|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ | 
|  | #define ART_COMPILER_OPTIMIZING_NODES_H_ | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <array> | 
|  | #include <type_traits> | 
|  |  | 
|  | #include "base/arena_bit_vector.h" | 
|  | #include "base/arena_containers.h" | 
|  | #include "base/arena_object.h" | 
|  | #include "base/stl_util.h" | 
|  | #include "dex_file.h" | 
|  | #include "entrypoints/quick/quick_entrypoints_enum.h" | 
|  | #include "handle.h" | 
|  | #include "handle_scope.h" | 
|  | #include "invoke_type.h" | 
|  | #include "locations.h" | 
|  | #include "method_reference.h" | 
|  | #include "mirror/class.h" | 
|  | #include "offsets.h" | 
|  | #include "primitive.h" | 
|  | #include "utils/array_ref.h" | 
|  | #include "utils/intrusive_forward_list.h" | 
|  | #include "utils/transform_array_ref.h" | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | class GraphChecker; | 
|  | class HBasicBlock; | 
|  | class HCurrentMethod; | 
|  | class HDoubleConstant; | 
|  | class HEnvironment; | 
|  | class HFloatConstant; | 
|  | class HGraphBuilder; | 
|  | class HGraphVisitor; | 
|  | class HInstruction; | 
|  | class HIntConstant; | 
|  | class HInvoke; | 
|  | class HLongConstant; | 
|  | class HNullConstant; | 
|  | class HPhi; | 
|  | class HSuspendCheck; | 
|  | class HTryBoundary; | 
|  | class LiveInterval; | 
|  | class LocationSummary; | 
|  | class SlowPathCode; | 
|  | class SsaBuilder; | 
|  |  | 
|  | namespace mirror { | 
|  | class DexCache; | 
|  | }  // namespace mirror | 
|  |  | 
|  | static const int kDefaultNumberOfBlocks = 8; | 
|  | static const int kDefaultNumberOfSuccessors = 2; | 
|  | static const int kDefaultNumberOfPredecessors = 2; | 
|  | static const int kDefaultNumberOfExceptionalPredecessors = 0; | 
|  | static const int kDefaultNumberOfDominatedBlocks = 1; | 
|  | static const int kDefaultNumberOfBackEdges = 1; | 
|  |  | 
|  | // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation. | 
|  | static constexpr int32_t kMaxIntShiftDistance = 0x1f; | 
|  | // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation. | 
|  | static constexpr int32_t kMaxLongShiftDistance = 0x3f; | 
|  |  | 
|  | static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); | 
|  | static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1); | 
|  |  | 
|  | static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); | 
|  |  | 
|  | static constexpr uint32_t kNoDexPc = -1; | 
|  |  | 
|  | inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { | 
|  | // For the purposes of the compiler, the dex files must actually be the same object | 
|  | // if we want to safely treat them as the same. This is especially important for JIT | 
|  | // as custom class loaders can open the same underlying file (or memory) multiple | 
|  | // times and provide different class resolution but no two class loaders should ever | 
|  | // use the same DexFile object - doing so is an unsupported hack that can lead to | 
|  | // all sorts of weird failures. | 
|  | return &lhs == &rhs; | 
|  | } | 
|  |  | 
|  | enum IfCondition { | 
|  | // All types. | 
|  | kCondEQ,  // == | 
|  | kCondNE,  // != | 
|  | // Signed integers and floating-point numbers. | 
|  | kCondLT,  // < | 
|  | kCondLE,  // <= | 
|  | kCondGT,  // > | 
|  | kCondGE,  // >= | 
|  | // Unsigned integers. | 
|  | kCondB,   // < | 
|  | kCondBE,  // <= | 
|  | kCondA,   // > | 
|  | kCondAE,  // >= | 
|  | }; | 
|  |  | 
|  | enum GraphAnalysisResult { | 
|  | kAnalysisSkipped, | 
|  | kAnalysisInvalidBytecode, | 
|  | kAnalysisFailThrowCatchLoop, | 
|  | kAnalysisFailAmbiguousArrayOp, | 
|  | kAnalysisSuccess, | 
|  | }; | 
|  |  | 
|  | class HInstructionList : public ValueObject { | 
|  | public: | 
|  | HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} | 
|  |  | 
|  | void AddInstruction(HInstruction* instruction); | 
|  | void RemoveInstruction(HInstruction* instruction); | 
|  |  | 
|  | // Insert `instruction` before/after an existing instruction `cursor`. | 
|  | void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); | 
|  | void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); | 
|  |  | 
|  | // Return true if this list contains `instruction`. | 
|  | bool Contains(HInstruction* instruction) const; | 
|  |  | 
|  | // Return true if `instruction1` is found before `instruction2` in | 
|  | // this instruction list and false otherwise.  Abort if none | 
|  | // of these instructions is found. | 
|  | bool FoundBefore(const HInstruction* instruction1, | 
|  | const HInstruction* instruction2) const; | 
|  |  | 
|  | bool IsEmpty() const { return first_instruction_ == nullptr; } | 
|  | void Clear() { first_instruction_ = last_instruction_ = nullptr; } | 
|  |  | 
|  | // Update the block of all instructions to be `block`. | 
|  | void SetBlockOfInstructions(HBasicBlock* block) const; | 
|  |  | 
|  | void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); | 
|  | void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list); | 
|  | void Add(const HInstructionList& instruction_list); | 
|  |  | 
|  | // Return the number of instructions in the list. This is an expensive operation. | 
|  | size_t CountSize() const; | 
|  |  | 
|  | private: | 
|  | HInstruction* first_instruction_; | 
|  | HInstruction* last_instruction_; | 
|  |  | 
|  | friend class HBasicBlock; | 
|  | friend class HGraph; | 
|  | friend class HInstruction; | 
|  | friend class HInstructionIterator; | 
|  | friend class HBackwardInstructionIterator; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInstructionList); | 
|  | }; | 
|  |  | 
|  | class ReferenceTypeInfo : ValueObject { | 
|  | public: | 
|  | typedef Handle<mirror::Class> TypeHandle; | 
|  |  | 
|  | static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact); | 
|  |  | 
|  | static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes()); | 
|  | } | 
|  |  | 
|  | static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) { | 
|  | return ReferenceTypeInfo(type_handle, is_exact); | 
|  | } | 
|  |  | 
|  | static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } | 
|  |  | 
|  | static bool IsValidHandle(TypeHandle handle) { | 
|  | return handle.GetReference() != nullptr; | 
|  | } | 
|  |  | 
|  | bool IsValid() const { | 
|  | return IsValidHandle(type_handle_); | 
|  | } | 
|  |  | 
|  | bool IsExact() const { return is_exact_; } | 
|  |  | 
|  | bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | return GetTypeHandle()->IsObjectClass(); | 
|  | } | 
|  |  | 
|  | bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | return GetTypeHandle()->IsStringClass(); | 
|  | } | 
|  |  | 
|  | bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass(); | 
|  | } | 
|  |  | 
|  | bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | return GetTypeHandle()->IsInterface(); | 
|  | } | 
|  |  | 
|  | bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | return GetTypeHandle()->IsArrayClass(); | 
|  | } | 
|  |  | 
|  | bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | return GetTypeHandle()->IsPrimitiveArray(); | 
|  | } | 
|  |  | 
|  | bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray(); | 
|  | } | 
|  |  | 
|  | bool CanArrayHold(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | if (!IsExact()) return false; | 
|  | if (!IsArrayClass()) return false; | 
|  | return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get()); | 
|  | } | 
|  |  | 
|  | bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | if (!IsExact()) return false; | 
|  | if (!IsArrayClass()) return false; | 
|  | if (!rti.IsArrayClass()) return false; | 
|  | return GetTypeHandle()->GetComponentType()->IsAssignableFrom( | 
|  | rti.GetTypeHandle()->GetComponentType()); | 
|  | } | 
|  |  | 
|  | Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } | 
|  |  | 
|  | bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | DCHECK(rti.IsValid()); | 
|  | return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); | 
|  | } | 
|  |  | 
|  | bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | DCHECK(IsValid()); | 
|  | DCHECK(rti.IsValid()); | 
|  | return GetTypeHandle().Get() != rti.GetTypeHandle().Get() && | 
|  | GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); | 
|  | } | 
|  |  | 
|  | // Returns true if the type information provide the same amount of details. | 
|  | // Note that it does not mean that the instructions have the same actual type | 
|  | // (because the type can be the result of a merge). | 
|  | bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { | 
|  | if (!IsValid() && !rti.IsValid()) { | 
|  | // Invalid types are equal. | 
|  | return true; | 
|  | } | 
|  | if (!IsValid() || !rti.IsValid()) { | 
|  | // One is valid, the other not. | 
|  | return false; | 
|  | } | 
|  | return IsExact() == rti.IsExact() | 
|  | && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} | 
|  | ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) | 
|  | : type_handle_(type_handle), is_exact_(is_exact) { } | 
|  |  | 
|  | // The class of the object. | 
|  | TypeHandle type_handle_; | 
|  | // Whether or not the type is exact or a superclass of the actual type. | 
|  | // Whether or not we have any information about this type. | 
|  | bool is_exact_; | 
|  | }; | 
|  |  | 
|  | std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); | 
|  |  | 
|  | // Control-flow graph of a method. Contains a list of basic blocks. | 
|  | class HGraph : public ArenaObject<kArenaAllocGraph> { | 
|  | public: | 
|  | HGraph(ArenaAllocator* arena, | 
|  | const DexFile& dex_file, | 
|  | uint32_t method_idx, | 
|  | bool should_generate_constructor_barrier, | 
|  | InstructionSet instruction_set, | 
|  | InvokeType invoke_type = kInvalidInvokeType, | 
|  | bool debuggable = false, | 
|  | bool osr = false, | 
|  | int start_instruction_id = 0) | 
|  | : arena_(arena), | 
|  | blocks_(arena->Adapter(kArenaAllocBlockList)), | 
|  | reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)), | 
|  | linear_order_(arena->Adapter(kArenaAllocLinearOrder)), | 
|  | entry_block_(nullptr), | 
|  | exit_block_(nullptr), | 
|  | maximum_number_of_out_vregs_(0), | 
|  | number_of_vregs_(0), | 
|  | number_of_in_vregs_(0), | 
|  | temporaries_vreg_slots_(0), | 
|  | has_bounds_checks_(false), | 
|  | has_try_catch_(false), | 
|  | has_irreducible_loops_(false), | 
|  | debuggable_(debuggable), | 
|  | current_instruction_id_(start_instruction_id), | 
|  | dex_file_(dex_file), | 
|  | method_idx_(method_idx), | 
|  | invoke_type_(invoke_type), | 
|  | in_ssa_form_(false), | 
|  | should_generate_constructor_barrier_(should_generate_constructor_barrier), | 
|  | instruction_set_(instruction_set), | 
|  | cached_null_constant_(nullptr), | 
|  | cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
|  | cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
|  | cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
|  | cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
|  | cached_current_method_(nullptr), | 
|  | inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()), | 
|  | osr_(osr) { | 
|  | blocks_.reserve(kDefaultNumberOfBlocks); | 
|  | } | 
|  |  | 
|  | // Acquires and stores RTI of inexact Object to be used when creating HNullConstant. | 
|  | void InitializeInexactObjectRTI(StackHandleScopeCollection* handles); | 
|  |  | 
|  | ArenaAllocator* GetArena() const { return arena_; } | 
|  | const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } | 
|  |  | 
|  | bool IsInSsaForm() const { return in_ssa_form_; } | 
|  | void SetInSsaForm() { in_ssa_form_ = true; } | 
|  |  | 
|  | HBasicBlock* GetEntryBlock() const { return entry_block_; } | 
|  | HBasicBlock* GetExitBlock() const { return exit_block_; } | 
|  | bool HasExitBlock() const { return exit_block_ != nullptr; } | 
|  |  | 
|  | void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } | 
|  | void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } | 
|  |  | 
|  | void AddBlock(HBasicBlock* block); | 
|  |  | 
|  | void ComputeDominanceInformation(); | 
|  | void ClearDominanceInformation(); | 
|  | void ClearLoopInformation(); | 
|  | void FindBackEdges(ArenaBitVector* visited); | 
|  | GraphAnalysisResult BuildDominatorTree(); | 
|  | void SimplifyCFG(); | 
|  | void SimplifyCatchBlocks(); | 
|  |  | 
|  | // Analyze all natural loops in this graph. Returns a code specifying that it | 
|  | // was successful or the reason for failure. The method will fail if a loop | 
|  | // is a throw-catch loop, i.e. the header is a catch block. | 
|  | GraphAnalysisResult AnalyzeLoops() const; | 
|  |  | 
|  | // Iterate over blocks to compute try block membership. Needs reverse post | 
|  | // order and loop information. | 
|  | void ComputeTryBlockInformation(); | 
|  |  | 
|  | // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. | 
|  | // Returns the instruction to replace the invoke expression or null if the | 
|  | // invoke is for a void method. Note that the caller is responsible for replacing | 
|  | // and removing the invoke instruction. | 
|  | HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); | 
|  |  | 
|  | // Update the loop and try membership of `block`, which was spawned from `reference`. | 
|  | // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block` | 
|  | // should be the new back edge. | 
|  | void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, | 
|  | HBasicBlock* reference, | 
|  | bool replace_if_back_edge); | 
|  |  | 
|  | // Need to add a couple of blocks to test if the loop body is entered and | 
|  | // put deoptimization instructions, etc. | 
|  | void TransformLoopHeaderForBCE(HBasicBlock* header); | 
|  |  | 
|  | // Removes `block` from the graph. Assumes `block` has been disconnected from | 
|  | // other blocks and has no instructions or phis. | 
|  | void DeleteDeadEmptyBlock(HBasicBlock* block); | 
|  |  | 
|  | // Splits the edge between `block` and `successor` while preserving the | 
|  | // indices in the predecessor/successor lists. If there are multiple edges | 
|  | // between the blocks, the lowest indices are used. | 
|  | // Returns the new block which is empty and has the same dex pc as `successor`. | 
|  | HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); | 
|  |  | 
|  | void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); | 
|  | void SimplifyLoop(HBasicBlock* header); | 
|  |  | 
|  | int32_t GetNextInstructionId() { | 
|  | DCHECK_NE(current_instruction_id_, INT32_MAX); | 
|  | return current_instruction_id_++; | 
|  | } | 
|  |  | 
|  | int32_t GetCurrentInstructionId() const { | 
|  | return current_instruction_id_; | 
|  | } | 
|  |  | 
|  | void SetCurrentInstructionId(int32_t id) { | 
|  | DCHECK_GE(id, current_instruction_id_); | 
|  | current_instruction_id_ = id; | 
|  | } | 
|  |  | 
|  | uint16_t GetMaximumNumberOfOutVRegs() const { | 
|  | return maximum_number_of_out_vregs_; | 
|  | } | 
|  |  | 
|  | void SetMaximumNumberOfOutVRegs(uint16_t new_value) { | 
|  | maximum_number_of_out_vregs_ = new_value; | 
|  | } | 
|  |  | 
|  | void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { | 
|  | maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); | 
|  | } | 
|  |  | 
|  | void UpdateTemporariesVRegSlots(size_t slots) { | 
|  | temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); | 
|  | } | 
|  |  | 
|  | size_t GetTemporariesVRegSlots() const { | 
|  | DCHECK(!in_ssa_form_); | 
|  | return temporaries_vreg_slots_; | 
|  | } | 
|  |  | 
|  | void SetNumberOfVRegs(uint16_t number_of_vregs) { | 
|  | number_of_vregs_ = number_of_vregs; | 
|  | } | 
|  |  | 
|  | uint16_t GetNumberOfVRegs() const { | 
|  | return number_of_vregs_; | 
|  | } | 
|  |  | 
|  | void SetNumberOfInVRegs(uint16_t value) { | 
|  | number_of_in_vregs_ = value; | 
|  | } | 
|  |  | 
|  | uint16_t GetNumberOfInVRegs() const { | 
|  | return number_of_in_vregs_; | 
|  | } | 
|  |  | 
|  | uint16_t GetNumberOfLocalVRegs() const { | 
|  | DCHECK(!in_ssa_form_); | 
|  | return number_of_vregs_ - number_of_in_vregs_; | 
|  | } | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { | 
|  | return reverse_post_order_; | 
|  | } | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& GetLinearOrder() const { | 
|  | return linear_order_; | 
|  | } | 
|  |  | 
|  | bool HasBoundsChecks() const { | 
|  | return has_bounds_checks_; | 
|  | } | 
|  |  | 
|  | void SetHasBoundsChecks(bool value) { | 
|  | has_bounds_checks_ = value; | 
|  | } | 
|  |  | 
|  | bool ShouldGenerateConstructorBarrier() const { | 
|  | return should_generate_constructor_barrier_; | 
|  | } | 
|  |  | 
|  | bool IsDebuggable() const { return debuggable_; } | 
|  |  | 
|  | // Returns a constant of the given type and value. If it does not exist | 
|  | // already, it is created and inserted into the graph. This method is only for | 
|  | // integral types. | 
|  | HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); | 
|  |  | 
|  | // TODO: This is problematic for the consistency of reference type propagation | 
|  | // because it can be created anytime after the pass and thus it will be left | 
|  | // with an invalid type. | 
|  | HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); | 
|  |  | 
|  | HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { | 
|  | return CreateConstant(value, &cached_int_constants_, dex_pc); | 
|  | } | 
|  | HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { | 
|  | return CreateConstant(value, &cached_long_constants_, dex_pc); | 
|  | } | 
|  | HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { | 
|  | return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); | 
|  | } | 
|  | HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { | 
|  | return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); | 
|  | } | 
|  |  | 
|  | HCurrentMethod* GetCurrentMethod(); | 
|  |  | 
|  | const DexFile& GetDexFile() const { | 
|  | return dex_file_; | 
|  | } | 
|  |  | 
|  | uint32_t GetMethodIdx() const { | 
|  | return method_idx_; | 
|  | } | 
|  |  | 
|  | InvokeType GetInvokeType() const { | 
|  | return invoke_type_; | 
|  | } | 
|  |  | 
|  | InstructionSet GetInstructionSet() const { | 
|  | return instruction_set_; | 
|  | } | 
|  |  | 
|  | bool IsCompilingOsr() const { return osr_; } | 
|  |  | 
|  | bool HasTryCatch() const { return has_try_catch_; } | 
|  | void SetHasTryCatch(bool value) { has_try_catch_ = value; } | 
|  |  | 
|  | bool HasIrreducibleLoops() const { return has_irreducible_loops_; } | 
|  | void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; } | 
|  |  | 
|  | ArtMethod* GetArtMethod() const { return art_method_; } | 
|  | void SetArtMethod(ArtMethod* method) { art_method_ = method; } | 
|  |  | 
|  | // Returns an instruction with the opposite boolean value from 'cond'. | 
|  | // The instruction has been inserted into the graph, either as a constant, or | 
|  | // before cursor. | 
|  | HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor); | 
|  |  | 
|  | ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; } | 
|  |  | 
|  | private: | 
|  | void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; | 
|  | void RemoveDeadBlocks(const ArenaBitVector& visited); | 
|  |  | 
|  | template <class InstructionType, typename ValueType> | 
|  | InstructionType* CreateConstant(ValueType value, | 
|  | ArenaSafeMap<ValueType, InstructionType*>* cache, | 
|  | uint32_t dex_pc = kNoDexPc) { | 
|  | // Try to find an existing constant of the given value. | 
|  | InstructionType* constant = nullptr; | 
|  | auto cached_constant = cache->find(value); | 
|  | if (cached_constant != cache->end()) { | 
|  | constant = cached_constant->second; | 
|  | } | 
|  |  | 
|  | // If not found or previously deleted, create and cache a new instruction. | 
|  | // Don't bother reviving a previously deleted instruction, for simplicity. | 
|  | if (constant == nullptr || constant->GetBlock() == nullptr) { | 
|  | constant = new (arena_) InstructionType(value, dex_pc); | 
|  | cache->Overwrite(value, constant); | 
|  | InsertConstant(constant); | 
|  | } | 
|  | return constant; | 
|  | } | 
|  |  | 
|  | void InsertConstant(HConstant* instruction); | 
|  |  | 
|  | // Cache a float constant into the graph. This method should only be | 
|  | // called by the SsaBuilder when creating "equivalent" instructions. | 
|  | void CacheFloatConstant(HFloatConstant* constant); | 
|  |  | 
|  | // See CacheFloatConstant comment. | 
|  | void CacheDoubleConstant(HDoubleConstant* constant); | 
|  |  | 
|  | ArenaAllocator* const arena_; | 
|  |  | 
|  | // List of blocks in insertion order. | 
|  | ArenaVector<HBasicBlock*> blocks_; | 
|  |  | 
|  | // List of blocks to perform a reverse post order tree traversal. | 
|  | ArenaVector<HBasicBlock*> reverse_post_order_; | 
|  |  | 
|  | // List of blocks to perform a linear order tree traversal. | 
|  | ArenaVector<HBasicBlock*> linear_order_; | 
|  |  | 
|  | HBasicBlock* entry_block_; | 
|  | HBasicBlock* exit_block_; | 
|  |  | 
|  | // The maximum number of virtual registers arguments passed to a HInvoke in this graph. | 
|  | uint16_t maximum_number_of_out_vregs_; | 
|  |  | 
|  | // The number of virtual registers in this method. Contains the parameters. | 
|  | uint16_t number_of_vregs_; | 
|  |  | 
|  | // The number of virtual registers used by parameters of this method. | 
|  | uint16_t number_of_in_vregs_; | 
|  |  | 
|  | // Number of vreg size slots that the temporaries use (used in baseline compiler). | 
|  | size_t temporaries_vreg_slots_; | 
|  |  | 
|  | // Has bounds checks. We can totally skip BCE if it's false. | 
|  | bool has_bounds_checks_; | 
|  |  | 
|  | // Flag whether there are any try/catch blocks in the graph. We will skip | 
|  | // try/catch-related passes if false. | 
|  | bool has_try_catch_; | 
|  |  | 
|  | // Flag whether there are any irreducible loops in the graph. | 
|  | bool has_irreducible_loops_; | 
|  |  | 
|  | // Indicates whether the graph should be compiled in a way that | 
|  | // ensures full debuggability. If false, we can apply more | 
|  | // aggressive optimizations that may limit the level of debugging. | 
|  | const bool debuggable_; | 
|  |  | 
|  | // The current id to assign to a newly added instruction. See HInstruction.id_. | 
|  | int32_t current_instruction_id_; | 
|  |  | 
|  | // The dex file from which the method is from. | 
|  | const DexFile& dex_file_; | 
|  |  | 
|  | // The method index in the dex file. | 
|  | const uint32_t method_idx_; | 
|  |  | 
|  | // If inlined, this encodes how the callee is being invoked. | 
|  | const InvokeType invoke_type_; | 
|  |  | 
|  | // Whether the graph has been transformed to SSA form. Only used | 
|  | // in debug mode to ensure we are not using properties only valid | 
|  | // for non-SSA form (like the number of temporaries). | 
|  | bool in_ssa_form_; | 
|  |  | 
|  | const bool should_generate_constructor_barrier_; | 
|  |  | 
|  | const InstructionSet instruction_set_; | 
|  |  | 
|  | // Cached constants. | 
|  | HNullConstant* cached_null_constant_; | 
|  | ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; | 
|  | ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; | 
|  | ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; | 
|  | ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; | 
|  |  | 
|  | HCurrentMethod* cached_current_method_; | 
|  |  | 
|  | // The ArtMethod this graph is for. Note that for AOT, it may be null, | 
|  | // for example for methods whose declaring class could not be resolved | 
|  | // (such as when the superclass could not be found). | 
|  | ArtMethod* art_method_; | 
|  |  | 
|  | // Keep the RTI of inexact Object to avoid having to pass stack handle | 
|  | // collection pointer to passes which may create NullConstant. | 
|  | ReferenceTypeInfo inexact_object_rti_; | 
|  |  | 
|  | // Whether we are compiling this graph for on stack replacement: this will | 
|  | // make all loops seen as irreducible and emit special stack maps to mark | 
|  | // compiled code entries which the interpreter can directly jump to. | 
|  | const bool osr_; | 
|  |  | 
|  | friend class SsaBuilder;           // For caching constants. | 
|  | friend class SsaLivenessAnalysis;  // For the linear order. | 
|  | friend class HInliner;             // For the reverse post order. | 
|  | ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); | 
|  | DISALLOW_COPY_AND_ASSIGN(HGraph); | 
|  | }; | 
|  |  | 
|  | class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { | 
|  | public: | 
|  | HLoopInformation(HBasicBlock* header, HGraph* graph) | 
|  | : header_(header), | 
|  | suspend_check_(nullptr), | 
|  | irreducible_(false), | 
|  | contains_irreducible_loop_(false), | 
|  | back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)), | 
|  | // Make bit vector growable, as the number of blocks may change. | 
|  | blocks_(graph->GetArena(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) { | 
|  | back_edges_.reserve(kDefaultNumberOfBackEdges); | 
|  | } | 
|  |  | 
|  | bool IsIrreducible() const { return irreducible_; } | 
|  | bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; } | 
|  |  | 
|  | void Dump(std::ostream& os); | 
|  |  | 
|  | HBasicBlock* GetHeader() const { | 
|  | return header_; | 
|  | } | 
|  |  | 
|  | void SetHeader(HBasicBlock* block) { | 
|  | header_ = block; | 
|  | } | 
|  |  | 
|  | HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } | 
|  | void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } | 
|  | bool HasSuspendCheck() const { return suspend_check_ != nullptr; } | 
|  |  | 
|  | void AddBackEdge(HBasicBlock* back_edge) { | 
|  | back_edges_.push_back(back_edge); | 
|  | } | 
|  |  | 
|  | void RemoveBackEdge(HBasicBlock* back_edge) { | 
|  | RemoveElement(back_edges_, back_edge); | 
|  | } | 
|  |  | 
|  | bool IsBackEdge(const HBasicBlock& block) const { | 
|  | return ContainsElement(back_edges_, &block); | 
|  | } | 
|  |  | 
|  | size_t NumberOfBackEdges() const { | 
|  | return back_edges_.size(); | 
|  | } | 
|  |  | 
|  | HBasicBlock* GetPreHeader() const; | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& GetBackEdges() const { | 
|  | return back_edges_; | 
|  | } | 
|  |  | 
|  | // Returns the lifetime position of the back edge that has the | 
|  | // greatest lifetime position. | 
|  | size_t GetLifetimeEnd() const; | 
|  |  | 
|  | void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { | 
|  | ReplaceElement(back_edges_, existing, new_back_edge); | 
|  | } | 
|  |  | 
|  | // Finds blocks that are part of this loop. | 
|  | void Populate(); | 
|  |  | 
|  | // Returns whether this loop information contains `block`. | 
|  | // Note that this loop information *must* be populated before entering this function. | 
|  | bool Contains(const HBasicBlock& block) const; | 
|  |  | 
|  | // Returns whether this loop information is an inner loop of `other`. | 
|  | // Note that `other` *must* be populated before entering this function. | 
|  | bool IsIn(const HLoopInformation& other) const; | 
|  |  | 
|  | // Returns true if instruction is not defined within this loop. | 
|  | bool IsDefinedOutOfTheLoop(HInstruction* instruction) const; | 
|  |  | 
|  | const ArenaBitVector& GetBlocks() const { return blocks_; } | 
|  |  | 
|  | void Add(HBasicBlock* block); | 
|  | void Remove(HBasicBlock* block); | 
|  |  | 
|  | void ClearAllBlocks() { | 
|  | blocks_.ClearAllBits(); | 
|  | } | 
|  |  | 
|  | bool HasBackEdgeNotDominatedByHeader() const; | 
|  |  | 
|  | bool IsPopulated() const { | 
|  | return blocks_.GetHighestBitSet() != -1; | 
|  | } | 
|  |  | 
|  | bool DominatesAllBackEdges(HBasicBlock* block); | 
|  |  | 
|  | private: | 
|  | // Internal recursive implementation of `Populate`. | 
|  | void PopulateRecursive(HBasicBlock* block); | 
|  | void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized); | 
|  |  | 
|  | HBasicBlock* header_; | 
|  | HSuspendCheck* suspend_check_; | 
|  | bool irreducible_; | 
|  | bool contains_irreducible_loop_; | 
|  | ArenaVector<HBasicBlock*> back_edges_; | 
|  | ArenaBitVector blocks_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLoopInformation); | 
|  | }; | 
|  |  | 
|  | // Stores try/catch information for basic blocks. | 
|  | // Note that HGraph is constructed so that catch blocks cannot simultaneously | 
|  | // be try blocks. | 
|  | class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { | 
|  | public: | 
|  | // Try block information constructor. | 
|  | explicit TryCatchInformation(const HTryBoundary& try_entry) | 
|  | : try_entry_(&try_entry), | 
|  | catch_dex_file_(nullptr), | 
|  | catch_type_index_(DexFile::kDexNoIndex16) { | 
|  | DCHECK(try_entry_ != nullptr); | 
|  | } | 
|  |  | 
|  | // Catch block information constructor. | 
|  | TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file) | 
|  | : try_entry_(nullptr), | 
|  | catch_dex_file_(&dex_file), | 
|  | catch_type_index_(catch_type_index) {} | 
|  |  | 
|  | bool IsTryBlock() const { return try_entry_ != nullptr; } | 
|  |  | 
|  | const HTryBoundary& GetTryEntry() const { | 
|  | DCHECK(IsTryBlock()); | 
|  | return *try_entry_; | 
|  | } | 
|  |  | 
