInfo()) { | 
 |         *debug_name = "MethodCallThunk"; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case linker::LinkerPatch::Type::kBakerReadBarrierBranch: { | 
 |       DCHECK_EQ(patch.GetBakerCustomValue2(), 0u); | 
 |       CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected patch type " << patch.GetType(); | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   // Ensure we emit the literal pool if any. | 
 |   assembler.FinalizeCode(); | 
 |   code->resize(assembler.CodeSize()); | 
 |   MemoryRegion code_region(code->data(), code->size()); | 
 |   assembler.FinalizeInstructions(code_region); | 
 | } | 
 |  | 
 | vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) { | 
 |   return uint32_literals_.GetOrCreate( | 
 |       value, | 
 |       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); }); | 
 | } | 
 |  | 
 | vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) { | 
 |   return uint64_literals_.GetOrCreate( | 
 |       value, | 
 |       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); }); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
 |   // Explicit clinit checks triggered by static invokes must have been pruned by | 
 |   // art::PrepareForRegisterAllocation. | 
 |   DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
 |  | 
 |   if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
 |     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 |     return; | 
 |   } | 
 |  | 
 |   { | 
 |     // Ensure that between the BLR (emitted by GenerateStaticOrDirectCall) and RecordPcInfo there | 
 |     // are no pools emitted. | 
 |     EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); | 
 |     LocationSummary* locations = invoke->GetLocations(); | 
 |     codegen_->GenerateStaticOrDirectCall( | 
 |         invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); | 
 |   } | 
 |  | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
 |   if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
 |     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 |     return; | 
 |   } | 
 |  | 
 |   { | 
 |     // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there | 
 |     // are no pools emitted. | 
 |     EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); | 
 |     codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); | 
 |     DCHECK(!codegen_->IsLeafMethod()); | 
 |   } | 
 |  | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind( | 
 |     HLoadClass::LoadKind desired_class_load_kind) { | 
 |   switch (desired_class_load_kind) { | 
 |     case HLoadClass::LoadKind::kInvalid: | 
 |       LOG(FATAL) << "UNREACHABLE"; | 
 |       UNREACHABLE(); | 
 |     case HLoadClass::LoadKind::kReferrersClass: | 
 |       break; | 
 |     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadClass::LoadKind::kBootImageRelRo: | 
 |     case HLoadClass::LoadKind::kBssEntry: | 
 |       DCHECK(!Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadClass::LoadKind::kJitBootImageAddress: | 
 |     case HLoadClass::LoadKind::kJitTableAddress: | 
 |       DCHECK(Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadClass::LoadKind::kRuntimeCall: | 
 |       break; | 
 |   } | 
 |   return desired_class_load_kind; | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) { | 
 |   HLoadClass::LoadKind load_kind = cls->GetLoadKind(); | 
 |   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( | 
 |         cls, | 
 |         LocationFrom(calling_convention.GetRegisterAt(0)), | 
 |         LocationFrom(vixl::aarch64::x0)); | 
 |     DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0)); | 
 |     return; | 
 |   } | 
 |   DCHECK(!cls->NeedsAccessCheck()); | 
 |  | 
 |   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); | 
 |   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) | 
 |       ? LocationSummary::kCallOnSlowPath | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); | 
 |   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |  | 
 |   if (load_kind == HLoadClass::LoadKind::kReferrersClass) { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 |   if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { | 
 |     if (!kUseReadBarrier || kUseBakerReadBarrier) { | 
 |       // Rely on the type resolution or initialization and marking to save everything we need. | 
 |       locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); | 
 |     } else { | 
 |       // For non-Baker read barrier we have a temp-clobbering call. | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not | 
 | // move. | 
 | void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { | 
 |   HLoadClass::LoadKind load_kind = cls->GetLoadKind(); | 
 |   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { | 
 |     codegen_->GenerateLoadClassRuntimeCall(cls); | 
 |     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 |     return; | 
 |   } | 
 |   DCHECK(!cls->NeedsAccessCheck()); | 
 |  | 
 |   Location out_loc = cls->GetLocations()->Out(); | 
 |   Register out = OutputRegister(cls); | 
 |  | 
 |   const ReadBarrierOption read_barrier_option = cls->IsInBootImage() | 
 |       ? kWithoutReadBarrier | 
 |       : kCompilerReadBarrierOption; | 
 |   bool generate_null_check = false; | 
 |   switch (load_kind) { | 
 |     case HLoadClass::LoadKind::kReferrersClass: { | 
 |       DCHECK(!cls->CanCallRuntime()); | 
 |       DCHECK(!cls->MustGenerateClinitCheck()); | 
 |       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ | 
 |       Register current_method = InputRegisterAt(cls, 0); | 
 |       codegen_->GenerateGcRootFieldLoad(cls, | 
 |                                         out_loc, | 
 |                                         current_method, | 
 |                                         ArtMethod::DeclaringClassOffset().Int32Value(), | 
 |                                         /* fixup_label= */ nullptr, | 
 |                                         read_barrier_option); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { | 
 |       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
 |       // Add ADRP with its PC-relative type patch. | 
 |       const DexFile& dex_file = cls->GetDexFile(); | 
 |       dex::TypeIndex type_index = cls->GetTypeIndex(); | 
 |       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index); | 
 |       codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); | 
 |       // Add ADD with its PC-relative type patch. | 
 |       vixl::aarch64::Label* add_label = | 
 |           codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label); | 
 |       codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kBootImageRelRo: { | 
 |       DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
 |       uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls); | 
 |       // Add ADRP with its PC-relative .data.bimg.rel.ro patch. | 
 |       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset); | 
 |       codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); | 
 |       // Add LDR with its PC-relative .data.bimg.rel.ro patch. | 
 |       vixl::aarch64::Label* ldr_label = | 
 |           codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label); | 
 |       codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X()); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kBssEntry: { | 
 |       // Add ADRP with its PC-relative Class .bss entry patch. | 
 |       const DexFile& dex_file = cls->GetDexFile(); | 
 |       dex::TypeIndex type_index = cls->GetTypeIndex(); | 
 |       vixl::aarch64::Register temp = XRegisterFrom(out_loc); | 
 |       vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(dex_file, type_index); | 
 |       codegen_->EmitAdrpPlaceholder(adrp_label, temp); | 
 |       // Add LDR with its PC-relative Class .bss entry patch. | 
 |       vixl::aarch64::Label* ldr_label = | 
 |           codegen_->NewBssEntryTypePatch(dex_file, type_index, adrp_label); | 
 |       // /* GcRoot<mirror::Class> */ out = *(base_address + offset)  /* PC-relative */ | 
 |       codegen_->GenerateGcRootFieldLoad(cls, | 
 |                                         out_loc, | 
 |                                         temp, | 
 |                                         /* offset placeholder */ 0u, | 
 |                                         ldr_label, | 
 |                                         read_barrier_option); | 
 |       generate_null_check = true; | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kJitBootImageAddress: { | 
 |       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
