| /* | 
 |  * Copyright (C) 2016 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "intrinsics_arm_vixl.h" | 
 |  | 
 | #include "arch/arm/instruction_set_features_arm.h" | 
 | #include "art_method.h" | 
 | #include "code_generator_arm_vixl.h" | 
 | #include "common_arm.h" | 
 | #include "heap_poisoning.h" | 
 | #include "lock_word.h" | 
 | #include "mirror/array-inl.h" | 
 | #include "mirror/object_array-inl.h" | 
 | #include "mirror/reference.h" | 
 | #include "mirror/string-inl.h" | 
 | #include "scoped_thread_state_change-inl.h" | 
 | #include "thread-current-inl.h" | 
 |  | 
 | #include "aarch32/constants-aarch32.h" | 
 |  | 
 | namespace art { | 
 | namespace arm { | 
 |  | 
 | #define __ assembler->GetVIXLAssembler()-> | 
 |  | 
 | using helpers::DRegisterFrom; | 
 | using helpers::HighRegisterFrom; | 
 | using helpers::InputDRegisterAt; | 
 | using helpers::InputRegisterAt; | 
 | using helpers::InputSRegisterAt; | 
 | using helpers::Int32ConstantFrom; | 
 | using helpers::LocationFrom; | 
 | using helpers::LowRegisterFrom; | 
 | using helpers::LowSRegisterFrom; | 
 | using helpers::HighSRegisterFrom; | 
 | using helpers::OutputDRegister; | 
 | using helpers::OutputRegister; | 
 | using helpers::RegisterFrom; | 
 | using helpers::SRegisterFrom; | 
 |  | 
 | using namespace vixl::aarch32;  // NOLINT(build/namespaces) | 
 |  | 
 | using vixl::ExactAssemblyScope; | 
 | using vixl::CodeBufferCheckScope; | 
 |  | 
 | ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() { | 
 |   return codegen_->GetAssembler(); | 
 | } | 
 |  | 
 | ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() { | 
 |   return codegen_->GetGraph()->GetAllocator(); | 
 | } | 
 |  | 
 | // Default slow-path for fallback (calling the managed code to handle the intrinsic) in an | 
 | // intrinsified call. This will copy the arguments into the positions for a regular call. | 
 | // | 
 | // Note: The actual parameters are required to be in the locations given by the invoke's location | 
 | //       summary. If an intrinsic modifies those locations before a slowpath call, they must be | 
 | //       restored! | 
 | // | 
 | // Note: If an invoke wasn't sharpened, we will put down an invoke-virtual here. That's potentially | 
 | //       sub-optimal (compared to a direct pointer call), but this is a slow-path. | 
 |  | 
 | class IntrinsicSlowPathARMVIXL : public SlowPathCodeARMVIXL { | 
 |  public: | 
 |   explicit IntrinsicSlowPathARMVIXL(HInvoke* invoke) | 
 |       : SlowPathCodeARMVIXL(invoke), invoke_(invoke) {} | 
 |  | 
 |   Location MoveArguments(CodeGenerator* codegen) { | 
 |     InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor; | 
 |     IntrinsicVisitor::MoveArguments(invoke_, codegen, &calling_convention_visitor); | 
 |     return calling_convention_visitor.GetMethodLocation(); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     ArmVIXLAssembler* assembler = down_cast<ArmVIXLAssembler*>(codegen->GetAssembler()); | 
 |     __ Bind(GetEntryLabel()); | 
 |  | 
 |     SaveLiveRegisters(codegen, invoke_->GetLocations()); | 
 |  | 
 |     Location method_loc = MoveArguments(codegen); | 
 |  | 
 |     if (invoke_->IsInvokeStaticOrDirect()) { | 
 |       codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(), method_loc, this); | 
 |     } else { | 
 |       codegen->GenerateVirtualCall(invoke_->AsInvokeVirtual(), method_loc, this); | 
 |     } | 
 |  | 
 |     // Copy the result back to the expected output. | 
 |     Location out = invoke_->GetLocations()->Out(); | 
 |     if (out.IsValid()) { | 
 |       DCHECK(out.IsRegister());  // TODO: Replace this when we support output in memory. | 
 |       DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg())); | 
 |       codegen->MoveFromReturnRegister(out, invoke_->GetType()); | 
 |     } | 
 |  | 
 |     RestoreLiveRegisters(codegen, invoke_->GetLocations()); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { return "IntrinsicSlowPath"; } | 
 |  | 
 |  private: | 
 |   // The instruction where this slow path is happening. | 
 |   HInvoke* const invoke_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARMVIXL); | 
 | }; | 
 |  | 
 | // Compute base address for the System.arraycopy intrinsic in `base`. | 
 | static void GenSystemArrayCopyBaseAddress(ArmVIXLAssembler* assembler, | 
 |                                           DataType::Type type, | 
 |                                           const vixl32::Register& array, | 
 |                                           const Location& pos, | 
 |                                           const vixl32::Register& base) { | 
 |   // This routine is only used by the SystemArrayCopy intrinsic at the | 
 |   // moment. We can allow DataType::Type::kReference as `type` to implement | 
 |   // the SystemArrayCopyChar intrinsic. | 
 |   DCHECK_EQ(type, DataType::Type::kReference); | 
 |   const int32_t element_size = DataType::Size(type); | 
 |   const uint32_t element_size_shift = DataType::SizeShift(type); | 
 |   const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); | 
 |  | 
 |   if (pos.IsConstant()) { | 
 |     int32_t constant = Int32ConstantFrom(pos); | 
 |     __ Add(base, array, element_size * constant + data_offset); | 
 |   } else { | 
 |     __ Add(base, array, Operand(RegisterFrom(pos), vixl32::LSL, element_size_shift)); | 
 |     __ Add(base, base, data_offset); | 
 |   } | 
 | } | 
 |  | 
 | // Compute end address for the System.arraycopy intrinsic in `end`. | 
 | static void GenSystemArrayCopyEndAddress(ArmVIXLAssembler* assembler, | 
 |                                          DataType::Type type, | 
 |                                          const Location& copy_length, | 
 |                                          const vixl32::Register& base, | 
 |                                          const vixl32::Register& end) { | 
 |   // This routine is only used by the SystemArrayCopy intrinsic at the | 
 |   // moment. We can allow DataType::Type::kReference as `type` to implement | 
 |   // the SystemArrayCopyChar intrinsic. | 
 |   DCHECK_EQ(type, DataType::Type::kReference); | 
 |   const int32_t element_size = DataType::Size(type); | 
 |   const uint32_t element_size_shift = DataType::SizeShift(type); | 
 |  | 
 |   if (copy_length.IsConstant()) { | 
 |     int32_t constant = Int32ConstantFrom(copy_length); | 
 |     __ Add(end, base, element_size * constant); | 
 |   } else { | 
 |     __ Add(end, base, Operand(RegisterFrom(copy_length), vixl32::LSL, element_size_shift)); | 
 |   } | 
 | } | 
 |  | 
 | // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. | 
 | class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL { | 
 |  public: | 
 |   explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction) | 
 |       : SlowPathCodeARMVIXL(instruction) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |     DCHECK(kUseBakerReadBarrier); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); | 
 |     ArmVIXLAssembler* assembler = arm_codegen->GetAssembler(); | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(instruction_->IsInvokeStaticOrDirect()) | 
 |         << "Unexpected instruction in read barrier arraycopy slow path: " | 
 |         << instruction_->DebugName(); | 
 |     DCHECK(instruction_->GetLocations()->Intrinsified()); | 
 |     DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); | 
 |  | 
 |     DataType::Type type = DataType::Type::kReference; | 
 |     const int32_t element_size = DataType::Size(type); | 
 |  | 
 |     vixl32::Register dest = InputRegisterAt(instruction_, 2); | 
 |     Location dest_pos = locations->InAt(3); | 
 |     vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0)); | 
 |     vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1)); | 
 |     vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2)); | 
 |     vixl32::Register tmp = RegisterFrom(locations->GetTemp(3)); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     // Compute the base destination address in `dst_curr_addr`. | 
 |     GenSystemArrayCopyBaseAddress(assembler, type, dest, dest_pos, dst_curr_addr); | 
 |  | 
 |     vixl32::Label loop; | 
 |     __ Bind(&loop); | 
 |     __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex)); | 
 |     assembler->MaybeUnpoisonHeapReference(tmp); | 
 |     // TODO: Inline the mark bit check before calling the runtime? | 
 |     // tmp = ReadBarrier::Mark(tmp); | 
 |     // No need to save live registers; it's taken care of by the | 
 |     // entrypoint. Also, there is no need to update the stack mask, | 
 |     // as this runtime call will not trigger a garbage collection. | 
 |     // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more | 
 |     // explanations.) | 
 |     DCHECK(!tmp.IsSP()); | 
 |     DCHECK(!tmp.IsLR()); | 
 |     DCHECK(!tmp.IsPC()); | 
 |     // IP is used internally by the ReadBarrierMarkRegX entry point | 
 |     // as a temporary (and not preserved).  It thus cannot be used by | 
 |     // any live register in this slow path. | 
 |     DCHECK(!src_curr_addr.Is(ip)); | 
 |     DCHECK(!dst_curr_addr.Is(ip)); | 
 |     DCHECK(!src_stop_addr.Is(ip)); | 
 |     DCHECK(!tmp.Is(ip)); | 
 |     DCHECK(tmp.IsRegister()) << tmp; | 
 |     // TODO: Load the entrypoint once before the loop, instead of | 
 |     // loading it at every iteration. | 
 |     int32_t entry_point_offset = | 
 |         Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp.GetCode()); | 
 |     // This runtime call does not require a stack map. | 
 |     arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); | 
 |     assembler->MaybePoisonHeapReference(tmp); | 
 |     __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex)); | 
 |     __ Cmp(src_curr_addr, src_stop_addr); | 
 |     __ B(ne, &loop, /* is_far_target= */ false); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const override { | 
 |     return "ReadBarrierSystemArrayCopySlowPathARMVIXL"; | 
 |   } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL); | 
 | }; | 
 |  | 
 | IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen) | 
 |     : allocator_(codegen->GetGraph()->GetAllocator()), | 
 |       codegen_(codegen), | 
 |       assembler_(codegen->GetAssembler()), | 
 |       features_(codegen->GetInstructionSetFeatures()) {} | 
 |  | 
 | bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) { | 
 |   Dispatch(invoke); | 
 |   LocationSummary* res = invoke->GetLocations(); | 
 |   if (res == nullptr) { | 
 |     return false; | 
 |   } | 
 |   return res->Intrinsified(); | 
 | } | 
 |  | 
 | static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresFpuRegister()); | 
 | } | 
 |  | 
 | static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) { | 
 |   Location input = locations->InAt(0); | 
 |   Location output = locations->Out(); | 
 |   if (is64bit) { | 
 |     __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input)); | 
 |   } else { | 
 |     __ Vmov(RegisterFrom(output), SRegisterFrom(input)); | 
 |   } | 
 | } | 
 |  | 
 | static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) { | 
 |   Location input = locations->InAt(0); | 
 |   Location output = locations->Out(); | 
 |   if (is64bit) { | 
 |     __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input)); | 
 |   } else { | 
 |     __ Vmov(SRegisterFrom(output), RegisterFrom(input)); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { | 
 |   CreateFPToIntLocations(allocator_, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) { | 
 |   CreateIntToFPLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { | 
 |   MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) { | 
 |   MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) { | 
 |   CreateFPToIntLocations(allocator_, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) { | 
 |   CreateIntToFPLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) { | 
 |   MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) { | 
 |   MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); | 
 | } | 
 |  | 
 | static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | static void CreateLongToLongLocationsWithOverlap(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
 | } | 
 |  | 
 | static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |   locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | static void GenNumberOfLeadingZeros(HInvoke* invoke, | 
 |                                     DataType::Type type, | 
 |                                     CodeGeneratorARMVIXL* codegen) { | 
 |   ArmVIXLAssembler* assembler = codegen->GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   Location in = locations->InAt(0); | 
 |   vixl32::Register out = RegisterFrom(locations->Out()); | 
 |  | 
 |   DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64)); | 
 |  | 
 |   if (type == DataType::Type::kInt64) { | 
 |     vixl32::Register in_reg_lo = LowRegisterFrom(in); | 
 |     vixl32::Register in_reg_hi = HighRegisterFrom(in); | 
 |     vixl32::Label end; | 
 |     vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end); | 
 |     __ Clz(out, in_reg_hi); | 
 |     __ CompareAndBranchIfNonZero(in_reg_hi, final_label, /* is_far_target= */ false); | 
 |     __ Clz(out, in_reg_lo); | 
 |     __ Add(out, out, 32); | 
 |     if (end.IsReferenced()) { | 
 |       __ Bind(&end); | 
 |     } | 
 |   } else { | 
 |     __ Clz(out, RegisterFrom(in)); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { | 
 |   GenNumberOfLeadingZeros(invoke, DataType::Type::kInt32, codegen_); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { | 
 |   CreateLongToLongLocationsWithOverlap(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { | 
 |   GenNumberOfLeadingZeros(invoke, DataType::Type::kInt64, codegen_); | 
 | } | 
 |  | 
 | static void GenNumberOfTrailingZeros(HInvoke* invoke, | 
 |                                      DataType::Type type, | 
 |                                      CodeGeneratorARMVIXL* codegen) { | 
 |   DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64)); | 
 |  | 
 |   ArmVIXLAssembler* assembler = codegen->GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   vixl32::Register out = RegisterFrom(locations->Out()); | 
 |  | 
 |   if (type == DataType::Type::kInt64) { | 
 |     vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); | 
 |     vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); | 
 |     vixl32::Label end; | 
 |     vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end); | 
 |     __ Rbit(out, in_reg_lo); | 
 |     __ Clz(out, out); | 
 |     __ CompareAndBranchIfNonZero(in_reg_lo, final_label, /* is_far_target= */ false); | 
 |     __ Rbit(out, in_reg_hi); | 
 |     __ Clz(out, out); | 
 |     __ Add(out, out, 32); | 
 |     if (end.IsReferenced()) { | 
 |       __ Bind(&end); | 
 |     } | 
 |   } else { | 
 |     vixl32::Register in = RegisterFrom(locations->InAt(0)); | 
 |     __ Rbit(out, in); | 
 |     __ Clz(out, out); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { | 
 |   GenNumberOfTrailingZeros(invoke, DataType::Type::kInt32, codegen_); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { | 