|  | bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } | 
|  |  | 
|  | bool IsCatchAllTypeIndex() const { | 
|  | DCHECK(IsCatchBlock()); | 
|  | return catch_type_index_ == DexFile::kDexNoIndex16; | 
|  | } | 
|  |  | 
|  | uint16_t GetCatchTypeIndex() const { | 
|  | DCHECK(IsCatchBlock()); | 
|  | return catch_type_index_; | 
|  | } | 
|  |  | 
|  | const DexFile& GetCatchDexFile() const { | 
|  | DCHECK(IsCatchBlock()); | 
|  | return *catch_dex_file_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // One of possibly several TryBoundary instructions entering the block's try. | 
|  | // Only set for try blocks. | 
|  | const HTryBoundary* try_entry_; | 
|  |  | 
|  | // Exception type information. Only set for catch blocks. | 
|  | const DexFile* catch_dex_file_; | 
|  | const uint16_t catch_type_index_; | 
|  | }; | 
|  |  | 
|  | static constexpr size_t kNoLifetime = -1; | 
|  | static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); | 
|  |  | 
|  | // A block in a method. Contains the list of instructions represented | 
|  | // as a double linked list. Each block knows its predecessors and | 
|  | // successors. | 
|  |  | 
|  | class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { | 
|  | public: | 
|  | HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) | 
|  | : graph_(graph), | 
|  | predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)), | 
|  | successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)), | 
|  | loop_information_(nullptr), | 
|  | dominator_(nullptr), | 
|  | dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)), | 
|  | block_id_(kInvalidBlockId), | 
|  | dex_pc_(dex_pc), | 
|  | lifetime_start_(kNoLifetime), | 
|  | lifetime_end_(kNoLifetime), | 
|  | try_catch_information_(nullptr) { | 
|  | predecessors_.reserve(kDefaultNumberOfPredecessors); | 
|  | successors_.reserve(kDefaultNumberOfSuccessors); | 
|  | dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); | 
|  | } | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& GetPredecessors() const { | 
|  | return predecessors_; | 
|  | } | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& GetSuccessors() const { | 
|  | return successors_; | 
|  | } | 
|  |  | 
|  | ArrayRef<HBasicBlock* const> GetNormalSuccessors() const; | 
|  | ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const; | 
|  |  | 
|  | bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { | 
|  | return ContainsElement(successors_, block, start_from); | 
|  | } | 
|  |  | 
|  | const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { | 
|  | return dominated_blocks_; | 
|  | } | 
|  |  | 
|  | bool IsEntryBlock() const { | 
|  | return graph_->GetEntryBlock() == this; | 
|  | } | 
|  |  | 
|  | bool IsExitBlock() const { | 
|  | return graph_->GetExitBlock() == this; | 
|  | } | 
|  |  | 
|  | bool IsSingleGoto() const; | 
|  | bool IsSingleTryBoundary() const; | 
|  |  | 
|  | // Returns true if this block emits nothing but a jump. | 
|  | bool IsSingleJump() const { | 
|  | HLoopInformation* loop_info = GetLoopInformation(); | 
|  | return (IsSingleGoto() || IsSingleTryBoundary()) | 
|  | // Back edges generate a suspend check. | 
|  | && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); | 
|  | } | 
|  |  | 
|  | void AddBackEdge(HBasicBlock* back_edge) { | 
|  | if (loop_information_ == nullptr) { | 
|  | loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_); | 
|  | } | 
|  | DCHECK_EQ(loop_information_->GetHeader(), this); | 
|  | loop_information_->AddBackEdge(back_edge); | 
|  | } | 
|  |  | 
|  | HGraph* GetGraph() const { return graph_; } | 
|  | void SetGraph(HGraph* graph) { graph_ = graph; } | 
|  |  | 
|  | uint32_t GetBlockId() const { return block_id_; } | 
|  | void SetBlockId(int id) { block_id_ = id; } | 
|  | uint32_t GetDexPc() const { return dex_pc_; } | 
|  |  | 
|  | HBasicBlock* GetDominator() const { return dominator_; } | 
|  | void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } | 
|  | void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } | 
|  |  | 
|  | void RemoveDominatedBlock(HBasicBlock* block) { | 
|  | RemoveElement(dominated_blocks_, block); | 
|  | } | 
|  |  | 
|  | void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { | 
|  | ReplaceElement(dominated_blocks_, existing, new_block); | 
|  | } | 
|  |  | 
|  | void ClearDominanceInformation(); | 
|  |  | 
|  | int NumberOfBackEdges() const { | 
|  | return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; | 
|  | } | 
|  |  | 
|  | HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } | 
|  | HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } | 
|  | const HInstructionList& GetInstructions() const { return instructions_; } | 
|  | HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } | 
|  | HInstruction* GetLastPhi() const { return phis_.last_instruction_; } | 
|  | const HInstructionList& GetPhis() const { return phis_; } | 
|  |  | 
|  | HInstruction* GetFirstInstructionDisregardMoves() const; | 
|  |  | 
|  | void AddSuccessor(HBasicBlock* block) { | 
|  | successors_.push_back(block); | 
|  | block->predecessors_.push_back(this); | 
|  | } | 
|  |  | 
|  | void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { | 
|  | size_t successor_index = GetSuccessorIndexOf(existing); | 
|  | existing->RemovePredecessor(this); | 
|  | new_block->predecessors_.push_back(this); | 
|  | successors_[successor_index] = new_block; | 
|  | } | 
|  |  | 
|  | void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { | 
|  | size_t predecessor_index = GetPredecessorIndexOf(existing); | 
|  | existing->RemoveSuccessor(this); | 
|  | new_block->successors_.push_back(this); | 
|  | predecessors_[predecessor_index] = new_block; | 
|  | } | 
|  |  | 
|  | // Insert `this` between `predecessor` and `successor. This method | 
|  | // preserves the indicies, and will update the first edge found between | 
|  | // `predecessor` and `successor`. | 
|  | void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { | 
|  | size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); | 
|  | size_t successor_index = predecessor->GetSuccessorIndexOf(successor); | 
|  | successor->predecessors_[predecessor_index] = this; | 
|  | predecessor->successors_[successor_index] = this; | 
|  | successors_.push_back(successor); | 
|  | predecessors_.push_back(predecessor); | 
|  | } | 
|  |  | 
|  | void RemovePredecessor(HBasicBlock* block) { | 
|  | predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); | 
|  | } | 
|  |  | 
|  | void RemoveSuccessor(HBasicBlock* block) { | 
|  | successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); | 
|  | } | 
|  |  | 
|  | void ClearAllPredecessors() { | 
|  | predecessors_.clear(); | 
|  | } | 
|  |  | 
|  | void AddPredecessor(HBasicBlock* block) { | 
|  | predecessors_.push_back(block); | 
|  | block->successors_.push_back(this); | 
|  | } | 
|  |  | 
|  | void SwapPredecessors() { | 
|  | DCHECK_EQ(predecessors_.size(), 2u); | 
|  | std::swap(predecessors_[0], predecessors_[1]); | 
|  | } | 
|  |  | 
|  | void SwapSuccessors() { | 
|  | DCHECK_EQ(successors_.size(), 2u); | 
|  | std::swap(successors_[0], successors_[1]); | 
|  | } | 
|  |  | 
|  | size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { | 
|  | return IndexOfElement(predecessors_, predecessor); | 
|  | } | 
|  |  | 
|  | size_t GetSuccessorIndexOf(HBasicBlock* successor) const { | 
|  | return IndexOfElement(successors_, successor); | 
|  | } | 
|  |  | 
|  | HBasicBlock* GetSinglePredecessor() const { | 
|  | DCHECK_EQ(GetPredecessors().size(), 1u); | 
|  | return GetPredecessors()[0]; | 
|  | } | 
|  |  | 
|  | HBasicBlock* GetSingleSuccessor() const { | 
|  | DCHECK_EQ(GetSuccessors().size(), 1u); | 
|  | return GetSuccessors()[0]; | 
|  | } | 
|  |  | 
|  | // Returns whether the first occurrence of `predecessor` in the list of | 
|  | // predecessors is at index `idx`. | 
|  | bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { | 
|  | DCHECK_EQ(GetPredecessors()[idx], predecessor); | 
|  | return GetPredecessorIndexOf(predecessor) == idx; | 
|  | } | 
|  |  | 
|  | // Create a new block between this block and its predecessors. The new block | 
|  | // is added to the graph, all predecessor edges are relinked to it and an edge | 
|  | // is created to `this`. Returns the new empty block. Reverse post order or | 
|  | // loop and try/catch information are not updated. | 
|  | HBasicBlock* CreateImmediateDominator(); | 
|  |  | 
|  | // Split the block into two blocks just before `cursor`. Returns the newly | 
|  | // created, latter block. Note that this method will add the block to the | 
|  | // graph, create a Goto at the end of the former block and will create an edge | 
|  | // between the blocks. It will not, however, update the reverse post order or | 
|  | // loop and try/catch information. | 
|  | HBasicBlock* SplitBefore(HInstruction* cursor); | 
|  |  | 
|  | // Split the block into two blocks just before `cursor`. Returns the newly | 
|  | // created block. Note that this method just updates raw block information, | 
|  | // like predecessors, successors, dominators, and instruction list. It does not | 
|  | // update the graph, reverse post order, loop information, nor make sure the | 
|  | // blocks are consistent (for example ending with a control flow instruction). | 
|  | HBasicBlock* SplitBeforeForInlining(HInstruction* cursor); | 
|  |  | 
|  | // Similar to `SplitBeforeForInlining` but does it after `cursor`. | 
|  | HBasicBlock* SplitAfterForInlining(HInstruction* cursor); | 
|  |  | 
|  | // Merge `other` at the end of `this`. Successors and dominated blocks of | 
|  | // `other` are changed to be successors and dominated blocks of `this`. Note | 
|  | // that this method does not update the graph, reverse post order, loop | 
|  | // information, nor make sure the blocks are consistent (for example ending | 
|  | // with a control flow instruction). | 
|  | void MergeWithInlined(HBasicBlock* other); | 
|  |  | 
|  | // Replace `this` with `other`. Predecessors, successors, and dominated blocks | 
|  | // of `this` are moved to `other`. | 
|  | // Note that this method does not update the graph, reverse post order, loop | 
|  | // information, nor make sure the blocks are consistent (for example ending | 
|  | // with a control flow instruction). | 
|  | void ReplaceWith(HBasicBlock* other); | 
|  |  | 
|  | // Merge `other` at the end of `this`. This method updates loops, reverse post | 
|  | // order, links to predecessors, successors, dominators and deletes the block | 
|  | // from the graph. The two blocks must be successive, i.e. `this` the only | 
|  | // predecessor of `other` and vice versa. | 
|  | void MergeWith(HBasicBlock* other); | 
|  |  | 
|  | // Disconnects `this` from all its predecessors, successors and dominator, | 
|  | // removes it from all loops it is included in and eventually from the graph. | 
|  | // The block must not dominate any other block. Predecessors and successors | 
|  | // are safely updated. | 
|  | void DisconnectAndDelete(); | 
|  |  | 
|  | void AddInstruction(HInstruction* instruction); | 
|  | // Insert `instruction` before/after an existing instruction `cursor`. | 
|  | void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); | 
|  | void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); | 
|  | // Replace instruction `initial` with `replacement` within this block. | 
|  | void ReplaceAndRemoveInstructionWith(HInstruction* initial, | 
|  | HInstruction* replacement); | 
|  | void AddPhi(HPhi* phi); | 
|  | void InsertPhiAfter(HPhi* instruction, HPhi* cursor); | 
|  | // RemoveInstruction and RemovePhi delete a given instruction from the respective | 
|  | // instruction list. With 'ensure_safety' set to true, it verifies that the | 
|  | // instruction is not in use and removes it from the use lists of its inputs. | 
|  | void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); | 
|  | void RemovePhi(HPhi* phi, bool ensure_safety = true); | 
|  | void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); | 
|  |  | 
|  | bool IsLoopHeader() const { | 
|  | return IsInLoop() && (loop_information_->GetHeader() == this); | 
|  | } | 
|  |  | 
|  | bool IsLoopPreHeaderFirstPredecessor() const { | 
|  | DCHECK(IsLoopHeader()); | 
|  | return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader(); | 
|  | } | 
|  |  | 
|  | bool IsFirstPredecessorBackEdge() const { | 
|  | DCHECK(IsLoopHeader()); | 
|  | return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]); | 
|  | } | 
|  |  | 
|  | HLoopInformation* GetLoopInformation() const { | 
|  | return loop_information_; | 
|  | } | 
|  |  | 
|  | // Set the loop_information_ on this block. Overrides the current | 
|  | // loop_information if it is an outer loop of the passed loop information. | 
|  | // Note that this method is called while creating the loop information. | 
|  | void SetInLoop(HLoopInformation* info) { | 
|  | if (IsLoopHeader()) { | 
|  | // Nothing to do. This just means `info` is an outer loop. | 
|  | } else if (!IsInLoop()) { | 
|  | loop_information_ = info; | 
|  | } else if (loop_information_->Contains(*info->GetHeader())) { | 
|  | // Block is currently part of an outer loop. Make it part of this inner loop. | 
|  | // Note that a non loop header having a loop information means this loop information | 
|  | // has already been populated | 
|  | loop_information_ = info; | 
|  | } else { | 
|  | // Block is part of an inner loop. Do not update the loop information. | 
|  | // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` | 
|  | // at this point, because this method is being called while populating `info`. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Raw update of the loop information. | 
|  | void SetLoopInformation(HLoopInformation* info) { | 
|  | loop_information_ = info; | 
|  | } | 
|  |  | 
|  | bool IsInLoop() const { return loop_information_ != nullptr; } | 
|  |  | 
|  | TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } | 
|  |  | 
|  | void SetTryCatchInformation(TryCatchInformation* try_catch_information) { | 
|  | try_catch_information_ = try_catch_information; | 
|  | } | 
|  |  | 
|  | bool IsTryBlock() const { | 
|  | return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); | 
|  | } | 
|  |  | 
|  | bool IsCatchBlock() const { | 
|  | return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); | 
|  | } | 
|  |  | 
|  | // Returns the try entry that this block's successors should have. They will | 
|  | // be in the same try, unless the block ends in a try boundary. In that case, | 
|  | // the appropriate try entry will be returned. | 
|  | const HTryBoundary* ComputeTryEntryOfSuccessors() const; | 
|  |  | 
|  | bool HasThrowingInstructions() const; | 
|  |  | 
|  | // Returns whether this block dominates the blocked passed as parameter. | 
|  | bool Dominates(HBasicBlock* block) const; | 
|  |  | 
|  | size_t GetLifetimeStart() const { return lifetime_start_; } | 
|  | size_t GetLifetimeEnd() const { return lifetime_end_; } | 
|  |  | 
|  | void SetLifetimeStart(size_t start) { lifetime_start_ = start; } | 
|  | void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } | 
|  |  | 
|  | bool EndsWithControlFlowInstruction() const; | 
|  | bool EndsWithIf() const; | 
|  | bool EndsWithTryBoundary() const; | 
|  | bool HasSinglePhi() const; | 
|  |  | 
|  | private: | 
|  | HGraph* graph_; | 
|  | ArenaVector<HBasicBlock*> predecessors_; | 
|  | ArenaVector<HBasicBlock*> successors_; | 
|  | HInstructionList instructions_; | 
|  | HInstructionList phis_; | 
|  | HLoopInformation* loop_information_; | 
|  | HBasicBlock* dominator_; | 
|  | ArenaVector<HBasicBlock*> dominated_blocks_; | 
|  | uint32_t block_id_; | 
|  | // The dex program counter of the first instruction of this block. | 
|  | const uint32_t dex_pc_; | 
|  | size_t lifetime_start_; | 
|  | size_t lifetime_end_; | 
|  | TryCatchInformation* try_catch_information_; | 
|  |  | 
|  | friend class HGraph; | 
|  | friend class HInstruction; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBasicBlock); | 
|  | }; | 
|  |  | 
|  | // Iterates over the LoopInformation of all loops which contain 'block' | 
|  | // from the innermost to the outermost. | 
|  | class HLoopInformationOutwardIterator : public ValueObject { | 
|  | public: | 
|  | explicit HLoopInformationOutwardIterator(const HBasicBlock& block) | 
|  | : current_(block.GetLoopInformation()) {} | 
|  |  | 
|  | bool Done() const { return current_ == nullptr; } | 
|  |  | 
|  | void Advance() { | 
|  | DCHECK(!Done()); | 
|  | current_ = current_->GetPreHeader()->GetLoopInformation(); | 
|  | } | 
|  |  | 
|  | HLoopInformation* Current() const { | 
|  | DCHECK(!Done()); | 
|  | return current_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | HLoopInformation* current_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); | 
|  | }; | 
|  |  | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \ | 
|  | M(Above, Condition)                                                   \ | 
|  | M(AboveOrEqual, Condition)                                            \ | 
|  | M(Add, BinaryOperation)                                               \ | 
|  | M(And, BinaryOperation)                                               \ | 
|  | M(ArrayGet, Instruction)                                              \ | 
|  | M(ArrayLength, Instruction)                                           \ | 
|  | M(ArraySet, Instruction)                                              \ | 
|  | M(Below, Condition)                                                   \ | 
|  | M(BelowOrEqual, Condition)                                            \ | 
|  | M(BooleanNot, UnaryOperation)                                         \ | 
|  | M(BoundsCheck, Instruction)                                           \ | 
|  | M(BoundType, Instruction)                                             \ | 
|  | M(CheckCast, Instruction)                                             \ | 
|  | M(ClassTableGet, Instruction)                                         \ | 
|  | M(ClearException, Instruction)                                        \ | 
|  | M(ClinitCheck, Instruction)                                           \ | 
|  | M(Compare, BinaryOperation)                                           \ | 
|  | M(CurrentMethod, Instruction)                                         \ | 
|  | M(Deoptimize, Instruction)                                            \ | 
|  | M(Div, BinaryOperation)                                               \ | 
|  | M(DivZeroCheck, Instruction)                                          \ | 
|  | M(DoubleConstant, Constant)                                           \ | 
|  | M(Equal, Condition)                                                   \ | 
|  | M(Exit, Instruction)                                                  \ | 
|  | M(FloatConstant, Constant)                                            \ | 
|  | M(Goto, Instruction)                                                  \ | 
|  | M(GreaterThan, Condition)                                             \ | 
|  | M(GreaterThanOrEqual, Condition)                                      \ | 
|  | M(If, Instruction)                                                    \ | 
|  | M(InstanceFieldGet, Instruction)                                      \ | 
|  | M(InstanceFieldSet, Instruction)                                      \ | 
|  | M(InstanceOf, Instruction)                                            \ | 
|  | M(IntConstant, Constant)                                              \ | 
|  | M(InvokeUnresolved, Invoke)                                           \ | 
|  | M(InvokeInterface, Invoke)                                            \ | 
|  | M(InvokeStaticOrDirect, Invoke)                                       \ | 
|  | M(InvokeVirtual, Invoke)                                              \ | 
|  | M(LessThan, Condition)                                                \ | 
|  | M(LessThanOrEqual, Condition)                                         \ | 
|  | M(LoadClass, Instruction)                                             \ | 
|  | M(LoadException, Instruction)                                         \ | 
|  | M(LoadString, Instruction)                                            \ | 
|  | M(LongConstant, Constant)                                             \ | 
|  | M(MemoryBarrier, Instruction)                                         \ | 
|  | M(MonitorOperation, Instruction)                                      \ | 
|  | M(Mul, BinaryOperation)                                               \ | 
|  | M(NativeDebugInfo, Instruction)                                       \ | 
|  | M(Neg, UnaryOperation)                                                \ | 
|  | M(NewArray, Instruction)                                              \ | 
|  | M(NewInstance, Instruction)                                           \ | 
|  | M(Not, UnaryOperation)                                                \ | 
|  | M(NotEqual, Condition)                                                \ | 
|  | M(NullConstant, Instruction)                                          \ | 
|  | M(NullCheck, Instruction)                                             \ | 
|  | M(Or, BinaryOperation)                                                \ | 
|  | M(PackedSwitch, Instruction)                                          \ | 
|  | M(ParallelMove, Instruction)                                          \ | 
|  | M(ParameterValue, Instruction)                                        \ | 
|  | M(Phi, Instruction)                                                   \ | 
|  | M(Rem, BinaryOperation)                                               \ | 
|  | M(Return, Instruction)                                                \ | 
|  | M(ReturnVoid, Instruction)                                            \ | 
|  | M(Ror, BinaryOperation)                                               \ | 
|  | M(Shl, BinaryOperation)                                               \ | 
|  | M(Shr, BinaryOperation)                                               \ | 
|  | M(StaticFieldGet, Instruction)                                        \ | 
|  | M(StaticFieldSet, Instruction)                                        \ | 
|  | M(UnresolvedInstanceFieldGet, Instruction)                            \ | 
|  | M(UnresolvedInstanceFieldSet, Instruction)                            \ | 
|  | M(UnresolvedStaticFieldGet, Instruction)                              \ | 
|  | M(UnresolvedStaticFieldSet, Instruction)                              \ | 
|  | M(Select, Instruction)                                                \ | 
|  | M(Sub, BinaryOperation)                                               \ | 
|  | M(SuspendCheck, Instruction)                                          \ | 
|  | M(Throw, Instruction)                                                 \ | 
|  | M(TryBoundary, Instruction)                                           \ | 
|  | M(TypeConversion, Instruction)                                        \ | 
|  | M(UShr, BinaryOperation)                                              \ | 
|  | M(Xor, BinaryOperation)                                               \ | 
|  |  | 
|  | /* | 
|  | * Instructions, shared across several (not all) architectures. | 
|  | */ | 
|  | #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64) | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) | 
|  | #else | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \ | 
|  | M(BitwiseNegatedRight, Instruction)                                   \ | 
|  | M(MultiplyAccumulate, Instruction)                                    \ | 
|  | M(IntermediateAddress, Instruction) | 
|  | #endif | 
|  |  | 
|  | #ifndef ART_ENABLE_CODEGEN_arm | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) | 
|  | #else | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                            \ | 
|  | M(ArmDexCacheArraysBase, Instruction) | 
|  | #endif | 
|  |  | 
|  | #ifndef ART_ENABLE_CODEGEN_arm64 | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) | 
|  | #else | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \ | 
|  | M(Arm64DataProcWithShifterOp, Instruction) | 
|  | #endif | 
|  |  | 
|  | #ifndef ART_ENABLE_CODEGEN_mips | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) | 
|  | #else | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                           \ | 
|  | M(MipsComputeBaseMethodAddress, Instruction)                          \ | 
|  | M(MipsDexCacheArraysBase, Instruction) | 
|  | #endif | 
|  |  | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) | 
|  |  | 
|  | #ifndef ART_ENABLE_CODEGEN_x86 | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) | 
|  | #else | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \ | 
|  | M(X86ComputeBaseMethodAddress, Instruction)                           \ | 
|  | M(X86LoadFromConstantTable, Instruction)                              \ | 
|  | M(X86FPNeg, Instruction)                                              \ | 
|  | M(X86PackedSwitch, Instruction) | 
|  | #endif | 
|  |  | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) | 
|  |  | 
|  | #define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) | 
|  |  | 
|  | #define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \ | 
|  | M(Condition, BinaryOperation)                                         \ | 
|  | M(Constant, Instruction)                                              \ | 
|  | M(UnaryOperation, Instruction)                                        \ | 
|  | M(BinaryOperation, Instruction)                                       \ | 
|  | M(Invoke, Instruction) | 
|  |  | 
|  | #define FOR_EACH_INSTRUCTION(M)                                         \ | 
|  | FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \ | 
|  | FOR_EACH_ABSTRACT_INSTRUCTION(M) | 
|  |  | 
|  | #define FORWARD_DECLARATION(type, super) class H##type; | 
|  | FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) | 
|  | #undef FORWARD_DECLARATION | 
|  |  | 
|  | #define DECLARE_INSTRUCTION(type)                                         \ | 
|  | InstructionKind GetKindInternal() const OVERRIDE { return k##type; }    \ | 
|  | const char* DebugName() const OVERRIDE { return #type; }                \ | 
|  | bool InstructionTypeEquals(const HInstruction* other) const OVERRIDE {  \ | 
|  | return other->Is##type();                                             \ | 
|  | }                                                                       \ | 
|  | void Accept(HGraphVisitor* visitor) OVERRIDE | 
|  |  | 
|  | #define DECLARE_ABSTRACT_INSTRUCTION(type)                              \ | 
|  | bool Is##type() const { return As##type() != nullptr; }               \ | 
|  | const H##type* As##type() const { return this; }                      \ | 
|  | H##type* As##type() { return this; } | 
|  |  | 
|  | template <typename T> | 
|  | class HUseListNode : public ArenaObject<kArenaAllocUseListNode> { | 
|  | public: | 
|  | T GetUser() const { return user_; } | 
|  | size_t GetIndex() const { return index_; } | 
|  | void SetIndex(size_t index) { index_ = index; } | 
|  |  | 
|  | // Hook for the IntrusiveForwardList<>. | 
|  | // TODO: Hide this better. | 
|  | IntrusiveForwardListHook hook; | 
|  |  | 
|  | private: | 
|  | HUseListNode(T user, size_t index) | 
|  | : user_(user), index_(index) {} | 
|  |  | 
|  | T const user_; | 
|  | size_t index_; | 
|  |  | 
|  | friend class HInstruction; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HUseListNode); | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | using HUseList = IntrusiveForwardList<HUseListNode<T>>; | 
|  |  | 
|  | // This class is used by HEnvironment and HInstruction classes to record the | 
|  | // instructions they use and pointers to the corresponding HUseListNodes kept | 
|  | // by the used instructions. | 
|  | template <typename T> | 
|  | class HUserRecord : public ValueObject { | 
|  | public: | 
|  | HUserRecord() : instruction_(nullptr), before_use_node_() {} | 
|  | explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {} | 
|  |  | 
|  | HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node) | 
|  | : HUserRecord(old_record.instruction_, before_use_node) {} | 
|  | HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node) | 
|  | : instruction_(instruction), before_use_node_(before_use_node) { | 
|  | DCHECK(instruction_ != nullptr); | 
|  | } | 
|  |  | 
|  | HInstruction* GetInstruction() const { return instruction_; } | 
|  | typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; } | 
|  | typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); } | 
|  |  | 
|  | private: | 
|  | // Instruction used by the user. | 
|  | HInstruction* instruction_; | 
|  |  | 
|  | // Iterator before the corresponding entry in the use list kept by 'instruction_'. | 
|  | typename HUseList<T>::iterator before_use_node_; | 
|  | }; | 
|  |  | 
|  | // Helper class that extracts the input instruction from HUserRecord<HInstruction*>. | 
|  | // This is used for HInstruction::GetInputs() to return a container wrapper providing | 