 |       uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get()); | 
 |       DCHECK_NE(address, 0u); | 
 |       __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kJitTableAddress: { | 
 |       __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), | 
 |                                                        cls->GetTypeIndex(), | 
 |                                                        cls->GetClass())); | 
 |       codegen_->GenerateGcRootFieldLoad(cls, | 
 |                                         out_loc, | 
 |                                         out.X(), | 
 |                                         /* offset= */ 0, | 
 |                                         /* fixup_label= */ nullptr, | 
 |                                         read_barrier_option); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kRuntimeCall: | 
 |     case HLoadClass::LoadKind::kInvalid: | 
 |       LOG(FATAL) << "UNREACHABLE"; | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   bool do_clinit = cls->MustGenerateClinitCheck(); | 
 |   if (generate_null_check || do_clinit) { | 
 |     DCHECK(cls->CanCallRuntime()); | 
 |     SlowPathCodeARM64* slow_path = | 
 |         new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     if (generate_null_check) { | 
 |       __ Cbz(out, slow_path->GetEntryLabel()); | 
 |     } | 
 |     if (cls->MustGenerateClinitCheck()) { | 
 |       GenerateClassInitializationCheck(slow_path, out); | 
 |     } else { | 
 |       __ Bind(slow_path->GetExitLabel()); | 
 |     } | 
 |     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   Location location = LocationFrom(calling_convention.GetRegisterAt(0)); | 
 |   CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { | 
 |   codegen_->GenerateLoadMethodHandleRuntimeCall(load); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) { | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   Location location = LocationFrom(calling_convention.GetRegisterAt(0)); | 
 |   CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) { | 
 |   codegen_->GenerateLoadMethodTypeRuntimeCall(load); | 
 | } | 
 |  | 
 | static MemOperand GetExceptionTlsAddress() { | 
 |   return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitLoadException(HLoadException* load) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) { | 
 |   __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitClearException(HClearException* clear) { | 
 |   new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { | 
 |   __ Str(wzr, GetExceptionTlsAddress()); | 
 | } | 
 |  | 
 | HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind( | 
 |     HLoadString::LoadKind desired_string_load_kind) { | 
 |   switch (desired_string_load_kind) { | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadString::LoadKind::kBootImageRelRo: | 
 |     case HLoadString::LoadKind::kBssEntry: | 
 |       DCHECK(!Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadString::LoadKind::kJitBootImageAddress: | 
 |     case HLoadString::LoadKind::kJitTableAddress: | 
 |       DCHECK(Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadString::LoadKind::kRuntimeCall: | 
 |       break; | 
 |   } | 
 |   return desired_string_load_kind; | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitLoadString(HLoadString* load) { | 
 |   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); | 
 |   if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     locations->SetOut(calling_convention.GetReturnLocation(load->GetType())); | 
 |   } else { | 
 |     locations->SetOut(Location::RequiresRegister()); | 
 |     if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) { | 
 |       if (!kUseReadBarrier || kUseBakerReadBarrier) { | 
 |         // Rely on the pResolveString and marking to save everything we need. | 
 |         locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); | 
 |       } else { | 
 |         // For non-Baker read barrier we have a temp-clobbering call. | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not | 
 | // move. | 
 | void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { | 
 |   Register out = OutputRegister(load); | 
 |   Location out_loc = load->GetLocations()->Out(); | 
 |  | 
 |   switch (load->GetLoadKind()) { | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { | 
 |       DCHECK(codegen_->GetCompilerOptions().IsBootImage()); | 
 |       // Add ADRP with its PC-relative String patch. | 
 |       const DexFile& dex_file = load->GetDexFile(); | 
 |       const dex::StringIndex string_index = load->GetStringIndex(); | 
 |       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index); | 
 |       codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); | 
 |       // Add ADD with its PC-relative String patch. | 
 |       vixl::aarch64::Label* add_label = | 
 |           codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label); | 
 |       codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kBootImageRelRo: { | 
 |       DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
 |       // Add ADRP with its PC-relative .data.bimg.rel.ro patch. | 
 |       uint32_t boot_image_offset = codegen_->GetBootImageOffset(load); | 
 |       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset); | 
 |       codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); | 
 |       // Add LDR with its PC-relative .data.bimg.rel.ro patch. | 
 |       vixl::aarch64::Label* ldr_label = | 
 |           codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label); | 
 |       codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X()); | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kBssEntry: { | 
 |       // Add ADRP with its PC-relative String .bss entry patch. | 
 |       const DexFile& dex_file = load->GetDexFile(); | 
 |       const dex::StringIndex string_index = load->GetStringIndex(); | 
 |       DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
 |       Register temp = XRegisterFrom(out_loc); | 
 |       vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index); | 
 |       codegen_->EmitAdrpPlaceholder(adrp_label, temp); | 
 |       // Add LDR with its PC-relative String .bss entry patch. | 
 |       vixl::aarch64::Label* ldr_label = | 
 |           codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label); | 
 |       // /* GcRoot<mirror::String> */ out = *(base_address + offset)  /* PC-relative */ | 
 |       codegen_->GenerateGcRootFieldLoad(load, | 
 |                                         out_loc, | 
 |                                         temp, | 
 |                                         /* offset placeholder */ 0u, | 
 |                                         ldr_label, | 
 |                                         kCompilerReadBarrierOption); | 
 |       SlowPathCodeARM64* slow_path = | 
 |           new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ Cbz(out.X(), slow_path->GetEntryLabel()); | 
 |       __ Bind(slow_path->GetExitLabel()); | 
 |       codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kJitBootImageAddress: { | 
 |       uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get()); | 
 |       DCHECK_NE(address, 0u); | 
 |       __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kJitTableAddress: { | 
 |       __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), | 
 |                                                         load->GetStringIndex(), | 
 |                                                         load->GetString())); | 
 |       codegen_->GenerateGcRootFieldLoad(load, | 
 |                                         out_loc, | 
 |                                         out.X(), | 
 |                                         /* offset= */ 0, | 
 |                                         /* fixup_label= */ nullptr, | 
 |                                         kCompilerReadBarrierOption); | 
 |       return; | 
 |     } | 
 |     default: | 
 |       break; | 
 |   } | 
 |  | 
 |   // TODO: Re-add the compiler code to do string dex cache lookup again. | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode()); | 
 |   __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_); | 
 |   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) { | 
 |   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, | 
 |                           instruction, | 
 |                           instruction->GetDexPc()); | 
 |   if (instruction->IsEnter()) { | 
 |     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); | 
 |   } else { | 
 |     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); | 