 |   CreateLongToLongLocationsWithOverlap(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { | 
 |   GenNumberOfTrailingZeros(invoke, DataType::Type::kInt64, codegen_); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) { | 
 |   CreateFPToFPLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathRint(HInvoke* invoke) { | 
 |   if (features_.HasARMv8AInstructions()) { | 
 |     CreateFPToFPLocations(allocator_, invoke); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathRint(HInvoke* invoke) { | 
 |   DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Vrintn(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathRoundFloat(HInvoke* invoke) { | 
 |   if (features_.HasARMv8AInstructions()) { | 
 |     LocationSummary* locations = | 
 |         new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |     locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |     locations->SetOut(Location::RequiresRegister()); | 
 |     locations->AddTemp(Location::RequiresFpuRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathRoundFloat(HInvoke* invoke) { | 
 |   DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); | 
 |  | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   vixl32::SRegister in_reg = InputSRegisterAt(invoke, 0); | 
 |   vixl32::Register out_reg = OutputRegister(invoke); | 
 |   vixl32::SRegister temp1 = LowSRegisterFrom(invoke->GetLocations()->GetTemp(0)); | 
 |   vixl32::SRegister temp2 = HighSRegisterFrom(invoke->GetLocations()->GetTemp(0)); | 
 |   vixl32::Label done; | 
 |   vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done); | 
 |  | 
 |   // Round to nearest integer, ties away from zero. | 
 |   __ Vcvta(S32, F32, temp1, in_reg); | 
 |   __ Vmov(out_reg, temp1); | 
 |  | 
 |   // For positive, zero or NaN inputs, rounding is done. | 
 |   __ Cmp(out_reg, 0); | 
 |   __ B(ge, final_label, /* is_far_target= */ false); | 
 |  | 
 |   // Handle input < 0 cases. | 
 |   // If input is negative but not a tie, previous result (round to nearest) is valid. | 
 |   // If input is a negative tie, change rounding direction to positive infinity, out_reg += 1. | 
 |   __ Vrinta(F32, temp1, in_reg); | 
 |   __ Vmov(temp2, 0.5); | 
 |   __ Vsub(F32, temp1, in_reg, temp1); | 
 |   __ Vcmp(F32, temp1, temp2); | 
 |   __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); | 
 |   { | 
 |     // Use ExactAsemblyScope here because we are using IT. | 
 |     ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(), | 
 |                                 2 * kMaxInstructionSizeInBytes, | 
 |                                 CodeBufferCheckScope::kMaximumSize); | 
 |     __ it(eq); | 
 |     __ add(eq, out_reg, out_reg, 1); | 
 |   } | 
 |  | 
 |   if (done.IsReferenced()) { | 
 |     __ Bind(&done); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   // Ignore upper 4B of long address. | 
 |   __ Ldrsb(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   // Ignore upper 4B of long address. | 
 |   __ Ldr(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   // Ignore upper 4B of long address. | 
 |   vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0)); | 
 |   // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor | 
 |   // exception. So we can't use ldrd as addr may be unaligned. | 
 |   vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out()); | 
 |   vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out()); | 
 |   if (addr.Is(lo)) { | 
 |     __ Ldr(hi, MemOperand(addr, 4)); | 
 |     __ Ldr(lo, MemOperand(addr)); | 
 |   } else { | 
 |     __ Ldr(lo, MemOperand(addr)); | 
 |     __ Ldr(hi, MemOperand(addr, 4)); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   // Ignore upper 4B of long address. | 
 |   __ Ldrsh(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); | 
 | } | 
 |  | 
 | static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) { | 
 |   CreateIntIntToVoidLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Strb(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) { | 
 |   CreateIntIntToVoidLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Str(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) { | 
 |   CreateIntIntToVoidLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   // Ignore upper 4B of long address. | 
 |   vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0)); | 
 |   // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor | 
 |   // exception. So we can't use ldrd as addr may be unaligned. | 
 |   __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr)); | 
 |   __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4)); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) { | 
 |   CreateIntIntToVoidLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Strh(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Ldr(OutputRegister(invoke), | 
 |          MemOperand(tr, Thread::PeerOffset<kArmPointerSize>().Int32Value())); | 
 | } | 
 |  | 
 | static void GenUnsafeGet(HInvoke* invoke, | 
 |                          DataType::Type type, | 
 |                          bool is_volatile, | 
 |                          CodeGeneratorARMVIXL* codegen) { | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   ArmVIXLAssembler* assembler = codegen->GetAssembler(); | 
 |   Location base_loc = locations->InAt(1); | 
 |   vixl32::Register base = InputRegisterAt(invoke, 1);     // Object pointer. | 
 |   Location offset_loc = locations->InAt(2); | 
 |   vixl32::Register offset = LowRegisterFrom(offset_loc);  // Long offset, lo part only. | 
 |   Location trg_loc = locations->Out(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: { | 
 |       vixl32::Register trg = RegisterFrom(trg_loc); | 
 |       __ Ldr(trg, MemOperand(base, offset)); | 
 |       if (is_volatile) { | 
 |         __ Dmb(vixl32::ISH); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kReference: { | 
 |       vixl32::Register trg = RegisterFrom(trg_loc); | 
 |       if (kEmitCompilerReadBarrier) { | 
 |         if (kUseBakerReadBarrier) { | 
 |           Location temp = locations->GetTemp(0); | 
 |           // Piggy-back on the field load path using introspection for the Baker read barrier. | 
 |           __ Add(RegisterFrom(temp), base, Operand(offset)); | 
 |           MemOperand src(RegisterFrom(temp), 0); | 
 |           codegen->GenerateFieldLoadWithBakerReadBarrier( | 
 |               invoke, trg_loc, base, src, /* needs_null_check= */ false); | 
 |           if (is_volatile) { | 
 |             __ Dmb(vixl32::ISH); | 
 |           } | 
 |         } else { | 
 |           __ Ldr(trg, MemOperand(base, offset)); | 
 |           if (is_volatile) { | 
 |             __ Dmb(vixl32::ISH); | 
 |           } | 
 |           codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc); | 
 |         } | 
 |       } else { | 
 |         __ Ldr(trg, MemOperand(base, offset)); | 
 |         if (is_volatile) { | 
 |           __ Dmb(vixl32::ISH); | 
 |         } | 
 |         assembler->MaybeUnpoisonHeapReference(trg); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       vixl32::Register trg_lo = LowRegisterFrom(trg_loc); | 
 |       vixl32::Register trg_hi = HighRegisterFrom(trg_loc); | 
 |       if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { | 
 |         UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |         const vixl32::Register temp_reg = temps.Acquire(); | 
 |         __ Add(temp_reg, base, offset); | 
 |         __ Ldrexd(trg_lo, trg_hi, MemOperand(temp_reg)); | 
 |       } else { | 
 |         __ Ldrd(trg_lo, trg_hi, MemOperand(base, offset)); | 
 |       } | 
 |       if (is_volatile) { | 
 |         __ Dmb(vixl32::ISH); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type " << type; | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, | 
 |                                           HInvoke* invoke, | 
 |                                           DataType::Type type) { | 
 |   bool can_call = kEmitCompilerReadBarrier && | 
 |       (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || | 
 |        invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, | 
 |                                       can_call | 
 |                                           ? LocationSummary::kCallOnSlowPath | 
 |                                           : LocationSummary::kNoCall, | 
 |                                       kIntrinsified); | 
 |   if (can_call && kUseBakerReadBarrier) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |   locations->SetInAt(0, Location::NoLocation());        // Unused receiver. | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->SetInAt(2, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), | 
 |                     (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); | 
 |   if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |     // We need a temporary register for the read barrier marking slow | 
 |     // path in CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier. | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) { | 
 |   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) { | 
 |   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) { | 
 |   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) { | 
 |   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) { | 
 |   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { | 
 |   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) { | 
 |   GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) { | 
 |   GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) { | 
 |   GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) { | 
 |   GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) { | 
 |   GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { | 
 |   GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_); | 
 | } | 
 |  | 
 | static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator, | 
 |                                      const ArmInstructionSetFeatures& features, | 
 |                                      DataType::Type type, | 
 |                                      bool is_volatile, | 
 |                                      HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::NoLocation());        // Unused receiver. | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->SetInAt(2, Location::RequiresRegister()); | 
 |   locations->SetInAt(3, Location::RequiresRegister()); | 
 |  | 
 |   if (type == DataType::Type::kInt64) { | 
 |     // Potentially need temps for ldrexd-strexd loop. | 
 |     if (is_volatile && !features.HasAtomicLdrdAndStrd()) { | 
 |       locations->AddTemp(Location::RequiresRegister());  // Temp_lo. | 
 |       locations->AddTemp(Location::RequiresRegister());  // Temp_hi. | 
 |     } | 
 |   } else if (type == DataType::Type::kReference) { | 
 |     // Temps for card-marking. | 
 |     locations->AddTemp(Location::RequiresRegister());  // Temp. | 
 |     locations->AddTemp(Location::RequiresRegister());  // Card. | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ false, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ false, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ true, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kReference, /* is_volatile= */ false, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kReference, /* is_volatile= */ false, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kReference, /* is_volatile= */ true, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ false, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ false, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) { | 
 |   CreateIntIntIntIntToVoid( | 
 |       allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ true, invoke); | 
 | } | 
 |  | 
 | static void GenUnsafePut(LocationSummary* locations, | 
 |                          DataType::Type type, | 
 |                          bool is_volatile, | 
 |                          bool is_ordered, | 
 |                          CodeGeneratorARMVIXL* codegen) { | 
 |   ArmVIXLAssembler* assembler = codegen->GetAssembler(); | 
 |  | 
 |   vixl32::Register base = RegisterFrom(locations->InAt(1));       // Object pointer. | 
 |   vixl32::Register offset = LowRegisterFrom(locations->InAt(2));  // Long offset, lo part only. | 
 |   vixl32::Register value; | 
 |  | 
 |   if (is_volatile || is_ordered) { | 
 |     __ Dmb(vixl32::ISH); | 
 |   } | 
 |  | 
 |   if (type == DataType::Type::kInt64) { | 
 |     vixl32::Register value_lo = LowRegisterFrom(locations->InAt(3)); | 
 |     vixl32::Register value_hi = HighRegisterFrom(locations->InAt(3)); | 
 |     value = value_lo; | 
 |     if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { | 
 |       vixl32::Register temp_lo = RegisterFrom(locations->GetTemp(0)); | 
 |       vixl32::Register temp_hi = RegisterFrom(locations->GetTemp(1)); | 
 |       UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |       const vixl32::Register temp_reg = temps.Acquire(); | 
 |  | 
 |       __ Add(temp_reg, base, offset); | 
 |       vixl32::Label loop_head; | 
 |       __ Bind(&loop_head); | 
 |       __ Ldrexd(temp_lo, temp_hi, MemOperand(temp_reg)); | 
 |       __ Strexd(temp_lo, value_lo, value_hi, MemOperand(temp_reg)); | 
 |       __ Cmp(temp_lo, 0); | 
 |       __ B(ne, &loop_head, /* is_far_target= */ false); | 
 |     } else { | 
 |       __ Strd(value_lo, value_hi, MemOperand(base, offset)); | 
 |     } | 
 |   } else { | 
 |     value = RegisterFrom(locations->InAt(3)); | 
 |     vixl32::Register source = value; | 
 |     if (kPoisonHeapReferences && type == DataType::Type::kReference) { | 
 |       vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); | 
 |       __ Mov(temp, value); | 
 |       assembler->PoisonHeapReference(temp); | 
 |       source = temp; | 
 |     } | 
 |     __ Str(source, MemOperand(base, offset)); | 
 |   } | 
 |  | 
 |   if (is_volatile) { | 
 |     __ Dmb(vixl32::ISH); | 
 |   } | 
 |  | 
 |   if (type == DataType::Type::kReference) { | 
 |     vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); | 
 |     vixl32::Register card = RegisterFrom(locations->GetTemp(1)); | 
 |     bool value_can_be_null = true;  // TODO: Worth finding out this information? | 
 |     codegen->MarkGCCard(temp, card, base, value, value_can_be_null); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kInt32, | 
 |                /* is_volatile= */ false, | 
 |                /* is_ordered= */ false, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kInt32, | 
 |                /* is_volatile= */ false, | 
 |                /* is_ordered= */ true, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kInt32, | 
 |                /* is_volatile= */ true, | 
 |                /* is_ordered= */ false, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kReference, | 
 |                /* is_volatile= */ false, | 
 |                /* is_ordered= */ false, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kReference, | 
 |                /* is_volatile= */ false, | 
 |                /* is_ordered= */ true, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kReference, | 