|  | // HInstruction* values even though the underlying container has HUserRecord<>s. | 
|  | struct HInputExtractor { | 
|  | HInstruction* operator()(HUserRecord<HInstruction*>& record) const { | 
|  | return record.GetInstruction(); | 
|  | } | 
|  | const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const { | 
|  | return record.GetInstruction(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>; | 
|  | using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>; | 
|  |  | 
|  | /** | 
|  | * Side-effects representation. | 
|  | * | 
|  | * For write/read dependences on fields/arrays, the dependence analysis uses | 
|  | * type disambiguation (e.g. a float field write cannot modify the value of an | 
|  | * integer field read) and the access type (e.g.  a reference array write cannot | 
|  | * modify the value of a reference field read [although it may modify the | 
|  | * reference fetch prior to reading the field, which is represented by its own | 
|  | * write/read dependence]). The analysis makes conservative points-to | 
|  | * assumptions on reference types (e.g. two same typed arrays are assumed to be | 
|  | * the same, and any reference read depends on any reference read without | 
|  | * further regard of its type). | 
|  | * | 
|  | * The internal representation uses 38-bit and is described in the table below. | 
|  | * The first line indicates the side effect, and for field/array accesses the | 
|  | * second line indicates the type of the access (in the order of the | 
|  | * Primitive::Type enum). | 
|  | * The two numbered lines below indicate the bit position in the bitfield (read | 
|  | * vertically). | 
|  | * | 
|  | *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  | | 
|  | *   +-------------+---------+---------+--------------+---------+---------+ | 
|  | *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL| | 
|  | *   |      3      |333333322|222222221|       1      |111111110|000000000| | 
|  | *   |      7      |654321098|765432109|       8      |765432109|876543210| | 
|  | * | 
|  | * Note that, to ease the implementation, 'changes' bits are least significant | 
|  | * bits, while 'dependency' bits are most significant bits. | 
|  | */ | 
|  | class SideEffects : public ValueObject { | 
|  | public: | 
|  | SideEffects() : flags_(0) {} | 
|  |  | 
|  | static SideEffects None() { | 
|  | return SideEffects(0); | 
|  | } | 
|  |  | 
|  | static SideEffects All() { | 
|  | return SideEffects(kAllChangeBits | kAllDependOnBits); | 
|  | } | 
|  |  | 
|  | static SideEffects AllChanges() { | 
|  | return SideEffects(kAllChangeBits); | 
|  | } | 
|  |  | 
|  | static SideEffects AllDependencies() { | 
|  | return SideEffects(kAllDependOnBits); | 
|  | } | 
|  |  | 
|  | static SideEffects AllExceptGCDependency() { | 
|  | return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); | 
|  | } | 
|  |  | 
|  | static SideEffects AllWritesAndReads() { | 
|  | return SideEffects(kAllWrites | kAllReads); | 
|  | } | 
|  |  | 
|  | static SideEffects AllWrites() { | 
|  | return SideEffects(kAllWrites); | 
|  | } | 
|  |  | 
|  | static SideEffects AllReads() { | 
|  | return SideEffects(kAllReads); | 
|  | } | 
|  |  | 
|  | static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) { | 
|  | return is_volatile | 
|  | ? AllWritesAndReads() | 
|  | : SideEffects(TypeFlag(type, kFieldWriteOffset)); | 
|  | } | 
|  |  | 
|  | static SideEffects ArrayWriteOfType(Primitive::Type type) { | 
|  | return SideEffects(TypeFlag(type, kArrayWriteOffset)); | 
|  | } | 
|  |  | 
|  | static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) { | 
|  | return is_volatile | 
|  | ? AllWritesAndReads() | 
|  | : SideEffects(TypeFlag(type, kFieldReadOffset)); | 
|  | } | 
|  |  | 
|  | static SideEffects ArrayReadOfType(Primitive::Type type) { | 
|  | return SideEffects(TypeFlag(type, kArrayReadOffset)); | 
|  | } | 
|  |  | 
|  | static SideEffects CanTriggerGC() { | 
|  | return SideEffects(1ULL << kCanTriggerGCBit); | 
|  | } | 
|  |  | 
|  | static SideEffects DependsOnGC() { | 
|  | return SideEffects(1ULL << kDependsOnGCBit); | 
|  | } | 
|  |  | 
|  | // Combines the side-effects of this and the other. | 
|  | SideEffects Union(SideEffects other) const { | 
|  | return SideEffects(flags_ | other.flags_); | 
|  | } | 
|  |  | 
|  | SideEffects Exclusion(SideEffects other) const { | 
|  | return SideEffects(flags_ & ~other.flags_); | 
|  | } | 
|  |  | 
|  | void Add(SideEffects other) { | 
|  | flags_ |= other.flags_; | 
|  | } | 
|  |  | 
|  | bool Includes(SideEffects other) const { | 
|  | return (other.flags_ & flags_) == other.flags_; | 
|  | } | 
|  |  | 
|  | bool HasSideEffects() const { | 
|  | return (flags_ & kAllChangeBits); | 
|  | } | 
|  |  | 
|  | bool HasDependencies() const { | 
|  | return (flags_ & kAllDependOnBits); | 
|  | } | 
|  |  | 
|  | // Returns true if there are no side effects or dependencies. | 
|  | bool DoesNothing() const { | 
|  | return flags_ == 0; | 
|  | } | 
|  |  | 
|  | // Returns true if something is written. | 
|  | bool DoesAnyWrite() const { | 
|  | return (flags_ & kAllWrites); | 
|  | } | 
|  |  | 
|  | // Returns true if something is read. | 
|  | bool DoesAnyRead() const { | 
|  | return (flags_ & kAllReads); | 
|  | } | 
|  |  | 
|  | // Returns true if potentially everything is written and read | 
|  | // (every type and every kind of access). | 
|  | bool DoesAllReadWrite() const { | 
|  | return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); | 
|  | } | 
|  |  | 
|  | bool DoesAll() const { | 
|  | return flags_ == (kAllChangeBits | kAllDependOnBits); | 
|  | } | 
|  |  | 
|  | // Returns true if `this` may read something written by `other`. | 
|  | bool MayDependOn(SideEffects other) const { | 
|  | const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; | 
|  | return (other.flags_ & depends_on_flags); | 
|  | } | 
|  |  | 
|  | // Returns string representation of flags (for debugging only). | 
|  | // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| | 
|  | std::string ToString() const { | 
|  | std::string flags = "|"; | 
|  | for (int s = kLastBit; s >= 0; s--) { | 
|  | bool current_bit_is_set = ((flags_ >> s) & 1) != 0; | 
|  | if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { | 
|  | // This is a bit for the GC side effect. | 
|  | if (current_bit_is_set) { | 
|  | flags += "GC"; | 
|  | } | 
|  | flags += "|"; | 
|  | } else { | 
|  | // This is a bit for the array/field analysis. | 
|  | // The underscore character stands for the 'can trigger GC' bit. | 
|  | static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; | 
|  | if (current_bit_is_set) { | 
|  | flags += kDebug[s]; | 
|  | } | 
|  | if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || | 
|  | (s == kFieldReadOffset) || (s == kArrayReadOffset)) { | 
|  | flags += "|"; | 
|  | } | 
|  | } | 
|  | } | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } | 
|  |  | 
|  | private: | 
|  | static constexpr int kFieldArrayAnalysisBits = 9; | 
|  |  | 
|  | static constexpr int kFieldWriteOffset = 0; | 
|  | static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; | 
|  | static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; | 
|  | static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; | 
|  |  | 
|  | static constexpr int kChangeBits = kCanTriggerGCBit + 1; | 
|  |  | 
|  | static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; | 
|  | static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; | 
|  | static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; | 
|  | static constexpr int kDependsOnGCBit = kLastBitForReads + 1; | 
|  |  | 
|  | static constexpr int kLastBit = kDependsOnGCBit; | 
|  | static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; | 
|  |  | 
|  | // Aliases. | 
|  |  | 
|  | static_assert(kChangeBits == kDependOnBits, | 
|  | "the 'change' bits should match the 'depend on' bits."); | 
|  |  | 
|  | static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); | 
|  | static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; | 
|  | static constexpr uint64_t kAllWrites = | 
|  | ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; | 
|  | static constexpr uint64_t kAllReads = | 
|  | ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; | 
|  |  | 
|  | // Translates type to bit flag. | 
|  | static uint64_t TypeFlag(Primitive::Type type, int offset) { | 
|  | CHECK_NE(type, Primitive::kPrimVoid); | 
|  | const uint64_t one = 1; | 
|  | const int shift = type;  // 0-based consecutive enum | 
|  | DCHECK_LE(kFieldWriteOffset, shift); | 
|  | DCHECK_LT(shift, kArrayWriteOffset); | 
|  | return one << (type + offset); | 
|  | } | 
|  |  | 
|  | // Private constructor on direct flags value. | 
|  | explicit SideEffects(uint64_t flags) : flags_(flags) {} | 
|  |  | 
|  | uint64_t flags_; | 
|  | }; | 
|  |  | 
|  | // A HEnvironment object contains the values of virtual registers at a given location. | 
|  | class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { | 
|  | public: | 
|  | HEnvironment(ArenaAllocator* arena, | 
|  | size_t number_of_vregs, | 
|  | const DexFile& dex_file, | 
|  | uint32_t method_idx, | 
|  | uint32_t dex_pc, | 
|  | InvokeType invoke_type, | 
|  | HInstruction* holder) | 
|  | : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)), | 
|  | locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)), | 
|  | parent_(nullptr), | 
|  | dex_file_(dex_file), | 
|  | method_idx_(method_idx), | 
|  | dex_pc_(dex_pc), | 
|  | invoke_type_(invoke_type), | 
|  | holder_(holder) { | 
|  | } | 
|  |  | 
|  | HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder) | 
|  | : HEnvironment(arena, | 
|  | to_copy.Size(), | 
|  | to_copy.GetDexFile(), | 
|  | to_copy.GetMethodIdx(), | 
|  | to_copy.GetDexPc(), | 
|  | to_copy.GetInvokeType(), | 
|  | holder) {} | 
|  |  | 
|  | void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { | 
|  | if (parent_ != nullptr) { | 
|  | parent_->SetAndCopyParentChain(allocator, parent); | 
|  | } else { | 
|  | parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); | 
|  | parent_->CopyFrom(parent); | 
|  | if (parent->GetParent() != nullptr) { | 
|  | parent_->SetAndCopyParentChain(allocator, parent->GetParent()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CopyFrom(const ArenaVector<HInstruction*>& locals); | 
|  | void CopyFrom(HEnvironment* environment); | 
|  |  | 
|  | // Copy from `env`. If it's a loop phi for `loop_header`, copy the first | 
|  | // input to the loop phi instead. This is for inserting instructions that | 
|  | // require an environment (like HDeoptimization) in the loop pre-header. | 
|  | void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); | 
|  |  | 
|  | void SetRawEnvAt(size_t index, HInstruction* instruction) { | 
|  | vregs_[index] = HUserRecord<HEnvironment*>(instruction); | 
|  | } | 
|  |  | 
|  | HInstruction* GetInstructionAt(size_t index) const { | 
|  | return vregs_[index].GetInstruction(); | 
|  | } | 
|  |  | 
|  | void RemoveAsUserOfInput(size_t index) const; | 
|  |  | 
|  | size_t Size() const { return vregs_.size(); } | 
|  |  | 
|  | HEnvironment* GetParent() const { return parent_; } | 
|  |  | 
|  | void SetLocationAt(size_t index, Location location) { | 
|  | locations_[index] = location; | 
|  | } | 
|  |  | 
|  | Location GetLocationAt(size_t index) const { | 
|  | return locations_[index]; | 
|  | } | 
|  |  | 
|  | uint32_t GetDexPc() const { | 
|  | return dex_pc_; | 
|  | } | 
|  |  | 
|  | uint32_t GetMethodIdx() const { | 
|  | return method_idx_; | 
|  | } | 
|  |  | 
|  | InvokeType GetInvokeType() const { | 
|  | return invoke_type_; | 
|  | } | 
|  |  | 
|  | const DexFile& GetDexFile() const { | 
|  | return dex_file_; | 
|  | } | 
|  |  | 
|  | HInstruction* GetHolder() const { | 
|  | return holder_; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool IsFromInlinedInvoke() const { | 
|  | return GetParent() != nullptr; | 
|  | } | 
|  |  | 
|  | private: | 
|  | ArenaVector<HUserRecord<HEnvironment*>> vregs_; | 
|  | ArenaVector<Location> locations_; | 
|  | HEnvironment* parent_; | 
|  | const DexFile& dex_file_; | 
|  | const uint32_t method_idx_; | 
|  | const uint32_t dex_pc_; | 
|  | const InvokeType invoke_type_; | 
|  |  | 
|  | // The instruction that holds this environment. | 
|  | HInstruction* const holder_; | 
|  |  | 
|  | friend class HInstruction; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HEnvironment); | 
|  | }; | 
|  |  | 
|  | class HInstruction : public ArenaObject<kArenaAllocInstruction> { | 
|  | public: | 
|  | HInstruction(SideEffects side_effects, uint32_t dex_pc) | 
|  | : previous_(nullptr), | 
|  | next_(nullptr), | 
|  | block_(nullptr), | 
|  | dex_pc_(dex_pc), | 
|  | id_(-1), | 
|  | ssa_index_(-1), | 
|  | packed_fields_(0u), | 
|  | environment_(nullptr), | 
|  | locations_(nullptr), | 
|  | live_interval_(nullptr), | 
|  | lifetime_position_(kNoLifetime), | 
|  | side_effects_(side_effects), | 
|  | reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) { | 
|  | SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact()); | 
|  | } | 
|  |  | 
|  | virtual ~HInstruction() {} | 
|  |  | 
|  | #define DECLARE_KIND(type, super) k##type, | 
|  | enum InstructionKind { | 
|  | FOR_EACH_INSTRUCTION(DECLARE_KIND) | 
|  | }; | 
|  | #undef DECLARE_KIND | 
|  |  | 
|  | HInstruction* GetNext() const { return next_; } | 
|  | HInstruction* GetPrevious() const { return previous_; } | 
|  |  | 
|  | HInstruction* GetNextDisregardingMoves() const; | 
|  | HInstruction* GetPreviousDisregardingMoves() const; | 
|  |  | 
|  | HBasicBlock* GetBlock() const { return block_; } | 
|  | ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); } | 
|  | void SetBlock(HBasicBlock* block) { block_ = block; } | 
|  | bool IsInBlock() const { return block_ != nullptr; } | 
|  | bool IsInLoop() const { return block_->IsInLoop(); } | 
|  | bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); } | 
|  | bool IsIrreducibleLoopHeaderPhi() const { | 
|  | return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible(); | 
|  | } | 
|  |  | 
|  | virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0; | 
|  |  | 
|  | ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const { | 
|  | // One virtual method is enough, just const_cast<> and then re-add the const. | 
|  | return ArrayRef<const HUserRecord<HInstruction*>>( | 
|  | const_cast<HInstruction*>(this)->GetInputRecords()); | 
|  | } | 
|  |  | 
|  | HInputsRef GetInputs() { | 
|  | return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); | 
|  | } | 
|  |  | 
|  | HConstInputsRef GetInputs() const { | 
|  | return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); | 
|  | } | 
|  |  | 
|  | size_t InputCount() const { return GetInputRecords().size(); } | 
|  | HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } | 
|  |  | 
|  | void SetRawInputAt(size_t index, HInstruction* input) { | 
|  | SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); | 
|  | } | 
|  |  | 
|  | virtual void Accept(HGraphVisitor* visitor) = 0; | 
|  | virtual const char* DebugName() const = 0; | 
|  |  | 
|  | virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; } | 
|  |  | 
|  | virtual bool NeedsEnvironment() const { return false; } | 
|  |  | 
|  | uint32_t GetDexPc() const { return dex_pc_; } | 
|  |  | 
|  | virtual bool IsControlFlow() const { return false; } | 
|  |  | 
|  | virtual bool CanThrow() const { return false; } | 
|  | bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } | 
|  |  | 
|  | bool HasSideEffects() const { return side_effects_.HasSideEffects(); } | 
|  | bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } | 
|  |  | 
|  | // Does not apply for all instructions, but having this at top level greatly | 
|  | // simplifies the null check elimination. | 
|  | // TODO: Consider merging can_be_null into ReferenceTypeInfo. | 
|  | virtual bool CanBeNull() const { | 
|  | DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types"; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | virtual bool IsActualObject() const { | 
|  | return GetType() == Primitive::kPrimNot; | 
|  | } | 
|  |  | 
|  | void SetReferenceTypeInfo(ReferenceTypeInfo rti); | 
|  |  | 
|  | ReferenceTypeInfo GetReferenceTypeInfo() const { | 
|  | DCHECK_EQ(GetType(), Primitive::kPrimNot); | 
|  | return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_, | 
|  | GetPackedFlag<kFlagReferenceTypeIsExact>()); | 
|  | } | 
|  |  | 
|  | void AddUseAt(HInstruction* user, size_t index) { | 
|  | DCHECK(user != nullptr); | 
|  | // Note: fixup_end remains valid across push_front(). | 
|  | auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin(); | 
|  | HUseListNode<HInstruction*>* new_node = | 
|  | new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HInstruction*>(user, index); | 
|  | uses_.push_front(*new_node); | 
|  | FixUpUserRecordsAfterUseInsertion(fixup_end); | 
|  | } | 
|  |  | 
|  | void AddEnvUseAt(HEnvironment* user, size_t index) { | 
|  | DCHECK(user != nullptr); | 
|  | // Note: env_fixup_end remains valid across push_front(). | 
|  | auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin(); | 
|  | HUseListNode<HEnvironment*>* new_node = | 
|  | new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HEnvironment*>(user, index); | 
|  | env_uses_.push_front(*new_node); | 
|  | FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end); | 
|  | } | 
|  |  | 
|  | void RemoveAsUserOfInput(size_t input) { | 
|  | HUserRecord<HInstruction*> input_use = InputRecordAt(input); | 
|  | HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); | 
|  | input_use.GetInstruction()->uses_.erase_after(before_use_node); | 
|  | input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); | 
|  | } | 
|  |  | 
|  | void RemoveAsUserOfAllInputs() { | 
|  | for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) { | 
|  | HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); | 
|  | input_use.GetInstruction()->uses_.erase_after(before_use_node); | 
|  | input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); | 
|  | } | 
|  | } | 
|  |  | 
|  | const HUseList<HInstruction*>& GetUses() const { return uses_; } | 
|  | const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } | 
|  |  | 
|  | bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); } | 
|  | bool HasEnvironmentUses() const { return !env_uses_.empty(); } | 
|  | bool HasNonEnvironmentUses() const { return !uses_.empty(); } | 
|  | bool HasOnlyOneNonEnvironmentUse() const { | 
|  | return !HasEnvironmentUses() && GetUses().HasExactlyOneElement(); | 
|  | } | 
|  |  | 
|  | // Does this instruction strictly dominate `other_instruction`? | 
|  | // Returns false if this instruction and `other_instruction` are the same. | 
|  | // Aborts if this instruction and `other_instruction` are both phis. | 
|  | bool StrictlyDominates(HInstruction* other_instruction) const; | 
|  |  | 
|  | int GetId() const { return id_; } | 
|  | void SetId(int id) { id_ = id; } | 
|  |  | 
|  | int GetSsaIndex() const { return ssa_index_; } | 
|  | void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } | 
|  | bool HasSsaIndex() const { return ssa_index_ != -1; } | 
|  |  | 
|  | bool HasEnvironment() const { return environment_ != nullptr; } | 
|  | HEnvironment* GetEnvironment() const { return environment_; } | 
|  | // Set the `environment_` field. Raw because this method does not | 
|  | // update the uses lists. | 
|  | void SetRawEnvironment(HEnvironment* environment) { | 
|  | DCHECK(environment_ == nullptr); | 
|  | DCHECK_EQ(environment->GetHolder(), this); | 
|  | environment_ = environment; | 
|  | } | 
|  |  | 
|  | void InsertRawEnvironment(HEnvironment* environment) { | 
|  | DCHECK(environment_ != nullptr); | 
|  | DCHECK_EQ(environment->GetHolder(), this); | 
|  | DCHECK(environment->GetParent() == nullptr); | 
|  | environment->parent_ = environment_; | 
|  | environment_ = environment; | 
|  | } | 
|  |  | 
|  | void RemoveEnvironment(); | 
|  |  | 
|  | // Set the environment of this instruction, copying it from `environment`. While | 
|  | // copying, the uses lists are being updated. | 
|  | void CopyEnvironmentFrom(HEnvironment* environment) { | 
|  | DCHECK(environment_ == nullptr); | 
|  | ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); | 
|  | environment_ = new (allocator) HEnvironment(allocator, *environment, this); | 
|  | environment_->CopyFrom(environment); | 
|  | if (environment->GetParent() != nullptr) { | 
|  | environment_->SetAndCopyParentChain(allocator, environment->GetParent()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, | 
|  | HBasicBlock* block) { | 
|  | DCHECK(environment_ == nullptr); | 
|  | ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); | 
|  | environment_ = new (allocator) HEnvironment(allocator, *environment, this); | 
|  | environment_->CopyFromWithLoopPhiAdjustment(environment, block); | 
|  | if (environment->GetParent() != nullptr) { | 
|  | environment_->SetAndCopyParentChain(allocator, environment->GetParent()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the number of entries in the environment. Typically, that is the | 
|  | // number of dex registers in a method. It could be more in case of inlining. | 
|  | size_t EnvironmentSize() const; | 
|  |  | 
|  | LocationSummary* GetLocations() const { return locations_; } | 
|  | void SetLocations(LocationSummary* locations) { locations_ = locations; } | 
|  |  | 
|  | void ReplaceWith(HInstruction* instruction); | 
|  | void ReplaceInput(HInstruction* replacement, size_t index); | 
|  |  | 
|  | // This is almost the same as doing `ReplaceWith()`. But in this helper, the | 
|  | // uses of this instruction by `other` are *not* updated. | 
|  | void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { | 
|  | ReplaceWith(other); | 
|  | other->ReplaceInput(this, use_index); | 
|  | } | 
|  |  | 
|  | // Move `this` instruction before `cursor`. | 
|  | void MoveBefore(HInstruction* cursor); | 
|  |  | 
|  | // Move `this` before its first user and out of any loops. If there is no | 
|  | // out-of-loop user that dominates all other users, move the instruction | 
|  | // to the end of the out-of-loop common dominator of the user's blocks. | 
|  | // | 
|  | // This can be used only on non-throwing instructions with no side effects that | 
|  | // have at least one use but no environment uses. | 
|  | void MoveBeforeFirstUserAndOutOfLoops(); | 
|  |  | 
|  | #define INSTRUCTION_TYPE_CHECK(type, super)                                    \ | 
|  | bool Is##type() const;                                                       \ | 
|  | const H##type* As##type() const;                                             \ | 
|  | H##type* As##type(); | 
|  |  | 
|  | FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) | 
|  | #undef INSTRUCTION_TYPE_CHECK | 
|  |  | 
|  | #define INSTRUCTION_TYPE_CHECK(type, super)                                    \ | 
|  | bool Is##type() const { return (As##type() != nullptr); }                    \ | 
|  | virtual const H##type* As##type() const { return nullptr; }                  \ | 
|  | virtual H##type* As##type() { return nullptr; } | 
|  | FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK) | 
|  | #undef INSTRUCTION_TYPE_CHECK | 
|  |  | 
|  | // Returns whether the instruction can be moved within the graph. | 
|  | virtual bool CanBeMoved() const { return false; } | 
|  |  | 
|  | // Returns whether the two instructions are of the same kind. | 
|  | virtual bool InstructionTypeEquals(const HInstruction* other ATTRIBUTE_UNUSED) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns whether any data encoded in the two instructions is equal. | 
|  | // This method does not look at the inputs. Both instructions must be | 
|  | // of the same type, otherwise the method has undefined behavior. | 
|  | virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns whether two instructions are equal, that is: | 
|  | // 1) They have the same type and contain the same data (InstructionDataEquals). | 
|  | // 2) Their inputs are identical. | 
|  | bool Equals(const HInstruction* other) const; | 
|  |  | 
|  | // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744) | 
|  | // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide | 
|  | // the virtual function because the __attribute__((__pure__)) doesn't really | 
|  | // apply the strong requirement for virtual functions, preventing optimizations. | 
|  | InstructionKind GetKind() const PURE; | 
|  | virtual InstructionKind GetKindInternal() const = 0; | 
|  |  | 
|  | virtual size_t ComputeHashCode() const { | 
|  | size_t result = GetKind(); | 
|  | for (const HInstruction* input : GetInputs()) { | 
|  | result = (result * 31) + input->GetId(); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | SideEffects GetSideEffects() const { return side_effects_; } | 
|  | void SetSideEffects(SideEffects other) { side_effects_ = other; } | 
|  | void AddSideEffects(SideEffects other) { side_effects_.Add(other); } | 
|  |  | 
|  | size_t GetLifetimePosition() const { return lifetime_position_; } | 
|  | void SetLifetimePosition(size_t position) { lifetime_position_ = position; } | 
|  | LiveInterval* GetLiveInterval() const { return live_interval_; } | 
|  | void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } | 
|  | bool HasLiveInterval() const { return live_interval_ != nullptr; } | 
|  |  | 
|  | bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } | 
|  |  | 
|  | // Returns whether the code generation of the instruction will require to have access | 
|  | // to the current method. Such instructions are: | 
|  | // (1): Instructions that require an environment, as calling the runtime requires | 
|  | //      to walk the stack and have the current method stored at a specific stack address. | 
|  | // (2): Object literals like classes and strings, that are loaded from the dex cache | 
|  | //      fields of the current method. | 
|  | bool NeedsCurrentMethod() const { | 
|  | return NeedsEnvironment() || IsLoadClass() || IsLoadString(); | 
|  | } | 
|  |  | 
|  | // Returns whether the code generation of the instruction will require to have access | 
|  | // to the dex cache of the current method's declaring class via the current method. | 
|  | virtual bool NeedsDexCacheOfDeclaringClass() const { return false; } | 
|  |  | 
|  | // Does this instruction have any use in an environment before | 
|  | // control flow hits 'other'? | 
|  | bool HasAnyEnvironmentUseBefore(HInstruction* other); | 
|  |  | 
|  | // Remove all references to environment uses of this instruction. | 
|  | // The caller must ensure that this is safe to do. | 
|  | void RemoveEnvironmentUsers(); | 
|  |  | 
|  | bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); } | 
|  | void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); } | 
|  |  | 
|  | protected: | 
|  | // If set, the machine code for this instruction is assumed to be generated by | 
|  | // its users. Used by liveness analysis to compute use positions accordingly. | 
|  | static constexpr size_t kFlagEmittedAtUseSite = 0u; | 
|  | static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1; | 
|  | static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1; | 
|  | static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte; | 
|  |  | 
|  | const HUserRecord<HInstruction*> InputRecordAt(size_t i) const { | 
|  | return GetInputRecords()[i]; | 
|  | } | 
|  |  | 
|  | void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) { | 
|  | ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords(); | 
|  | input_records[index] = input; | 
|  | } | 
|  |  | 
|  | uint32_t GetPackedFields() const { | 
|  | return packed_fields_; | 
|  | } | 
|  |  | 
|  | template <size_t flag> | 
|  | bool GetPackedFlag() const { | 
|  | return (packed_fields_ & (1u << flag)) != 0u; | 
|  | } | 
|  |  | 
|  | template <size_t flag> | 
|  | void SetPackedFlag(bool value = true) { | 
|  | packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag); | 
|  | } | 
|  |  | 
|  | template <typename BitFieldType> | 
|  | typename BitFieldType::value_type GetPackedField() const { | 
|  | return BitFieldType::Decode(packed_fields_); | 
|  | } | 
|  |  | 
|  | template <typename BitFieldType> | 
|  | void SetPackedField(typename BitFieldType::value_type value) { | 
|  | DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value))); | 
|  | packed_fields_ = BitFieldType::Update(value, packed_fields_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) { | 
|  | auto before_use_node = uses_.before_begin(); | 
|  | for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) { | 
|  | HInstruction* user = use_node->GetUser(); | 
|  | size_t input_index = use_node->GetIndex(); | 
|  | user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node)); | 
|  | before_use_node = use_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) { | 
|  | auto next = ++HUseList<HInstruction*>::iterator(before_use_node); | 
|  | if (next != uses_.end()) { | 
|  | HInstruction* next_user = next->GetUser(); | 
|  | size_t next_index = next->GetIndex(); | 