 |   } | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitMul(HMul* mul) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); | 
 |   switch (mul->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) { | 
 |   switch (mul->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1)); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitNeg(HNeg* neg) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); | 
 |   switch (neg->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg)); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) { | 
 |   switch (neg->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       __ Neg(OutputRegister(neg), InputOperandAt(neg, 0)); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0)); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetOut(LocationFrom(x0)); | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) { | 
 |   // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference. | 
 |   QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); | 
 |   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) { | 
 |   codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitNot(HNot* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) { | 
 |   switch (instruction->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0)); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) { | 
 |   __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1)); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) { | 
 |   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) { | 
 |   if (CanMoveNullCheckToUser(instruction)) { | 
 |     return; | 
 |   } | 
 |   { | 
 |     // Ensure that between load and RecordPcInfo there are no pools emitted. | 
 |     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); | 
 |     Location obj = instruction->GetLocations()->InAt(0); | 
 |     __ Ldr(wzr, HeapOperandFrom(obj, Offset(0))); | 
 |     RecordPcInfo(instruction, instruction->GetDexPc()); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) { | 
 |   SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj = locations->InAt(0); | 
 |  | 
 |   __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) { | 
 |   codegen_->GenerateNullCheck(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitOr(HOr* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) { | 
 |   if (instruction->GetNext()->IsSuspendCheck() && | 
 |       instruction->GetBlock()->GetLoopInformation() != nullptr) { | 
 |     HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); | 
 |     // The back edge will generate the suspend check. | 
 |     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); | 
 |   } | 
 |  | 
 |   codegen_->GetMoveResolver()->EmitNativeCode(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); | 
 |   if (location.IsStackSlot()) { | 
 |     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
 |   } else if (location.IsDoubleStackSlot()) { | 
 |     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
 |   } | 
 |   locations->SetOut(location); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitParameterValue( | 
 |     HParameterValue* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, the parameter is already at its location. | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetOut(LocationFrom(kArtMethodRegister)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitCurrentMethod( | 
 |     HCurrentMethod* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, the method is already at its location. | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitPhi(HPhi* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { | 
 |     locations->SetInAt(i, Location::Any()); | 
 |   } | 
 |   locations->SetOut(Location::Any()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitRem(HRem* rem) { | 
 |   DataType::Type type = rem->GetResultType(); | 
 |   LocationSummary::CallKind call_kind = | 
 |       DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly | 
 |                                            : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       InvokeRuntimeCallingConvention calling_convention; | 
 |       locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); | 
 |       locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); | 
 |       locations->SetOut(calling_convention.GetReturnLocation(type)); | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected rem type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) { | 
 |   int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
 |   uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); | 
 |   DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; | 
 |  | 
 |   Register out = OutputRegister(instruction); | 
 |   Register dividend = InputRegisterAt(instruction, 0); | 
 |  | 
 |   if (abs_imm == 2) { | 
 |     __ Cmp(dividend, 0); | 
 |     __ And(out, dividend, 1); | 
 |     __ Csneg(out, out, out, ge); | 
 |   } else { | 
 |     UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |     Register temp = temps.AcquireSameSizeAs(out); | 
 |  | 
 |     __ Negs(temp, dividend); | 
 |     __ And(out, dividend, abs_imm - 1); | 
 |     __ And(temp, temp, abs_imm - 1); | 
 |     __ Csneg(out, out, temp, mi); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) { | 
 |   int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); | 
 |  | 
 |   if (imm == 0) { | 
 |     // Do not generate anything. | 
 |     // DivZeroCheck would prevent any code to be executed. | 
 |     return; | 
 |   } | 
 |  | 
 |   if (IsPowerOfTwo(AbsOrMin(imm))) { | 
 |     // Cases imm == -1 or imm == 1 are handled in constant folding by | 
 |     // InstructionWithAbsorbingInputSimplifier. | 
 |     // If the cases have survided till code generation they are handled in | 
 |     // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0). | 
 |     // The correct code is generated for them, just more instructions. | 
 |     GenerateIntRemForPower2Denom(instruction); | 
 |   } else { | 
 |     DCHECK(imm < -2 || imm > 2) << imm; | 
 |     GenerateDivRemWithAnyConstant(instruction); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) { | 
 |   DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) | 
 |          << instruction->GetResultType(); | 
 |  | 
 |   if (instruction->GetLocations()->InAt(1).IsConstant()) { | 
 |     GenerateIntRemForConstDenom(instruction); | 
 |   } else { | 
 |     Register out = OutputRegister(instruction); | 
 |     Register dividend = InputRegisterAt(instruction, 0); | 
 |     Register divisor = InputRegisterAt(instruction, 1); | 
 |     UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |     Register temp = temps.AcquireSameSizeAs(out); | 
 |     __ Sdiv(temp, dividend, divisor); | 
 |     __ Msub(out, temp, divisor, dividend); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) { | 
 |   DataType::Type type = rem->GetResultType(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: { | 
 |       GenerateIntRem(rem); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       QuickEntrypointEnum entrypoint = | 
 |           (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod; | 
 |       codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc()); | 
 |       if (type == DataType::Type::kFloat32) { | 
 |         CheckEntrypointTypes<kQuickFmodf, float, float, float>(); | 
 |       } else { | 
 |         CheckEntrypointTypes<kQuickFmod, double, double, double>(); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected rem type " << type; | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitMin(HMin* min) { | 
 |   HandleBinaryOp(min); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitMin(HMin* min) { | 
 |   HandleBinaryOp(min); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitMax(HMax* max) { | 
 |   HandleBinaryOp(max); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitMax(HMax* max) { | 
 |   HandleBinaryOp(max); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitAbs(HAbs* abs) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); | 
 |   switch (abs->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) { | 
 |   switch (abs->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: { | 
 |       Register in_reg = InputRegisterAt(abs, 0); | 
 |       Register out_reg = OutputRegister(abs); | 
 |       __ Cmp(in_reg, Operand(0)); | 
 |       __ Cneg(out_reg, in_reg, lt); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       FPRegister in_reg = InputFPRegisterAt(abs, 0); | 
 |       FPRegister out_reg = OutputFPRegister(abs); | 
 |       __ Fabs(out_reg, in_reg); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) { | 