 |                /* is_volatile= */ true, | 
 |                /* is_ordered= */ false, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kInt64, | 
 |                /* is_volatile= */ false, | 
 |                /* is_ordered= */ false, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kInt64, | 
 |                /* is_volatile= */ false, | 
 |                /* is_ordered= */ true, | 
 |                codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) { | 
 |   GenUnsafePut(invoke->GetLocations(), | 
 |                DataType::Type::kInt64, | 
 |                /* is_volatile= */ true, | 
 |                /* is_ordered= */ false, | 
 |                codegen_); | 
 | } | 
 |  | 
 | static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   bool can_call = kEmitCompilerReadBarrier && | 
 |       kUseBakerReadBarrier && | 
 |       (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); | 
 |   LocationSummary* locations = | 
 |       new (allocator) LocationSummary(invoke, | 
 |                                       can_call | 
 |                                           ? LocationSummary::kCallOnSlowPath | 
 |                                           : LocationSummary::kNoCall, | 
 |                                       kIntrinsified); | 
 |   if (can_call) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |   locations->SetInAt(0, Location::NoLocation());        // Unused receiver. | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->SetInAt(2, Location::RequiresRegister()); | 
 |   locations->SetInAt(3, Location::RequiresRegister()); | 
 |   locations->SetInAt(4, Location::RequiresRegister()); | 
 |  | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |  | 
 |   // Temporary registers used in CAS. In the object case | 
 |   // (UnsafeCASObject intrinsic), these are also used for | 
 |   // card-marking, and possibly for (Baker) read barrier. | 
 |   locations->AddTemp(Location::RequiresRegister());  // Pointer. | 
 |   locations->AddTemp(Location::RequiresRegister());  // Temp 1. | 
 | } | 
 |  | 
 | class BakerReadBarrierCasSlowPathARMVIXL : public SlowPathCodeARMVIXL { | 
 |  public: | 
 |   explicit BakerReadBarrierCasSlowPathARMVIXL(HInvoke* invoke) | 
 |       : SlowPathCodeARMVIXL(invoke) {} | 
 |  | 
 |   const char* GetDescription() const override { return "BakerReadBarrierCasSlowPathARMVIXL"; } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) override { | 
 |     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen); | 
 |     ArmVIXLAssembler* assembler = arm_codegen->GetAssembler(); | 
 |     __ Bind(GetEntryLabel()); | 
 |  | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     vixl32::Register base = InputRegisterAt(instruction_, 1);           // Object pointer. | 
 |     vixl32::Register offset = LowRegisterFrom(locations->InAt(2));      // Offset (discard high 4B). | 
 |     vixl32::Register expected = InputRegisterAt(instruction_, 3);       // Expected. | 
 |     vixl32::Register value = InputRegisterAt(instruction_, 4);          // Value. | 
 |  | 
 |     vixl32::Register tmp_ptr = RegisterFrom(locations->GetTemp(0));     // Pointer to actual memory. | 
 |     vixl32::Register tmp = RegisterFrom(locations->GetTemp(1));         // Temporary. | 
 |  | 
 |     // The `tmp` is initialized to `[tmp_ptr] - expected` in the main path. Reconstruct | 
 |     // and mark the old value and compare with `expected`. We clobber `tmp_ptr` in the | 
 |     // process due to lack of other temps suitable for the read barrier. | 
 |     arm_codegen->GenerateUnsafeCasOldValueAddWithBakerReadBarrier(tmp_ptr, tmp, expected); | 
 |     __ Cmp(tmp_ptr, expected); | 
 |     __ B(ne, GetExitLabel()); | 
 |  | 
 |     // The old value we have read did not match `expected` (which is always a to-space reference) | 
 |     // but after the read barrier in GenerateUnsafeCasOldValueAddWithBakerReadBarrier() the marked | 
 |     // to-space value matched, so the old value must be a from-space reference to the same object. | 
 |     // Do the same CAS loop as the main path but check for both `expected` and the unmarked | 
 |     // old value representing the to-space and from-space references for the same object. | 
 |  | 
 |     UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |     vixl32::Register adjusted_old_value = temps.Acquire();      // For saved `tmp` from main path. | 
 |  | 
 |     // Recalculate the `tmp_ptr` clobbered above and store the `adjusted_old_value`, i.e. IP. | 
 |     __ Add(tmp_ptr, base, offset); | 
 |     __ Mov(adjusted_old_value, tmp); | 
 |  | 
 |     // do { | 
 |     //   tmp = [r_ptr] - expected; | 
 |     // } while ((tmp == 0 || tmp == adjusted_old_value) && failure([r_ptr] <- r_new_value)); | 
 |     // result = (tmp == 0 || tmp == adjusted_old_value); | 
 |  | 
 |     vixl32::Label loop_head; | 
 |     __ Bind(&loop_head); | 
 |     __ Ldrex(tmp, MemOperand(tmp_ptr));  // This can now load null stored by another thread. | 
 |     assembler->MaybeUnpoisonHeapReference(tmp); | 
 |     __ Subs(tmp, tmp, expected);         // Use SUBS to get non-zero value if both compares fail. | 
 |     { | 
 |       // If the newly loaded value did not match `expected`, compare with `adjusted_old_value`. | 
 |       ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * k16BitT32InstructionSizeInBytes); | 
 |       __ it(ne); | 
 |       __ cmp(ne, tmp, adjusted_old_value); | 
 |     } | 
 |     __ B(ne, GetExitLabel()); | 
 |     assembler->MaybePoisonHeapReference(value); | 
 |     __ Strex(tmp, value, MemOperand(tmp_ptr)); | 
 |     assembler->MaybeUnpoisonHeapReference(value); | 
 |     __ Cmp(tmp, 0); | 
 |     __ B(ne, &loop_head, /* is_far_target= */ false); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 | }; | 
 |  | 
 | static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) { | 
 |   DCHECK_NE(type, DataType::Type::kInt64); | 
 |  | 
 |   ArmVIXLAssembler* assembler = codegen->GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   vixl32::Register out = OutputRegister(invoke);                      // Boolean result. | 
 |  | 
 |   vixl32::Register base = InputRegisterAt(invoke, 1);                 // Object pointer. | 
 |   vixl32::Register offset = LowRegisterFrom(locations->InAt(2));      // Offset (discard high 4B). | 
 |   vixl32::Register expected = InputRegisterAt(invoke, 3);             // Expected. | 
 |   vixl32::Register value = InputRegisterAt(invoke, 4);                // Value. | 
 |  | 
 |   vixl32::Register tmp_ptr = RegisterFrom(locations->GetTemp(0));     // Pointer to actual memory. | 
 |   vixl32::Register tmp = RegisterFrom(locations->GetTemp(1));         // Temporary. | 
 |  | 
 |   vixl32::Label loop_exit_label; | 
 |   vixl32::Label* loop_exit = &loop_exit_label; | 
 |   vixl32::Label* failure = &loop_exit_label; | 
 |  | 
 |   if (type == DataType::Type::kReference) { | 
 |     // The only read barrier implementation supporting the | 
 |     // UnsafeCASObject intrinsic is the Baker-style read barriers. | 
 |     DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); | 
 |  | 
 |     // Mark card for object assuming new value is stored. Worst case we will mark an unchanged | 
 |     // object and scan the receiver at the next GC for nothing. | 
 |     bool value_can_be_null = true;  // TODO: Worth finding out this information? | 
 |     codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null); | 
 |  | 
 |     if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |       // If marking, check if the stored reference is a from-space reference to the same | 
 |       // object as the to-space reference `expected`. If so, perform a custom CAS loop. | 
 |       BakerReadBarrierCasSlowPathARMVIXL* slow_path = | 
 |           new (codegen->GetScopedAllocator()) BakerReadBarrierCasSlowPathARMVIXL(invoke); | 
 |       codegen->AddSlowPath(slow_path); | 
 |       failure = slow_path->GetEntryLabel(); | 
 |       loop_exit = slow_path->GetExitLabel(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Prevent reordering with prior memory operations. | 
 |   // Emit a DMB ISH instruction instead of an DMB ISHST one, as the | 
 |   // latter allows a preceding load to be delayed past the STREX | 
 |   // instruction below. | 
 |   __ Dmb(vixl32::ISH); | 
 |  | 
 |   __ Add(tmp_ptr, base, offset); | 
 |  | 
 |   // do { | 
 |   //   tmp = [r_ptr] - expected; | 
 |   // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); | 
 |   // result = tmp == 0; | 
 |  | 
 |   vixl32::Label loop_head; | 
 |   __ Bind(&loop_head); | 
 |   __ Ldrex(tmp, MemOperand(tmp_ptr)); | 
 |   if (type == DataType::Type::kReference) { | 
 |     assembler->MaybeUnpoisonHeapReference(tmp); | 
 |   } | 
 |   __ Subs(tmp, tmp, expected); | 
 |   static_cast<vixl32::MacroAssembler*>(assembler->GetVIXLAssembler())-> | 
 |       B(ne, failure, /* hint= */ (failure == loop_exit) ? kNear : kBranchWithoutHint); | 
 |   if (type == DataType::Type::kReference) { | 
 |     assembler->MaybePoisonHeapReference(value); | 
 |   } | 
 |   __ Strex(tmp, value, MemOperand(tmp_ptr)); | 
 |   if (type == DataType::Type::kReference) { | 
 |     assembler->MaybeUnpoisonHeapReference(value); | 
 |   } | 
 |   __ Cmp(tmp, 0); | 
 |   __ B(ne, &loop_head, /* is_far_target= */ false); | 
 |  | 
 |   __ Bind(loop_exit); | 
 |  | 
 |   __ Dmb(vixl32::ISH); | 
 |  | 
 |   // out = tmp == 0. | 
 |   __ Clz(out, tmp); | 
 |   __ Lsr(out, out, WhichPowerOf2(out.GetSizeInBits())); | 
 |  | 
 |   if (type == DataType::Type::kReference) { | 
 |     codegen->MaybeGenerateMarkingRegisterCheck(/* code= */ 128); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) { | 
 |   CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); | 
 | } | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) { | 
 |   // The only read barrier implementation supporting the | 
 |   // UnsafeCASObject intrinsic is the Baker-style read barriers. | 
 |   if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { | 
 |     return; | 
 |   } | 
 |  | 
 |   CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) { | 
 |   GenCas(invoke, DataType::Type::kInt32, codegen_); | 
 | } | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) { | 
 |   // The only read barrier implementation supporting the | 
 |   // UnsafeCASObject intrinsic is the Baker-style read barriers. | 
 |   DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); | 
 |  | 
 |   GenCas(invoke, DataType::Type::kReference, codegen_); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) { | 
 |   // The inputs plus one temp. | 
 |   LocationSummary* locations = | 
 |       new (allocator_) LocationSummary(invoke, | 
 |                                        invoke->InputAt(1)->CanBeNull() | 
 |                                            ? LocationSummary::kCallOnSlowPath | 
 |                                            : LocationSummary::kNoCall, | 
 |                                        kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 |   // Need temporary registers for String compression's feature. | 
 |   if (mirror::kUseStringCompression) { | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
 | } | 
 |  | 
 | // Forward declaration. | 
 | // | 
 | // ART build system imposes a size limit (deviceFrameSizeLimit) on the stack frames generated | 
 | // by the compiler for every C++ function, and if this function gets inlined in | 
 | // IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo, the limit will be exceeded, resulting in a | 
 | // build failure. That is the reason why NO_INLINE attribute is used. | 
 | static void NO_INLINE GenerateStringCompareToLoop(ArmVIXLAssembler* assembler, | 
 |                                                   HInvoke* invoke, | 
 |                                                   vixl32::Label* end, | 
 |                                                   vixl32::Label* different_compression); | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   const vixl32::Register str = InputRegisterAt(invoke, 0); | 
 |   const vixl32::Register arg = InputRegisterAt(invoke, 1); | 
 |   const vixl32::Register out = OutputRegister(invoke); | 
 |  | 
 |   const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0)); | 
 |   const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); | 
 |   const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2)); | 
 |   vixl32::Register temp3; | 
 |   if (mirror::kUseStringCompression) { | 
 |     temp3 = RegisterFrom(locations->GetTemp(3)); | 
 |   } | 
 |  | 
 |   vixl32::Label end; | 
 |   vixl32::Label different_compression; | 
 |  | 
 |   // Get offsets of count and value fields within a string object. | 
 |   const int32_t count_offset = mirror::String::CountOffset().Int32Value(); | 
 |  | 
 |   // Note that the null check must have been done earlier. | 
 |   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); | 
 |  | 
 |   // Take slow path and throw if input can be and is null. | 
 |   SlowPathCodeARMVIXL* slow_path = nullptr; | 
 |   const bool can_slow_path = invoke->InputAt(1)->CanBeNull(); | 
 |   if (can_slow_path) { | 
 |     slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     __ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel()); | 
 |   } | 
 |  | 
 |   // Reference equality check, return 0 if same reference. | 
 |   __ Subs(out, str, arg); | 
 |   __ B(eq, &end); | 
 |  | 
 |   if (mirror::kUseStringCompression) { | 
 |     // Load `count` fields of this and argument strings. | 
 |     __ Ldr(temp3, MemOperand(str, count_offset)); | 
 |     __ Ldr(temp2, MemOperand(arg, count_offset)); | 
 |     // Extract lengths from the `count` fields. | 
 |     __ Lsr(temp0, temp3, 1u); | 
 |     __ Lsr(temp1, temp2, 1u); | 
 |   } else { | 
 |     // Load lengths of this and argument strings. | 
 |     __ Ldr(temp0, MemOperand(str, count_offset)); | 
 |     __ Ldr(temp1, MemOperand(arg, count_offset)); | 
 |   } | 
 |   // out = length diff. | 
 |   __ Subs(out, temp0, temp1); | 
 |   // temp0 = min(len(str), len(arg)). | 
 |  | 
 |   { | 
 |     ExactAssemblyScope aas(assembler->GetVIXLAssembler(), | 
 |                            2 * kMaxInstructionSizeInBytes, | 
 |                            CodeBufferCheckScope::kMaximumSize); | 
 |  | 
 |     __ it(gt); | 
 |     __ mov(gt, temp0, temp1); | 
 |   } | 
 |  | 
 |   // Shorter string is empty? | 
 |   // Note that mirror::kUseStringCompression==true introduces lots of instructions, | 
 |   // which makes &end label far away from this branch and makes it not 'CBZ-encodable'. | 
 |   __ CompareAndBranchIfZero(temp0, &end, mirror::kUseStringCompression); | 
 |  | 
 |   if (mirror::kUseStringCompression) { | 
 |     // Check if both strings using same compression style to use this comparison loop. | 
 |     __ Eors(temp2, temp2, temp3); | 
 |     __ Lsrs(temp2, temp2, 1u); | 
 |     __ B(cs, &different_compression); | 
 |     // For string compression, calculate the number of bytes to compare (not chars). | 
 |     // This could in theory exceed INT32_MAX, so treat temp0 as unsigned. | 