|  | DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this); | 
|  | next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) { | 
|  | auto before_env_use_node = env_uses_.before_begin(); | 
|  | for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) { | 
|  | HEnvironment* user = env_use_node->GetUser(); | 
|  | size_t input_index = env_use_node->GetIndex(); | 
|  | user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); | 
|  | before_env_use_node = env_use_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) { | 
|  | auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node); | 
|  | if (next != env_uses_.end()) { | 
|  | HEnvironment* next_user = next->GetUser(); | 
|  | size_t next_index = next->GetIndex(); | 
|  | DCHECK(next_user->vregs_[next_index].GetInstruction() == this); | 
|  | next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); | 
|  | } | 
|  | } | 
|  |  | 
|  | HInstruction* previous_; | 
|  | HInstruction* next_; | 
|  | HBasicBlock* block_; | 
|  | const uint32_t dex_pc_; | 
|  |  | 
|  | // An instruction gets an id when it is added to the graph. | 
|  | // It reflects creation order. A negative id means the instruction | 
|  | // has not been added to the graph. | 
|  | int id_; | 
|  |  | 
|  | // When doing liveness analysis, instructions that have uses get an SSA index. | 
|  | int ssa_index_; | 
|  |  | 
|  | // Packed fields. | 
|  | uint32_t packed_fields_; | 
|  |  | 
|  | // List of instructions that have this instruction as input. | 
|  | HUseList<HInstruction*> uses_; | 
|  |  | 
|  | // List of environments that contain this instruction. | 
|  | HUseList<HEnvironment*> env_uses_; | 
|  |  | 
|  | // The environment associated with this instruction. Not null if the instruction | 
|  | // might jump out of the method. | 
|  | HEnvironment* environment_; | 
|  |  | 
|  | // Set by the code generator. | 
|  | LocationSummary* locations_; | 
|  |  | 
|  | // Set by the liveness analysis. | 
|  | LiveInterval* live_interval_; | 
|  |  | 
|  | // Set by the liveness analysis, this is the position in a linear | 
|  | // order of blocks where this instruction's live interval start. | 
|  | size_t lifetime_position_; | 
|  |  | 
|  | SideEffects side_effects_; | 
|  |  | 
|  | // The reference handle part of the reference type info. | 
|  | // The IsExact() flag is stored in packed fields. | 
|  | // TODO: for primitive types this should be marked as invalid. | 
|  | ReferenceTypeInfo::TypeHandle reference_type_handle_; | 
|  |  | 
|  | friend class GraphChecker; | 
|  | friend class HBasicBlock; | 
|  | friend class HEnvironment; | 
|  | friend class HGraph; | 
|  | friend class HInstructionList; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInstruction); | 
|  | }; | 
|  | std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs); | 
|  |  | 
|  | class HInstructionIterator : public ValueObject { | 
|  | public: | 
|  | explicit HInstructionIterator(const HInstructionList& instructions) | 
|  | : instruction_(instructions.first_instruction_) { | 
|  | next_ = Done() ? nullptr : instruction_->GetNext(); | 
|  | } | 
|  |  | 
|  | bool Done() const { return instruction_ == nullptr; } | 
|  | HInstruction* Current() const { return instruction_; } | 
|  | void Advance() { | 
|  | instruction_ = next_; | 
|  | next_ = Done() ? nullptr : instruction_->GetNext(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | HInstruction* instruction_; | 
|  | HInstruction* next_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInstructionIterator); | 
|  | }; | 
|  |  | 
|  | class HBackwardInstructionIterator : public ValueObject { | 
|  | public: | 
|  | explicit HBackwardInstructionIterator(const HInstructionList& instructions) | 
|  | : instruction_(instructions.last_instruction_) { | 
|  | next_ = Done() ? nullptr : instruction_->GetPrevious(); | 
|  | } | 
|  |  | 
|  | bool Done() const { return instruction_ == nullptr; } | 
|  | HInstruction* Current() const { return instruction_; } | 
|  | void Advance() { | 
|  | instruction_ = next_; | 
|  | next_ = Done() ? nullptr : instruction_->GetPrevious(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | HInstruction* instruction_; | 
|  | HInstruction* next_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator); | 
|  | }; | 
|  |  | 
|  | template<size_t N> | 
|  | class HTemplateInstruction: public HInstruction { | 
|  | public: | 
|  | HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc) | 
|  | : HInstruction(side_effects, dex_pc), inputs_() {} | 
|  | virtual ~HTemplateInstruction() {} | 
|  |  | 
|  | using HInstruction::GetInputRecords;  // Keep the const version visible. | 
|  | ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { | 
|  | return ArrayRef<HUserRecord<HInstruction*>>(inputs_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::array<HUserRecord<HInstruction*>, N> inputs_; | 
|  |  | 
|  | friend class SsaBuilder; | 
|  | }; | 
|  |  | 
|  | // HTemplateInstruction specialization for N=0. | 
|  | template<> | 
|  | class HTemplateInstruction<0>: public HInstruction { | 
|  | public: | 
|  | explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc) | 
|  | : HInstruction(side_effects, dex_pc) {} | 
|  |  | 
|  | virtual ~HTemplateInstruction() {} | 
|  |  | 
|  | using HInstruction::GetInputRecords;  // Keep the const version visible. | 
|  | ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { | 
|  | return ArrayRef<HUserRecord<HInstruction*>>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend class SsaBuilder; | 
|  | }; | 
|  |  | 
|  | template<intptr_t N> | 
|  | class HExpression : public HTemplateInstruction<N> { | 
|  | public: | 
|  | HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc) | 
|  | : HTemplateInstruction<N>(side_effects, dex_pc) { | 
|  | this->template SetPackedField<TypeField>(type); | 
|  | } | 
|  | virtual ~HExpression() {} | 
|  |  | 
|  | Primitive::Type GetType() const OVERRIDE { | 
|  | return TypeField::Decode(this->GetPackedFields()); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); | 
|  | static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize; | 
|  | static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; | 
|  | }; | 
|  |  | 
|  | // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow | 
|  | // instruction that branches to the exit block. | 
|  | class HReturnVoid FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ReturnVoid); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HReturnVoid); | 
|  | }; | 
|  |  | 
|  | // Represents dex's RETURN opcodes. A HReturn is a control flow | 
|  | // instruction that branches to the exit block. | 
|  | class HReturn FINAL : public HTemplateInstruction<1> { | 
|  | public: | 
|  | explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
|  | SetRawInputAt(0, value); | 
|  | } | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Return); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HReturn); | 
|  | }; | 
|  |  | 
|  | class HPhi FINAL : public HInstruction { | 
|  | public: | 
|  | HPhi(ArenaAllocator* arena, | 
|  | uint32_t reg_number, | 
|  | size_t number_of_inputs, | 
|  | Primitive::Type type, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HInstruction(SideEffects::None(), dex_pc), | 
|  | inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)), | 
|  | reg_number_(reg_number) { | 
|  | SetPackedField<TypeField>(ToPhiType(type)); | 
|  | DCHECK_NE(GetType(), Primitive::kPrimVoid); | 
|  | // Phis are constructed live and marked dead if conflicting or unused. | 
|  | // Individual steps of SsaBuilder should assume that if a phi has been | 
|  | // marked dead, it can be ignored and will be removed by SsaPhiElimination. | 
|  | SetPackedFlag<kFlagIsLive>(true); | 
|  | SetPackedFlag<kFlagCanBeNull>(true); | 
|  | } | 
|  |  | 
|  | // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. | 
|  | static Primitive::Type ToPhiType(Primitive::Type type) { | 
|  | return Primitive::PrimitiveKind(type); | 
|  | } | 
|  |  | 
|  | bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } | 
|  |  | 
|  | using HInstruction::GetInputRecords;  // Keep the const version visible. | 
|  | ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { | 
|  | return ArrayRef<HUserRecord<HInstruction*>>(inputs_); | 
|  | } | 
|  |  | 
|  | void AddInput(HInstruction* input); | 
|  | void RemoveInputAt(size_t index); | 
|  |  | 
|  | Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); } | 
|  | void SetType(Primitive::Type new_type) { | 
|  | // Make sure that only valid type changes occur. The following are allowed: | 
|  | //  (1) int  -> float/ref (primitive type propagation), | 
|  | //  (2) long -> double (primitive type propagation). | 
|  | DCHECK(GetType() == new_type || | 
|  | (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) || | 
|  | (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) || | 
|  | (GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble)); | 
|  | SetPackedField<TypeField>(new_type); | 
|  | } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } | 
|  | void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } | 
|  |  | 
|  | uint32_t GetRegNumber() const { return reg_number_; } | 
|  |  | 
|  | void SetDead() { SetPackedFlag<kFlagIsLive>(false); } | 
|  | void SetLive() { SetPackedFlag<kFlagIsLive>(true); } | 
|  | bool IsDead() const { return !IsLive(); } | 
|  | bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); } | 
|  |  | 
|  | bool IsVRegEquivalentOf(const HInstruction* other) const { | 
|  | return other != nullptr | 
|  | && other->IsPhi() | 
|  | && other->AsPhi()->GetBlock() == GetBlock() | 
|  | && other->AsPhi()->GetRegNumber() == GetRegNumber(); | 
|  | } | 
|  |  | 
|  | // Returns the next equivalent phi (starting from the current one) or null if there is none. | 
|  | // An equivalent phi is a phi having the same dex register and type. | 
|  | // It assumes that phis with the same dex register are adjacent. | 
|  | HPhi* GetNextEquivalentPhiWithSameType() { | 
|  | HInstruction* next = GetNext(); | 
|  | while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { | 
|  | if (next->GetType() == GetType()) { | 
|  | return next->AsPhi(); | 
|  | } | 
|  | next = next->GetNext(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Phi); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); | 
|  | static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize; | 
|  | static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1; | 
|  | static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1; | 
|  | static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; | 
|  |  | 
|  | ArenaVector<HUserRecord<HInstruction*>> inputs_; | 
|  | const uint32_t reg_number_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HPhi); | 
|  | }; | 
|  |  | 
|  | // The exit instruction is the only instruction of the exit block. | 
|  | // Instructions aborting the method (HThrow and HReturn) must branch to the | 
|  | // exit block. | 
|  | class HExit FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Exit); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HExit); | 
|  | }; | 
|  |  | 
|  | // Jumps from one block to another. | 
|  | class HGoto FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | HBasicBlock* GetSuccessor() const { | 
|  | return GetBlock()->GetSingleSuccessor(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Goto); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HGoto); | 
|  | }; | 
|  |  | 
|  | class HConstant : public HExpression<0> { | 
|  | public: | 
|  | explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc) | 
|  | : HExpression(type, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  |  | 
|  | // Is this constant -1 in the arithmetic sense? | 
|  | virtual bool IsMinusOne() const { return false; } | 
|  | // Is this constant 0 in the arithmetic sense? | 
|  | virtual bool IsArithmeticZero() const { return false; } | 
|  | // Is this constant a 0-bit pattern? | 
|  | virtual bool IsZeroBitPattern() const { return false; } | 
|  | // Is this constant 1 in the arithmetic sense? | 
|  | virtual bool IsOne() const { return false; } | 
|  |  | 
|  | virtual uint64_t GetValueAsUint64() const = 0; | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(Constant); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HConstant); | 
|  | }; | 
|  |  | 
|  | class HNullConstant FINAL : public HConstant { | 
|  | public: | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint64_t GetValueAsUint64() const OVERRIDE { return 0; } | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { return 0; } | 
|  |  | 
|  | // The null constant representation is a 0-bit pattern. | 
|  | virtual bool IsZeroBitPattern() const { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(NullConstant); | 
|  |  | 
|  | private: | 
|  | explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {} | 
|  |  | 
|  | friend class HGraph; | 
|  | DISALLOW_COPY_AND_ASSIGN(HNullConstant); | 
|  | }; | 
|  |  | 
|  | // Constants of the type int. Those can be from Dex instructions, or | 
|  | // synthesized (for example with the if-eqz instruction). | 
|  | class HIntConstant FINAL : public HConstant { | 
|  | public: | 
|  | int32_t GetValue() const { return value_; } | 
|  |  | 
|  | uint64_t GetValueAsUint64() const OVERRIDE { | 
|  | return static_cast<uint64_t>(static_cast<uint32_t>(value_)); | 
|  | } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | DCHECK(other->IsIntConstant()) << other->DebugName(); | 
|  | return other->AsIntConstant()->value_ == value_; | 
|  | } | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { return GetValue(); } | 
|  |  | 
|  | bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } | 
|  | bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; } | 
|  | bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; } | 
|  | bool IsOne() const OVERRIDE { return GetValue() == 1; } | 
|  |  | 
|  | // Integer constants are used to encode Boolean values as well, | 
|  | // where 1 means true and 0 means false. | 
|  | bool IsTrue() const { return GetValue() == 1; } | 
|  | bool IsFalse() const { return GetValue() == 0; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(IntConstant); | 
|  |  | 
|  | private: | 
|  | explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) | 
|  | : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {} | 
|  | explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) | 
|  | : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {} | 
|  |  | 
|  | const int32_t value_; | 
|  |  | 
|  | friend class HGraph; | 
|  | ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); | 
|  | ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); | 
|  | DISALLOW_COPY_AND_ASSIGN(HIntConstant); | 
|  | }; | 
|  |  | 
|  | class HLongConstant FINAL : public HConstant { | 
|  | public: | 
|  | int64_t GetValue() const { return value_; } | 
|  |  | 
|  | uint64_t GetValueAsUint64() const OVERRIDE { return value_; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | DCHECK(other->IsLongConstant()) << other->DebugName(); | 
|  | return other->AsLongConstant()->value_ == value_; | 
|  | } | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } | 
|  |  | 
|  | bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } | 
|  | bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; } | 
|  | bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; } | 
|  | bool IsOne() const OVERRIDE { return GetValue() == 1; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(LongConstant); | 
|  |  | 
|  | private: | 
|  | explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) | 
|  | : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {} | 
|  |  | 
|  | const int64_t value_; | 
|  |  | 
|  | friend class HGraph; | 
|  | DISALLOW_COPY_AND_ASSIGN(HLongConstant); | 
|  | }; | 
|  |  | 
|  | class HFloatConstant FINAL : public HConstant { | 
|  | public: | 
|  | float GetValue() const { return value_; } | 
|  |  | 
|  | uint64_t GetValueAsUint64() const OVERRIDE { | 
|  | return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); | 
|  | } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | DCHECK(other->IsFloatConstant()) << other->DebugName(); | 
|  | return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); | 
|  | } | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } | 
|  |  | 
|  | bool IsMinusOne() const OVERRIDE { | 
|  | return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); | 
|  | } | 
|  | bool IsArithmeticZero() const OVERRIDE { | 
|  | return std::fpclassify(value_) == FP_ZERO; | 
|  | } | 
|  | bool IsArithmeticPositiveZero() const { | 
|  | return IsArithmeticZero() && !std::signbit(value_); | 
|  | } | 
|  | bool IsArithmeticNegativeZero() const { | 
|  | return IsArithmeticZero() && std::signbit(value_); | 
|  | } | 
|  | bool IsZeroBitPattern() const OVERRIDE { | 
|  | return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f); | 
|  | } | 
|  | bool IsOne() const OVERRIDE { | 
|  | return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); | 
|  | } | 
|  | bool IsNaN() const { | 
|  | return std::isnan(value_); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(FloatConstant); | 
|  |  | 
|  | private: | 
|  | explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) | 
|  | : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {} | 
|  | explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) | 
|  | : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {} | 
|  |  | 
|  | const float value_; | 
|  |  | 
|  | // Only the SsaBuilder and HGraph can create floating-point constants. | 
|  | friend class SsaBuilder; | 
|  | friend class HGraph; | 
|  | DISALLOW_COPY_AND_ASSIGN(HFloatConstant); | 
|  | }; | 
|  |  | 
|  | class HDoubleConstant FINAL : public HConstant { | 
|  | public: | 
|  | double GetValue() const { return value_; } | 
|  |  | 
|  | uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | DCHECK(other->IsDoubleConstant()) << other->DebugName(); | 
|  | return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); | 
|  | } | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } | 
|  |  | 
|  | bool IsMinusOne() const OVERRIDE { | 
|  | return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); | 
|  | } | 
|  | bool IsArithmeticZero() const OVERRIDE { | 
|  | return std::fpclassify(value_) == FP_ZERO; | 
|  | } | 
|  | bool IsArithmeticPositiveZero() const { | 
|  | return IsArithmeticZero() && !std::signbit(value_); | 
|  | } | 
|  | bool IsArithmeticNegativeZero() const { | 
|  | return IsArithmeticZero() && std::signbit(value_); | 
|  | } | 
|  | bool IsZeroBitPattern() const OVERRIDE { | 
|  | return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0)); | 
|  | } | 
|  | bool IsOne() const OVERRIDE { | 
|  | return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); | 
|  | } | 
|  | bool IsNaN() const { | 
|  | return std::isnan(value_); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(DoubleConstant); | 
|  |  | 
|  | private: | 
|  | explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) | 
|  | : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {} | 
|  | explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) | 
|  | : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {} | 
|  |  | 
|  | const double value_; | 
|  |  | 
|  | // Only the SsaBuilder and HGraph can create floating-point constants. | 
|  | friend class SsaBuilder; | 
|  | friend class HGraph; | 
|  | DISALLOW_COPY_AND_ASSIGN(HDoubleConstant); | 
|  | }; | 
|  |  | 
|  | // Conditional branch. A block ending with an HIf instruction must have | 
|  | // two successors. | 
|  | class HIf FINAL : public HTemplateInstruction<1> { | 
|  | public: | 
|  | explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
|  | SetRawInputAt(0, input); | 
|  | } | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | HBasicBlock* IfTrueSuccessor() const { | 
|  | return GetBlock()->GetSuccessors()[0]; | 
|  | } | 
|  |  | 
|  | HBasicBlock* IfFalseSuccessor() const { | 
|  | return GetBlock()->GetSuccessors()[1]; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(If); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HIf); | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Abstract instruction which marks the beginning and/or end of a try block and | 
|  | // links it to the respective exception handlers. Behaves the same as a Goto in | 
|  | // non-exceptional control flow. | 
|  | // Normal-flow successor is stored at index zero, exception handlers under | 
|  | // higher indices in no particular order. | 
|  | class HTryBoundary FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | enum class BoundaryKind { | 
|  | kEntry, | 
|  | kExit, | 
|  | kLast = kExit | 
|  | }; | 
|  |  | 
|  | explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
|  | SetPackedField<BoundaryKindField>(kind); | 
|  | } | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | // Returns the block's non-exceptional successor (index zero). | 
|  | HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; } | 
|  |  | 
|  | ArrayRef<HBasicBlock* const> GetExceptionHandlers() const { | 
|  | return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u); | 
|  | } | 
|  |  | 
|  | // Returns whether `handler` is among its exception handlers (non-zero index | 
|  | // successors). | 
|  | bool HasExceptionHandler(const HBasicBlock& handler) const { | 
|  | DCHECK(handler.IsCatchBlock()); | 
|  | return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); | 
|  | } | 
|  |  | 
|  | // If not present already, adds `handler` to its block's list of exception | 
|  | // handlers. | 
|  | void AddExceptionHandler(HBasicBlock* handler) { | 
|  | if (!HasExceptionHandler(*handler)) { | 
|  | GetBlock()->AddSuccessor(handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); } | 
|  | bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; } | 
|  |  | 
|  | bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; | 
|  |  | 
|  | DECLARE_INSTRUCTION(TryBoundary); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldBoundaryKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast)); | 
|  | static constexpr size_t kNumberOfTryBoundaryPackedBits = | 
|  | kFieldBoundaryKind + kFieldBoundaryKindSize; | 
|  | static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HTryBoundary); | 
|  | }; | 
|  |  | 
|  | // Deoptimize to interpreter, upon checking a condition. | 
|  | class HDeoptimize FINAL : public HTemplateInstruction<1> { | 
|  | public: | 
|  | // We set CanTriggerGC to prevent any intermediate address to be live | 
|  | // at the point of the `HDeoptimize`. | 
|  | HDeoptimize(HInstruction* cond, uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { | 
|  | SetRawInputAt(0, cond); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Deoptimize); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HDeoptimize); | 
|  | }; | 
|  |  | 
|  | // Represents the ArtMethod that was passed as a first argument to | 
|  | // the method. It is used by instructions that depend on it, like | 
|  | // instructions that work with the dex cache. | 
|  | class HCurrentMethod FINAL : public HExpression<0> { | 
|  | public: | 
|  | explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc) | 
|  | : HExpression(type, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | DECLARE_INSTRUCTION(CurrentMethod); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HCurrentMethod); | 
|  | }; | 
|  |  | 
|  | // Fetches an ArtMethod from the virtual table or the interface method table | 
|  | // of a class. | 
|  | class HClassTableGet FINAL : public HExpression<1> { | 
|  | public: | 
|  | enum class TableKind { | 
|  | kVTable, | 
|  | kIMTable, | 
|  | kLast = kIMTable | 
|  | }; | 
|  | HClassTableGet(HInstruction* cls, | 
|  | Primitive::Type type, | 
|  | TableKind kind, | 
|  | size_t index, | 
|  | uint32_t dex_pc) | 
|  | : HExpression(type, SideEffects::None(), dex_pc), | 
|  | index_(index) { | 
|  | SetPackedField<TableKindField>(kind); | 
|  | SetRawInputAt(0, cls); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | return other->AsClassTableGet()->GetIndex() == index_ && | 
|  | other->AsClassTableGet()->GetPackedFields() == GetPackedFields(); | 
|  | } | 
|  |  | 
|  | TableKind GetTableKind() const { return GetPackedField<TableKindField>(); } | 
|  | size_t GetIndex() const { return index_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ClassTableGet); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kFieldTableKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(TableKind::kLast)); | 
|  | static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize; | 
|  | static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>; | 
|  |  | 
|  | // The index of the ArtMethod in the table. | 
|  | const size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HClassTableGet); | 
|  | }; | 
|  |  | 
|  | // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will | 
|  | // have one successor for each entry in the switch table, and the final successor | 
|  | // will be the block containing the next Dex opcode. | 
|  | class HPackedSwitch FINAL : public HTemplateInstruction<1> { | 
|  | public: | 
|  | HPackedSwitch(int32_t start_value, | 
|  | uint32_t num_entries, | 
|  | HInstruction* input, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::None(), dex_pc), | 
|  | start_value_(start_value), | 
|  | num_entries_(num_entries) { | 
|  | SetRawInputAt(0, input); | 
|  | } | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | int32_t GetStartValue() const { return start_value_; } | 
|  |  | 
|  | uint32_t GetNumEntries() const { return num_entries_; } | 
|  |  | 
|  | HBasicBlock* GetDefaultBlock() const { | 
|  | // Last entry is the default block. | 
|  | return GetBlock()->GetSuccessors()[num_entries_]; | 
|  | } | 
|  | DECLARE_INSTRUCTION(PackedSwitch); | 
|  |  | 
|  | private: | 
|  | const int32_t start_value_; | 
|  | const uint32_t num_entries_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HPackedSwitch); | 
|  | }; | 
|  |  | 
|  | class HUnaryOperation : public HExpression<1> { | 
|  | public: | 
|  | HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
|  | : HExpression(result_type, SideEffects::None(), dex_pc) { | 
|  | SetRawInputAt(0, input); | 
|  | } | 
|  |  | 
|  | HInstruction* GetInput() const { return InputAt(0); } | 
|  | Primitive::Type GetResultType() const { return GetType(); } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to statically evaluate `this` and return a HConstant | 
|  | // containing the result of this evaluation.  If `this` cannot | 
|  | // be evaluated as a constant, return null. | 
|  | HConstant* TryStaticEvaluation() const; | 
|  |  | 
|  | // Apply this operation to `x`. | 
|  | virtual HConstant* Evaluate(HIntConstant* x) const = 0; | 
|  | virtual HConstant* Evaluate(HLongConstant* x) const = 0; | 
|  | virtual HConstant* Evaluate(HFloatConstant* x) const = 0; | 
|  | virtual HConstant* Evaluate(HDoubleConstant* x) const = 0; | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HUnaryOperation); | 
|  | }; | 
|  |  | 
|  | class HBinaryOperation : public HExpression<2> { | 
|  | public: | 
|  | HBinaryOperation(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | SideEffects side_effects = SideEffects::None(), | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HExpression(result_type, side_effects, dex_pc) { | 
|  | SetRawInputAt(0, left); | 
|  | SetRawInputAt(1, right); | 
|  | } | 
|  |  | 
|  | HInstruction* GetLeft() const { return InputAt(0); } | 
|  | HInstruction* GetRight() const { return InputAt(1); } | 
|  | Primitive::Type GetResultType() const { return GetType(); } | 
|  |  | 
|  | virtual bool IsCommutative() const { return false; } | 
|  |  | 
|  | // Put constant on the right. | 
|  | // Returns whether order is changed. | 
|  | bool OrderInputsWithConstantOnTheRight() { | 
|  | HInstruction* left = InputAt(0); | 
|  | HInstruction* right = InputAt(1); | 
|  | if (left->IsConstant() && !right->IsConstant()) { | 
|  | ReplaceInput(right, 0); | 
|  | ReplaceInput(left, 1); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Order inputs by instruction id, but favor constant on the right side. | 
|  | // This helps GVN for commutative ops. | 
|  | void OrderInputs() { | 
|  | DCHECK(IsCommutative()); | 
|  | HInstruction* left = InputAt(0); | 
|  | HInstruction* right = InputAt(1); | 
|  | if (left == right || (!left->IsConstant() && right->IsConstant())) { | 
|  | return; | 
|  | } | 
|  | if (OrderInputsWithConstantOnTheRight()) { | 
|  | return; | 
|  | } | 
|  | // Order according to instruction id. | 
|  | if (left->GetId() > right->GetId()) { | 
|  | ReplaceInput(right, 0); | 
|  | ReplaceInput(left, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to statically evaluate `this` and return a HConstant | 
|  | // containing the result of this evaluation.  If `this` cannot | 
|  | // be evaluated as a constant, return null. | 
|  | HConstant* TryStaticEvaluation() const; | 
|  |  | 
|  | // Apply this operation to `x` and `y`. | 
|  | virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, | 
|  | HNullConstant* y ATTRIBUTE_UNUSED) const { | 