 |   constructor_fence->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitConstructorFence( | 
 |     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { | 
 |   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
 |   memory_barrier->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
 |   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitReturn(HReturn* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   DataType::Type return_type = instruction->InputAt(0)->GetType(); | 
 |   locations->SetInAt(0, ARM64ReturnLocation(return_type)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) { | 
 |   codegen_->GenerateFrameExit(); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) { | 
 |   instruction->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) { | 
 |   codegen_->GenerateFrameExit(); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitRor(HRor* ror) { | 
 |   HandleBinaryOp(ror); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) { | 
 |   HandleBinaryOp(ror); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitShl(HShl* shl) { | 
 |   HandleShift(shl); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) { | 
 |   HandleShift(shl); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitShr(HShr* shr) { | 
 |   HandleShift(shr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) { | 
 |   HandleShift(shr); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitSub(HSub* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
 |   HandleFieldSet(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet( | 
 |     HUnresolvedInstanceFieldGet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet( | 
 |     HUnresolvedInstanceFieldGet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet( | 
 |     HUnresolvedInstanceFieldSet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet( | 
 |     HUnresolvedInstanceFieldSet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet( | 
 |     HUnresolvedStaticFieldGet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet( | 
 |     HUnresolvedStaticFieldGet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet( | 
 |     HUnresolvedStaticFieldSet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet( | 
 |     HUnresolvedStaticFieldSet* instruction) { | 
 |   FieldAccessCallingConventionARM64 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnSlowPath); | 
 |   // In suspend check slow path, usually there are no caller-save registers at all. | 
 |   // If SIMD instructions are present, however, we force spilling all live SIMD | 
 |   // registers in full width (since the runtime only saves/restores lower part). | 
 |   locations->SetCustomSlowPathCallerSaves( | 
 |       GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) { | 
 |   HBasicBlock* block = instruction->GetBlock(); | 
 |   if (block->GetLoopInformation() != nullptr) { | 
 |     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); | 
 |     // The back edge will generate the suspend check. | 
 |     return; | 
 |   } | 
 |   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { | 
 |     // The goto will generate the suspend check. | 
 |     return; | 
 |   } | 
 |   GenerateSuspendCheck(instruction, nullptr); | 
 |   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitThrow(HThrow* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) { | 
 |   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall); | 
 |   DataType::Type input_type = conversion->GetInputType(); | 
 |   DataType::Type result_type = conversion->GetResultType(); | 
 |   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) | 
 |       << input_type << " -> " << result_type; | 
 |   if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || | 
 |       (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { | 
 |     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; | 
 |   } | 
 |  | 
 |   if (DataType::IsFloatingPointType(input_type)) { | 
 |     locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |   } else { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 |  | 
 |   if (DataType::IsFloatingPointType(result_type)) { | 
 |     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |   } else { | 
 |     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) { | 
 |   DataType::Type result_type = conversion->GetResultType(); | 
 |   DataType::Type input_type = conversion->GetInputType(); | 
 |  | 
 |   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) | 
 |       << input_type << " -> " << result_type; | 
 |  | 
 |   if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { | 
 |     int result_size = DataType::Size(result_type); | 
 |     int input_size = DataType::Size(input_type); | 
 |     int min_size = std::min(result_size, input_size); | 
 |     Register output = OutputRegister(conversion); | 
 |     Register source = InputRegisterAt(conversion, 0); | 
 |     if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) { | 
 |       // 'int' values are used directly as W registers, discarding the top | 
 |       // bits, so we don't need to sign-extend and can just perform a move. | 
 |       // We do not pass the `kDiscardForSameWReg` argument to force clearing the | 
 |       // top 32 bits of the target register. We theoretically could leave those | 
 |       // bits unchanged, but we would have to make sure that no code uses a | 
 |       // 32bit input value as a 64bit value assuming that the top 32 bits are | 
 |       // zero. | 
 |       __ Mov(output.W(), source.W()); | 
 |     } else if (DataType::IsUnsignedType(result_type) || | 
 |                (DataType::IsUnsignedType(input_type) && input_size < result_size)) { | 
 |       __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte); | 
 |     } else { | 
 |       __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte); | 
 |     } | 
 |   } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { | 
 |     __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0)); | 
 |   } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { | 
 |     CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); | 
 |     __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0)); | 
 |   } else if (DataType::IsFloatingPointType(result_type) && | 
 |              DataType::IsFloatingPointType(input_type)) { | 
 |     __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0)); | 
 |   } else { | 
 |     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type | 
 |                 << " to " << result_type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitUShr(HUShr* ushr) { | 
 |   HandleShift(ushr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) { | 
 |   HandleShift(ushr); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitXor(HXor* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, this should be removed during prepare for register allocator. | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, this should be removed during prepare for register allocator. | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | // Simple implementation of packed switch - generate cascaded compare/jumps. | 
 | void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
 |   int32_t lower_bound = switch_instr->GetStartValue(); | 
 |   uint32_t num_entries = switch_instr->GetNumEntries(); | 
 |   Register value_reg = InputRegisterAt(switch_instr, 0); | 
 |   HBasicBlock* default_block = switch_instr->GetDefaultBlock(); | 
 |  | 
 |   // Roughly set 16 as max average assemblies generated per HIR in a graph. | 
 |   static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize; | 
 |   // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to | 
 |   // make sure we don't emit it if the target may run out of range. | 
 |   // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR | 
 |   // ranges and emit the tables only as required. | 
 |   static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction; | 
 |  | 
 |   if (num_entries <= kPackedSwitchCompareJumpThreshold || | 
 |       // Current instruction id is an upper bound of the number of HIRs in the graph. | 
 |       GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) { | 
 |     // Create a series of compare/jumps. | 
 |     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); | 
 |     Register temp = temps.AcquireW(); | 
 |     __ Subs(temp, value_reg, Operand(lower_bound)); | 
 |  | 
 |     const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); | 
 |     // Jump to successors[0] if value == lower_bound. | 
 |     __ B(eq, codegen_->GetLabelOf(successors[0])); | 