 |     __ Lsls(temp3, temp3, 31u);  // Extract purely the compression flag. | 
 |  | 
 |     ExactAssemblyScope aas(assembler->GetVIXLAssembler(), | 
 |                            2 * kMaxInstructionSizeInBytes, | 
 |                            CodeBufferCheckScope::kMaximumSize); | 
 |  | 
 |     __ it(ne); | 
 |     __ add(ne, temp0, temp0, temp0); | 
 |   } | 
 |  | 
 |  | 
 |   GenerateStringCompareToLoop(assembler, invoke, &end, &different_compression); | 
 |  | 
 |   __ Bind(&end); | 
 |  | 
 |   if (can_slow_path) { | 
 |     __ Bind(slow_path->GetExitLabel()); | 
 |   } | 
 | } | 
 |  | 
 | static void GenerateStringCompareToLoop(ArmVIXLAssembler* assembler, | 
 |                                                   HInvoke* invoke, | 
 |                                                   vixl32::Label* end, | 
 |                                                   vixl32::Label* different_compression) { | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   const vixl32::Register str = InputRegisterAt(invoke, 0); | 
 |   const vixl32::Register arg = InputRegisterAt(invoke, 1); | 
 |   const vixl32::Register out = OutputRegister(invoke); | 
 |  | 
 |   const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0)); | 
 |   const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); | 
 |   const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2)); | 
 |   vixl32::Register temp3; | 
 |   if (mirror::kUseStringCompression) { | 
 |     temp3 = RegisterFrom(locations->GetTemp(3)); | 
 |   } | 
 |  | 
 |   vixl32::Label loop; | 
 |   vixl32::Label find_char_diff; | 
 |  | 
 |   const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); | 
 |   // Store offset of string value in preparation for comparison loop. | 
 |   __ Mov(temp1, value_offset); | 
 |  | 
 |   // Assertions that must hold in order to compare multiple characters at a time. | 
 |   CHECK_ALIGNED(value_offset, 8); | 
 |   static_assert(IsAligned<8>(kObjectAlignment), | 
 |                 "String data must be 8-byte aligned for unrolled CompareTo loop."); | 
 |  | 
 |   const unsigned char_size = DataType::Size(DataType::Type::kUint16); | 
 |   DCHECK_EQ(char_size, 2u); | 
 |  | 
 |   UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |  | 
 |   vixl32::Label find_char_diff_2nd_cmp; | 
 |   // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment). | 
 |   __ Bind(&loop); | 
 |   vixl32::Register temp_reg = temps.Acquire(); | 
 |   __ Ldr(temp_reg, MemOperand(str, temp1)); | 
 |   __ Ldr(temp2, MemOperand(arg, temp1)); | 
 |   __ Cmp(temp_reg, temp2); | 
 |   __ B(ne, &find_char_diff, /* is_far_target= */ false); | 
 |   __ Add(temp1, temp1, char_size * 2); | 
 |  | 
 |   __ Ldr(temp_reg, MemOperand(str, temp1)); | 
 |   __ Ldr(temp2, MemOperand(arg, temp1)); | 
 |   __ Cmp(temp_reg, temp2); | 
 |   __ B(ne, &find_char_diff_2nd_cmp, /* is_far_target= */ false); | 
 |   __ Add(temp1, temp1, char_size * 2); | 
 |   // With string compression, we have compared 8 bytes, otherwise 4 chars. | 
 |   __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4)); | 
 |   __ B(hi, &loop, /* is_far_target= */ false); | 
 |   __ B(end); | 
 |  | 
 |   __ Bind(&find_char_diff_2nd_cmp); | 
 |   if (mirror::kUseStringCompression) { | 
 |     __ Subs(temp0, temp0, 4);  // 4 bytes previously compared. | 
 |     __ B(ls, end, /* is_far_target= */ false);  // Was the second comparison fully beyond the end? | 
 |   } else { | 
 |     // Without string compression, we can start treating temp0 as signed | 
 |     // and rely on the signed comparison below. | 
 |     __ Sub(temp0, temp0, 2); | 
 |   } | 
 |  | 
 |   // Find the single character difference. | 
 |   __ Bind(&find_char_diff); | 
 |   // Get the bit position of the first character that differs. | 
 |   __ Eor(temp1, temp2, temp_reg); | 
 |   __ Rbit(temp1, temp1); | 
 |   __ Clz(temp1, temp1); | 
 |  | 
 |   // temp0 = number of characters remaining to compare. | 
 |   // (Without string compression, it could be < 1 if a difference is found by the second CMP | 
 |   // in the comparison loop, and after the end of the shorter string data). | 
 |  | 
 |   // Without string compression (temp1 >> 4) = character where difference occurs between the last | 
 |   // two words compared, in the interval [0,1]. | 
 |   // (0 for low half-word different, 1 for high half-word different). | 
 |   // With string compression, (temp1 << 3) = byte where the difference occurs, | 
 |   // in the interval [0,3]. | 
 |  | 
 |   // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside | 
 |   // the remaining string data, so just return length diff (out). | 
 |   // The comparison is unsigned for string compression, otherwise signed. | 
 |   __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4))); | 
 |   __ B((mirror::kUseStringCompression ? ls : le), end, /* is_far_target= */ false); | 
 |  | 
 |   // Extract the characters and calculate the difference. | 
 |   if (mirror::kUseStringCompression) { | 
 |     // For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear | 
 |     // 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`. | 
 |     // The compression flag is now in the highest bit of temp3, so let's play some tricks. | 
 |     __ Orr(temp3, temp3, 0xffu << 23);                  // uncompressed ? 0xff800000u : 0x7ff80000u | 
 |     __ Bic(temp1, temp1, Operand(temp3, vixl32::LSR, 31 - 3));  // &= ~(uncompressed ? 0xfu : 0x7u) | 
 |     __ Asr(temp3, temp3, 7u);                           // uncompressed ? 0xffff0000u : 0xff0000u. | 
 |     __ Lsr(temp2, temp2, temp1);                        // Extract second character. | 
 |     __ Lsr(temp3, temp3, 16u);                          // uncompressed ? 0xffffu : 0xffu | 
 |     __ Lsr(out, temp_reg, temp1);                       // Extract first character. | 
 |     __ And(temp2, temp2, temp3); | 
 |     __ And(out, out, temp3); | 
 |   } else { | 
 |     __ Bic(temp1, temp1, 0xf); | 
 |     __ Lsr(temp2, temp2, temp1); | 
 |     __ Lsr(out, temp_reg, temp1); | 
 |     __ Movt(temp2, 0); | 
 |     __ Movt(out, 0); | 
 |   } | 
 |  | 
 |   __ Sub(out, out, temp2); | 
 |   temps.Release(temp_reg); | 
 |  | 
 |   if (mirror::kUseStringCompression) { | 
 |     __ B(end); | 
 |     __ Bind(different_compression); | 
 |  | 
 |     // Comparison for different compression style. | 
 |     const size_t c_char_size = DataType::Size(DataType::Type::kInt8); | 
 |     DCHECK_EQ(c_char_size, 1u); | 
 |  | 
 |     // We want to free up the temp3, currently holding `str.count`, for comparison. | 
 |     // So, we move it to the bottom bit of the iteration count `temp0` which we tnen | 
 |     // need to treat as unsigned. Start by freeing the bit with an ADD and continue | 
 |     // further down by a LSRS+SBC which will flip the meaning of the flag but allow | 
 |     // `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition. | 
 |     __ Add(temp0, temp0, temp0);              // Unlike LSL, this ADD is always 16-bit. | 
 |     // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer. | 
 |     __ Mov(temp1, str); | 
 |     __ Mov(temp2, arg); | 
 |     __ Lsrs(temp3, temp3, 1u);                // Continue the move of the compression flag. | 
 |     { | 
 |       ExactAssemblyScope aas(assembler->GetVIXLAssembler(), | 
 |                              3 * kMaxInstructionSizeInBytes, | 
 |                              CodeBufferCheckScope::kMaximumSize); | 
 |       __ itt(cs);                             // Interleave with selection of temp1 and temp2. | 
 |       __ mov(cs, temp1, arg);                 // Preserves flags. | 
 |       __ mov(cs, temp2, str);                 // Preserves flags. | 
 |     } | 
 |     __ Sbc(temp0, temp0, 0);                  // Complete the move of the compression flag. | 
 |  | 
 |     // Adjust temp1 and temp2 from string pointers to data pointers. | 
 |     __ Add(temp1, temp1, value_offset); | 
 |     __ Add(temp2, temp2, value_offset); | 
 |  | 
 |     vixl32::Label different_compression_loop; | 
 |     vixl32::Label different_compression_diff; | 
 |  | 
 |     // Main loop for different compression. | 
 |     temp_reg = temps.Acquire(); | 
 |     __ Bind(&different_compression_loop); | 
 |     __ Ldrb(temp_reg, MemOperand(temp1, c_char_size, PostIndex)); | 
 |     __ Ldrh(temp3, MemOperand(temp2, char_size, PostIndex)); | 
 |     __ Cmp(temp_reg, temp3); | 
 |     __ B(ne, &different_compression_diff, /* is_far_target= */ false); | 
 |     __ Subs(temp0, temp0, 2); | 
 |     __ B(hi, &different_compression_loop, /* is_far_target= */ false); | 
 |     __ B(end); | 
 |  | 
 |     // Calculate the difference. | 
 |     __ Bind(&different_compression_diff); | 
 |     __ Sub(out, temp_reg, temp3); | 
 |     temps.Release(temp_reg); | 
 |     // Flip the difference if the `arg` is compressed. | 
 |     // `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag. | 
 |     __ Lsrs(temp0, temp0, 1u); | 
 |     static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
 |                   "Expecting 0=compressed, 1=uncompressed"); | 
 |  | 
 |     ExactAssemblyScope aas(assembler->GetVIXLAssembler(), | 
 |                            2 * kMaxInstructionSizeInBytes, | 
 |                            CodeBufferCheckScope::kMaximumSize); | 
 |     __ it(cc); | 
 |     __ rsb(cc, out, out, 0); | 
 |   } | 
 | } | 
 |  | 
 | // The cut off for unrolling the loop in String.equals() intrinsic for const strings. | 
 | // The normal loop plus the pre-header is 9 instructions (18-26 bytes) without string compression | 
 | // and 12 instructions (24-32 bytes) with string compression. We can compare up to 4 bytes in 4 | 
 | // instructions (LDR+LDR+CMP+BNE) and up to 8 bytes in 6 instructions (LDRD+LDRD+CMP+BNE+CMP+BNE). | 
 | // Allow up to 12 instructions (32 bytes) for the unrolled loop. | 
 | constexpr size_t kShortConstStringEqualsCutoffInBytes = 16; | 
 |  | 
 | static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) { | 
 |   if (candidate->IsLoadString()) { | 
 |     HLoadString* load_string = candidate->AsLoadString(); | 
 |     const DexFile& dex_file = load_string->GetDexFile(); | 
 |     return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |  | 
 |   // Temporary registers to store lengths of strings and for calculations. | 
 |   // Using instruction cbz requires a low register, so explicitly set a temp to be R0. | 
 |   locations->AddTemp(LocationFrom(r0)); | 
 |  | 
 |   // For the generic implementation and for long const strings we need an extra temporary. | 
 |   // We do not need it for short const strings, up to 4 bytes, see code generation below. | 
 |   uint32_t const_string_length = 0u; | 
 |   const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); | 
 |   if (const_string == nullptr) { | 
 |     const_string = GetConstString(invoke->InputAt(1), &const_string_length); | 
 |   } | 
 |   bool is_compressed = | 
 |       mirror::kUseStringCompression && | 
 |       const_string != nullptr && | 
 |       mirror::String::DexFileStringAllASCII(const_string, const_string_length); | 
 |   if (const_string == nullptr || const_string_length > (is_compressed ? 4u : 2u)) { | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 |  | 
 |   // TODO: If the String.equals() is used only for an immediately following HIf, we can | 
 |   // mark it as emitted-at-use-site and emit branches directly to the appropriate blocks. | 
 |   // Then we shall need an extra temporary register instead of the output register. | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   vixl32::Register str = InputRegisterAt(invoke, 0); | 
 |   vixl32::Register arg = InputRegisterAt(invoke, 1); | 
 |   vixl32::Register out = OutputRegister(invoke); | 
 |  | 
 |   vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); | 
 |  | 
 |   vixl32::Label loop; | 
 |   vixl32::Label end; | 
 |   vixl32::Label return_true; | 
 |   vixl32::Label return_false; | 
 |   vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &end); | 
 |  | 
 |   // Get offsets of count, value, and class fields within a string object. | 
 |   const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); | 
 |   const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); | 
 |   const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); | 
 |  | 
 |   // Note that the null check must have been done earlier. | 
 |   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); | 
 |  | 
 |   StringEqualsOptimizations optimizations(invoke); | 
 |   if (!optimizations.GetArgumentNotNull()) { | 
 |     // Check if input is null, return false if it is. | 
 |     __ CompareAndBranchIfZero(arg, &return_false, /* is_far_target= */ false); | 
 |   } | 
 |  | 
 |   // Reference equality check, return true if same reference. | 
 |   __ Cmp(str, arg); | 
 |   __ B(eq, &return_true, /* is_far_target= */ false); | 
 |  | 
 |   if (!optimizations.GetArgumentIsString()) { | 
 |     // Instanceof check for the argument by comparing class fields. | 
 |     // All string objects must have the same type since String cannot be subclassed. | 
 |     // Receiver must be a string object, so its class field is equal to all strings' class fields. | 
 |     // If the argument is a string object, its class field must be equal to receiver's class field. | 
 |     // | 
 |     // As the String class is expected to be non-movable, we can read the class | 
 |     // field from String.equals' arguments without read barriers. | 
 |     AssertNonMovableStringClass(); | 
 |     // /* HeapReference<Class> */ temp = str->klass_ | 
 |     __ Ldr(temp, MemOperand(str, class_offset)); | 
 |     // /* HeapReference<Class> */ out = arg->klass_ | 
 |     __ Ldr(out, MemOperand(arg, class_offset)); | 
 |     // Also, because we use the previously loaded class references only in the | 
 |     // following comparison, we don't need to unpoison them. | 
 |     __ Cmp(temp, out); | 
 |     __ B(ne, &return_false, /* is_far_target= */ false); | 
 |   } | 
 |  | 
 |   // Check if one of the inputs is a const string. Do not special-case both strings | 
 |   // being const, such cases should be handled by constant folding if needed. | 
 |   uint32_t const_string_length = 0u; | 
 |   const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); | 
 |   if (const_string == nullptr) { | 
 |     const_string = GetConstString(invoke->InputAt(1), &const_string_length); | 
 |     if (const_string != nullptr) { | 
 |       std::swap(str, arg);  // Make sure the const string is in `str`. | 
 |     } | 
 |   } | 
 |   bool is_compressed = | 
 |       mirror::kUseStringCompression && | 
 |       const_string != nullptr && | 
 |       mirror::String::DexFileStringAllASCII(const_string, const_string_length); | 
 |  | 
 |   if (const_string != nullptr) { | 
 |     // Load `count` field of the argument string and check if it matches the const string. | 
 |     // Also compares the compression style, if differs return false. | 
 |     __ Ldr(temp, MemOperand(arg, count_offset)); | 
 |     __ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed))); | 
 |     __ B(ne, &return_false, /* is_far_target= */ false); | 