|  | LOG(FATAL) << DebugName() << " is not defined for the (null, null) case."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; | 
|  | virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; | 
|  | virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, | 
|  | HIntConstant* y ATTRIBUTE_UNUSED) const { | 
|  | LOG(FATAL) << DebugName() << " is not defined for the (long, int) case."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0; | 
|  | virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0; | 
|  |  | 
|  | // Returns an input that can legally be used as the right input and is | 
|  | // constant, or null. | 
|  | HConstant* GetConstantRight() const; | 
|  |  | 
|  | // If `GetConstantRight()` returns one of the input, this returns the other | 
|  | // one. Otherwise it returns null. | 
|  | HInstruction* GetLeastConstantLeft() const; | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HBinaryOperation); | 
|  | }; | 
|  |  | 
|  | // The comparison bias applies for floating point operations and indicates how NaN | 
|  | // comparisons are treated: | 
|  | enum class ComparisonBias { | 
|  | kNoBias,  // bias is not applicable (i.e. for long operation) | 
|  | kGtBias,  // return 1 for NaN comparisons | 
|  | kLtBias,  // return -1 for NaN comparisons | 
|  | kLast = kLtBias | 
|  | }; | 
|  |  | 
|  | std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs); | 
|  |  | 
|  | class HCondition : public HBinaryOperation { | 
|  | public: | 
|  | HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) { | 
|  | SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias); | 
|  | } | 
|  |  | 
|  | // For code generation purposes, returns whether this instruction is just before | 
|  | // `instruction`, and disregard moves in between. | 
|  | bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(Condition); | 
|  |  | 
|  | virtual IfCondition GetCondition() const = 0; | 
|  |  | 
|  | virtual IfCondition GetOppositeCondition() const = 0; | 
|  |  | 
|  | bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; } | 
|  | bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; } | 
|  |  | 
|  | ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } | 
|  | void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | return GetPackedFields() == other->AsCondition()->GetPackedFields(); | 
|  | } | 
|  |  | 
|  | bool IsFPConditionTrueIfNaN() const { | 
|  | DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); | 
|  | IfCondition if_cond = GetCondition(); | 
|  | if (if_cond == kCondNE) { | 
|  | return true; | 
|  | } else if (if_cond == kCondEQ) { | 
|  | return false; | 
|  | } | 
|  | return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias(); | 
|  | } | 
|  |  | 
|  | bool IsFPConditionFalseIfNaN() const { | 
|  | DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); | 
|  | IfCondition if_cond = GetCondition(); | 
|  | if (if_cond == kCondEQ) { | 
|  | return true; | 
|  | } else if (if_cond == kCondNE) { | 
|  | return false; | 
|  | } | 
|  | return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias(); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | // Needed if we merge a HCompare into a HCondition. | 
|  | static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kFieldComparisonBiasSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); | 
|  | static constexpr size_t kNumberOfConditionPackedBits = | 
|  | kFieldComparisonBias + kFieldComparisonBiasSize; | 
|  | static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using ComparisonBiasField = | 
|  | BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; | 
|  |  | 
|  | template <typename T> | 
|  | int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } | 
|  |  | 
|  | template <typename T> | 
|  | int32_t CompareFP(T x, T y) const { | 
|  | DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); | 
|  | DCHECK_NE(GetBias(), ComparisonBias::kNoBias); | 
|  | // Handle the bias. | 
|  | return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y); | 
|  | } | 
|  |  | 
|  | // Return an integer constant containing the result of a condition evaluated at compile time. | 
|  | HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const { | 
|  | return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HCondition); | 
|  | }; | 
|  |  | 
|  | // Instruction to check if two inputs are equal to each other. | 
|  | class HEqual FINAL : public HCondition { | 
|  | public: | 
|  | HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | bool IsCommutative() const OVERRIDE { return true; } | 
|  |  | 
|  | HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, | 
|  | HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return MakeConstantCondition(true, GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | // In the following Evaluate methods, a HCompare instruction has | 
|  | // been merged into this HEqual instruction; evaluate it as | 
|  | // `Compare(x, y) == 0`. | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), | 
|  | GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Equal); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondEQ; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondNE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { return x == y; } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HEqual); | 
|  | }; | 
|  |  | 
|  | class HNotEqual FINAL : public HCondition { | 
|  | public: | 
|  | HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | bool IsCommutative() const OVERRIDE { return true; } | 
|  |  | 
|  | HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, | 
|  | HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return MakeConstantCondition(false, GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | // In the following Evaluate methods, a HCompare instruction has | 
|  | // been merged into this HNotEqual instruction; evaluate it as | 
|  | // `Compare(x, y) != 0`. | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(NotEqual); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondNE; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondEQ; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { return x != y; } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HNotEqual); | 
|  | }; | 
|  |  | 
|  | class HLessThan FINAL : public HCondition { | 
|  | public: | 
|  | HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | // In the following Evaluate methods, a HCompare instruction has | 
|  | // been merged into this HLessThan instruction; evaluate it as | 
|  | // `Compare(x, y) < 0`. | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(LessThan); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondLT; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondGE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { return x < y; } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLessThan); | 
|  | }; | 
|  |  | 
|  | class HLessThanOrEqual FINAL : public HCondition { | 
|  | public: | 
|  | HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | // In the following Evaluate methods, a HCompare instruction has | 
|  | // been merged into this HLessThanOrEqual instruction; evaluate it as | 
|  | // `Compare(x, y) <= 0`. | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(LessThanOrEqual); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondLE; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondGT; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { return x <= y; } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual); | 
|  | }; | 
|  |  | 
|  | class HGreaterThan FINAL : public HCondition { | 
|  | public: | 
|  | HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | // In the following Evaluate methods, a HCompare instruction has | 
|  | // been merged into this HGreaterThan instruction; evaluate it as | 
|  | // `Compare(x, y) > 0`. | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(GreaterThan); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondGT; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondLE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { return x > y; } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HGreaterThan); | 
|  | }; | 
|  |  | 
|  | class HGreaterThanOrEqual FINAL : public HCondition { | 
|  | public: | 
|  | HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | // In the following Evaluate methods, a HCompare instruction has | 
|  | // been merged into this HGreaterThanOrEqual instruction; evaluate it as | 
|  | // `Compare(x, y) >= 0`. | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(GreaterThanOrEqual); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondGE; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondLT; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { return x >= y; } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual); | 
|  | }; | 
|  |  | 
|  | class HBelow FINAL : public HCondition { | 
|  | public: | 
|  | HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Below); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondB; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondAE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { | 
|  | return MakeUnsigned(x) < MakeUnsigned(y); | 
|  | } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBelow); | 
|  | }; | 
|  |  | 
|  | class HBelowOrEqual FINAL : public HCondition { | 
|  | public: | 
|  | HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(BelowOrEqual); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondBE; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondA; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { | 
|  | return MakeUnsigned(x) <= MakeUnsigned(y); | 
|  | } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual); | 
|  | }; | 
|  |  | 
|  | class HAbove FINAL : public HCondition { | 
|  | public: | 
|  | HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Above); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondA; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondBE; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { | 
|  | return MakeUnsigned(x) > MakeUnsigned(y); | 
|  | } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HAbove); | 
|  | }; | 
|  |  | 
|  | class HAboveOrEqual FINAL : public HCondition { | 
|  | public: | 
|  | HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
|  | : HCondition(first, second, dex_pc) {} | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(AboveOrEqual); | 
|  |  | 
|  | IfCondition GetCondition() const OVERRIDE { | 
|  | return kCondAE; | 
|  | } | 
|  |  | 
|  | IfCondition GetOppositeCondition() const OVERRIDE { | 
|  | return kCondB; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> static bool Compute(T x, T y) { | 
|  | return MakeUnsigned(x) >= MakeUnsigned(y); | 
|  | } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual); | 
|  | }; | 
|  |  | 
|  | // Instruction to check how two inputs compare to each other. | 
|  | // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. | 
|  | class HCompare FINAL : public HBinaryOperation { | 
|  | public: | 
|  | // Note that `comparison_type` is the type of comparison performed | 
|  | // between the comparison's inputs, not the type of the instantiated | 
|  | // HCompare instruction (which is always Primitive::kPrimInt). | 
|  | HCompare(Primitive::Type comparison_type, | 
|  | HInstruction* first, | 
|  | HInstruction* second, | 
|  | ComparisonBias bias, | 
|  | uint32_t dex_pc) | 
|  | : HBinaryOperation(Primitive::kPrimInt, | 
|  | first, | 
|  | second, | 
|  | SideEffectsForArchRuntimeCalls(comparison_type), | 
|  | dex_pc) { | 
|  | SetPackedField<ComparisonBiasField>(bias); | 
|  | DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(first->GetType())); | 
|  | DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(second->GetType())); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } | 
|  |  | 
|  | template <typename T> | 
|  | int32_t ComputeFP(T x, T y) const { | 
|  | DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); | 
|  | DCHECK_NE(GetBias(), ComparisonBias::kNoBias); | 
|  | // Handle the bias. | 
|  | return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y); | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | // Note that there is no "cmp-int" Dex instruction so we shouldn't | 
|  | // reach this code path when processing a freshly built HIR | 
|  | // graph. However HCompare integer instructions can be synthesized | 
|  | // by the instruction simplifier to implement IntegerCompare and | 
|  | // IntegerSignum intrinsics, so we have to handle this case. | 
|  | return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | return GetPackedFields() == other->AsCompare()->GetPackedFields(); | 
|  | } | 
|  |  | 
|  | ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } | 
|  |  | 
|  | // Does this compare instruction have a "gt bias" (vs an "lt bias")? | 
|  | // Only meaningful for floating-point comparisons. | 
|  | bool IsGtBias() const { | 
|  | DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); | 
|  | return GetBias() == ComparisonBias::kGtBias; | 
|  | } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED) { | 
|  | // Comparisons do not require a runtime call in any back end. | 
|  | return SideEffects::None(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Compare); | 
|  |  | 
|  | protected: | 
|  | static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kFieldComparisonBiasSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); | 
|  | static constexpr size_t kNumberOfComparePackedBits = | 
|  | kFieldComparisonBias + kFieldComparisonBiasSize; | 
|  | static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using ComparisonBiasField = | 
|  | BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; | 
|  |  | 
|  | // Return an integer constant containing the result of a comparison evaluated at compile time. | 
|  | HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const { | 
|  | DCHECK(value == -1 || value == 0 || value == 1) << value; | 
|  | return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HCompare); | 
|  | }; | 
|  |  | 
|  | class HNewInstance FINAL : public HExpression<2> { | 
|  | public: | 
|  | HNewInstance(HInstruction* cls, | 
|  | HCurrentMethod* current_method, | 
|  | uint32_t dex_pc, | 
|  | uint16_t type_index, | 
|  | const DexFile& dex_file, | 
|  | bool needs_access_check, | 
|  | bool finalizable, | 
|  | QuickEntrypointEnum entrypoint) | 
|  | : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), | 
|  | type_index_(type_index), | 
|  | dex_file_(dex_file), | 
|  | entrypoint_(entrypoint) { | 
|  | SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); | 
|  | SetPackedFlag<kFlagFinalizable>(finalizable); | 
|  | SetRawInputAt(0, cls); | 
|  | SetRawInputAt(1, current_method); | 
|  | } | 
|  |  | 
|  | uint16_t GetTypeIndex() const { return type_index_; } | 
|  | const DexFile& GetDexFile() const { return dex_file_; } | 
|  |  | 
|  | // Calls runtime so needs an environment. | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  |  | 
|  | // Can throw errors when out-of-memory or if it's not instantiable/accessible. | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | // Needs to call into runtime to make sure it's instantiable/accessible. | 
|  | bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } | 
|  |  | 
|  | bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return false; } | 
|  |  | 
|  | QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } | 
|  |  | 
|  | void SetEntrypoint(QuickEntrypointEnum entrypoint) { | 
|  | entrypoint_ = entrypoint; | 
|  | } | 
|  |  | 
|  | bool IsStringAlloc() const; | 
|  |  | 
|  | DECLARE_INSTRUCTION(NewInstance); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFlagNeedsAccessCheck = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kFlagFinalizable = kFlagNeedsAccessCheck + 1; | 
|  | static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1; | 
|  | static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  |  | 
|  | const uint16_t type_index_; | 
|  | const DexFile& dex_file_; | 
|  | QuickEntrypointEnum entrypoint_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HNewInstance); | 
|  | }; | 
|  |  | 
|  | enum class Intrinsics { | 
|  | #define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions) \ | 
|  | k ## Name, | 
|  | #include "intrinsics_list.h" | 
|  | kNone, | 
|  | INTRINSICS_LIST(OPTIMIZING_INTRINSICS) | 
|  | #undef INTRINSICS_LIST | 
|  | #undef OPTIMIZING_INTRINSICS | 
|  | }; | 
|  | std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic); | 
|  |  | 
|  | enum IntrinsicNeedsEnvironmentOrCache { | 
|  | kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache. | 
|  | kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache. | 
|  | }; | 
|  |  | 
|  | enum IntrinsicSideEffects { | 
|  | kNoSideEffects,     // Intrinsic does not have any heap memory side effects. | 
|  | kReadSideEffects,   // Intrinsic may read heap memory. | 
|  | kWriteSideEffects,  // Intrinsic may write heap memory. | 
|  | kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC. | 
|  | }; | 
|  |  | 
|  | enum IntrinsicExceptions { | 
|  | kNoThrow,  // Intrinsic does not throw any exceptions. | 
|  | kCanThrow  // Intrinsic may throw exceptions. | 
|  | }; | 
|  |  | 
|  | class HInvoke : public HInstruction { | 
|  | public: | 
|  | bool NeedsEnvironment() const OVERRIDE; | 
|  |  | 
|  | using HInstruction::GetInputRecords;  // Keep the const version visible. | 
|  | ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE { | 
|  | return ArrayRef<HUserRecord<HInstruction*>>(inputs_); | 
|  | } | 
|  |  | 
|  | void SetArgumentAt(size_t index, HInstruction* argument) { | 
|  | SetRawInputAt(index, argument); | 
|  | } | 
|  |  | 
|  | // Return the number of arguments.  This number can be lower than | 
|  | // the number of inputs returned by InputCount(), as some invoke | 
|  | // instructions (e.g. HInvokeStaticOrDirect) can have non-argument | 
|  | // inputs at the end of their list of inputs. | 
|  | uint32_t GetNumberOfArguments() const { return number_of_arguments_; } | 
|  |  | 
|  | Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); } | 
|  |  | 
|  | uint32_t GetDexMethodIndex() const { return dex_method_index_; } | 
|  | const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); } | 
|  |  | 
|  | InvokeType GetOriginalInvokeType() const { | 
|  | return GetPackedField<OriginalInvokeTypeField>(); | 
|  | } | 
|  |  | 
|  | Intrinsics GetIntrinsic() const { | 
|  | return intrinsic_; | 
|  | } | 
|  |  | 
|  | void SetIntrinsic(Intrinsics intrinsic, | 
|  | IntrinsicNeedsEnvironmentOrCache needs_env_or_cache, | 
|  | IntrinsicSideEffects side_effects, | 
|  | IntrinsicExceptions exceptions); | 
|  |  | 
|  | bool IsFromInlinedInvoke() const { | 
|  | return GetEnvironment()->IsFromInlinedInvoke(); | 
|  | } | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_; | 
|  | } | 
|  |  | 
|  | uint32_t* GetIntrinsicOptimizations() { | 
|  | return &intrinsic_optimizations_; | 
|  | } | 
|  |  | 
|  | const uint32_t* GetIntrinsicOptimizations() const { | 
|  | return &intrinsic_optimizations_; | 
|  | } | 
|  |  | 
|  | bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; } | 
|  |  | 
|  | DECLARE_ABSTRACT_INSTRUCTION(Invoke); | 
|  |  | 
|  | protected: | 
|  | static constexpr size_t kFieldOriginalInvokeType = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldOriginalInvokeTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); | 
|  | static constexpr size_t kFieldReturnType = | 
|  | kFieldOriginalInvokeType + kFieldOriginalInvokeTypeSize; | 
|  | static constexpr size_t kFieldReturnTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); | 
|  | static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize; | 
|  | static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1; | 
|  | static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using OriginalInvokeTypeField = | 
|  | BitField<InvokeType, kFieldOriginalInvokeType, kFieldOriginalInvokeTypeSize>; | 
|  | using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>; | 
|  |  | 
|  | HInvoke(ArenaAllocator* arena, | 
|  | uint32_t number_of_arguments, | 
|  | uint32_t number_of_other_inputs, | 
|  | Primitive::Type return_type, | 
|  | uint32_t dex_pc, | 
|  | uint32_t dex_method_index, | 
|  | InvokeType original_invoke_type) | 
|  | : HInstruction( | 
|  | SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays. | 
|  | number_of_arguments_(number_of_arguments), | 
|  | inputs_(number_of_arguments + number_of_other_inputs, | 
|  | arena->Adapter(kArenaAllocInvokeInputs)), | 
|  | dex_method_index_(dex_method_index), | 
|  | intrinsic_(Intrinsics::kNone), | 
|  | intrinsic_optimizations_(0) { | 
|  | SetPackedField<ReturnTypeField>(return_type); | 
|  | SetPackedField<OriginalInvokeTypeField>(original_invoke_type); | 
|  | SetPackedFlag<kFlagCanThrow>(true); | 
|  | } | 
|  |  | 
|  | void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); } | 
|  |  | 
|  | uint32_t number_of_arguments_; | 
|  | ArenaVector<HUserRecord<HInstruction*>> inputs_; | 
|  | const uint32_t dex_method_index_; | 
|  | Intrinsics intrinsic_; | 
|  |  | 
|  | // A magic word holding optimizations for intrinsics. See intrinsics.h. | 
|  | uint32_t intrinsic_optimizations_; | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HInvoke); | 
|  | }; | 
|  |  | 
|  | class HInvokeUnresolved FINAL : public HInvoke { | 
|  | public: | 
|  | HInvokeUnresolved(ArenaAllocator* arena, | 
|  | uint32_t number_of_arguments, | 
|  | Primitive::Type return_type, | 
|  | uint32_t dex_pc, | 
|  | uint32_t dex_method_index, | 
|  | InvokeType invoke_type) | 
|  | : HInvoke(arena, | 
|  | number_of_arguments, | 
|  | 0u /* number_of_other_inputs */, | 
|  | return_type, | 
|  | dex_pc, | 
|  | dex_method_index, | 
|  | invoke_type) { | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(InvokeUnresolved); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved); | 
|  | }; | 
|  |  | 
|  | class HInvokeStaticOrDirect FINAL : public HInvoke { | 
|  | public: | 
|  | // Requirements of this method call regarding the class | 
|  | // initialization (clinit) check of its declaring class. | 
|  | enum class ClinitCheckRequirement { | 
|  | kNone,      // Class already initialized. | 
|  | kExplicit,  // Static call having explicit clinit check as last input. | 
|  | kImplicit,  // Static call implicitly requiring a clinit check. | 
|  | kLast = kImplicit | 
|  | }; | 
|  |  | 
|  | // Determines how to load the target ArtMethod*. | 
|  | enum class MethodLoadKind { | 
|  | // Use a String init ArtMethod* loaded from Thread entrypoints. | 
|  | kStringInit, | 
|  |  | 
|  | // Use the method's own ArtMethod* loaded by the register allocator. | 
|  | kRecursive, | 
|  |  | 
|  | // Use ArtMethod* at a known address, embed the direct address in the code. | 
|  | // Used for app->boot calls with non-relocatable image and for JIT-compiled calls. | 
|  | kDirectAddress, | 
|  |  | 
|  | // Use ArtMethod* at an address that will be known at link time, embed the direct | 
|  | // address in the code. If the image is relocatable, emit .patch_oat entry. | 
|  | // Used for app->boot calls with relocatable image and boot->boot calls, whether | 
|  | // the image relocatable or not. | 
|  | kDirectAddressWithFixup, | 
|  |  | 
|  | // Load from resolved methods array in the dex cache using a PC-relative load. | 
|  | // Used when we need to use the dex cache, for example for invoke-static that | 
|  | // may cause class initialization (the entry may point to a resolution method), | 
|  | // and we know that we can access the dex cache arrays using a PC-relative load. | 
|  | kDexCachePcRelative, | 
|  |  | 
|  | // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*. | 
|  | // Used for JIT when we need to use the dex cache. This is also the last-resort-kind | 
|  | // used when other kinds are unavailable (say, dex cache arrays are not PC-relative) | 
|  | // or unimplemented or impractical (i.e. slow) on a particular architecture. | 
|  | kDexCacheViaMethod, | 
|  | }; | 
|  |  | 
|  | // Determines the location of the code pointer. | 
|  | enum class CodePtrLocation { | 
|  | // Recursive call, use local PC-relative call instruction. | 
|  | kCallSelf, | 
|  |  | 
|  | // Use PC-relative call instruction patched at link time. | 
|  | // Used for calls within an oat file, boot->boot or app->app. | 
|  | kCallPCRelative, | 
|  |  | 
|  | // Call to a known target address, embed the direct address in code. | 
|  | // Used for app->boot call with non-relocatable image and for JIT-compiled calls. | 
|  | kCallDirect, | 
|  |  | 
|  | // Call to a target address that will be known at link time, embed the direct | 
|  | // address in code. If the image is relocatable, emit .patch_oat entry. | 
|  | // Used for app->boot calls with relocatable image and boot->boot calls, whether | 
|  | // the image relocatable or not. | 
|  | kCallDirectWithFixup, | 
|  |  | 
|  | // Use code pointer from the ArtMethod*. | 
|  | // Used when we don't know the target code. This is also the last-resort-kind used when | 
|  | // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. | 
|  | kCallArtMethod, | 
|  | }; | 
|  |  | 
|  | struct DispatchInfo { | 
|  | MethodLoadKind method_load_kind; | 
|  | CodePtrLocation code_ptr_location; | 
|  | // The method load data holds | 
|  | //   - thread entrypoint offset for kStringInit method if this is a string init invoke. | 
|  | //     Note that there are multiple string init methods, each having its own offset. | 
|  | //   - the method address for kDirectAddress | 
|  | //   - the dex cache arrays offset for kDexCachePcRel. | 
|  | uint64_t method_load_data; | 
|  | uint64_t direct_code_ptr; | 
|  | }; | 
|  |  | 
|  | HInvokeStaticOrDirect(ArenaAllocator* arena, | 
|  | uint32_t number_of_arguments, | 
|  | Primitive::Type return_type, | 
|  | uint32_t dex_pc, | 
|  | uint32_t method_index, | 
|  | MethodReference target_method, | 
|  | DispatchInfo dispatch_info, | 
|  | InvokeType original_invoke_type, | 
|  | InvokeType optimized_invoke_type, | 
|  | ClinitCheckRequirement clinit_check_requirement) | 
|  | : HInvoke(arena, | 
|  | number_of_arguments, | 
|  | // There is potentially one extra argument for the HCurrentMethod node, and | 
|  | // potentially one other if the clinit check is explicit, and potentially | 
|  | // one other if the method is a string factory. | 
|  | (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) + | 
|  | (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u), | 
|  | return_type, | 
|  | dex_pc, | 
|  | method_index, | 
|  | original_invoke_type), | 
|  | target_method_(target_method), | 
|  | dispatch_info_(dispatch_info) { | 
|  | SetPackedField<OptimizedInvokeTypeField>(optimized_invoke_type); | 
|  | SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement); | 
|  | } | 
|  |  | 
|  | void SetDispatchInfo(const DispatchInfo& dispatch_info) { | 
|  | bool had_current_method_input = HasCurrentMethodInput(); | 
|  | bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind); | 
|  |  | 
|  | // Using the current method is the default and once we find a better | 
|  | // method load kind, we should not go back to using the current method. | 
|  | DCHECK(had_current_method_input || !needs_current_method_input); | 
|  |  | 
|  | if (had_current_method_input && !needs_current_method_input) { | 
|  | DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod()); | 
|  | RemoveInputAt(GetSpecialInputIndex()); | 
|  | } | 
|  | dispatch_info_ = dispatch_info; | 
|  | } | 
|  |  | 
|  | void AddSpecialInput(HInstruction* input) { | 
|  | // We allow only one special input. | 
|  | DCHECK(!IsStringInit() && !HasCurrentMethodInput()); | 
|  | DCHECK(InputCount() == GetSpecialInputIndex() || | 
|  | (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck())); | 
|  | InsertInputAt(GetSpecialInputIndex(), input); | 
|  | } | 
|  |  | 
|  | using HInstruction::GetInputRecords;  // Keep the const version visible. | 
|  | ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE { | 
|  | ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords(); | 
|  | if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) { | 
|  | DCHECK(!input_records.empty()); | 
|  | DCHECK_GT(input_records.size(), GetNumberOfArguments()); | 
|  | HInstruction* last_input = input_records.back().GetInstruction(); | 
|  | // Note: `last_input` may be null during arguments setup. | 
|  | if (last_input != nullptr) { | 
|  | // `last_input` is the last input of a static invoke marked as having | 
|  | // an explicit clinit check. It must either be: | 
|  | // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or | 
|  | // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. | 
|  | DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName(); | 
|  | } | 
|  | } | 
|  | return input_records; | 
|  | } | 
|  |  | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | // We access the method via the dex cache so we can't do an implicit null check. | 
|  | // TODO: for intrinsics we can generate implicit null checks. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { | 