 |     int32_t last_index = 0; | 
 |     for (; num_entries - last_index > 2; last_index += 2) { | 
 |       __ Subs(temp, temp, Operand(2)); | 
 |       // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. | 
 |       __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); | 
 |       // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. | 
 |       __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); | 
 |     } | 
 |     if (num_entries - last_index == 2) { | 
 |       // The last missing case_value. | 
 |       __ Cmp(temp, Operand(1)); | 
 |       __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); | 
 |     } | 
 |  | 
 |     // And the default for any other value. | 
 |     if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { | 
 |       __ B(codegen_->GetLabelOf(default_block)); | 
 |     } | 
 |   } else { | 
 |     JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr); | 
 |  | 
 |     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); | 
 |  | 
 |     // Below instructions should use at most one blocked register. Since there are two blocked | 
 |     // registers, we are free to block one. | 
 |     Register temp_w = temps.AcquireW(); | 
 |     Register index; | 
 |     // Remove the bias. | 
 |     if (lower_bound != 0) { | 
 |       index = temp_w; | 
 |       __ Sub(index, value_reg, Operand(lower_bound)); | 
 |     } else { | 
 |       index = value_reg; | 
 |     } | 
 |  | 
 |     // Jump to default block if index is out of the range. | 
 |     __ Cmp(index, Operand(num_entries)); | 
 |     __ B(hs, codegen_->GetLabelOf(default_block)); | 
 |  | 
 |     // In current VIXL implementation, it won't require any blocked registers to encode the | 
 |     // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the | 
 |     // register pressure. | 
 |     Register table_base = temps.AcquireX(); | 
 |     // Load jump offset from the table. | 
 |     __ Adr(table_base, jump_table->GetTableStartLabel()); | 
 |     Register jump_offset = temp_w; | 
 |     __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2)); | 
 |  | 
 |     // Jump to target block by branching to table_base(pc related) + offset. | 
 |     Register target_address = table_base; | 
 |     __ Add(target_address, table_base, Operand(jump_offset, SXTW)); | 
 |     __ Br(target_address); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister( | 
 |     HInstruction* instruction, | 
 |     Location out, | 
 |     uint32_t offset, | 
 |     Location maybe_temp, | 
 |     ReadBarrierOption read_barrier_option) { | 
 |   DataType::Type type = DataType::Type::kReference; | 
 |   Register out_reg = RegisterFrom(out, type); | 
 |   if (read_barrier_option == kWithReadBarrier) { | 
 |     CHECK(kEmitCompilerReadBarrier); | 
 |     if (kUseBakerReadBarrier) { | 
 |       // Load with fast path based Baker's read barrier. | 
 |       // /* HeapReference<Object> */ out = *(out + offset) | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
 |                                                       out, | 
 |                                                       out_reg, | 
 |                                                       offset, | 
 |                                                       maybe_temp, | 
 |                                                       /* needs_null_check= */ false, | 
 |                                                       /* use_load_acquire= */ false); | 
 |     } else { | 
 |       // Load with slow path based read barrier. | 
 |       // Save the value of `out` into `maybe_temp` before overwriting it | 
 |       // in the following move operation, as we will need it for the | 
 |       // read barrier below. | 
 |       Register temp_reg = RegisterFrom(maybe_temp, type); | 
 |       __ Mov(temp_reg, out_reg); | 
 |       // /* HeapReference<Object> */ out = *(out + offset) | 
 |       __ Ldr(out_reg, HeapOperand(out_reg, offset)); | 
 |       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); | 
 |     } | 
 |   } else { | 
 |     // Plain load with no read barrier. | 
 |     // /* HeapReference<Object> */ out = *(out + offset) | 
 |     __ Ldr(out_reg, HeapOperand(out_reg, offset)); | 
 |     GetAssembler()->MaybeUnpoisonHeapReference(out_reg); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters( | 
 |     HInstruction* instruction, | 
 |     Location out, | 
 |     Location obj, | 
 |     uint32_t offset, | 
 |     Location maybe_temp, | 
 |     ReadBarrierOption read_barrier_option) { | 
 |   DataType::Type type = DataType::Type::kReference; | 
 |   Register out_reg = RegisterFrom(out, type); | 
 |   Register obj_reg = RegisterFrom(obj, type); | 
 |   if (read_barrier_option == kWithReadBarrier) { | 
 |     CHECK(kEmitCompilerReadBarrier); | 
 |     if (kUseBakerReadBarrier) { | 
 |       // Load with fast path based Baker's read barrier. | 
 |       // /* HeapReference<Object> */ out = *(obj + offset) | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
 |                                                       out, | 
 |                                                       obj_reg, | 
 |                                                       offset, | 
 |                                                       maybe_temp, | 
 |                                                       /* needs_null_check= */ false, | 
 |                                                       /* use_load_acquire= */ false); | 
 |     } else { | 
 |       // Load with slow path based read barrier. | 
 |       // /* HeapReference<Object> */ out = *(obj + offset) | 
 |       __ Ldr(out_reg, HeapOperand(obj_reg, offset)); | 
 |       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); | 
 |     } | 
 |   } else { | 
 |     // Plain load with no read barrier. | 
 |     // /* HeapReference<Object> */ out = *(obj + offset) | 
 |     __ Ldr(out_reg, HeapOperand(obj_reg, offset)); | 
 |     GetAssembler()->MaybeUnpoisonHeapReference(out_reg); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateGcRootFieldLoad( | 
 |     HInstruction* instruction, | 
 |     Location root, | 
 |     Register obj, | 
 |     uint32_t offset, | 
 |     vixl::aarch64::Label* fixup_label, | 
 |     ReadBarrierOption read_barrier_option) { | 
 |   DCHECK(fixup_label == nullptr || offset == 0u); | 
 |   Register root_reg = RegisterFrom(root, DataType::Type::kReference); | 
 |   if (read_barrier_option == kWithReadBarrier) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |     if (kUseBakerReadBarrier) { | 
 |       // Fast path implementation of art::ReadBarrier::BarrierForRoot when | 
 |       // Baker's read barrier are used. | 
 |  | 
 |       // Query `art::Thread::Current()->GetIsGcMarking()` (stored in | 
 |       // the Marking Register) to decide whether we need to enter | 
 |       // the slow path to mark the GC root. | 
 |       // | 
 |       // We use shared thunks for the slow path; shared within the method | 
 |       // for JIT, across methods for AOT. That thunk checks the reference | 
 |       // and jumps to the entrypoint if needed. | 
 |       // | 
 |       //     lr = &return_address; | 
 |       //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load. | 
 |       //     if (mr) {  // Thread::Current()->GetIsGcMarking() | 
 |       //       goto gc_root_thunk<root_reg>(lr) | 
 |       //     } | 
 |       //   return_address: | 
 |  | 
 |       UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |       DCHECK(temps.IsAvailable(ip0)); | 
 |       DCHECK(temps.IsAvailable(ip1)); | 
 |       temps.Exclude(ip0, ip1); | 
 |       uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode()); | 
 |  | 
 |       ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); | 
 |       vixl::aarch64::Label return_address; | 
 |       __ adr(lr, &return_address); | 
 |       if (fixup_label != nullptr) { | 
 |         __ bind(fixup_label); | 
 |       } | 
 |       static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, | 
 |                     "GC root LDR must be 2 instructions (8B) before the return address label."); | 
 |       __ ldr(root_reg, MemOperand(obj.X(), offset)); | 
 |       EmitBakerReadBarrierCbnz(custom_data); | 
 |       __ bind(&return_address); | 
 |     } else { | 
 |       // GC root loaded through a slow path for read barriers other | 
 |       // than Baker's. | 
 |       // /* GcRoot<mirror::Object>* */ root = obj + offset | 
 |       if (fixup_label == nullptr) { | 
 |         __ Add(root_reg.X(), obj.X(), offset); | 
 |       } else { | 