 |   } else { | 
 |     // Load `count` fields of this and argument strings. | 
 |     __ Ldr(temp, MemOperand(str, count_offset)); | 
 |     __ Ldr(out, MemOperand(arg, count_offset)); | 
 |     // Check if `count` fields are equal, return false if they're not. | 
 |     // Also compares the compression style, if differs return false. | 
 |     __ Cmp(temp, out); | 
 |     __ B(ne, &return_false, /* is_far_target= */ false); | 
 |   } | 
 |  | 
 |   // Assertions that must hold in order to compare strings 4 bytes at a time. | 
 |   // Ok to do this because strings are zero-padded to kObjectAlignment. | 
 |   DCHECK_ALIGNED(value_offset, 4); | 
 |   static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare."); | 
 |  | 
 |   if (const_string != nullptr && | 
 |       const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes | 
 |                                             : kShortConstStringEqualsCutoffInBytes / 2u)) { | 
 |     // Load and compare the contents. Though we know the contents of the short const string | 
 |     // at compile time, materializing constants may be more code than loading from memory. | 
 |     int32_t offset = value_offset; | 
 |     size_t remaining_bytes = | 
 |         RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 4u); | 
 |     while (remaining_bytes > sizeof(uint32_t)) { | 
 |       vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); | 
 |       UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler()); | 
 |       vixl32::Register temp2 = scratch_scope.Acquire(); | 
 |       __ Ldrd(temp, temp1, MemOperand(str, offset)); | 
 |       __ Ldrd(temp2, out, MemOperand(arg, offset)); | 
 |       __ Cmp(temp, temp2); | 
 |       __ B(ne, &return_false, /* is_far_target= */ false); | 
 |       __ Cmp(temp1, out); | 
 |       __ B(ne, &return_false, /* is_far_target= */ false); | 
 |       offset += 2u * sizeof(uint32_t); | 
 |       remaining_bytes -= 2u * sizeof(uint32_t); | 
 |     } | 
 |     if (remaining_bytes != 0u) { | 
 |       __ Ldr(temp, MemOperand(str, offset)); | 
 |       __ Ldr(out, MemOperand(arg, offset)); | 
 |       __ Cmp(temp, out); | 
 |       __ B(ne, &return_false, /* is_far_target= */ false); | 
 |     } | 
 |   } else { | 
 |     // Return true if both strings are empty. Even with string compression `count == 0` means empty. | 
 |     static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
 |                   "Expecting 0=compressed, 1=uncompressed"); | 
 |     __ CompareAndBranchIfZero(temp, &return_true, /* is_far_target= */ false); | 
 |  | 
 |     if (mirror::kUseStringCompression) { | 
 |       // For string compression, calculate the number of bytes to compare (not chars). | 
 |       // This could in theory exceed INT32_MAX, so treat temp as unsigned. | 
 |       __ Lsrs(temp, temp, 1u);                        // Extract length and check compression flag. | 
 |       ExactAssemblyScope aas(assembler->GetVIXLAssembler(), | 
 |                              2 * kMaxInstructionSizeInBytes, | 
 |                              CodeBufferCheckScope::kMaximumSize); | 
 |       __ it(cs);                                      // If uncompressed, | 
 |       __ add(cs, temp, temp, temp);                   //   double the byte count. | 
 |     } | 
 |  | 
 |     vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); | 
 |     UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler()); | 
 |     vixl32::Register temp2 = scratch_scope.Acquire(); | 
 |  | 
 |     // Store offset of string value in preparation for comparison loop. | 
 |     __ Mov(temp1, value_offset); | 
 |  | 
 |     // Loop to compare strings 4 bytes at a time starting at the front of the string. | 
 |     __ Bind(&loop); | 
 |     __ Ldr(out, MemOperand(str, temp1)); | 
 |     __ Ldr(temp2, MemOperand(arg, temp1)); | 
 |     __ Add(temp1, temp1, Operand::From(sizeof(uint32_t))); | 
 |     __ Cmp(out, temp2); | 
 |     __ B(ne, &return_false, /* is_far_target= */ false); | 
 |     // With string compression, we have compared 4 bytes, otherwise 2 chars. | 
 |     __ Subs(temp, temp, mirror::kUseStringCompression ? 4 : 2); | 
 |     __ B(hi, &loop, /* is_far_target= */ false); | 
 |   } | 
 |  | 
 |   // Return true and exit the function. | 
 |   // If loop does not result in returning false, we return true. | 
 |   __ Bind(&return_true); | 
 |   __ Mov(out, 1); | 
 |   __ B(final_label); | 
 |  | 
 |   // Return false and exit the function. | 
 |   __ Bind(&return_false); | 
 |   __ Mov(out, 0); | 
 |  | 
 |   if (end.IsReferenced()) { | 
 |     __ Bind(&end); | 
 |   } | 
 | } | 
 |  | 
 | static void GenerateVisitStringIndexOf(HInvoke* invoke, | 
 |                                        ArmVIXLAssembler* assembler, | 
 |                                        CodeGeneratorARMVIXL* codegen, | 
 |                                        bool start_at_zero) { | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   // Note that the null check must have been done earlier. | 
 |   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); | 
 |  | 
 |   // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, | 
 |   // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. | 
 |   SlowPathCodeARMVIXL* slow_path = nullptr; | 
 |   HInstruction* code_point = invoke->InputAt(1); | 
 |   if (code_point->IsIntConstant()) { | 
 |     if (static_cast<uint32_t>(Int32ConstantFrom(code_point)) > | 
 |         std::numeric_limits<uint16_t>::max()) { | 
 |       // Always needs the slow-path. We could directly dispatch to it, but this case should be | 
 |       // rare, so for simplicity just put the full slow-path down and branch unconditionally. | 
 |       slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); | 
 |       codegen->AddSlowPath(slow_path); | 
 |       __ B(slow_path->GetEntryLabel()); | 
 |       __ Bind(slow_path->GetExitLabel()); | 
 |       return; | 
 |     } | 
 |   } else if (code_point->GetType() != DataType::Type::kUint16) { | 
 |     vixl32::Register char_reg = InputRegisterAt(invoke, 1); | 
 |     // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`. | 
 |     __ Cmp(char_reg, static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1); | 
 |     slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); | 
 |     codegen->AddSlowPath(slow_path); | 
 |     __ B(hs, slow_path->GetEntryLabel()); | 
 |   } | 
 |  | 
 |   if (start_at_zero) { | 
 |     vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0)); | 
 |     DCHECK(tmp_reg.Is(r2)); | 
 |     // Start-index = 0. | 
 |     __ Mov(tmp_reg, 0); | 
 |   } | 
 |  | 
 |   codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); | 
 |   CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>(); | 
 |  | 
 |   if (slow_path != nullptr) { | 
 |     __ Bind(slow_path->GetExitLabel()); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) { | 
 |   LocationSummary* locations = new (allocator_) LocationSummary( | 
 |       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); | 
 |   // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's | 
 |   // best to align the inputs accordingly. | 
 |   InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); | 
 |   locations->SetOut(LocationFrom(r0)); | 
 |  | 
 |   // Need to send start-index=0. | 
 |   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) { | 
 |   GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) { | 
 |   LocationSummary* locations = new (allocator_) LocationSummary( | 
 |       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); | 
 |   // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's | 
 |   // best to align the inputs accordingly. | 
 |   InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); | 
 |   locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); | 
 |   locations->SetOut(LocationFrom(r0)); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) { | 
 |   GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) { | 
 |   LocationSummary* locations = new (allocator_) LocationSummary( | 
 |       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); | 
 |   InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); | 
 |   locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); | 
 |   locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3))); | 
 |   locations->SetOut(LocationFrom(r0)); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   vixl32::Register byte_array = InputRegisterAt(invoke, 0); | 
 |   __ Cmp(byte_array, 0); | 
 |   SlowPathCodeARMVIXL* slow_path = | 
 |       new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   __ B(eq, slow_path->GetEntryLabel()); | 
 |  | 
 |   codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); | 
 |   CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); | 
 |   InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); | 
 |   locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); | 
 |   locations->SetOut(LocationFrom(r0)); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) { | 
 |   // No need to emit code checking whether `locations->InAt(2)` is a null | 
 |   // pointer, as callers of the native method | 
 |   // | 
 |   //   java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) | 
 |   // | 
 |   // all include a null check on `data` before calling that method. | 
 |   codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) { | 
 |   LocationSummary* locations = new (allocator_) LocationSummary( | 
 |       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); | 
 |   InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetOut(LocationFrom(r0)); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   vixl32::Register string_to_copy = InputRegisterAt(invoke, 0); | 
 |   __ Cmp(string_to_copy, 0); | 
 |   SlowPathCodeARMVIXL* slow_path = | 
 |       new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   __ B(eq, slow_path->GetEntryLabel()); | 
 |  | 
 |   codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path); | 
 |   CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); | 
 |  | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) { | 
 |   // The only read barrier implementation supporting the | 
 |   // SystemArrayCopy intrinsic is the Baker-style read barriers. | 
 |   if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { | 
 |     return; | 
 |   } | 
 |  | 
 |   CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   if (locations == nullptr) { | 
 |     return; | 
 |   } | 
 |  | 
 |   HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); | 
 |   HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); | 
 |   HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); | 
 |  | 
 |   if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) { | 
 |     locations->SetInAt(1, Location::RequiresRegister()); | 
 |   } | 
 |   if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) { | 
 |     locations->SetInAt(3, Location::RequiresRegister()); | 
 |   } | 
 |   if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) { | 
 |     locations->SetInAt(4, Location::RequiresRegister()); | 
 |   } | 
 |   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |     // Temporary register IP cannot be used in | 
 |     // ReadBarrierSystemArrayCopySlowPathARM (because that register | 
 |     // is clobbered by ReadBarrierMarkRegX entry points). Get an extra | 
 |     // temporary register from the register allocator. | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | static void CheckPosition(ArmVIXLAssembler* assembler, | 
 |                           Location pos, | 
 |                           vixl32::Register input, | 
 |                           Location length, | 
 |                           SlowPathCodeARMVIXL* slow_path, | 
 |                           vixl32::Register temp, | 
 |                           bool length_is_input_length = false) { | 
 |   // Where is the length in the Array? | 
 |   const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); | 
 |  | 
 |   if (pos.IsConstant()) { | 
 |     int32_t pos_const = Int32ConstantFrom(pos); | 
 |     if (pos_const == 0) { | 
 |       if (!length_is_input_length) { | 
 |         // Check that length(input) >= length. | 
 |         __ Ldr(temp, MemOperand(input, length_offset)); | 
 |         if (length.IsConstant()) { | 
 |           __ Cmp(temp, Int32ConstantFrom(length)); | 
 |         } else { | 
 |           __ Cmp(temp, RegisterFrom(length)); | 
 |         } | 
 |         __ B(lt, slow_path->GetEntryLabel()); | 
 |       } | 
 |     } else { | 
 |       // Check that length(input) >= pos. | 
 |       __ Ldr(temp, MemOperand(input, length_offset)); | 
 |       __ Subs(temp, temp, pos_const); | 
 |       __ B(lt, slow_path->GetEntryLabel()); | 
 |  | 
 |       // Check that (length(input) - pos) >= length. | 
 |       if (length.IsConstant()) { | 
 |         __ Cmp(temp, Int32ConstantFrom(length)); | 
 |       } else { | 
 |         __ Cmp(temp, RegisterFrom(length)); | 
 |       } | 
 |       __ B(lt, slow_path->GetEntryLabel()); | 
 |     } | 
 |   } else if (length_is_input_length) { | 
 |     // The only way the copy can succeed is if pos is zero. | 
 |     vixl32::Register pos_reg = RegisterFrom(pos); | 
 |     __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel()); | 
 |   } else { | 
 |     // Check that pos >= 0. | 
 |     vixl32::Register pos_reg = RegisterFrom(pos); | 
 |     __ Cmp(pos_reg, 0); | 
 |     __ B(lt, slow_path->GetEntryLabel()); | 
 |  | 
 |     // Check that pos <= length(input). | 
 |     __ Ldr(temp, MemOperand(input, length_offset)); | 
 |     __ Subs(temp, temp, pos_reg); | 
 |     __ B(lt, slow_path->GetEntryLabel()); | 
 |  | 
 |     // Check that (length(input) - pos) >= length. | 
 |     if (length.IsConstant()) { | 
 |       __ Cmp(temp, Int32ConstantFrom(length)); | 
 |     } else { | 
 |       __ Cmp(temp, RegisterFrom(length)); | 
 |     } | 
 |     __ B(lt, slow_path->GetEntryLabel()); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) { | 
 |   // The only read barrier implementation supporting the | 
 |   // SystemArrayCopy intrinsic is the Baker-style read barriers. | 
 |   DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); | 
 |  | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
 |   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); | 
 |  | 
 |   vixl32::Register src = InputRegisterAt(invoke, 0); | 
 |   Location src_pos = locations->InAt(1); | 
 |   vixl32::Register dest = InputRegisterAt(invoke, 2); | 
 |   Location dest_pos = locations->InAt(3); | 
 |   Location length = locations->InAt(4); | 
 |   Location temp1_loc = locations->GetTemp(0); | 
 |   vixl32::Register temp1 = RegisterFrom(temp1_loc); | 
 |   Location temp2_loc = locations->GetTemp(1); | 
 |   vixl32::Register temp2 = RegisterFrom(temp2_loc); | 
 |   Location temp3_loc = locations->GetTemp(2); | 
 |   vixl32::Register temp3 = RegisterFrom(temp3_loc); | 
 |  | 
 |   SlowPathCodeARMVIXL* intrinsic_slow_path = | 
 |       new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); | 
 |   codegen_->AddSlowPath(intrinsic_slow_path); | 