|  | return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit(); | 
|  | } | 
|  |  | 
|  | // Get the index of the special input, if any. | 
|  | // | 
|  | // If the invoke HasCurrentMethodInput(), the "special input" is the current | 
|  | // method pointer; otherwise there may be one platform-specific special input, | 
|  | // such as PC-relative addressing base. | 
|  | uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); } | 
|  | bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); } | 
|  |  | 
|  | InvokeType GetOptimizedInvokeType() const { | 
|  | return GetPackedField<OptimizedInvokeTypeField>(); | 
|  | } | 
|  |  | 
|  | void SetOptimizedInvokeType(InvokeType invoke_type) { | 
|  | SetPackedField<OptimizedInvokeTypeField>(invoke_type); | 
|  | } | 
|  |  | 
|  | MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } | 
|  | CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; } | 
|  | bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } | 
|  | bool NeedsDexCacheOfDeclaringClass() const OVERRIDE; | 
|  | bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } | 
|  | bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; } | 
|  | bool HasPcRelativeDexCache() const { | 
|  | return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative; | 
|  | } | 
|  | bool HasCurrentMethodInput() const { | 
|  | // This function can be called only after the invoke has been fully initialized by the builder. | 
|  | if (NeedsCurrentMethodInput(GetMethodLoadKind())) { | 
|  | DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod()); | 
|  | return true; | 
|  | } else { | 
|  | DCHECK(InputCount() == GetSpecialInputIndex() || | 
|  | !InputAt(GetSpecialInputIndex())->IsCurrentMethod()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; } | 
|  | MethodReference GetTargetMethod() const { return target_method_; } | 
|  | void SetTargetMethod(MethodReference method) { target_method_ = method; } | 
|  |  | 
|  | int32_t GetStringInitOffset() const { | 
|  | DCHECK(IsStringInit()); | 
|  | return dispatch_info_.method_load_data; | 
|  | } | 
|  |  | 
|  | uint64_t GetMethodAddress() const { | 
|  | DCHECK(HasMethodAddress()); | 
|  | return dispatch_info_.method_load_data; | 
|  | } | 
|  |  | 
|  | uint32_t GetDexCacheArrayOffset() const { | 
|  | DCHECK(HasPcRelativeDexCache()); | 
|  | return dispatch_info_.method_load_data; | 
|  | } | 
|  |  | 
|  | uint64_t GetDirectCodePtr() const { | 
|  | DCHECK(HasDirectCodePtr()); | 
|  | return dispatch_info_.direct_code_ptr; | 
|  | } | 
|  |  | 
|  | ClinitCheckRequirement GetClinitCheckRequirement() const { | 
|  | return GetPackedField<ClinitCheckRequirementField>(); | 
|  | } | 
|  |  | 
|  | // Is this instruction a call to a static method? | 
|  | bool IsStatic() const { | 
|  | return GetOriginalInvokeType() == kStatic; | 
|  | } | 
|  |  | 
|  | // Remove the HClinitCheck or the replacement HLoadClass (set as last input by | 
|  | // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck) | 
|  | // instruction; only relevant for static calls with explicit clinit check. | 
|  | void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) { | 
|  | DCHECK(IsStaticWithExplicitClinitCheck()); | 
|  | size_t last_input_index = inputs_.size() - 1u; | 
|  | HInstruction* last_input = inputs_.back().GetInstruction(); | 
|  | DCHECK(last_input != nullptr); | 
|  | DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName(); | 
|  | RemoveAsUserOfInput(last_input_index); | 
|  | inputs_.pop_back(); | 
|  | SetPackedField<ClinitCheckRequirementField>(new_requirement); | 
|  | DCHECK(!IsStaticWithExplicitClinitCheck()); | 
|  | } | 
|  |  | 
|  | // Is this a call to a static method whose declaring class has an | 
|  | // explicit initialization check in the graph? | 
|  | bool IsStaticWithExplicitClinitCheck() const { | 
|  | return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit); | 
|  | } | 
|  |  | 
|  | // Is this a call to a static method whose declaring class has an | 
|  | // implicit intialization check requirement? | 
|  | bool IsStaticWithImplicitClinitCheck() const { | 
|  | return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit); | 
|  | } | 
|  |  | 
|  | // Does this method load kind need the current method as an input? | 
|  | static bool NeedsCurrentMethodInput(MethodLoadKind kind) { | 
|  | return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(InvokeStaticOrDirect); | 
|  |  | 
|  | protected: | 
|  | void InsertInputAt(size_t index, HInstruction* input); | 
|  | void RemoveInputAt(size_t index); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldOptimizedInvokeType = kNumberOfInvokePackedBits; | 
|  | static constexpr size_t kFieldOptimizedInvokeTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); | 
|  | static constexpr size_t kFieldClinitCheckRequirement = | 
|  | kFieldOptimizedInvokeType + kFieldOptimizedInvokeTypeSize; | 
|  | static constexpr size_t kFieldClinitCheckRequirementSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast)); | 
|  | static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits = | 
|  | kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize; | 
|  | static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using OptimizedInvokeTypeField = | 
|  | BitField<InvokeType, kFieldOptimizedInvokeType, kFieldOptimizedInvokeTypeSize>; | 
|  | using ClinitCheckRequirementField = BitField<ClinitCheckRequirement, | 
|  | kFieldClinitCheckRequirement, | 
|  | kFieldClinitCheckRequirementSize>; | 
|  |  | 
|  | // The target method may refer to different dex file or method index than the original | 
|  | // invoke. This happens for sharpened calls and for calls where a method was redeclared | 
|  | // in derived class to increase visibility. | 
|  | MethodReference target_method_; | 
|  | DispatchInfo dispatch_info_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect); | 
|  | }; | 
|  | std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs); | 
|  | std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs); | 
|  |  | 
|  | class HInvokeVirtual FINAL : public HInvoke { | 
|  | public: | 
|  | HInvokeVirtual(ArenaAllocator* arena, | 
|  | uint32_t number_of_arguments, | 
|  | Primitive::Type return_type, | 
|  | uint32_t dex_pc, | 
|  | uint32_t dex_method_index, | 
|  | uint32_t vtable_index) | 
|  | : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual), | 
|  | vtable_index_(vtable_index) {} | 
|  |  | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
|  | // TODO: Add implicit null checks in intrinsics. | 
|  | return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); | 
|  | } | 
|  |  | 
|  | uint32_t GetVTableIndex() const { return vtable_index_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(InvokeVirtual); | 
|  |  | 
|  | private: | 
|  | const uint32_t vtable_index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual); | 
|  | }; | 
|  |  | 
|  | class HInvokeInterface FINAL : public HInvoke { | 
|  | public: | 
|  | HInvokeInterface(ArenaAllocator* arena, | 
|  | uint32_t number_of_arguments, | 
|  | Primitive::Type return_type, | 
|  | uint32_t dex_pc, | 
|  | uint32_t dex_method_index, | 
|  | uint32_t imt_index) | 
|  | : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface), | 
|  | imt_index_(imt_index) {} | 
|  |  | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
|  | // TODO: Add implicit null checks in intrinsics. | 
|  | return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); | 
|  | } | 
|  |  | 
|  | uint32_t GetImtIndex() const { return imt_index_; } | 
|  | uint32_t GetDexMethodIndex() const { return dex_method_index_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(InvokeInterface); | 
|  |  | 
|  | private: | 
|  | const uint32_t imt_index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInvokeInterface); | 
|  | }; | 
|  |  | 
|  | class HNeg FINAL : public HUnaryOperation { | 
|  | public: | 
|  | HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
|  | : HUnaryOperation(result_type, input, dex_pc) { | 
|  | DCHECK_EQ(result_type, Primitive::PrimitiveKind(input->GetType())); | 
|  | } | 
|  |  | 
|  | template <typename T> static T Compute(T x) { return -x; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Neg); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HNeg); | 
|  | }; | 
|  |  | 
|  | class HNewArray FINAL : public HExpression<2> { | 
|  | public: | 
|  | HNewArray(HInstruction* length, | 
|  | HCurrentMethod* current_method, | 
|  | uint32_t dex_pc, | 
|  | uint16_t type_index, | 
|  | const DexFile& dex_file, | 
|  | QuickEntrypointEnum entrypoint) | 
|  | : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), | 
|  | type_index_(type_index), | 
|  | dex_file_(dex_file), | 
|  | entrypoint_(entrypoint) { | 
|  | SetRawInputAt(0, length); | 
|  | SetRawInputAt(1, current_method); | 
|  | } | 
|  |  | 
|  | uint16_t GetTypeIndex() const { return type_index_; } | 
|  | const DexFile& GetDexFile() const { return dex_file_; } | 
|  |  | 
|  | // Calls runtime so needs an environment. | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  |  | 
|  | // May throw NegativeArraySizeException, OutOfMemoryError, etc. | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return false; } | 
|  |  | 
|  | QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(NewArray); | 
|  |  | 
|  | private: | 
|  | const uint16_t type_index_; | 
|  | const DexFile& dex_file_; | 
|  | const QuickEntrypointEnum entrypoint_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HNewArray); | 
|  | }; | 
|  |  | 
|  | class HAdd FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HAdd(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsCommutative() const OVERRIDE { return true; } | 
|  |  | 
|  | template <typename T> static T Compute(T x, T y) { return x + y; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetFloatConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetDoubleConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Add); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HAdd); | 
|  | }; | 
|  |  | 
|  | class HSub FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HSub(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | template <typename T> static T Compute(T x, T y) { return x - y; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetFloatConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetDoubleConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Sub); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HSub); | 
|  | }; | 
|  |  | 
|  | class HMul FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HMul(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsCommutative() const OVERRIDE { return true; } | 
|  |  | 
|  | template <typename T> static T Compute(T x, T y) { return x * y; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetFloatConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetDoubleConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Mul); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HMul); | 
|  | }; | 
|  |  | 
|  | class HDiv FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HDiv(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} | 
|  |  | 
|  | template <typename T> | 
|  | T ComputeIntegral(T x, T y) const { | 
|  | DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType(); | 
|  | // Our graph structure ensures we never have 0 for `y` during | 
|  | // constant folding. | 
|  | DCHECK_NE(y, 0); | 
|  | // Special case -1 to avoid getting a SIGFPE on x86(_64). | 
|  | return (y == -1) ? -x : x / y; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T ComputeFP(T x, T y) const { | 
|  | DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); | 
|  | return x / y; | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetFloatConstant( | 
|  | ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetDoubleConstant( | 
|  | ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls() { | 
|  | // The generated code can use a runtime call. | 
|  | return SideEffects::CanTriggerGC(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Div); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HDiv); | 
|  | }; | 
|  |  | 
|  | class HRem FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HRem(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} | 
|  |  | 
|  | template <typename T> | 
|  | T ComputeIntegral(T x, T y) const { | 
|  | DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType(); | 
|  | // Our graph structure ensures we never have 0 for `y` during | 
|  | // constant folding. | 
|  | DCHECK_NE(y, 0); | 
|  | // Special case -1 to avoid getting a SIGFPE on x86(_64). | 
|  | return (y == -1) ? 0 : x % y; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | T ComputeFP(T x, T y) const { | 
|  | DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); | 
|  | return std::fmod(x, y); | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetFloatConstant( | 
|  | ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetDoubleConstant( | 
|  | ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls() { | 
|  | return SideEffects::CanTriggerGC(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Rem); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HRem); | 
|  | }; | 
|  |  | 
|  | class HDivZeroCheck FINAL : public HExpression<1> { | 
|  | public: | 
|  | // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException` | 
|  | // constructor. | 
|  | HDivZeroCheck(HInstruction* value, uint32_t dex_pc) | 
|  | : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { | 
|  | SetRawInputAt(0, value); | 
|  | } | 
|  |  | 
|  | Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(DivZeroCheck); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck); | 
|  | }; | 
|  |  | 
|  | class HShl FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HShl(Primitive::Type result_type, | 
|  | HInstruction* value, | 
|  | HInstruction* distance, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) { | 
|  | DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); | 
|  | DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T Compute(T value, int32_t distance, int32_t max_shift_distance) { | 
|  | return value << (distance & max_shift_distance); | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, | 
|  | HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Shl); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HShl); | 
|  | }; | 
|  |  | 
|  | class HShr FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HShr(Primitive::Type result_type, | 
|  | HInstruction* value, | 
|  | HInstruction* distance, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) { | 
|  | DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); | 
|  | DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T Compute(T value, int32_t distance, int32_t max_shift_distance) { | 
|  | return value >> (distance & max_shift_distance); | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, | 
|  | HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Shr); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HShr); | 
|  | }; | 
|  |  | 
|  | class HUShr FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HUShr(Primitive::Type result_type, | 
|  | HInstruction* value, | 
|  | HInstruction* distance, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) { | 
|  | DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); | 
|  | DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T Compute(T value, int32_t distance, int32_t max_shift_distance) { | 
|  | typedef typename std::make_unsigned<T>::type V; | 
|  | V ux = static_cast<V>(value); | 
|  | return static_cast<T>(ux >> (distance & max_shift_distance)); | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, | 
|  | HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(UShr); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HUShr); | 
|  | }; | 
|  |  | 
|  | class HAnd FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HAnd(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsCommutative() const OVERRIDE { return true; } | 
|  |  | 
|  | template <typename T> static T Compute(T x, T y) { return x & y; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(And); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HAnd); | 
|  | }; | 
|  |  | 
|  | class HOr FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HOr(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsCommutative() const OVERRIDE { return true; } | 
|  |  | 
|  | template <typename T> static T Compute(T x, T y) { return x | y; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Or); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HOr); | 
|  | }; | 
|  |  | 
|  | class HXor FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HXor(Primitive::Type result_type, | 
|  | HInstruction* left, | 
|  | HInstruction* right, | 
|  | uint32_t dex_pc = kNoDexPc) | 
|  | : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool IsCommutative() const OVERRIDE { return true; } | 
|  |  | 
|  | template <typename T> static T Compute(T x, T y) { return x ^ y; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Xor); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HXor); | 
|  | }; | 
|  |  | 
|  | class HRor FINAL : public HBinaryOperation { | 
|  | public: | 
|  | HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance) | 
|  | : HBinaryOperation(result_type, value, distance) { | 
|  | DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType())); | 
|  | DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType())); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static T Compute(T value, int32_t distance, int32_t max_shift_value) { | 
|  | typedef typename std::make_unsigned<T>::type V; | 
|  | V ux = static_cast<V>(value); | 
|  | if ((distance & max_shift_value) == 0) { | 
|  | return static_cast<T>(ux); | 
|  | } else { | 
|  | const V reg_bits = sizeof(T) * 8; | 
|  | return static_cast<T>(ux >> (distance & max_shift_value)) | | 
|  | (value << (reg_bits - (distance & max_shift_value))); | 
|  | } | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant( | 
|  | Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, | 
|  | HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, | 
|  | HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, | 
|  | HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Ror); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HRor); | 
|  | }; | 
|  |  | 
|  | // The value of a parameter in this method. Its location depends on | 
|  | // the calling convention. | 
|  | class HParameterValue FINAL : public HExpression<0> { | 
|  | public: | 
|  | HParameterValue(const DexFile& dex_file, | 
|  | uint16_t type_index, | 
|  | uint8_t index, | 
|  | Primitive::Type parameter_type, | 
|  | bool is_this = false) | 
|  | : HExpression(parameter_type, SideEffects::None(), kNoDexPc), | 
|  | dex_file_(dex_file), | 
|  | type_index_(type_index), | 
|  | index_(index) { | 
|  | SetPackedFlag<kFlagIsThis>(is_this); | 
|  | SetPackedFlag<kFlagCanBeNull>(!is_this); | 
|  | } | 
|  |  | 
|  | const DexFile& GetDexFile() const { return dex_file_; } | 
|  | uint16_t GetTypeIndex() const { return type_index_; } | 
|  | uint8_t GetIndex() const { return index_; } | 
|  | bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } | 
|  | void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ParameterValue); | 
|  |  | 
|  | private: | 
|  | // Whether or not the parameter value corresponds to 'this' argument. | 
|  | static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1; | 
|  | static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1; | 
|  | static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  |  | 
|  | const DexFile& dex_file_; | 
|  | const uint16_t type_index_; | 
|  | // The index of this parameter in the parameters list. Must be less | 
|  | // than HGraph::number_of_in_vregs_. | 
|  | const uint8_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HParameterValue); | 
|  | }; | 
|  |  | 
|  | class HNot FINAL : public HUnaryOperation { | 
|  | public: | 
|  | HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
|  | : HUnaryOperation(result_type, input, dex_pc) {} | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> static T Compute(T x) { return ~x; } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Not); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HNot); | 
|  | }; | 
|  |  | 
|  | class HBooleanNot FINAL : public HUnaryOperation { | 
|  | public: | 
|  | explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
|  | : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {} | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> static bool Compute(T x) { | 
|  | DCHECK(IsUint<1>(x)) << x; | 
|  | return !x; | 
|  | } | 
|  |  | 
|  | HConstant* Evaluate(HIntConstant* x) const OVERRIDE { | 
|  | return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); | 
|  | } | 
|  | HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for long values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for float values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  | HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | LOG(FATAL) << DebugName() << " is not defined for double values"; | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(BooleanNot); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HBooleanNot); | 
|  | }; | 
|  |  | 
|  | class HTypeConversion FINAL : public HExpression<1> { | 
|  | public: | 
|  | // Instantiate a type conversion of `input` to `result_type`. | 
|  | HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc) | 
|  | : HExpression(result_type, | 
|  | SideEffectsForArchRuntimeCalls(input->GetType(), result_type), | 
|  | dex_pc) { | 
|  | SetRawInputAt(0, input); | 
|  | // Invariant: We should never generate a conversion to a Boolean value. | 
|  | DCHECK_NE(Primitive::kPrimBoolean, result_type); | 
|  | } | 
|  |  | 
|  | HInstruction* GetInput() const { return InputAt(0); } | 
|  | Primitive::Type GetInputType() const { return GetInput()->GetType(); } | 
|  | Primitive::Type GetResultType() const { return GetType(); } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to statically evaluate the conversion and return a HConstant | 
|  | // containing the result.  If the input cannot be converted, return nullptr. | 
|  | HConstant* TryStaticEvaluation() const; | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type, | 
|  | Primitive::Type result_type) { | 
|  | // Some architectures may not require the 'GC' side effects, but at this point | 
|  | // in the compilation process we do not know what architecture we will | 
|  | // generate code for, so we must be conservative. | 
|  | if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type)) | 
|  | || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) { | 
|  | return SideEffects::CanTriggerGC(); | 
|  | } | 
|  | return SideEffects::None(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(TypeConversion); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HTypeConversion); | 
|  | }; | 
|  |  | 
|  | static constexpr uint32_t kNoRegNumber = -1; | 
|  |  | 
|  | class HNullCheck FINAL : public HExpression<1> { | 
|  | public: | 
|  | // `HNullCheck` can trigger GC, as it may call the `NullPointerException` | 
|  | // constructor. | 
|  | HNullCheck(HInstruction* value, uint32_t dex_pc) | 
|  | : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) { | 
|  | SetRawInputAt(0, value); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return false; } | 
|  |  | 
|  |  | 
|  | DECLARE_INSTRUCTION(NullCheck); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HNullCheck); | 
|  | }; | 
|  |  | 
|  | class FieldInfo : public ValueObject { | 
|  | public: | 
|  | FieldInfo(MemberOffset field_offset, | 
|  | Primitive::Type field_type, | 
|  | bool is_volatile, | 
|  | uint32_t index, | 
|  | uint16_t declaring_class_def_index, | 
|  | const DexFile& dex_file, | 
|  | Handle<mirror::DexCache> dex_cache) | 
|  | : field_offset_(field_offset), | 
|  | field_type_(field_type), | 
|  | is_volatile_(is_volatile), | 
|  | index_(index), | 
|  | declaring_class_def_index_(declaring_class_def_index), | 
|  | dex_file_(dex_file), | 
|  | dex_cache_(dex_cache) {} | 
|  |  | 
|  | MemberOffset GetFieldOffset() const { return field_offset_; } | 
|  | Primitive::Type GetFieldType() const { return field_type_; } | 
|  | uint32_t GetFieldIndex() const { return index_; } | 
|  | uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;} | 
|  | const DexFile& GetDexFile() const { return dex_file_; } | 
|  | bool IsVolatile() const { return is_volatile_; } | 
|  | Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; } | 
|  |  | 
|  | private: | 
|  | const MemberOffset field_offset_; | 
|  | const Primitive::Type field_type_; | 
|  | const bool is_volatile_; | 
|  | const uint32_t index_; | 
|  | const uint16_t declaring_class_def_index_; | 
|  | const DexFile& dex_file_; | 
|  | const Handle<mirror::DexCache> dex_cache_; | 
|  | }; | 
|  |  | 
|  | class HInstanceFieldGet FINAL : public HExpression<1> { | 
|  | public: | 
|  | HInstanceFieldGet(HInstruction* value, | 
|  | Primitive::Type field_type, | 
|  | MemberOffset field_offset, | 
|  | bool is_volatile, | 
|  | uint32_t field_idx, | 
|  | uint16_t declaring_class_def_index, | 
|  | const DexFile& dex_file, | 
|  | Handle<mirror::DexCache> dex_cache, | 
|  | uint32_t dex_pc) | 
|  | : HExpression(field_type, | 
|  | SideEffectsForArchRuntimeCalls(field_type, is_volatile), | 
|  | dex_pc), | 
|  | field_info_(field_offset, | 
|  | field_type, | 
|  | is_volatile, | 
|  | field_idx, | 
|  | declaring_class_def_index, | 
|  | dex_file, | 
|  | dex_cache) { | 
|  | SetRawInputAt(0, value); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | const HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); | 
|  | return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); | 
|  | } | 
|  |  | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
|  | return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); | 
|  | } | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { | 
|  | return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); | 
|  | } | 
|  |  | 
|  | const FieldInfo& GetFieldInfo() const { return field_info_; } | 
|  | MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
|  | Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
|  | bool IsVolatile() const { return field_info_.IsVolatile(); } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type field_type, bool is_volatile) { | 
|  | SideEffects side_effects = SideEffects::FieldReadOfType(field_type, is_volatile); | 
|  |  | 
|  | // MIPS delegates volatile kPrimLong and kPrimDouble loads to a runtime helper. | 
|  | if (Primitive::Is64BitType(field_type)) { | 
|  | side_effects.Add(SideEffects::CanTriggerGC()); | 
|  | } | 
|  | return side_effects; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(InstanceFieldGet); | 
|  |  | 
|  | private: | 
|  | const FieldInfo field_info_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet); | 
|  | }; | 
|  |  | 
|  | class HInstanceFieldSet FINAL : public HTemplateInstruction<2> { | 
|  | public: | 
|  | HInstanceFieldSet(HInstruction* object, | 
|  | HInstruction* value, | 
|  | Primitive::Type field_type, | 
|  | MemberOffset field_offset, | 
|  | bool is_volatile, | 
|  | uint32_t field_idx, | 
|  | uint16_t declaring_class_def_index, | 
|  | const DexFile& dex_file, | 
|  | Handle<mirror::DexCache> dex_cache, | 
|  | uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffectsForArchRuntimeCalls(field_type, is_volatile), | 
|  | dex_pc), | 
|  | field_info_(field_offset, | 
|  | field_type, | 
|  | is_volatile, | 
|  | field_idx, | 
|  | declaring_class_def_index, | 
|  | dex_file, | 
|  | dex_cache) { | 
|  | SetPackedFlag<kFlagValueCanBeNull>(true); | 
|  | SetRawInputAt(0, object); | 
|  | SetRawInputAt(1, value); | 
|  | } | 
|  |  | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
|  | return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); | 
|  | } | 
|  |  | 
|  | const FieldInfo& GetFieldInfo() const { return field_info_; } | 
|  | MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
|  | Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
|  | bool IsVolatile() const { return field_info_.IsVolatile(); } | 
|  | HInstruction* GetValue() const { return InputAt(1); } | 
|  | bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } | 
|  | void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type field_type, bool is_volatile) { | 
|  | SideEffects side_effects = SideEffects::FieldWriteOfType(field_type, is_volatile); | 
|  |  | 
|  | // MIPS delegates volatile kPrimLong and kPrimDouble stores to a runtime helper. | 
|  | if (Primitive::Is64BitType(field_type)) { | 
|  | side_effects.Add(SideEffects::CanTriggerGC()); | 
|  | } | 
|  | return side_effects; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(InstanceFieldSet); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1; | 
|  | static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  |  | 
|  | const FieldInfo field_info_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet); | 