 |         EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X()); | 
 |       } | 
 |       // /* mirror::Object* */ root = root->Read() | 
 |       GenerateReadBarrierForRootSlow(instruction, root, root); | 
 |     } | 
 |   } else { | 
 |     // Plain GC root load with no read barrier. | 
 |     // /* GcRoot<mirror::Object> */ root = *(obj + offset) | 
 |     if (fixup_label == nullptr) { | 
 |       __ Ldr(root_reg, MemOperand(obj, offset)); | 
 |     } else { | 
 |       EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X()); | 
 |     } | 
 |     // Note that GC roots are not affected by heap poisoning, thus we | 
 |     // do not have to unpoison `root_reg` here. | 
 |   } | 
 |   MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateUnsafeCasOldValueMovWithBakerReadBarrier( | 
 |     vixl::aarch64::Register marked, | 
 |     vixl::aarch64::Register old_value) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR. | 
 |   uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked.GetCode()); | 
 |  | 
 |   ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); | 
 |   vixl::aarch64::Label return_address; | 
 |   __ adr(lr, &return_address); | 
 |   static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, | 
 |                 "GC root LDR must be 2 instructions (8B) before the return address label."); | 
 |   __ mov(marked, old_value); | 
 |   EmitBakerReadBarrierCbnz(custom_data); | 
 |   __ bind(&return_address); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                                Location ref, | 
 |                                                                vixl::aarch64::Register obj, | 
 |                                                                const vixl::aarch64::MemOperand& src, | 
 |                                                                bool needs_null_check, | 
 |                                                                bool use_load_acquire) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the | 
 |   // Marking Register) to decide whether we need to enter the slow | 
 |   // path to mark the reference. Then, in the slow path, check the | 
 |   // gray bit in the lock word of the reference's holder (`obj`) to | 
 |   // decide whether to mark `ref` or not. | 
 |   // | 
 |   // We use shared thunks for the slow path; shared within the method | 
 |   // for JIT, across methods for AOT. That thunk checks the holder | 
 |   // and jumps to the entrypoint if needed. If the holder is not gray, | 
 |   // it creates a fake dependency and returns to the LDR instruction. | 
 |   // | 
 |   //     lr = &gray_return_address; | 
 |   //     if (mr) {  // Thread::Current()->GetIsGcMarking() | 
 |   //       goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr) | 
 |   //     } | 
 |   //   not_gray_return_address: | 
 |   //     // Original reference load. If the offset is too large to fit | 
 |   //     // into LDR, we use an adjusted base register here. | 
 |   //     HeapReference<mirror::Object> reference = *(obj+offset); | 
 |   //   gray_return_address: | 
 |  | 
 |   DCHECK(src.GetAddrMode() == vixl::aarch64::Offset); | 
 |   DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>)); | 
 |  | 
 |   UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |   DCHECK(temps.IsAvailable(ip0)); | 
 |   DCHECK(temps.IsAvailable(ip1)); | 
 |   temps.Exclude(ip0, ip1); | 
 |   uint32_t custom_data = use_load_acquire | 
 |       ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode()) | 
 |       : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode()); | 
 |  | 
 |   { | 
 |     ExactAssemblyScope guard(GetVIXLAssembler(), | 
 |                              (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); | 
 |     vixl::aarch64::Label return_address; | 
 |     __ adr(lr, &return_address); | 
 |     EmitBakerReadBarrierCbnz(custom_data); | 
 |     static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), | 
 |                   "Field LDR must be 1 instruction (4B) before the return address label; " | 
 |                   " 2 instructions (8B) for heap poisoning."); | 
 |     Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); | 
 |     if (use_load_acquire) { | 
 |       DCHECK_EQ(src.GetOffset(), 0); | 
 |       __ ldar(ref_reg, src); | 
 |     } else { | 
 |       __ ldr(ref_reg, src); | 
 |     } | 
 |     if (needs_null_check) { | 
 |       MaybeRecordImplicitNullCheck(instruction); | 
 |     } | 
 |     // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses | 
 |     // macro instructions disallowed in ExactAssemblyScope. | 
 |     if (kPoisonHeapReferences) { | 
 |       __ neg(ref_reg, Operand(ref_reg)); | 
 |     } | 
 |     __ bind(&return_address); | 
 |   } | 
 |   MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                                Location ref, | 
 |                                                                Register obj, | 
 |                                                                uint32_t offset, | 
 |                                                                Location maybe_temp, | 
 |                                                                bool needs_null_check, | 
 |                                                                bool use_load_acquire) { | 
 |   DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>)); | 
 |   Register base = obj; | 
 |   if (use_load_acquire) { | 
 |     DCHECK(maybe_temp.IsRegister()); | 
 |     base = WRegisterFrom(maybe_temp); | 
 |     __ Add(base, obj, offset); | 
 |     offset = 0u; | 
 |   } else if (offset >= kReferenceLoadMinFarOffset) { | 
 |     DCHECK(maybe_temp.IsRegister()); | 
 |     base = WRegisterFrom(maybe_temp); | 
 |     static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2."); | 
 |     __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u))); | 
 |     offset &= (kReferenceLoadMinFarOffset - 1u); | 
 |   } | 
 |   MemOperand src(base.X(), offset); | 
 |   GenerateFieldLoadWithBakerReadBarrier( | 
 |       instruction, ref, obj, src, needs_null_check, use_load_acquire); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction, | 
 |                                                                Location ref, | 
 |                                                                Register obj, | 
 |                                                                uint32_t data_offset, | 
 |                                                                Location index, | 
 |                                                                bool needs_null_check) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   static_assert( | 
 |       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |   size_t scale_factor = DataType::SizeShift(DataType::Type::kReference); | 
 |  | 
 |   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the | 
 |   // Marking Register) to decide whether we need to enter the slow | 
 |   // path to mark the reference. Then, in the slow path, check the | 
 |   // gray bit in the lock word of the reference's holder (`obj`) to | 
 |   // decide whether to mark `ref` or not. | 
 |   // | 
 |   // We use shared thunks for the slow path; shared within the method | 
 |   // for JIT, across methods for AOT. That thunk checks the holder | 
 |   // and jumps to the entrypoint if needed. If the holder is not gray, | 
 |   // it creates a fake dependency and returns to the LDR instruction. | 
 |   // | 
 |   //     lr = &gray_return_address; | 
 |   //     if (mr) {  // Thread::Current()->GetIsGcMarking() | 
 |   //       goto array_thunk<base_reg>(lr) | 
 |   //     } | 
 |   //   not_gray_return_address: | 
 |   //     // Original reference load. If the offset is too large to fit | 
 |   //     // into LDR, we use an adjusted base register here. | 
 |   //     HeapReference<mirror::Object> reference = data[index]; | 
 |   //   gray_return_address: | 
 |  | 
 |   DCHECK(index.IsValid()); | 
 |   Register index_reg = RegisterFrom(index, DataType::Type::kInt32); | 
 |   Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); | 
 |  | 
 |   UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |   DCHECK(temps.IsAvailable(ip0)); | 
 |   DCHECK(temps.IsAvailable(ip1)); | 
 |   temps.Exclude(ip0, ip1); | 
 |  | 
 |   Register temp; | 
 |   if (instruction->GetArray()->IsIntermediateAddress()) { | 
 |     // We do not need to compute the intermediate address from the array: the | 
 |     // input instruction has done it already. See the comment in | 
 |     // `TryExtractArrayAccessAddress()`. | 
 |     if (kIsDebugBuild) { | 