 |  | 
 |   vixl32::Label conditions_on_positions_validated; | 
 |   SystemArrayCopyOptimizations optimizations(invoke); | 
 |  | 
 |   // If source and destination are the same, we go to slow path if we need to do | 
 |   // forward copying. | 
 |   if (src_pos.IsConstant()) { | 
 |     int32_t src_pos_constant = Int32ConstantFrom(src_pos); | 
 |     if (dest_pos.IsConstant()) { | 
 |       int32_t dest_pos_constant = Int32ConstantFrom(dest_pos); | 
 |       if (optimizations.GetDestinationIsSource()) { | 
 |         // Checked when building locations. | 
 |         DCHECK_GE(src_pos_constant, dest_pos_constant); | 
 |       } else if (src_pos_constant < dest_pos_constant) { | 
 |         __ Cmp(src, dest); | 
 |         __ B(eq, intrinsic_slow_path->GetEntryLabel()); | 
 |       } | 
 |  | 
 |       // Checked when building locations. | 
 |       DCHECK(!optimizations.GetDestinationIsSource() | 
 |              || (src_pos_constant >= Int32ConstantFrom(dest_pos))); | 
 |     } else { | 
 |       if (!optimizations.GetDestinationIsSource()) { | 
 |         __ Cmp(src, dest); | 
 |         __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false); | 
 |       } | 
 |       __ Cmp(RegisterFrom(dest_pos), src_pos_constant); | 
 |       __ B(gt, intrinsic_slow_path->GetEntryLabel()); | 
 |     } | 
 |   } else { | 
 |     if (!optimizations.GetDestinationIsSource()) { | 
 |       __ Cmp(src, dest); | 
 |       __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false); | 
 |     } | 
 |     if (dest_pos.IsConstant()) { | 
 |       int32_t dest_pos_constant = Int32ConstantFrom(dest_pos); | 
 |       __ Cmp(RegisterFrom(src_pos), dest_pos_constant); | 
 |     } else { | 
 |       __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos)); | 
 |     } | 
 |     __ B(lt, intrinsic_slow_path->GetEntryLabel()); | 
 |   } | 
 |  | 
 |   __ Bind(&conditions_on_positions_validated); | 
 |  | 
 |   if (!optimizations.GetSourceIsNotNull()) { | 
 |     // Bail out if the source is null. | 
 |     __ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel()); | 
 |   } | 
 |  | 
 |   if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { | 
 |     // Bail out if the destination is null. | 
 |     __ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel()); | 
 |   } | 
 |  | 
 |   // If the length is negative, bail out. | 
 |   // We have already checked in the LocationsBuilder for the constant case. | 
 |   if (!length.IsConstant() && | 
 |       !optimizations.GetCountIsSourceLength() && | 
 |       !optimizations.GetCountIsDestinationLength()) { | 
 |     __ Cmp(RegisterFrom(length), 0); | 
 |     __ B(lt, intrinsic_slow_path->GetEntryLabel()); | 
 |   } | 
 |  | 
 |   // Validity checks: source. | 
 |   CheckPosition(assembler, | 
 |                 src_pos, | 
 |                 src, | 
 |                 length, | 
 |                 intrinsic_slow_path, | 
 |                 temp1, | 
 |                 optimizations.GetCountIsSourceLength()); | 
 |  | 
 |   // Validity checks: dest. | 
 |   CheckPosition(assembler, | 
 |                 dest_pos, | 
 |                 dest, | 
 |                 length, | 
 |                 intrinsic_slow_path, | 
 |                 temp1, | 
 |                 optimizations.GetCountIsDestinationLength()); | 
 |  | 
 |   if (!optimizations.GetDoesNotNeedTypeCheck()) { | 
 |     // Check whether all elements of the source array are assignable to the component | 
 |     // type of the destination array. We do two checks: the classes are the same, | 
 |     // or the destination is Object[]. If none of these checks succeed, we go to the | 
 |     // slow path. | 
 |  | 
 |     if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |       if (!optimizations.GetSourceIsNonPrimitiveArray()) { | 
 |         // /* HeapReference<Class> */ temp1 = src->klass_ | 
 |         codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |             invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false); | 
 |         // Bail out if the source is not a non primitive array. | 
 |         // /* HeapReference<Class> */ temp1 = temp1->component_type_ | 
 |         codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |             invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); | 
 |         __ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel()); | 
 |         // If heap poisoning is enabled, `temp1` has been unpoisoned | 
 |         // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. | 
 |         // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_); | 
 |         __ Ldrh(temp1, MemOperand(temp1, primitive_offset)); | 
 |         static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |         __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); | 
 |       } | 
 |  | 
 |       // /* HeapReference<Class> */ temp1 = dest->klass_ | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |           invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check= */ false); | 
 |  | 
 |       if (!optimizations.GetDestinationIsNonPrimitiveArray()) { | 
 |         // Bail out if the destination is not a non primitive array. | 
 |         // | 
 |         // Register `temp1` is not trashed by the read barrier emitted | 
 |         // by GenerateFieldLoadWithBakerReadBarrier below, as that | 
 |         // method produces a call to a ReadBarrierMarkRegX entry point, | 
 |         // which saves all potentially live registers, including | 
 |         // temporaries such a `temp1`. | 
 |         // /* HeapReference<Class> */ temp2 = temp1->component_type_ | 
 |         codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |             invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check= */ false); | 
 |         __ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel()); | 
 |         // If heap poisoning is enabled, `temp2` has been unpoisoned | 
 |         // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. | 
 |         // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_); | 
 |         __ Ldrh(temp2, MemOperand(temp2, primitive_offset)); | 
 |         static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |         __ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel()); | 
 |       } | 
 |  | 
 |       // For the same reason given earlier, `temp1` is not trashed by the | 
 |       // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. | 
 |       // /* HeapReference<Class> */ temp2 = src->klass_ | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |           invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check= */ false); | 
 |       // Note: if heap poisoning is on, we are comparing two unpoisoned references here. | 
 |       __ Cmp(temp1, temp2); | 
 |  | 
 |       if (optimizations.GetDestinationIsTypedObjectArray()) { | 
 |         vixl32::Label do_copy; | 
 |         __ B(eq, &do_copy, /* is_far_target= */ false); | 
 |         // /* HeapReference<Class> */ temp1 = temp1->component_type_ | 
 |         codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |             invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); | 
 |         // /* HeapReference<Class> */ temp1 = temp1->super_class_ | 
 |         // We do not need to emit a read barrier for the following | 
 |         // heap reference load, as `temp1` is only used in a | 
 |         // comparison with null below, and this reference is not | 
 |         // kept afterwards. | 
 |         __ Ldr(temp1, MemOperand(temp1, super_offset)); | 
 |         __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); | 
 |         __ Bind(&do_copy); | 
 |       } else { | 
 |         __ B(ne, intrinsic_slow_path->GetEntryLabel()); | 
 |       } | 
 |     } else { | 
 |       // Non read barrier code. | 
 |  | 
 |       // /* HeapReference<Class> */ temp1 = dest->klass_ | 
 |       __ Ldr(temp1, MemOperand(dest, class_offset)); | 
 |       // /* HeapReference<Class> */ temp2 = src->klass_ | 
 |       __ Ldr(temp2, MemOperand(src, class_offset)); | 
 |       bool did_unpoison = false; | 
 |       if (!optimizations.GetDestinationIsNonPrimitiveArray() || | 
 |           !optimizations.GetSourceIsNonPrimitiveArray()) { | 
 |         // One or two of the references need to be unpoisoned. Unpoison them | 
 |         // both to make the identity check valid. | 
 |         assembler->MaybeUnpoisonHeapReference(temp1); | 
 |         assembler->MaybeUnpoisonHeapReference(temp2); | 
 |         did_unpoison = true; | 
 |       } | 
 |  | 
 |       if (!optimizations.GetDestinationIsNonPrimitiveArray()) { | 
 |         // Bail out if the destination is not a non primitive array. | 
 |         // /* HeapReference<Class> */ temp3 = temp1->component_type_ | 
 |         __ Ldr(temp3, MemOperand(temp1, component_offset)); | 
 |         __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); | 
 |         assembler->MaybeUnpoisonHeapReference(temp3); | 
 |         // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); | 
 |         __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); | 
 |         static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |         __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); | 
 |       } | 
 |  | 
 |       if (!optimizations.GetSourceIsNonPrimitiveArray()) { | 
 |         // Bail out if the source is not a non primitive array. | 
 |         // /* HeapReference<Class> */ temp3 = temp2->component_type_ | 
 |         __ Ldr(temp3, MemOperand(temp2, component_offset)); | 
 |         __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); | 
 |         assembler->MaybeUnpoisonHeapReference(temp3); | 
 |         // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); | 
 |         __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); | 
 |         static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |         __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); | 
 |       } | 
 |  | 
 |       __ Cmp(temp1, temp2); | 
 |  | 
 |       if (optimizations.GetDestinationIsTypedObjectArray()) { | 
 |         vixl32::Label do_copy; | 
 |         __ B(eq, &do_copy, /* is_far_target= */ false); | 
 |         if (!did_unpoison) { | 
 |           assembler->MaybeUnpoisonHeapReference(temp1); | 
 |         } | 
 |         // /* HeapReference<Class> */ temp1 = temp1->component_type_ | 
 |         __ Ldr(temp1, MemOperand(temp1, component_offset)); | 
 |         assembler->MaybeUnpoisonHeapReference(temp1); | 
 |         // /* HeapReference<Class> */ temp1 = temp1->super_class_ | 
 |         __ Ldr(temp1, MemOperand(temp1, super_offset)); | 
 |         // No need to unpoison the result, we're comparing against null. | 
 |         __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); | 
 |         __ Bind(&do_copy); | 
 |       } else { | 
 |         __ B(ne, intrinsic_slow_path->GetEntryLabel()); | 
 |       } | 
 |     } | 
 |   } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { | 
 |     DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); | 
 |     // Bail out if the source is not a non primitive array. | 
 |     if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |       // /* HeapReference<Class> */ temp1 = src->klass_ | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |           invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false); | 
 |       // /* HeapReference<Class> */ temp3 = temp1->component_type_ | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |           invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); | 
 |       __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); | 
 |       // If heap poisoning is enabled, `temp3` has been unpoisoned | 
 |       // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. | 
 |     } else { | 
 |       // /* HeapReference<Class> */ temp1 = src->klass_ | 
 |       __ Ldr(temp1, MemOperand(src, class_offset)); | 
 |       assembler->MaybeUnpoisonHeapReference(temp1); | 
 |       // /* HeapReference<Class> */ temp3 = temp1->component_type_ | 
 |       __ Ldr(temp3, MemOperand(temp1, component_offset)); | 
 |       __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); | 
 |       assembler->MaybeUnpoisonHeapReference(temp3); | 
 |     } | 
 |     // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); | 
 |     __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); | 
 |     static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |     __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); | 
 |   } | 
 |  | 
 |   if (length.IsConstant() && Int32ConstantFrom(length) == 0) { | 
 |     // Null constant length: not need to emit the loop code at all. | 
 |   } else { | 
 |     vixl32::Label done; | 
 |     const DataType::Type type = DataType::Type::kReference; | 
 |     const int32_t element_size = DataType::Size(type); | 
 |  | 
 |     if (length.IsRegister()) { | 
 |       // Don't enter the copy loop if the length is null. | 
 |       __ CompareAndBranchIfZero(RegisterFrom(length), &done, /* is_far_target= */ false); | 
 |     } | 
 |  | 
 |     if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |       // TODO: Also convert this intrinsic to the IsGcMarking strategy? | 
 |  | 
 |       // SystemArrayCopy implementation for Baker read barriers (see | 
 |       // also CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier): | 
 |       // | 
 |       //   uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); | 
 |       //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering | 
 |       //   bool is_gray = (rb_state == ReadBarrier::GrayState()); | 
 |       //   if (is_gray) { | 
 |       //     // Slow-path copy. | 
 |       //     do { | 
 |       //       *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); | 
 |       //     } while (src_ptr != end_ptr) | 
 |       //   } else { | 
 |       //     // Fast-path copy. | 
 |       //     do { | 
 |       //       *dest_ptr++ = *src_ptr++; | 
 |       //     } while (src_ptr != end_ptr) | 
 |       //   } | 
 |  | 
 |       // /* int32_t */ monitor = src->monitor_ | 
 |       __ Ldr(temp2, MemOperand(src, monitor_offset)); | 
 |       // /* LockWord */ lock_word = LockWord(monitor) | 
 |       static_assert(sizeof(LockWord) == sizeof(int32_t), | 
 |                     "art::LockWord and int32_t have different sizes."); | 
 |  | 
 |       // Introduce a dependency on the lock_word including the rb_state, | 
 |       // which shall prevent load-load reordering without using | 
 |       // a memory barrier (which would be more expensive). | 
 |       // `src` is unchanged by this operation, but its value now depends | 
 |       // on `temp2`. | 
 |       __ Add(src, src, Operand(temp2, vixl32::LSR, 32)); | 
 |  | 
 |       // Compute the base source address in `temp1`. | 
 |       // Note that `temp1` (the base source address) is computed from | 
 |       // `src` (and `src_pos`) here, and thus honors the artificial | 
 |       // dependency of `src` on `temp2`. | 
 |       GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); | 
 |       // Compute the end source address in `temp3`. | 