|  | }; | 
|  |  | 
|  | class HArrayGet FINAL : public HExpression<2> { | 
|  | public: | 
|  | HArrayGet(HInstruction* array, | 
|  | HInstruction* index, | 
|  | Primitive::Type type, | 
|  | uint32_t dex_pc, | 
|  | bool is_string_char_at = false) | 
|  | : HExpression(type, SideEffects::ArrayReadOfType(type), dex_pc) { | 
|  | SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); | 
|  | SetRawInputAt(0, array); | 
|  | SetRawInputAt(1, index); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | // TODO: We can be smarter here. | 
|  | // Currently, the array access is always preceded by an ArrayLength or a NullCheck | 
|  | // which generates the implicit null check. There are cases when these can be removed | 
|  | // to produce better code. If we ever add optimizations to do so we should allow an | 
|  | // implicit check here (as long as the address falls in the first page). | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool IsEquivalentOf(HArrayGet* other) const { | 
|  | bool result = (GetDexPc() == other->GetDexPc()); | 
|  | if (kIsDebugBuild && result) { | 
|  | DCHECK_EQ(GetBlock(), other->GetBlock()); | 
|  | DCHECK_EQ(GetArray(), other->GetArray()); | 
|  | DCHECK_EQ(GetIndex(), other->GetIndex()); | 
|  | if (Primitive::IsIntOrLongType(GetType())) { | 
|  | DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType(); | 
|  | } else { | 
|  | DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType(); | 
|  | DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType(); | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } | 
|  |  | 
|  | HInstruction* GetArray() const { return InputAt(0); } | 
|  | HInstruction* GetIndex() const { return InputAt(1); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ArrayGet); | 
|  |  | 
|  | private: | 
|  | // We treat a String as an array, creating the HArrayGet from String.charAt() | 
|  | // intrinsic in the instruction simplifier. We can always determine whether | 
|  | // a particular HArrayGet is actually a String.charAt() by looking at the type | 
|  | // of the input but that requires holding the mutator lock, so we prefer to use | 
|  | // a flag, so that code generators don't need to do the locking. | 
|  | static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1; | 
|  | static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HArrayGet); | 
|  | }; | 
|  |  | 
|  | class HArraySet FINAL : public HTemplateInstruction<3> { | 
|  | public: | 
|  | HArraySet(HInstruction* array, | 
|  | HInstruction* index, | 
|  | HInstruction* value, | 
|  | Primitive::Type expected_component_type, | 
|  | uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
|  | SetPackedField<ExpectedComponentTypeField>(expected_component_type); | 
|  | SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot); | 
|  | SetPackedFlag<kFlagValueCanBeNull>(true); | 
|  | SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false); | 
|  | SetRawInputAt(0, array); | 
|  | SetRawInputAt(1, index); | 
|  | SetRawInputAt(2, value); | 
|  | // Make a best guess now, may be refined during SSA building. | 
|  | ComputeSideEffects(); | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | // We call a runtime method to throw ArrayStoreException. | 
|  | return NeedsTypeCheck(); | 
|  | } | 
|  |  | 
|  | // Can throw ArrayStoreException. | 
|  | bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); } | 
|  |  | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | // TODO: Same as for ArrayGet. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ClearNeedsTypeCheck() { | 
|  | SetPackedFlag<kFlagNeedsTypeCheck>(false); | 
|  | } | 
|  |  | 
|  | void ClearValueCanBeNull() { | 
|  | SetPackedFlag<kFlagValueCanBeNull>(false); | 
|  | } | 
|  |  | 
|  | void SetStaticTypeOfArrayIsObjectArray() { | 
|  | SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true); | 
|  | } | 
|  |  | 
|  | bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } | 
|  | bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); } | 
|  | bool StaticTypeOfArrayIsObjectArray() const { | 
|  | return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(); | 
|  | } | 
|  |  | 
|  | HInstruction* GetArray() const { return InputAt(0); } | 
|  | HInstruction* GetIndex() const { return InputAt(1); } | 
|  | HInstruction* GetValue() const { return InputAt(2); } | 
|  |  | 
|  | Primitive::Type GetComponentType() const { | 
|  | // The Dex format does not type floating point index operations. Since the | 
|  | // `expected_component_type_` is set during building and can therefore not | 
|  | // be correct, we also check what is the value type. If it is a floating | 
|  | // point type, we must use that type. | 
|  | Primitive::Type value_type = GetValue()->GetType(); | 
|  | return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble)) | 
|  | ? value_type | 
|  | : GetRawExpectedComponentType(); | 
|  | } | 
|  |  | 
|  | Primitive::Type GetRawExpectedComponentType() const { | 
|  | return GetPackedField<ExpectedComponentTypeField>(); | 
|  | } | 
|  |  | 
|  | void ComputeSideEffects() { | 
|  | Primitive::Type type = GetComponentType(); | 
|  | SetSideEffects(SideEffects::ArrayWriteOfType(type).Union( | 
|  | SideEffectsForArchRuntimeCalls(type))); | 
|  | } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) { | 
|  | return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ArraySet); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldExpectedComponentTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); | 
|  | static constexpr size_t kFlagNeedsTypeCheck = | 
|  | kFieldExpectedComponentType + kFieldExpectedComponentTypeSize; | 
|  | static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1; | 
|  | // Cached information for the reference_type_info_ so that codegen | 
|  | // does not need to inspect the static type. | 
|  | static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1; | 
|  | static constexpr size_t kNumberOfArraySetPackedBits = | 
|  | kFlagStaticTypeOfArrayIsObjectArray + 1; | 
|  | static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using ExpectedComponentTypeField = | 
|  | BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HArraySet); | 
|  | }; | 
|  |  | 
|  | class HArrayLength FINAL : public HExpression<1> { | 
|  | public: | 
|  | HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false) | 
|  | : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) { | 
|  | SetPackedFlag<kFlagIsStringLength>(is_string_length); | 
|  | // Note that arrays do not change length, so the instruction does not | 
|  | // depend on any write. | 
|  | SetRawInputAt(0, array); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  | bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
|  | return obj == InputAt(0); | 
|  | } | 
|  |  | 
|  | bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ArrayLength); | 
|  |  | 
|  | private: | 
|  | // We treat a String as an array, creating the HArrayLength from String.length() | 
|  | // or String.isEmpty() intrinsic in the instruction simplifier. We can always | 
|  | // determine whether a particular HArrayLength is actually a String.length() by | 
|  | // looking at the type of the input but that requires holding the mutator lock, so | 
|  | // we prefer to use a flag, so that code generators don't need to do the locking. | 
|  | static constexpr size_t kFlagIsStringLength = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1; | 
|  | static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HArrayLength); | 
|  | }; | 
|  |  | 
|  | class HBoundsCheck FINAL : public HExpression<2> { | 
|  | public: | 
|  | // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException` | 
|  | // constructor. | 
|  | HBoundsCheck(HInstruction* index, | 
|  | HInstruction* length, | 
|  | uint32_t dex_pc, | 
|  | uint32_t string_char_at_method_index = DexFile::kDexNoIndex) | 
|  | : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc), | 
|  | string_char_at_method_index_(string_char_at_method_index) { | 
|  | DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(index->GetType())); | 
|  | SetRawInputAt(0, index); | 
|  | SetRawInputAt(1, length); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | bool IsStringCharAt() const { return GetStringCharAtMethodIndex() != DexFile::kDexNoIndex; } | 
|  | uint32_t GetStringCharAtMethodIndex() const { return string_char_at_method_index_; } | 
|  |  | 
|  | HInstruction* GetIndex() const { return InputAt(0); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(BoundsCheck); | 
|  |  | 
|  | private: | 
|  | // We treat a String as an array, creating the HBoundsCheck from String.charAt() | 
|  | // intrinsic in the instruction simplifier. We want to include the String.charAt() | 
|  | // in the stack trace if we actually throw the StringIndexOutOfBoundsException, | 
|  | // so we need to create an HEnvironment which will be translated to an InlineInfo | 
|  | // indicating the extra stack frame. Since we add this HEnvironment quite late, | 
|  | // in the PrepareForRegisterAllocation pass, we need to remember the method index | 
|  | // from the invoke as we don't want to look again at the dex bytecode. | 
|  | uint32_t string_char_at_method_index_;  // DexFile::kDexNoIndex if regular array. | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBoundsCheck); | 
|  | }; | 
|  |  | 
|  | class HSuspendCheck FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {} | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } | 
|  | SlowPathCode* GetSlowPath() const { return slow_path_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(SuspendCheck); | 
|  |  | 
|  | private: | 
|  | // Only used for code generation, in order to share the same slow path between back edges | 
|  | // of a same loop. | 
|  | SlowPathCode* slow_path_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HSuspendCheck); | 
|  | }; | 
|  |  | 
|  | // Pseudo-instruction which provides the native debugger with mapping information. | 
|  | // It ensures that we can generate line number and local variables at this point. | 
|  | class HNativeDebugInfo : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HNativeDebugInfo(uint32_t dex_pc) | 
|  | : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(NativeDebugInfo); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Instruction to load a Class object. | 
|  | */ | 
|  | class HLoadClass FINAL : public HInstruction { | 
|  | public: | 
|  | // Determines how to load the Class. | 
|  | enum class LoadKind { | 
|  | // Use the Class* from the method's own ArtMethod*. | 
|  | kReferrersClass, | 
|  |  | 
|  | // Use boot image Class* address that will be known at link time. | 
|  | // Used for boot image classes referenced by boot image code in non-PIC mode. | 
|  | kBootImageLinkTimeAddress, | 
|  |  | 
|  | // Use PC-relative boot image Class* address that will be known at link time. | 
|  | // Used for boot image classes referenced by boot image code in PIC mode. | 
|  | kBootImageLinkTimePcRelative, | 
|  |  | 
|  | // Use a known boot image Class* address, embedded in the code by the codegen. | 
|  | // Used for boot image classes referenced by apps in AOT- and JIT-compiled code. | 
|  | // Note: codegen needs to emit a linker patch if indicated by compiler options' | 
|  | // GetIncludePatchInformation(). | 
|  | kBootImageAddress, | 
|  |  | 
|  | // Load from the resolved types array at an absolute address. | 
|  | // Used for classes outside the boot image referenced by JIT-compiled code. | 
|  | kDexCacheAddress, | 
|  |  | 
|  | // Load from resolved types array in the dex cache using a PC-relative load. | 
|  | // Used for classes outside boot image when we know that we can access | 
|  | // the dex cache arrays using a PC-relative load. | 
|  | kDexCachePcRelative, | 
|  |  | 
|  | // Load from resolved types array accessed through the class loaded from | 
|  | // the compiled method's own ArtMethod*. This is the default access type when | 
|  | // all other types are unavailable. | 
|  | kDexCacheViaMethod, | 
|  |  | 
|  | kLast = kDexCacheViaMethod | 
|  | }; | 
|  |  | 
|  | HLoadClass(HCurrentMethod* current_method, | 
|  | uint16_t type_index, | 
|  | const DexFile& dex_file, | 
|  | bool is_referrers_class, | 
|  | uint32_t dex_pc, | 
|  | bool needs_access_check, | 
|  | bool is_in_dex_cache, | 
|  | bool is_in_boot_image) | 
|  | : HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc), | 
|  | special_input_(HUserRecord<HInstruction*>(current_method)), | 
|  | type_index_(type_index), | 
|  | dex_file_(dex_file), | 
|  | loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) { | 
|  | // Referrers class should not need access check. We never inline unverified | 
|  | // methods so we can't possibly end up in this situation. | 
|  | DCHECK(!is_referrers_class || !needs_access_check); | 
|  |  | 
|  | SetPackedField<LoadKindField>( | 
|  | is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kDexCacheViaMethod); | 
|  | SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); | 
|  | SetPackedFlag<kFlagIsInDexCache>(is_in_dex_cache); | 
|  | SetPackedFlag<kFlagIsInBootImage>(is_in_boot_image); | 
|  | SetPackedFlag<kFlagGenerateClInitCheck>(false); | 
|  | } | 
|  |  | 
|  | void SetLoadKindWithAddress(LoadKind load_kind, uint64_t address) { | 
|  | DCHECK(HasAddress(load_kind)); | 
|  | load_data_.address = address; | 
|  | SetLoadKindInternal(load_kind); | 
|  | } | 
|  |  | 
|  | void SetLoadKindWithTypeReference(LoadKind load_kind, | 
|  | const DexFile& dex_file, | 
|  | uint32_t type_index) { | 
|  | DCHECK(HasTypeReference(load_kind)); | 
|  | DCHECK(IsSameDexFile(dex_file_, dex_file)); | 
|  | DCHECK_EQ(type_index_, type_index); | 
|  | SetLoadKindInternal(load_kind); | 
|  | } | 
|  |  | 
|  | void SetLoadKindWithDexCacheReference(LoadKind load_kind, | 
|  | const DexFile& dex_file, | 
|  | uint32_t element_index) { | 
|  | DCHECK(HasDexCacheReference(load_kind)); | 
|  | DCHECK(IsSameDexFile(dex_file_, dex_file)); | 
|  | load_data_.dex_cache_element_index = element_index; | 
|  | SetLoadKindInternal(load_kind); | 
|  | } | 
|  |  | 
|  | LoadKind GetLoadKind() const { | 
|  | return GetPackedField<LoadKindField>(); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const; | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { return type_index_; } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return false; } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | return CanCallRuntime(); | 
|  | } | 
|  |  | 
|  | void SetMustGenerateClinitCheck(bool generate_clinit_check) { | 
|  | // The entrypoint the code generator is going to call does not do | 
|  | // clinit of the class. | 
|  | DCHECK(!NeedsAccessCheck()); | 
|  | SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check); | 
|  | } | 
|  |  | 
|  | bool CanCallRuntime() const { | 
|  | return MustGenerateClinitCheck() || | 
|  | (!IsReferrersClass() && !IsInDexCache()) || | 
|  | NeedsAccessCheck(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { | 
|  | return CanCallRuntime(); | 
|  | } | 
|  |  | 
|  | ReferenceTypeInfo GetLoadedClassRTI() { | 
|  | return loaded_class_rti_; | 
|  | } | 
|  |  | 
|  | void SetLoadedClassRTI(ReferenceTypeInfo rti) { | 
|  | // Make sure we only set exact types (the loaded class should never be merged). | 
|  | DCHECK(rti.IsExact()); | 
|  | loaded_class_rti_ = rti; | 
|  | } | 
|  |  | 
|  | uint32_t GetTypeIndex() const { return type_index_; } | 
|  | const DexFile& GetDexFile() const { return dex_file_; } | 
|  |  | 
|  | uint32_t GetDexCacheElementOffset() const; | 
|  |  | 
|  | uint64_t GetAddress() const { | 
|  | DCHECK(HasAddress(GetLoadKind())); | 
|  | return load_data_.address; | 
|  | } | 
|  |  | 
|  | bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !IsReferrersClass(); } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls() { | 
|  | return SideEffects::CanTriggerGC(); | 
|  | } | 
|  |  | 
|  | bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; } | 
|  | bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } | 
|  | bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); } | 
|  | bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); } | 
|  | bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); } | 
|  |  | 
|  | void MarkInDexCache() { | 
|  | SetPackedFlag<kFlagIsInDexCache>(true); | 
|  | DCHECK(!NeedsEnvironment()); | 
|  | RemoveEnvironment(); | 
|  | SetSideEffects(SideEffects::None()); | 
|  | } | 
|  |  | 
|  | void MarkInBootImage() { | 
|  | SetPackedFlag<kFlagIsInBootImage>(true); | 
|  | } | 
|  |  | 
|  | void AddSpecialInput(HInstruction* special_input); | 
|  |  | 
|  | using HInstruction::GetInputRecords;  // Keep the const version visible. | 
|  | ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { | 
|  | return ArrayRef<HUserRecord<HInstruction*>>( | 
|  | &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); | 
|  | } | 
|  |  | 
|  | Primitive::Type GetType() const OVERRIDE { | 
|  | return Primitive::kPrimNot; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(LoadClass); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFlagNeedsAccessCheck    = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFlagIsInDexCache        = kFlagNeedsAccessCheck + 1; | 
|  | static constexpr size_t kFlagIsInBootImage       = kFlagIsInDexCache + 1; | 
|  | // Whether this instruction must generate the initialization check. | 
|  | // Used for code generation. | 
|  | static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1; | 
|  | static constexpr size_t kFieldLoadKind           = kFlagGenerateClInitCheck + 1; | 
|  | static constexpr size_t kFieldLoadKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); | 
|  | static constexpr size_t kNumberOfLoadClassPackedBits = kFieldLoadKind + kFieldLoadKindSize; | 
|  | static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; | 
|  |  | 
|  | static bool HasTypeReference(LoadKind load_kind) { | 
|  | return load_kind == LoadKind::kBootImageLinkTimeAddress || | 
|  | load_kind == LoadKind::kBootImageLinkTimePcRelative || | 
|  | load_kind == LoadKind::kDexCacheViaMethod || | 
|  | load_kind == LoadKind::kReferrersClass; | 
|  | } | 
|  |  | 
|  | static bool HasAddress(LoadKind load_kind) { | 
|  | return load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kDexCacheAddress; | 
|  | } | 
|  |  | 
|  | static bool HasDexCacheReference(LoadKind load_kind) { | 
|  | return load_kind == LoadKind::kDexCachePcRelative; | 
|  | } | 
|  |  | 
|  | void SetLoadKindInternal(LoadKind load_kind); | 
|  |  | 
|  | // The special input is the HCurrentMethod for kDexCacheViaMethod or kReferrersClass. | 
|  | // For other load kinds it's empty or possibly some architecture-specific instruction | 
|  | // for PC-relative loads, i.e. kDexCachePcRelative or kBootImageLinkTimePcRelative. | 
|  | HUserRecord<HInstruction*> special_input_; | 
|  |  | 
|  | const uint16_t type_index_; | 
|  | const DexFile& dex_file_; | 
|  |  | 
|  | union { | 
|  | uint32_t dex_cache_element_index;   // Only for dex cache reference. | 
|  | uint64_t address;  // Up to 64-bit, needed for kDexCacheAddress on 64-bit targets. | 
|  | } load_data_; | 
|  |  | 
|  | ReferenceTypeInfo loaded_class_rti_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLoadClass); | 
|  | }; | 
|  | std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs); | 
|  |  | 
|  | // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). | 
|  | inline uint32_t HLoadClass::GetDexCacheElementOffset() const { | 
|  | DCHECK(HasDexCacheReference(GetLoadKind())) << GetLoadKind(); | 
|  | return load_data_.dex_cache_element_index; | 
|  | } | 
|  |  | 
|  | // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). | 
|  | inline void HLoadClass::AddSpecialInput(HInstruction* special_input) { | 
|  | // The special input is used for PC-relative loads on some architectures, | 
|  | // including literal pool loads, which are PC-relative too. | 
|  | DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || | 
|  | GetLoadKind() == LoadKind::kDexCachePcRelative || | 
|  | GetLoadKind() == LoadKind::kBootImageLinkTimeAddress || | 
|  | GetLoadKind() == LoadKind::kBootImageAddress) << GetLoadKind(); | 
|  | DCHECK(special_input_.GetInstruction() == nullptr); | 
|  | special_input_ = HUserRecord<HInstruction*>(special_input); | 
|  | special_input->AddUseAt(this, 0); | 
|  | } | 
|  |  | 
|  | class HLoadString FINAL : public HInstruction { | 
|  | public: | 
|  | // Determines how to load the String. | 
|  | enum class LoadKind { | 
|  | // Use boot image String* address that will be known at link time. | 
|  | // Used for boot image strings referenced by boot image code in non-PIC mode. | 
|  | kBootImageLinkTimeAddress, | 
|  |  | 
|  | // Use PC-relative boot image String* address that will be known at link time. | 
|  | // Used for boot image strings referenced by boot image code in PIC mode. | 
|  | kBootImageLinkTimePcRelative, | 
|  |  | 
|  | // Use a known boot image String* address, embedded in the code by the codegen. | 
|  | // Used for boot image strings referenced by apps in AOT- and JIT-compiled code. | 
|  | // Note: codegen needs to emit a linker patch if indicated by compiler options' | 
|  | // GetIncludePatchInformation(). | 
|  | kBootImageAddress, | 
|  |  | 
|  | // Load from the resolved strings array at an absolute address. | 
|  | // Used for strings outside the boot image referenced by JIT-compiled code. | 
|  | kDexCacheAddress, | 
|  |  | 
|  | // Load from resolved strings array in the dex cache using a PC-relative load. | 
|  | // Used for strings outside boot image when we know that we can access | 
|  | // the dex cache arrays using a PC-relative load. | 
|  | kDexCachePcRelative, | 
|  |  | 
|  | // Load from resolved strings array accessed through the class loaded from | 
|  | // the compiled method's own ArtMethod*. This is the default access type when | 
|  | // all other types are unavailable. | 
|  | kDexCacheViaMethod, | 
|  |  | 
|  | kLast = kDexCacheViaMethod | 
|  | }; | 
|  |  | 
|  | HLoadString(HCurrentMethod* current_method, | 
|  | uint32_t string_index, | 
|  | const DexFile& dex_file, | 
|  | uint32_t dex_pc) | 
|  | : HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc), | 
|  | special_input_(HUserRecord<HInstruction*>(current_method)), | 
|  | string_index_(string_index) { | 
|  | SetPackedFlag<kFlagIsInDexCache>(false); | 
|  | SetPackedField<LoadKindField>(LoadKind::kDexCacheViaMethod); | 
|  | load_data_.ref.dex_file = &dex_file; | 
|  | } | 
|  |  | 
|  | void SetLoadKindWithAddress(LoadKind load_kind, uint64_t address) { | 
|  | DCHECK(HasAddress(load_kind)); | 
|  | load_data_.address = address; | 
|  | SetLoadKindInternal(load_kind); | 
|  | } | 
|  |  | 
|  | void SetLoadKindWithStringReference(LoadKind load_kind, | 
|  | const DexFile& dex_file, | 
|  | uint32_t string_index) { | 
|  | DCHECK(HasStringReference(load_kind)); | 
|  | load_data_.ref.dex_file = &dex_file; | 
|  | string_index_ = string_index; | 
|  | SetLoadKindInternal(load_kind); | 
|  | } | 
|  |  | 
|  | void SetLoadKindWithDexCacheReference(LoadKind load_kind, | 
|  | const DexFile& dex_file, | 
|  | uint32_t element_index) { | 
|  | DCHECK(HasDexCacheReference(load_kind)); | 
|  | load_data_.ref.dex_file = &dex_file; | 
|  | load_data_.ref.dex_cache_element_index = element_index; | 
|  | SetLoadKindInternal(load_kind); | 
|  | } | 
|  |  | 
|  | LoadKind GetLoadKind() const { | 
|  | return GetPackedField<LoadKindField>(); | 
|  | } | 
|  |  | 
|  | const DexFile& GetDexFile() const; | 
|  |  | 
|  | uint32_t GetStringIndex() const { | 
|  | DCHECK(HasStringReference(GetLoadKind()) || /* For slow paths. */ !IsInDexCache()); | 
|  | return string_index_; | 
|  | } | 
|  |  | 
|  | uint32_t GetDexCacheElementOffset() const; | 
|  |  | 
|  | uint64_t GetAddress() const { | 
|  | DCHECK(HasAddress(GetLoadKind())); | 
|  | return load_data_.address; | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE; | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { return string_index_; } | 
|  |  | 
|  | // Will call the runtime if we need to load the string through | 
|  | // the dex cache and the string is not guaranteed to be there yet. | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | LoadKind load_kind = GetLoadKind(); | 
|  | if (load_kind == LoadKind::kBootImageLinkTimeAddress || | 
|  | load_kind == LoadKind::kBootImageLinkTimePcRelative || | 
|  | load_kind == LoadKind::kBootImageAddress) { | 
|  | return false; | 
|  | } | 
|  | return !IsInDexCache(); | 
|  | } | 
|  |  | 
|  | bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { | 
|  | return GetLoadKind() == LoadKind::kDexCacheViaMethod; | 
|  | } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return false; } | 
|  | bool CanThrow() const OVERRIDE { return NeedsEnvironment(); } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls() { | 
|  | return SideEffects::CanTriggerGC(); | 
|  | } | 
|  |  | 
|  | bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); } | 
|  |  | 
|  | void MarkInDexCache() { | 
|  | SetPackedFlag<kFlagIsInDexCache>(true); | 
|  | DCHECK(!NeedsEnvironment()); | 
|  | RemoveEnvironment(); | 
|  | SetSideEffects(SideEffects::None()); | 
|  | } | 
|  |  | 
|  | void AddSpecialInput(HInstruction* special_input); | 
|  |  | 
|  | using HInstruction::GetInputRecords;  // Keep the const version visible. | 
|  | ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL { | 
|  | return ArrayRef<HUserRecord<HInstruction*>>( | 
|  | &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); | 
|  | } | 
|  |  | 
|  | Primitive::Type GetType() const OVERRIDE { | 
|  | return Primitive::kPrimNot; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(LoadString); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFlagIsInDexCache = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldLoadKind = kFlagIsInDexCache + 1; | 
|  | static constexpr size_t kFieldLoadKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); | 
|  | static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize; | 
|  | static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; | 
|  |  | 
|  | static bool HasStringReference(LoadKind load_kind) { | 
|  | return load_kind == LoadKind::kBootImageLinkTimeAddress || | 
|  | load_kind == LoadKind::kBootImageLinkTimePcRelative || | 
|  | load_kind == LoadKind::kDexCacheViaMethod; | 
|  | } | 
|  |  | 
|  | static bool HasAddress(LoadKind load_kind) { | 
|  | return load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kDexCacheAddress; | 
|  | } | 
|  |  | 
|  | static bool HasDexCacheReference(LoadKind load_kind) { | 
|  | return load_kind == LoadKind::kDexCachePcRelative; | 
|  | } | 
|  |  | 
|  | void SetLoadKindInternal(LoadKind load_kind); | 
|  |  | 
|  | // The special input is the HCurrentMethod for kDexCacheViaMethod. | 
|  | // For other load kinds it's empty or possibly some architecture-specific instruction | 
|  | // for PC-relative loads, i.e. kDexCachePcRelative or kBootImageLinkTimePcRelative. | 
|  | HUserRecord<HInstruction*> special_input_; | 
|  |  | 
|  | // String index serves also as the hash code and it's also needed for slow-paths, | 
|  | // so it must not be overwritten with other load data. | 
|  | uint32_t string_index_; | 
|  |  | 
|  | union { | 
|  | struct { | 
|  | const DexFile* dex_file;            // For string reference and dex cache reference. | 
|  | uint32_t dex_cache_element_index;   // Only for dex cache reference. | 
|  | } ref; | 
|  | uint64_t address;  // Up to 64-bit, needed for kDexCacheAddress on 64-bit targets. | 
|  | } load_data_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLoadString); | 
|  | }; | 
|  | std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs); | 
|  |  | 
|  | // Note: defined outside class to see operator<<(., HLoadString::LoadKind). | 
|  | inline const DexFile& HLoadString::GetDexFile() const { | 
|  | DCHECK(HasStringReference(GetLoadKind()) || HasDexCacheReference(GetLoadKind())) | 
|  | << GetLoadKind(); | 
|  | return *load_data_.ref.dex_file; | 
|  | } | 
|  |  | 
|  | // Note: defined outside class to see operator<<(., HLoadString::LoadKind). | 
|  | inline uint32_t HLoadString::GetDexCacheElementOffset() const { | 
|  | DCHECK(HasDexCacheReference(GetLoadKind())) << GetLoadKind(); | 
|  | return load_data_.ref.dex_cache_element_index; | 
|  | } | 
|  |  | 
|  | // Note: defined outside class to see operator<<(., HLoadString::LoadKind). | 
|  | inline void HLoadString::AddSpecialInput(HInstruction* special_input) { | 
|  | // The special input is used for PC-relative loads on some architectures, | 
|  | // including literal pool loads, which are PC-relative too. | 
|  | DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || | 
|  | GetLoadKind() == LoadKind::kDexCachePcRelative || | 
|  | GetLoadKind() == LoadKind::kBootImageLinkTimeAddress || | 
|  | GetLoadKind() == LoadKind::kBootImageAddress) << GetLoadKind(); | 
|  | // HLoadString::GetInputRecords() returns an empty array at this point, | 
|  | // so use the GetInputRecords() from the base class to set the input record. | 