 |       HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); | 
 |       DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); | 
 |     } | 
 |     temp = obj; | 
 |   } else { | 
 |     temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0)); | 
 |     __ Add(temp.X(), obj.X(), Operand(data_offset)); | 
 |   } | 
 |  | 
 |   uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode()); | 
 |  | 
 |   { | 
 |     ExactAssemblyScope guard(GetVIXLAssembler(), | 
 |                              (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); | 
 |     vixl::aarch64::Label return_address; | 
 |     __ adr(lr, &return_address); | 
 |     EmitBakerReadBarrierCbnz(custom_data); | 
 |     static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), | 
 |                   "Array LDR must be 1 instruction (4B) before the return address label; " | 
 |                   " 2 instructions (8B) for heap poisoning."); | 
 |     __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor)); | 
 |     DCHECK(!needs_null_check);  // The thunk cannot handle the null check. | 
 |     // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses | 
 |     // macro instructions disallowed in ExactAssemblyScope. | 
 |     if (kPoisonHeapReferences) { | 
 |       __ neg(ref_reg, Operand(ref_reg)); | 
 |     } | 
 |     __ bind(&return_address); | 
 |   } | 
 |   MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) { | 
 |   // The following condition is a compile-time one, so it does not have a run-time cost. | 
 |   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) { | 
 |     // The following condition is a run-time one; it is executed after the | 
 |     // previous compile-time test, to avoid penalizing non-debug builds. | 
 |     if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) { | 
 |       UseScratchRegisterScope temps(GetVIXLAssembler()); | 
 |       Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW(); | 
 |       GetAssembler()->GenerateMarkingRegisterCheck(temp, code); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction, | 
 |                                                  Location out, | 
 |                                                  Location ref, | 
 |                                                  Location obj, | 
 |                                                  uint32_t offset, | 
 |                                                  Location index) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |  | 
 |   // Insert a slow path based read barrier *after* the reference load. | 
 |   // | 
 |   // If heap poisoning is enabled, the unpoisoning of the loaded | 
 |   // reference will be carried out by the runtime within the slow | 
 |   // path. | 
 |   // | 
 |   // Note that `ref` currently does not get unpoisoned (when heap | 
 |   // poisoning is enabled), which is alright as the `ref` argument is | 
 |   // not used by the artReadBarrierSlow entry point. | 
 |   // | 
 |   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. | 
 |   SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) | 
 |       ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   __ B(slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, | 
 |                                                       Location out, | 
 |                                                       Location ref, | 
 |                                                       Location obj, | 
 |                                                       uint32_t offset, | 
 |                                                       Location index) { | 
 |   if (kEmitCompilerReadBarrier) { | 
 |     // Baker's read barriers shall be handled by the fast path | 
 |     // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier). | 
 |     DCHECK(!kUseBakerReadBarrier); | 
 |     // If heap poisoning is enabled, unpoisoning will be taken care of | 
 |     // by the runtime within the slow path. | 
 |     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); | 
 |   } else if (kPoisonHeapReferences) { | 
 |     GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out)); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction, | 
 |                                                         Location out, | 
 |                                                         Location root) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |  | 
 |   // Insert a slow path based read barrier *after* the GC root load. | 
 |   // | 
 |   // Note that GC roots are not affected by heap poisoning, so we do | 
 |   // not need to do anything special for this here. | 
 |   SlowPathCodeARM64* slow_path = | 
 |       new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   __ B(slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { | 
 |     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
 |         instruction->GetIndex(), kArm64PointerSize).SizeValue(); | 
 |     __ Ldr(XRegisterFrom(locations->Out()), | 
 |            MemOperand(XRegisterFrom(locations->InAt(0)), method_offset)); | 
 |   } else { | 
 |     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
 |         instruction->GetIndex(), kArm64PointerSize)); | 
 |     __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)), | 
 |         mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); | 
 |     __ Ldr(XRegisterFrom(locations->Out()), | 
 |            MemOperand(XRegisterFrom(locations->Out()), method_offset)); | 
 |   } | 
 | } | 
 |  | 
 | static void PatchJitRootUse(uint8_t* code, | 
 |                             const uint8_t* roots_data, | 
 |                             vixl::aarch64::Literal<uint32_t>* literal, | 
 |                             uint64_t index_in_table) { | 
 |   uint32_t literal_offset = literal->GetOffset(); | 
 |   uintptr_t address = | 
 |       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); | 
 |   uint8_t* data = code + literal_offset; | 
 |   reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { | 
 |   for (const auto& entry : jit_string_patches_) { | 
 |     const StringReference& string_reference = entry.first; | 
 |     vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; | 
 |     uint64_t index_in_table = GetJitStringRootIndex(string_reference); | 
 |     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); | 
 |   } | 
 |   for (const auto& entry : jit_class_patches_) { | 
 |     const TypeReference& type_reference = entry.first; | 
 |     vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; | 
 |     uint64_t index_in_table = GetJitClassRootIndex(type_reference); | 
 |     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); | 
 |   } | 
 | } | 
 |  | 
 | #undef __ | 
 | #undef QUICK_ENTRY_POINT | 
 |  | 
 | #define __ assembler.GetVIXLAssembler()-> | 
 |  | 
 | static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler, | 
 |                                      vixl::aarch64::Register base_reg, | 
 |                                      vixl::aarch64::MemOperand& lock_word, | 
 |                                      vixl::aarch64::Label* slow_path, | 
 |                                      vixl::aarch64::Label* throw_npe = nullptr) { | 
 |   // Load the lock word containing the rb_state. | 
 |   __ Ldr(ip0.W(), lock_word); | 
 |   // Given the numeric representation, it's enough to check the low bit of the rb_state. | 
 |   static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); | 
 |   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); | 
 |   __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path); | 
 |   static_assert( | 
 |       BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET, | 
 |       "Field and array LDR offsets must be the same to reuse the same code."); | 
 |   // To throw NPE, we return to the fast path; the artificial dependence below does not matter. | 
 |   if (throw_npe != nullptr) { | 
 |     __ Bind(throw_npe); | 
 |   } | 
 |   // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning). | 
 |   static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), | 
 |                 "Field LDR must be 1 instruction (4B) before the return address label; " | 
 |                 " 2 instructions (8B) for heap poisoning."); | 
 |   __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); | 
 |   // Introduce a dependency on the lock_word including rb_state, | 
 |   // to prevent load-load reordering, and without using | 
 |   // a memory barrier (which would be more expensive). | 
 |   __ Add(base_reg, base_reg, Operand(ip0, LSR, 32)); | 
 |   __ Br(lr);          // And return back to the function. | 