 |       GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); | 
 |       // The base destination address is computed later, as `temp2` is | 
 |       // used for intermediate computations. | 
 |  | 
 |       // Slow path used to copy array when `src` is gray. | 
 |       // Note that the base destination address is computed in `temp2` | 
 |       // by the slow path code. | 
 |       SlowPathCodeARMVIXL* read_barrier_slow_path = | 
 |           new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke); | 
 |       codegen_->AddSlowPath(read_barrier_slow_path); | 
 |  | 
 |       // Given the numeric representation, it's enough to check the low bit of the | 
 |       // rb_state. We do that by shifting the bit out of the lock word with LSRS | 
 |       // which can be a 16-bit instruction unlike the TST immediate. | 
 |       static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); | 
 |       static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); | 
 |       __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1); | 
 |       // Carry flag is the last bit shifted out by LSRS. | 
 |       __ B(cs, read_barrier_slow_path->GetEntryLabel()); | 
 |  | 
 |       // Fast-path copy. | 
 |       // Compute the base destination address in `temp2`. | 
 |       GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); | 
 |       // Iterate over the arrays and do a raw copy of the objects. We don't need to | 
 |       // poison/unpoison. | 
 |       vixl32::Label loop; | 
 |       __ Bind(&loop); | 
 |       { | 
 |         UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |         const vixl32::Register temp_reg = temps.Acquire(); | 
 |         __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex)); | 
 |         __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex)); | 
 |       } | 
 |       __ Cmp(temp1, temp3); | 
 |       __ B(ne, &loop, /* is_far_target= */ false); | 
 |  | 
 |       __ Bind(read_barrier_slow_path->GetExitLabel()); | 
 |     } else { | 
 |       // Non read barrier code. | 
 |       // Compute the base source address in `temp1`. | 
 |       GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); | 
 |       // Compute the base destination address in `temp2`. | 
 |       GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); | 
 |       // Compute the end source address in `temp3`. | 
 |       GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); | 
 |       // Iterate over the arrays and do a raw copy of the objects. We don't need to | 
 |       // poison/unpoison. | 
 |       vixl32::Label loop; | 
 |       __ Bind(&loop); | 
 |       { | 
 |         UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |         const vixl32::Register temp_reg = temps.Acquire(); | 
 |         __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex)); | 
 |         __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex)); | 
 |       } | 
 |       __ Cmp(temp1, temp3); | 
 |       __ B(ne, &loop, /* is_far_target= */ false); | 
 |     } | 
 |     __ Bind(&done); | 
 |   } | 
 |  | 
 |   // We only need one card marking on the destination array. | 
 |   codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* can_be_null= */ false); | 
 |  | 
 |   __ Bind(intrinsic_slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   // If the graph is debuggable, all callee-saved floating-point registers are blocked by | 
 |   // the code generator. Furthermore, the register allocator creates fixed live intervals | 
 |   // for all caller-saved registers because we are doing a function call. As a result, if | 
 |   // the input and output locations are unallocated, the register allocator runs out of | 
 |   // registers and fails; however, a debuggable graph is not the common case. | 
 |   if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); | 
 |   DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64); | 
 |   DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); | 
 |  | 
 |   LocationSummary* const locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); | 
 |   const InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |  | 
 |   locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |   locations->SetOut(Location::RequiresFpuRegister()); | 
 |   // Native code uses the soft float ABI. | 
 |   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1))); | 
 | } | 
 |  | 
 | static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { | 
 |   // If the graph is debuggable, all callee-saved floating-point registers are blocked by | 
 |   // the code generator. Furthermore, the register allocator creates fixed live intervals | 
 |   // for all caller-saved registers because we are doing a function call. As a result, if | 
 |   // the input and output locations are unallocated, the register allocator runs out of | 
 |   // registers and fails; however, a debuggable graph is not the common case. | 
 |   if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); | 
 |   DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64); | 
 |   DCHECK_EQ(invoke->InputAt(1)->GetType(), DataType::Type::kFloat64); | 
 |   DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); | 
 |  | 
 |   LocationSummary* const locations = | 
 |       new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); | 
 |   const InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |  | 
 |   locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |   locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |   locations->SetOut(Location::RequiresFpuRegister()); | 
 |   // Native code uses the soft float ABI. | 
 |   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0))); | 
 |   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1))); | 
 |   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); | 
 |   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3))); | 
 | } | 
 |  | 
 | static void GenFPToFPCall(HInvoke* invoke, | 
 |                           ArmVIXLAssembler* assembler, | 
 |                           CodeGeneratorARMVIXL* codegen, | 
 |                           QuickEntrypointEnum entry) { | 
 |   LocationSummary* const locations = invoke->GetLocations(); | 
 |  | 
 |   DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); | 
 |   DCHECK(locations->WillCall() && locations->Intrinsified()); | 
 |  | 
 |   // Native code uses the soft float ABI. | 
 |   __ Vmov(RegisterFrom(locations->GetTemp(0)), | 
 |           RegisterFrom(locations->GetTemp(1)), | 
 |           InputDRegisterAt(invoke, 0)); | 
 |   codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); | 
 |   __ Vmov(OutputDRegister(invoke), | 
 |           RegisterFrom(locations->GetTemp(0)), | 
 |           RegisterFrom(locations->GetTemp(1))); | 
 | } | 
 |  | 
 | static void GenFPFPToFPCall(HInvoke* invoke, | 
 |                             ArmVIXLAssembler* assembler, | 
 |                             CodeGeneratorARMVIXL* codegen, | 
 |                             QuickEntrypointEnum entry) { | 
 |   LocationSummary* const locations = invoke->GetLocations(); | 
 |  | 
 |   DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); | 
 |   DCHECK(locations->WillCall() && locations->Intrinsified()); | 
 |  | 
 |   // Native code uses the soft float ABI. | 
 |   __ Vmov(RegisterFrom(locations->GetTemp(0)), | 
 |           RegisterFrom(locations->GetTemp(1)), | 
 |           InputDRegisterAt(invoke, 0)); | 
 |   __ Vmov(RegisterFrom(locations->GetTemp(2)), | 
 |           RegisterFrom(locations->GetTemp(3)), | 
 |           InputDRegisterAt(invoke, 1)); | 
 |   codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); | 
 |   __ Vmov(OutputDRegister(invoke), | 
 |           RegisterFrom(locations->GetTemp(0)), | 
 |           RegisterFrom(locations->GetTemp(1))); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) { | 
 |   CreateFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) { | 
 |   GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) { | 
 |   CreateFPFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) { | 
 |   GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathPow(HInvoke* invoke) { | 
 |   CreateFPFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathPow(HInvoke* invoke) { | 
 |   GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickPow); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) { | 
 |   CreateFPFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) { | 
 |   GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) { | 
 |   CreateFPFPToFPCallLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) { | 
 |   GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0)); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) { | 
 |   CreateLongToLongLocationsWithOverlap(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   vixl32::Register in_reg_lo  = LowRegisterFrom(locations->InAt(0)); | 
 |   vixl32::Register in_reg_hi  = HighRegisterFrom(locations->InAt(0)); | 
 |   vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out()); | 
 |   vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out()); | 
 |  | 
 |   __ Rbit(out_reg_lo, in_reg_hi); | 
 |   __ Rbit(out_reg_hi, in_reg_lo); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Rev(OutputRegister(invoke), InputRegisterAt(invoke, 0)); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) { | 
 |   CreateLongToLongLocationsWithOverlap(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   vixl32::Register in_reg_lo  = LowRegisterFrom(locations->InAt(0)); | 
 |   vixl32::Register in_reg_hi  = HighRegisterFrom(locations->InAt(0)); | 
 |   vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out()); | 
 |   vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out()); | 
 |  | 
 |   __ Rev(out_reg_lo, in_reg_hi); | 
 |   __ Rev(out_reg_hi, in_reg_lo); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   __ Revsh(OutputRegister(invoke), InputRegisterAt(invoke, 0)); | 
 | } | 
 |  | 
 | static void GenBitCount(HInvoke* instr, DataType::Type type, ArmVIXLAssembler* assembler) { | 
 |   DCHECK(DataType::IsIntOrLongType(type)) << type; | 
 |   DCHECK_EQ(instr->GetType(), DataType::Type::kInt32); | 
 |   DCHECK_EQ(DataType::Kind(instr->InputAt(0)->GetType()), type); | 
 |  | 
 |   bool is_long = type == DataType::Type::kInt64; | 
 |   LocationSummary* locations = instr->GetLocations(); | 
 |   Location in = locations->InAt(0); | 
 |   vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in); | 
 |   vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0; | 
 |   vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0)); | 
 |   vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0)); | 
 |   vixl32::Register  out_r = OutputRegister(instr); | 
 |  | 
 |   // Move data from core register(s) to temp D-reg for bit count calculation, then move back. | 
 |   // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg, | 
 |   // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency, | 
 |   // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'. | 
 |   __ Vmov(tmp_d, src_1, src_0);     // Temp DReg |--src_1|--src_0| | 
 |   __ Vcnt(Untyped8, tmp_d, tmp_d);  // Temp DReg |c|c|c|c|c|c|c|c| | 
 |   __ Vpaddl(U8, tmp_d, tmp_d);      // Temp DReg |--c|--c|--c|--c| | 
 |   __ Vpaddl(U16, tmp_d, tmp_d);     // Temp DReg |------c|------c| | 
 |   if (is_long) { | 
 |     __ Vpaddl(U32, tmp_d, tmp_d);   // Temp DReg |--------------c| | 
 |   } | 
 |   __ Vmov(out_r, tmp_s); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 |   invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) { | 
 |   GenBitCount(invoke, DataType::Type::kInt32, GetAssembler()); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) { | 
 |   VisitIntegerBitCount(invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) { | 
 |   GenBitCount(invoke, DataType::Type::kInt64, GetAssembler()); | 
 | } | 
 |  | 
 | static void GenHighestOneBit(HInvoke* invoke, | 
 |                              DataType::Type type, | 
 |                              CodeGeneratorARMVIXL* codegen) { | 
 |   DCHECK(DataType::IsIntOrLongType(type)); | 
 |  | 
 |   ArmVIXLAssembler* assembler = codegen->GetAssembler(); | 
 |   UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |   const vixl32::Register temp = temps.Acquire(); | 
 |  | 
 |   if (type == DataType::Type::kInt64) { | 
 |     LocationSummary* locations = invoke->GetLocations(); | 
 |     Location in = locations->InAt(0); | 
 |     Location out = locations->Out(); | 
 |  | 
 |     vixl32::Register in_reg_lo = LowRegisterFrom(in); | 
 |     vixl32::Register in_reg_hi = HighRegisterFrom(in); | 
 |     vixl32::Register out_reg_lo = LowRegisterFrom(out); | 
 |     vixl32::Register out_reg_hi = HighRegisterFrom(out); | 
 |  | 
 |     __ Mov(temp, 0x80000000);  // Modified immediate. | 
 |     __ Clz(out_reg_lo, in_reg_lo); | 
 |     __ Clz(out_reg_hi, in_reg_hi); | 
 |     __ Lsr(out_reg_lo, temp, out_reg_lo); | 
 |     __ Lsrs(out_reg_hi, temp, out_reg_hi); | 
 |  | 
 |     // Discard result for lowest 32 bits if highest 32 bits are not zero. | 
 |     // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, | 
 |     // we check that the output is in a low register, so that a 16-bit MOV | 
 |     // encoding can be used. If output is in a high register, then we generate | 
 |     // 4 more bytes of code to avoid a branch. | 
 |     Operand mov_src(0); | 
 |     if (!out_reg_lo.IsLow()) { | 
 |       __ Mov(LeaveFlags, temp, 0); | 
 |       mov_src = Operand(temp); | 
 |     } | 
 |     ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(), | 
 |                                   2 * vixl32::k16BitT32InstructionSizeInBytes, | 
 |                                   CodeBufferCheckScope::kExactSize); | 
 |     __ it(ne); | 
 |     __ mov(ne, out_reg_lo, mov_src); | 
 |   } else { | 
 |     vixl32::Register out = OutputRegister(invoke); | 
 |     vixl32::Register in = InputRegisterAt(invoke, 0); | 
 |  | 
 |     __ Mov(temp, 0x80000000);  // Modified immediate. | 
 |     __ Clz(out, in); | 
 |     __ Lsr(out, temp, out); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) { | 
 |   GenHighestOneBit(invoke, DataType::Type::kInt32, codegen_); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) { | 
 |   CreateLongToLongLocationsWithOverlap(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) { | 
 |   GenHighestOneBit(invoke, DataType::Type::kInt64, codegen_); | 
 | } | 
 |  | 
 | static void GenLowestOneBit(HInvoke* invoke, | 
 |                             DataType::Type type, | 
 |                             CodeGeneratorARMVIXL* codegen) { | 
 |   DCHECK(DataType::IsIntOrLongType(type)); | 
 |  | 
 |   ArmVIXLAssembler* assembler = codegen->GetAssembler(); | 
 |   UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |   const vixl32::Register temp = temps.Acquire(); | 
 |  | 
 |   if (type == DataType::Type::kInt64) { | 
 |     LocationSummary* locations = invoke->GetLocations(); | 
 |     Location in = locations->InAt(0); | 
 |     Location out = locations->Out(); | 
 |  | 
 |     vixl32::Register in_reg_lo = LowRegisterFrom(in); | 
 |     vixl32::Register in_reg_hi = HighRegisterFrom(in); | 
 |     vixl32::Register out_reg_lo = LowRegisterFrom(out); | 
 |     vixl32::Register out_reg_hi = HighRegisterFrom(out); | 
 |  | 
 |     __ Rsb(out_reg_hi, in_reg_hi, 0); | 
 |     __ Rsb(out_reg_lo, in_reg_lo, 0); | 
 |     __ And(out_reg_hi, out_reg_hi, in_reg_hi); | 
 |     // The result of this operation is 0 iff in_reg_lo is 0 | 
 |     __ Ands(out_reg_lo, out_reg_lo, in_reg_lo); | 
 |  | 
 |     // Discard result for highest 32 bits if lowest 32 bits are not zero. | 
 |     // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, | 
 |     // we check that the output is in a low register, so that a 16-bit MOV | 
 |     // encoding can be used. If output is in a high register, then we generate | 
 |     // 4 more bytes of code to avoid a branch. | 
 |     Operand mov_src(0); | 
 |     if (!out_reg_lo.IsLow()) { | 
 |       __ Mov(LeaveFlags, temp, 0); | 
 |       mov_src = Operand(temp); | 
 |     } | 
 |     ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(), | 
 |                                   2 * vixl32::k16BitT32InstructionSizeInBytes, | 
 |                                   CodeBufferCheckScope::kExactSize); | 
 |     __ it(ne); | 
 |     __ mov(ne, out_reg_hi, mov_src); | 
 |   } else { | 
 |     vixl32::Register out = OutputRegister(invoke); | 
 |     vixl32::Register in = InputRegisterAt(invoke, 0); | 
 |  | 
 |     __ Rsb(temp, in, 0); | 
 |     __ And(out, temp, in); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) { | 
 |   CreateIntToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) { | 
 |   GenLowestOneBit(invoke, DataType::Type::kInt32, codegen_); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) { | 
 |   CreateLongToLongLocationsWithOverlap(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) { | 
 |   GenLowestOneBit(invoke, DataType::Type::kInt64, codegen_); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->SetInAt(2, Location::RequiresRegister()); | 
 |   locations->SetInAt(3, Location::RequiresRegister()); | 
 |   locations->SetInAt(4, Location::RequiresRegister()); | 
 |  | 
 |   // Temporary registers to store lengths of strings and for calculations. | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |  | 
 |   // Check assumption that sizeof(Char) is 2 (used in scaling below). | 
 |   const size_t char_size = DataType::Size(DataType::Type::kUint16); | 
 |   DCHECK_EQ(char_size, 2u); | 
 |  | 
 |   // Location of data in char array buffer. | 
 |   const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); | 
 |  | 
 |   // Location of char array data in string. | 
 |   const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); | 
 |  | 
 |   // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin); | 
 |   // Since getChars() calls getCharsNoCheck() - we use registers rather than constants. | 
 |   vixl32::Register srcObj = InputRegisterAt(invoke, 0); | 
 |   vixl32::Register srcBegin = InputRegisterAt(invoke, 1); | 
 |   vixl32::Register srcEnd = InputRegisterAt(invoke, 2); | 
 |   vixl32::Register dstObj = InputRegisterAt(invoke, 3); | 
 |   vixl32::Register dstBegin = InputRegisterAt(invoke, 4); | 
 |  | 
 |   vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0)); | 
 |   vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1)); | 
 |   vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2)); | 
 |  | 
 |   vixl32::Label done, compressed_string_loop; | 
 |   vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done); | 
 |   // dst to be copied. | 
 |   __ Add(dst_ptr, dstObj, data_offset); | 
 |   __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1)); | 
 |  | 
 |   __ Subs(num_chr, srcEnd, srcBegin); | 
 |   // Early out for valid zero-length retrievals. | 
 |   __ B(eq, final_label, /* is_far_target= */ false); | 
 |  | 
 |   // src range to copy. | 
 |   __ Add(src_ptr, srcObj, value_offset); | 
 |  | 
 |   UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |   vixl32::Register temp; | 
 |   vixl32::Label compressed_string_preloop; | 
 |   if (mirror::kUseStringCompression) { | 
 |     // Location of count in string. | 
 |     const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); | 
 |     temp = temps.Acquire(); | 
 |     // String's length. | 
 |     __ Ldr(temp, MemOperand(srcObj, count_offset)); | 
 |     __ Tst(temp, 1); | 
 |     temps.Release(temp); | 
 |     __ B(eq, &compressed_string_preloop, /* is_far_target= */ false); | 
 |   } | 
 |   __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1)); | 
 |  | 
 |   // Do the copy. | 
 |   vixl32::Label loop, remainder; | 
 |  | 
 |   temp = temps.Acquire(); | 
 |   // Save repairing the value of num_chr on the < 4 character path. | 
 |   __ Subs(temp, num_chr, 4); | 
 |   __ B(lt, &remainder, /* is_far_target= */ false); | 
 |  | 
 |   // Keep the result of the earlier subs, we are going to fetch at least 4 characters. | 
 |   __ Mov(num_chr, temp); | 
 |  | 
 |   // Main loop used for longer fetches loads and stores 4x16-bit characters at a time. | 
 |   // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code | 
 |   // to rectify these everywhere this intrinsic applies.) | 
 |   __ Bind(&loop); | 
 |   __ Ldr(temp, MemOperand(src_ptr, char_size * 2)); | 
 |   __ Subs(num_chr, num_chr, 4); | 
 |   __ Str(temp, MemOperand(dst_ptr, char_size * 2)); | 
 |   __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex)); | 
 |   __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex)); | 
 |   temps.Release(temp); | 
 |   __ B(ge, &loop, /* is_far_target= */ false); | 
 |  | 
 |   __ Adds(num_chr, num_chr, 4); | 
 |   __ B(eq, final_label, /* is_far_target= */ false); | 
 |  | 
 |   // Main loop for < 4 character case and remainder handling. Loads and stores one | 
 |   // 16-bit Java character at a time. | 
 |   __ Bind(&remainder); | 
 |   temp = temps.Acquire(); | 
 |   __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex)); | 
 |   __ Subs(num_chr, num_chr, 1); | 
 |   __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex)); | 
 |   temps.Release(temp); | 
 |   __ B(gt, &remainder, /* is_far_target= */ false); | 
 |  | 
 |   if (mirror::kUseStringCompression) { | 
 |     __ B(final_label); | 
 |  | 
 |     const size_t c_char_size = DataType::Size(DataType::Type::kInt8); | 
 |     DCHECK_EQ(c_char_size, 1u); | 
 |     // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time. | 
 |     __ Bind(&compressed_string_preloop); | 
 |     __ Add(src_ptr, src_ptr, srcBegin); | 
 |     __ Bind(&compressed_string_loop); | 
 |     temp = temps.Acquire(); | 
 |     __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex)); | 
 |     __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex)); | 
 |     temps.Release(temp); | 
 |     __ Subs(num_chr, num_chr, 1); | 
 |     __ B(gt, &compressed_string_loop, /* is_far_target= */ false); | 
 |   } | 
 |  | 
 |   if (done.IsReferenced()) { | 
 |     __ Bind(&done); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) { | 
 |   CreateFPToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* const assembler = GetAssembler(); | 
 |   const vixl32::Register out = OutputRegister(invoke); | 
 |   // Shifting left by 1 bit makes the value encodable as an immediate operand; | 
 |   // we don't care about the sign bit anyway. | 
 |   constexpr uint32_t infinity = kPositiveInfinityFloat << 1U; | 
 |  | 
 |   __ Vmov(out, InputSRegisterAt(invoke, 0)); | 
 |   // We don't care about the sign bit, so shift left. | 
 |   __ Lsl(out, out, 1); | 
 |   __ Eor(out, out, infinity); | 
 |   codegen_->GenerateConditionWithZero(kCondEQ, out, out); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) { | 
 |   CreateFPToIntLocations(allocator_, invoke); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* const assembler = GetAssembler(); | 
 |   const vixl32::Register out = OutputRegister(invoke); | 
 |   UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |   const vixl32::Register temp = temps.Acquire(); | 
 |   // The highest 32 bits of double precision positive infinity separated into | 
 |   // two constants encodable as immediate operands. | 
 |   constexpr uint32_t infinity_high  = 0x7f000000U; | 
 |   constexpr uint32_t infinity_high2 = 0x00f00000U; | 
 |  | 
 |   static_assert((infinity_high | infinity_high2) == | 
 |                     static_cast<uint32_t>(kPositiveInfinityDouble >> 32U), | 
 |                 "The constants do not add up to the high 32 bits of double " | 
 |                 "precision positive infinity."); | 
 |   __ Vmov(temp, out, InputDRegisterAt(invoke, 0)); | 
 |   __ Eor(out, out, infinity_high); | 
 |   __ Eor(out, out, infinity_high2); | 
 |   // We don't care about the sign bit, so shift left. | 
 |   __ Orr(out, temp, Operand(out, vixl32::LSL, 1)); | 
 |   codegen_->GenerateConditionWithZero(kCondEQ, out, out); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathCeil(HInvoke* invoke) { | 
 |   if (features_.HasARMv8AInstructions()) { | 
 |     CreateFPToFPLocations(allocator_, invoke); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathCeil(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); | 
 |   __ Vrintp(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitMathFloor(HInvoke* invoke) { | 
 |   if (features_.HasARMv8AInstructions()) { | 
 |     CreateFPToFPLocations(allocator_, invoke); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitMathFloor(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); | 
 |   __ Vrintm(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitIntegerValueOf(HInvoke* invoke) { | 
 |   InvokeRuntimeCallingConventionARMVIXL calling_convention; | 
 |   IntrinsicVisitor::ComputeIntegerValueOfLocations( | 
 |       invoke, | 
 |       codegen_, | 
 |       LocationFrom(r0), | 
 |       LocationFrom(calling_convention.GetRegisterAt(0))); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitIntegerValueOf(HInvoke* invoke) { | 
 |   IntrinsicVisitor::IntegerValueOfInfo info = | 
 |       IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   ArmVIXLAssembler* const assembler = GetAssembler(); | 
 |  | 
 |   vixl32::Register out = RegisterFrom(locations->Out()); | 
 |   UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |   vixl32::Register temp = temps.Acquire(); | 
 |   if (invoke->InputAt(0)->IsConstant()) { | 
 |     int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); | 
 |     if (static_cast<uint32_t>(value - info.low) < info.length) { | 
 |       // Just embed the j.l.Integer in the code. | 
 |       DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); | 
 |       codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); | 
 |     } else { | 
 |       DCHECK(locations->CanCall()); | 
 |       // Allocate and initialize a new j.l.Integer. | 
 |       // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the | 
 |       // JIT object table. | 
 |       codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), | 
 |                                              info.integer_boot_image_offset); | 
 |       __ Mov(temp, value); | 
 |       assembler->StoreToOffset(kStoreWord, temp, out, info.value_offset); | 
 |       // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation | 
 |       // one. | 
 |       codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); | 
 |     } | 
 |   } else { | 
 |     DCHECK(locations->CanCall()); | 
 |     vixl32::Register in = RegisterFrom(locations->InAt(0)); | 
 |     // Check bounds of our cache. | 
 |     __ Add(out, in, -info.low); | 
 |     __ Cmp(out, info.length); | 
 |     vixl32::Label allocate, done; | 
 |     __ B(hs, &allocate, /* is_far_target= */ false); | 
 |     // If the value is within the bounds, load the j.l.Integer directly from the array. | 
 |     codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference); | 
 |     codegen_->LoadFromShiftedRegOffset(DataType::Type::kReference, locations->Out(), temp, out); | 
 |     assembler->MaybeUnpoisonHeapReference(out); | 
 |     __ B(&done); | 
 |     __ Bind(&allocate); | 
 |     // Otherwise allocate and initialize a new j.l.Integer. | 
 |     codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), | 
 |                                            info.integer_boot_image_offset); | 
 |     assembler->StoreToOffset(kStoreWord, in, out, info.value_offset); | 
 |     // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation | 
 |     // one. | 
 |     codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); | 
 |     __ Bind(&done); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitThreadInterrupted(HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitThreadInterrupted(HInvoke* invoke) { | 
 |   ArmVIXLAssembler* assembler = GetAssembler(); | 
 |   vixl32::Register out = RegisterFrom(invoke->GetLocations()->Out()); | 
 |   int32_t offset = Thread::InterruptedOffset<kArmPointerSize>().Int32Value(); | 
 |   __ Ldr(out, MemOperand(tr, offset)); | 
 |   UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); | 
 |   vixl32::Register temp = temps.Acquire(); | 
 |   vixl32::Label done; | 
 |   vixl32::Label* const final_label = codegen_->GetFinalLabel(invoke, &done); | 
 |   __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false); | 
 |   __ Dmb(vixl32::ISH); | 
 |   __ Mov(temp, 0); | 
 |   assembler->StoreToOffset(kStoreWord, temp, tr, offset); | 
 |   __ Dmb(vixl32::ISH); | 
 |   if (done.IsReferenced()) { | 
 |     __ Bind(&done); | 
 |   } | 
 | } | 
 |  | 
 | void IntrinsicLocationsBuilderARMVIXL::VisitReachabilityFence(HInvoke* invoke) { | 
 |   LocationSummary* locations = | 
 |       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); | 
 |   locations->SetInAt(0, Location::Any()); | 
 | } | 
 |  | 
 | void IntrinsicCodeGeneratorARMVIXL::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } | 
 |  | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble)   // Could be done by changing rounding mode, maybe? | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong)     // High register pressure. | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, ReferenceGetReferent) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32Update) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateBytes) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateByteBuffer) | 
 |  | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOf); | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOfAfter); | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferAppend); | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferLength); | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferToString); | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppend); | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderLength); | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderToString); | 
 |  | 
 | // 1.8. | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong) | 
 | UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject) | 
 |  | 
 | UNREACHABLE_INTRINSICS(ARMVIXL) | 
 |  | 
 | #undef __ | 
 |  | 
 | }  // namespace arm | 
 | }  // namespace art |