 |   // Note: The fake dependency is unnecessary for the slow path. | 
 | } | 
 |  | 
 | // Load the read barrier introspection entrypoint in register `entrypoint`. | 
 | static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler, | 
 |                                                        vixl::aarch64::Register entrypoint) { | 
 |   // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. | 
 |   DCHECK_EQ(ip0.GetCode(), 16u); | 
 |   const int32_t entry_point_offset = | 
 |       Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode()); | 
 |   __ Ldr(entrypoint, MemOperand(tr, entry_point_offset)); | 
 | } | 
 |  | 
 | void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler, | 
 |                                                       uint32_t encoded_data, | 
 |                                                       /*out*/ std::string* debug_name) { | 
 |   BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); | 
 |   switch (kind) { | 
 |     case BakerReadBarrierKind::kField: | 
 |     case BakerReadBarrierKind::kAcquire: { | 
 |       auto base_reg = | 
 |           Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); | 
 |       CheckValidReg(base_reg.GetCode()); | 
 |       auto holder_reg = | 
 |           Register::GetXRegFromCode(BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
 |       CheckValidReg(holder_reg.GetCode()); | 
 |       UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); | 
 |       temps.Exclude(ip0, ip1); | 
 |       // If base_reg differs from holder_reg, the offset was too large and we must have emitted | 
 |       // an explicit null check before the load. Otherwise, for implicit null checks, we need to | 
 |       // null-check the holder as we do not necessarily do that check before going to the thunk. | 
 |       vixl::aarch64::Label throw_npe_label; | 
 |       vixl::aarch64::Label* throw_npe = nullptr; | 
 |       if (GetCompilerOptions().GetImplicitNullChecks() && holder_reg.Is(base_reg)) { | 
 |         throw_npe = &throw_npe_label; | 
 |         __ Cbz(holder_reg.W(), throw_npe); | 
 |       } | 
 |       // Check if the holder is gray and, if not, add fake dependency to the base register | 
 |       // and return to the LDR instruction to load the reference. Otherwise, use introspection | 
 |       // to load the reference and call the entrypoint that performs further checks on the | 
 |       // reference and marks it if needed. | 
 |       vixl::aarch64::Label slow_path; | 
 |       MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value()); | 
 |       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe); | 
 |       __ Bind(&slow_path); | 
 |       if (kind == BakerReadBarrierKind::kField) { | 
 |         MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); | 
 |         __ Ldr(ip0.W(), ldr_address);         // Load the LDR (immediate) unsigned offset. | 
 |         LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
 |         __ Ubfx(ip0.W(), ip0.W(), 10, 12);    // Extract the offset. | 
 |         __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2));   // Load the reference. | 
 |       } else { | 
 |         DCHECK(kind == BakerReadBarrierKind::kAcquire); | 
 |         DCHECK(!base_reg.Is(holder_reg)); | 
 |         LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
 |         __ Ldar(ip0.W(), MemOperand(base_reg)); | 
 |       } | 
 |       // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference. | 
 |       __ Br(ip1);                           // Jump to the entrypoint. | 
 |       break; | 
 |     } | 
 |     case BakerReadBarrierKind::kArray: { | 
 |       auto base_reg = | 
 |           Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); | 
 |       CheckValidReg(base_reg.GetCode()); | 
 |       DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
 |                 BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
 |       UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); | 
 |       temps.Exclude(ip0, ip1); | 
 |       vixl::aarch64::Label slow_path; | 
 |       int32_t data_offset = | 
 |           mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value(); | 
 |       MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset); | 
 |       DCHECK_LT(lock_word.GetOffset(), 0); | 
 |       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); | 
 |       __ Bind(&slow_path); | 
 |       MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET); | 
 |       __ Ldr(ip0.W(), ldr_address);         // Load the LDR (register) unsigned offset. | 
 |       LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
 |       __ Ubfx(ip0, ip0, 16, 6);             // Extract the index register, plus 32 (bit 21 is set). | 
 |       __ Bfi(ip1, ip0, 3, 6);               // Insert ip0 to the entrypoint address to create | 
 |                                             // a switch case target based on the index register. | 
 |       __ Mov(ip0, base_reg);                // Move the base register to ip0. | 
 |       __ Br(ip1);                           // Jump to the entrypoint's array switch case. | 
 |       break; | 
 |     } | 
 |     case BakerReadBarrierKind::kGcRoot: { | 
 |       // Check if the reference needs to be marked and if so (i.e. not null, not marked yet | 
 |       // and it does not have a forwarding address), call the correct introspection entrypoint; | 
 |       // otherwise return the reference (or the extracted forwarding address). | 
 |       // There is no gray bit check for GC roots. | 
 |       auto root_reg = | 
 |           Register::GetWRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); | 
 |       CheckValidReg(root_reg.GetCode()); | 
 |       DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
 |                 BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
 |       UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); | 
 |       temps.Exclude(ip0, ip1); | 
 |       vixl::aarch64::Label return_label, not_marked, forwarding_address; | 
 |       __ Cbz(root_reg, &return_label); | 
 |       MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value()); | 
 |       __ Ldr(ip0.W(), lock_word); | 
 |       __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked); | 
 |       __ Bind(&return_label); | 
 |       __ Br(lr); | 
 |       __ Bind(¬_marked); | 
 |       __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1)); | 
 |       __ B(&forwarding_address, mi); | 
 |       LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); | 
 |       // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to | 
 |       // art_quick_read_barrier_mark_introspection_gc_roots. | 
 |       __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET)); | 
 |       __ Mov(ip0.W(), root_reg); | 
 |       __ Br(ip1); | 
 |       __ Bind(&forwarding_address); | 
 |       __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift); | 
 |       __ Br(lr); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   // For JIT, the slow path is considered part of the compiled method, | 
 |   // so JIT should pass null as `debug_name`. Tests may not have a runtime. | 
 |   DCHECK(Runtime::Current() == nullptr || | 
 |          !Runtime::Current()->UseJitCompilation() || | 
 |          debug_name == nullptr); | 
 |   if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { | 
 |     std::ostringstream oss; | 
 |     oss << "BakerReadBarrierThunk"; | 
 |     switch (kind) { | 
 |       case BakerReadBarrierKind::kField: | 
 |         oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) | 
 |             << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); | 
 |         break; | 
 |       case BakerReadBarrierKind::kAcquire: | 
 |         oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) | 
 |             << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); | 
 |         break; | 
 |       case BakerReadBarrierKind::kArray: | 
 |         oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); | 
 |         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
 |                   BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
 |         break; | 
 |       case BakerReadBarrierKind::kGcRoot: | 
 |         oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); | 
 |         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, | 
 |                   BakerReadBarrierSecondRegField::Decode(encoded_data)); | 
 |         break; | 
 |     } | 
 |     *debug_name = oss.str(); | 
 |   } | 
 | } | 
 |  | 
 | #undef __ | 
 |  | 
 | }  // namespace arm64 | 
 | }  // namespace art |