|  | DCHECK(special_input_.GetInstruction() == nullptr); | 
|  | special_input_ = HUserRecord<HInstruction*>(special_input); | 
|  | special_input->AddUseAt(this, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Performs an initialization check on its Class object input. | 
|  | */ | 
|  | class HClinitCheck FINAL : public HExpression<1> { | 
|  | public: | 
|  | HClinitCheck(HLoadClass* constant, uint32_t dex_pc) | 
|  | : HExpression( | 
|  | Primitive::kPrimNot, | 
|  | SideEffects::AllChanges(),  // Assume write/read on all fields/arrays. | 
|  | dex_pc) { | 
|  | SetRawInputAt(0, constant); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | // May call runtime to initialize the class. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ClinitCheck); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HClinitCheck); | 
|  | }; | 
|  |  | 
|  | class HStaticFieldGet FINAL : public HExpression<1> { | 
|  | public: | 
|  | HStaticFieldGet(HInstruction* cls, | 
|  | Primitive::Type field_type, | 
|  | MemberOffset field_offset, | 
|  | bool is_volatile, | 
|  | uint32_t field_idx, | 
|  | uint16_t declaring_class_def_index, | 
|  | const DexFile& dex_file, | 
|  | Handle<mirror::DexCache> dex_cache, | 
|  | uint32_t dex_pc) | 
|  | : HExpression(field_type, | 
|  | SideEffectsForArchRuntimeCalls(field_type, is_volatile), | 
|  | dex_pc), | 
|  | field_info_(field_offset, | 
|  | field_type, | 
|  | is_volatile, | 
|  | field_idx, | 
|  | declaring_class_def_index, | 
|  | dex_file, | 
|  | dex_cache) { | 
|  | SetRawInputAt(0, cls); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { | 
|  | const HStaticFieldGet* other_get = other->AsStaticFieldGet(); | 
|  | return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); | 
|  | } | 
|  |  | 
|  | size_t ComputeHashCode() const OVERRIDE { | 
|  | return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); | 
|  | } | 
|  |  | 
|  | const FieldInfo& GetFieldInfo() const { return field_info_; } | 
|  | MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
|  | Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
|  | bool IsVolatile() const { return field_info_.IsVolatile(); } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type field_type, bool is_volatile) { | 
|  | SideEffects side_effects = SideEffects::FieldReadOfType(field_type, is_volatile); | 
|  |  | 
|  | // MIPS delegates volatile kPrimLong and kPrimDouble loads to a runtime helper. | 
|  | if (Primitive::Is64BitType(field_type)) { | 
|  | side_effects.Add(SideEffects::CanTriggerGC()); | 
|  | } | 
|  | return side_effects; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(StaticFieldGet); | 
|  |  | 
|  | private: | 
|  | const FieldInfo field_info_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet); | 
|  | }; | 
|  |  | 
|  | class HStaticFieldSet FINAL : public HTemplateInstruction<2> { | 
|  | public: | 
|  | HStaticFieldSet(HInstruction* cls, | 
|  | HInstruction* value, | 
|  | Primitive::Type field_type, | 
|  | MemberOffset field_offset, | 
|  | bool is_volatile, | 
|  | uint32_t field_idx, | 
|  | uint16_t declaring_class_def_index, | 
|  | const DexFile& dex_file, | 
|  | Handle<mirror::DexCache> dex_cache, | 
|  | uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffectsForArchRuntimeCalls(field_type, is_volatile), | 
|  | dex_pc), | 
|  | field_info_(field_offset, | 
|  | field_type, | 
|  | is_volatile, | 
|  | field_idx, | 
|  | declaring_class_def_index, | 
|  | dex_file, | 
|  | dex_cache) { | 
|  | SetPackedFlag<kFlagValueCanBeNull>(true); | 
|  | SetRawInputAt(0, cls); | 
|  | SetRawInputAt(1, value); | 
|  | } | 
|  |  | 
|  | const FieldInfo& GetFieldInfo() const { return field_info_; } | 
|  | MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
|  | Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
|  | bool IsVolatile() const { return field_info_.IsVolatile(); } | 
|  |  | 
|  | HInstruction* GetValue() const { return InputAt(1); } | 
|  | bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } | 
|  | void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type field_type, bool is_volatile) { | 
|  | SideEffects side_effects = SideEffects::FieldWriteOfType(field_type, is_volatile); | 
|  |  | 
|  | // MIPS delegates volatile kPrimLong and kPrimDouble stores to a runtime helper. | 
|  | if (Primitive::Is64BitType(field_type)) { | 
|  | side_effects.Add(SideEffects::CanTriggerGC()); | 
|  | } | 
|  | return side_effects; | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(StaticFieldSet); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1; | 
|  | static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  |  | 
|  | const FieldInfo field_info_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet); | 
|  | }; | 
|  |  | 
|  | class HUnresolvedInstanceFieldGet FINAL : public HExpression<1> { | 
|  | public: | 
|  | HUnresolvedInstanceFieldGet(HInstruction* obj, | 
|  | Primitive::Type field_type, | 
|  | uint32_t field_index, | 
|  | uint32_t dex_pc) | 
|  | : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc), | 
|  | field_index_(field_index) { | 
|  | SetRawInputAt(0, obj); | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | Primitive::Type GetFieldType() const { return GetType(); } | 
|  | uint32_t GetFieldIndex() const { return field_index_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet); | 
|  |  | 
|  | private: | 
|  | const uint32_t field_index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet); | 
|  | }; | 
|  |  | 
|  | class HUnresolvedInstanceFieldSet FINAL : public HTemplateInstruction<2> { | 
|  | public: | 
|  | HUnresolvedInstanceFieldSet(HInstruction* obj, | 
|  | HInstruction* value, | 
|  | Primitive::Type field_type, | 
|  | uint32_t field_index, | 
|  | uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc), | 
|  | field_index_(field_index) { | 
|  | SetPackedField<FieldTypeField>(field_type); | 
|  | DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType())); | 
|  | SetRawInputAt(0, obj); | 
|  | SetRawInputAt(1, value); | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } | 
|  | uint32_t GetFieldIndex() const { return field_index_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldFieldTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); | 
|  | static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = | 
|  | kFieldFieldType + kFieldFieldTypeSize; | 
|  | static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>; | 
|  |  | 
|  | const uint32_t field_index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet); | 
|  | }; | 
|  |  | 
|  | class HUnresolvedStaticFieldGet FINAL : public HExpression<0> { | 
|  | public: | 
|  | HUnresolvedStaticFieldGet(Primitive::Type field_type, | 
|  | uint32_t field_index, | 
|  | uint32_t dex_pc) | 
|  | : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc), | 
|  | field_index_(field_index) { | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | Primitive::Type GetFieldType() const { return GetType(); } | 
|  | uint32_t GetFieldIndex() const { return field_index_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(UnresolvedStaticFieldGet); | 
|  |  | 
|  | private: | 
|  | const uint32_t field_index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet); | 
|  | }; | 
|  |  | 
|  | class HUnresolvedStaticFieldSet FINAL : public HTemplateInstruction<1> { | 
|  | public: | 
|  | HUnresolvedStaticFieldSet(HInstruction* value, | 
|  | Primitive::Type field_type, | 
|  | uint32_t field_index, | 
|  | uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc), | 
|  | field_index_(field_index) { | 
|  | SetPackedField<FieldTypeField>(field_type); | 
|  | DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType())); | 
|  | SetRawInputAt(0, value); | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } | 
|  | uint32_t GetFieldIndex() const { return field_index_; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(UnresolvedStaticFieldSet); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldFieldTypeSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); | 
|  | static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = | 
|  | kFieldFieldType + kFieldFieldTypeSize; | 
|  | static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>; | 
|  |  | 
|  | const uint32_t field_index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet); | 
|  | }; | 
|  |  | 
|  | // Implement the move-exception DEX instruction. | 
|  | class HLoadException FINAL : public HExpression<0> { | 
|  | public: | 
|  | explicit HLoadException(uint32_t dex_pc = kNoDexPc) | 
|  | : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {} | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return false; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(LoadException); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HLoadException); | 
|  | }; | 
|  |  | 
|  | // Implicit part of move-exception which clears thread-local exception storage. | 
|  | // Must not be removed because the runtime expects the TLS to get cleared. | 
|  | class HClearException FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HClearException(uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {} | 
|  |  | 
|  | DECLARE_INSTRUCTION(ClearException); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HClearException); | 
|  | }; | 
|  |  | 
|  | class HThrow FINAL : public HTemplateInstruction<1> { | 
|  | public: | 
|  | HThrow(HInstruction* exception, uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { | 
|  | SetRawInputAt(0, exception); | 
|  | } | 
|  |  | 
|  | bool IsControlFlow() const OVERRIDE { return true; } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  |  | 
|  | DECLARE_INSTRUCTION(Throw); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HThrow); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Implementation strategies for the code generator of a HInstanceOf | 
|  | * or `HCheckCast`. | 
|  | */ | 
|  | enum class TypeCheckKind { | 
|  | kUnresolvedCheck,       // Check against an unresolved type. | 
|  | kExactCheck,            // Can do a single class compare. | 
|  | kClassHierarchyCheck,   // Can just walk the super class chain. | 
|  | kAbstractClassCheck,    // Can just walk the super class chain, starting one up. | 
|  | kInterfaceCheck,        // No optimization yet when checking against an interface. | 
|  | kArrayObjectCheck,      // Can just check if the array is not primitive. | 
|  | kArrayCheck,            // No optimization yet when checking against a generic array. | 
|  | kLast = kArrayCheck | 
|  | }; | 
|  |  | 
|  | std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs); | 
|  |  | 
|  | class HInstanceOf FINAL : public HExpression<2> { | 
|  | public: | 
|  | HInstanceOf(HInstruction* object, | 
|  | HLoadClass* constant, | 
|  | TypeCheckKind check_kind, | 
|  | uint32_t dex_pc) | 
|  | : HExpression(Primitive::kPrimBoolean, | 
|  | SideEffectsForArchRuntimeCalls(check_kind), | 
|  | dex_pc) { | 
|  | SetPackedField<TypeCheckKindField>(check_kind); | 
|  | SetPackedFlag<kFlagMustDoNullCheck>(true); | 
|  | SetRawInputAt(0, object); | 
|  | SetRawInputAt(1, constant); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | return CanCallRuntime(GetTypeCheckKind()); | 
|  | } | 
|  |  | 
|  | // Used only in code generation. | 
|  | bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } | 
|  | void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } | 
|  | TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } | 
|  | bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } | 
|  |  | 
|  | static bool CanCallRuntime(TypeCheckKind check_kind) { | 
|  | // Mips currently does runtime calls for any other checks. | 
|  | return check_kind != TypeCheckKind::kExactCheck; | 
|  | } | 
|  |  | 
|  | static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) { | 
|  | return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(InstanceOf); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldTypeCheckKind = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kFieldTypeCheckKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); | 
|  | static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; | 
|  | static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagMustDoNullCheck + 1; | 
|  | static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInstanceOf); | 
|  | }; | 
|  |  | 
|  | class HBoundType FINAL : public HExpression<1> { | 
|  | public: | 
|  | HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
|  | : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc), | 
|  | upper_bound_(ReferenceTypeInfo::CreateInvalid()) { | 
|  | SetPackedFlag<kFlagUpperCanBeNull>(true); | 
|  | SetPackedFlag<kFlagCanBeNull>(true); | 
|  | DCHECK_EQ(input->GetType(), Primitive::kPrimNot); | 
|  | SetRawInputAt(0, input); | 
|  | } | 
|  |  | 
|  | // {Get,Set}Upper* should only be used in reference type propagation. | 
|  | const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; } | 
|  | bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); } | 
|  | void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null); | 
|  |  | 
|  | void SetCanBeNull(bool can_be_null) { | 
|  | DCHECK(GetUpperCanBeNull() || !can_be_null); | 
|  | SetPackedFlag<kFlagCanBeNull>(can_be_null); | 
|  | } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(BoundType); | 
|  |  | 
|  | private: | 
|  | // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this | 
|  | // is false then CanBeNull() cannot be true). | 
|  | static constexpr size_t kFlagUpperCanBeNull = kNumberOfExpressionPackedBits; | 
|  | static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1; | 
|  | static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1; | 
|  | static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  |  | 
|  | // Encodes the most upper class that this instruction can have. In other words | 
|  | // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()). | 
|  | // It is used to bound the type in cases like: | 
|  | //   if (x instanceof ClassX) { | 
|  | //     // uper_bound_ will be ClassX | 
|  | //   } | 
|  | ReferenceTypeInfo upper_bound_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBoundType); | 
|  | }; | 
|  |  | 
|  | class HCheckCast FINAL : public HTemplateInstruction<2> { | 
|  | public: | 
|  | HCheckCast(HInstruction* object, | 
|  | HLoadClass* constant, | 
|  | TypeCheckKind check_kind, | 
|  | uint32_t dex_pc) | 
|  | : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { | 
|  | SetPackedField<TypeCheckKindField>(check_kind); | 
|  | SetPackedFlag<kFlagMustDoNullCheck>(true); | 
|  | SetRawInputAt(0, object); | 
|  | SetRawInputAt(1, constant); | 
|  | } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  |  | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool NeedsEnvironment() const OVERRIDE { | 
|  | // Instruction may throw a CheckCastError. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { return true; } | 
|  |  | 
|  | bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } | 
|  | void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } | 
|  | TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } | 
|  | bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(CheckCast); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldTypeCheckKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); | 
|  | static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; | 
|  | static constexpr size_t kNumberOfCheckCastPackedBits = kFlagMustDoNullCheck + 1; | 
|  | static_assert(kNumberOfCheckCastPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
|  | using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HCheckCast); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers"). | 
|  | * @details We define the combined barrier types that are actually required | 
|  | * by the Java Memory Model, rather than using exactly the terminology from | 
|  | * the JSR-133 cookbook.  These should, in many cases, be replaced by acquire/release | 
|  | * primitives.  Note that the JSR-133 cookbook generally does not deal with | 
|  | * store atomicity issues, and the recipes there are not always entirely sufficient. | 
|  | * The current recipe is as follows: | 
|  | * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store. | 
|  | * -# Use AnyAny barrier after volatile store.  (StoreLoad is as expensive.) | 
|  | * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load. | 
|  | * -# Use StoreStore barrier after all stores but before return from any constructor whose | 
|  | *    class has final fields. | 
|  | * -# Use NTStoreStore to order non-temporal stores with respect to all later | 
|  | *    store-to-memory instructions.  Only generated together with non-temporal stores. | 
|  | */ | 
|  | enum MemBarrierKind { | 
|  | kAnyStore, | 
|  | kLoadAny, | 
|  | kStoreStore, | 
|  | kAnyAny, | 
|  | kNTStoreStore, | 
|  | kLastBarrierKind = kNTStoreStore | 
|  | }; | 
|  | std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind); | 
|  |  | 
|  | class HMemoryBarrier FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction( | 
|  | SideEffects::AllWritesAndReads(), dex_pc) {  // Assume write/read on all fields/arrays. | 
|  | SetPackedField<BarrierKindField>(barrier_kind); | 
|  | } | 
|  |  | 
|  | MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(MemoryBarrier); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldBarrierKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind)); | 
|  | static constexpr size_t kNumberOfMemoryBarrierPackedBits = | 
|  | kFieldBarrierKind + kFieldBarrierKindSize; | 
|  | static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier); | 
|  | }; | 
|  |  | 
|  | class HMonitorOperation FINAL : public HTemplateInstruction<1> { | 
|  | public: | 
|  | enum class OperationKind { | 
|  | kEnter, | 
|  | kExit, | 
|  | kLast = kExit | 
|  | }; | 
|  |  | 
|  | HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc) | 
|  | : HTemplateInstruction( | 
|  | SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays. | 
|  | dex_pc) { | 
|  | SetPackedField<OperationKindField>(kind); | 
|  | SetRawInputAt(0, object); | 
|  | } | 
|  |  | 
|  | // Instruction may go into runtime, so we need an environment. | 
|  | bool NeedsEnvironment() const OVERRIDE { return true; } | 
|  |  | 
|  | bool CanThrow() const OVERRIDE { | 
|  | // Verifier guarantees that monitor-exit cannot throw. | 
|  | // This is important because it allows the HGraphBuilder to remove | 
|  | // a dead throw-catch loop generated for `synchronized` blocks/methods. | 
|  | return IsEnter(); | 
|  | } | 
|  |  | 
|  | OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); } | 
|  | bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; } | 
|  |  | 
|  | DECLARE_INSTRUCTION(MonitorOperation); | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits; | 
|  | static constexpr size_t kFieldOperationKindSize = | 
|  | MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast)); | 
|  | static constexpr size_t kNumberOfMonitorOperationPackedBits = | 
|  | kFieldOperationKind + kFieldOperationKindSize; | 
|  | static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits, | 
|  | "Too many packed fields."); | 
|  | using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>; | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HMonitorOperation); | 
|  | }; | 
|  |  | 
|  | class HSelect FINAL : public HExpression<3> { | 
|  | public: | 
|  | HSelect(HInstruction* condition, | 
|  | HInstruction* true_value, | 
|  | HInstruction* false_value, | 
|  | uint32_t dex_pc) | 
|  | : HExpression(HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) { | 
|  | DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType())); | 
|  |  | 
|  | // First input must be `true_value` or `false_value` to allow codegens to | 
|  | // use the SameAsFirstInput allocation policy. We make it `false_value`, so | 
|  | // that architectures which implement HSelect as a conditional move also | 
|  | // will not need to invert the condition. | 
|  | SetRawInputAt(0, false_value); | 
|  | SetRawInputAt(1, true_value); | 
|  | SetRawInputAt(2, condition); | 
|  | } | 
|  |  | 
|  | HInstruction* GetFalseValue() const { return InputAt(0); } | 
|  | HInstruction* GetTrueValue() const { return InputAt(1); } | 
|  | HInstruction* GetCondition() const { return InputAt(2); } | 
|  |  | 
|  | bool CanBeMoved() const OVERRIDE { return true; } | 
|  | bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CanBeNull() const OVERRIDE { | 
|  | return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull(); | 
|  | } | 
|  |  | 
|  | DECLARE_INSTRUCTION(Select); | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HSelect); | 
|  | }; | 
|  |  | 
|  | class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> { | 
|  | public: | 
|  | MoveOperands(Location source, | 
|  | Location destination, | 
|  | Primitive::Type type, | 
|  | HInstruction* instruction) | 
|  | : source_(source), destination_(destination), type_(type), instruction_(instruction) {} | 
|  |  | 
|  | Location GetSource() const { return source_; } | 
|  | Location GetDestination() const { return destination_; } | 
|  |  | 
|  | void SetSource(Location value) { source_ = value; } | 
|  | void SetDestination(Location value) { destination_ = value; } | 
|  |  | 
|  | // The parallel move resolver marks moves as "in-progress" by clearing the | 
|  | // destination (but not the source). | 
|  | Location MarkPending() { | 
|  | DCHECK(!IsPending()); | 
|  | Location dest = destination_; | 
|  | destination_ = Location::NoLocation(); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | void ClearPending(Location dest) { | 
|  | DCHECK(IsPending()); | 
|  | destination_ = dest; | 
|  | } | 
|  |  | 
|  | bool IsPending() const { | 
|  | DCHECK(source_.IsValid() || destination_.IsInvalid()); | 
|  | return destination_.IsInvalid() && source_.IsValid(); | 
|  | } | 
|  |  | 
|  | // True if this blocks a move from the given location. | 
|  | bool Blocks(Location loc) const { | 
|  | return !IsEliminated() && source_.OverlapsWith(loc); | 
|  | } | 
|  |  | 
|  | // A move is redundant if it's been eliminated, if its source and | 
|  | // destination are the same, or if its destination is unneeded. | 
|  | bool IsRedundant() const { | 
|  | return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_); | 
|  | } | 
|  |  | 
|  | // We clear both operands to indicate move that's been eliminated. | 
|  | void Eliminate() { | 
|  | source_ = destination_ = Location::NoLocation(); | 
|  | } | 
|  |  | 
|  | bool IsEliminated() const { | 
|  | DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); | 
|  | return source_.IsInvalid(); | 
|  | } | 
|  |  | 
|  | Primitive::Type GetType() const { return type_; } | 
|  |  | 
|  | bool Is64BitMove() const { | 
|  | return Primitive::Is64BitType(type_); | 
|  | } | 
|  |  | 
|  | HInstruction* GetInstruction() const { return instruction_; } | 
|  |  | 
|  | private: | 
|  | Location source_; | 
|  | Location destination_; | 
|  | // The type this move is for. | 
|  | Primitive::Type type_; | 
|  | // The instruction this move is assocatied with. Null when this move is | 
|  | // for moving an input in the expected locations of user (including a phi user). | 
|  | // This is only used in debug mode, to ensure we do not connect interval siblings | 
|  | // in the same parallel move. | 
|  | HInstruction* instruction_; | 
|  | }; | 
|  |  | 
|  | std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs); | 
|  |  | 
|  | static constexpr size_t kDefaultNumberOfMoves = 4; | 
|  |  | 
|  | class HParallelMove FINAL : public HTemplateInstruction<0> { | 
|  | public: | 
|  | explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc) | 
|  | : HTemplateInstruction(SideEffects::None(), dex_pc), | 
|  | moves_(arena->Adapter(kArenaAllocMoveOperands)) { | 
|  | moves_.reserve(kDefaultNumberOfMoves); | 
|  | } | 
|  |  | 
|  | void AddMove(Location source, | 
|  | Location destination, | 
|  | Primitive::Type type, | 
|  | HInstruction* instruction) { | 
|  | DCHECK(source.IsValid()); | 
|  | DCHECK(destination.IsValid()); | 
|  | if (kIsDebugBuild) { | 
|  | if (instruction != nullptr) { | 
|  | for (const MoveOperands& move : moves_) { | 
|  | if (move.GetInstruction() == instruction) { | 
|  | // Special case the situation where the move is for the spill slot | 
|  | // of the instruction. | 
|  | if ((GetPrevious() == instruction) | 
|  | || ((GetPrevious() == nullptr) | 
|  | && instruction->IsPhi() | 
|  | && instruction->GetBlock() == GetBlock())) { | 
|  | DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind()) | 
|  | << "Doing parallel moves for the same instruction."; | 
|  | } else { | 
|  | DCHECK(false) << "Doing parallel moves for the same instruction."; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | for (const MoveOperands& move : moves_) { | 
|  | DCHECK(!destination.OverlapsWith(move.GetDestination())) | 
|  | << "Overlapped destination for two moves in a parallel move: " | 
|  | << move.GetSource() << " ==> " << move.GetDestination() << " and " | 
|  | << source << " ==> " << destination; | 
|  | } | 
|  | } | 
|  | moves_.emplace_back(source, destination, type, instruction); | 
|  | } | 
|  |  | 
|  | MoveOperands* MoveOperandsAt(size_t index) { | 
|  | return &moves_[index]; | 
|  | } | 
|  |  | 
|  | size_t NumMoves() const { return moves_.size(); } | 
|  |  | 
|  | DECLARE_INSTRUCTION(ParallelMove); | 
|  |  | 
|  | private: | 
|  | ArenaVector<MoveOperands> moves_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HParallelMove); | 
|  | }; | 
|  |  | 
|  | }  // namespace art | 
|  |  | 
|  | #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64) | 
|  | #include "nodes_shared.h" | 
|  | #endif | 
|  | #ifdef ART_ENABLE_CODEGEN_arm | 
|  | #include "nodes_arm.h" | 
|  | #endif | 
|  | #ifdef ART_ENABLE_CODEGEN_arm64 | 
|  | #include "nodes_arm64.h" | 
|  | #endif | 
|  | #ifdef ART_ENABLE_CODEGEN_mips | 
|  | #include "nodes_mips.h" | 
|  | #endif | 
|  | #ifdef ART_ENABLE_CODEGEN_x86 | 
|  | #include "nodes_x86.h" | 
|  | #endif | 
|  |  | 
|  | namespace art { | 
|  |  | 
|  | class HGraphVisitor : public ValueObject { | 
|  | public: | 
|  | explicit HGraphVisitor(HGraph* graph) : graph_(graph) {} | 
|  | virtual ~HGraphVisitor() {} | 
|  |  | 
|  | virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {} | 
|  | virtual void VisitBasicBlock(HBasicBlock* block); | 
|  |  | 
|  | // Visit the graph following basic block insertion order. | 
|  | void VisitInsertionOrder(); | 
|  |  | 
|  | // Visit the graph following dominator tree reverse post-order. | 
|  | void VisitReversePostOrder(); | 
|  |  | 
|  | HGraph* GetGraph() const { return graph_; } | 
|  |  | 
|  | // Visit functions for instruction classes. | 
|  | #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \ | 
|  | virtual void Visit##name(H##name* instr) { VisitInstruction(instr); } | 
|  |  | 
|  | FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) | 
|  |  | 
|  | #undef DECLARE_VISIT_INSTRUCTION | 
|  |  | 
|  | private: | 
|  | HGraph* const graph_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HGraphVisitor); | 
|  | }; | 
|  |  | 
|  | class HGraphDelegateVisitor : public HGraphVisitor { | 
|  | public: | 
|  | explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {} | 
|  | virtual ~HGraphDelegateVisitor() {} | 
|  |  | 
|  | // Visit functions that delegate to to super class. | 
|  | #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \ | 
|  | void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); } | 
|  |  | 
|  | FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) | 
|  |  | 
|  | #undef DECLARE_VISIT_INSTRUCTION | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor); | 
|  | }; | 
|  |  | 
|  | class HInsertionOrderIterator : public ValueObject { | 
|  | public: | 
|  | explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {} | 
|  |  | 
|  | bool Done() const { return index_ == graph_.GetBlocks().size(); } | 
|  | HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; } | 
|  | void Advance() { ++index_; } | 
|  |  | 
|  | private: | 
|  | const HGraph& graph_; | 
|  | size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator); | 
|  | }; | 
|  |  | 
|  | class HReversePostOrderIterator : public ValueObject { | 
|  | public: | 
|  | explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) { | 
|  | // Check that reverse post order of the graph has been built. | 
|  | DCHECK(!graph.GetReversePostOrder().empty()); | 
|  | } | 
|  |  | 
|  | bool Done() const { return index_ == graph_.GetReversePostOrder().size(); } | 
|  | HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; } | 
|  | void Advance() { ++index_; } | 
|  |  | 
|  | private: | 
|  | const HGraph& graph_; | 
|  | size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator); | 
|  | }; | 
|  |  | 
|  | class HPostOrderIterator : public ValueObject { | 
|  | public: | 
|  | explicit HPostOrderIterator(const HGraph& graph) | 
|  | : graph_(graph), index_(graph_.GetReversePostOrder().size()) { | 
|  | // Check that reverse post order of the graph has been built. | 
|  | DCHECK(!graph.GetReversePostOrder().empty()); | 
|  | } | 
|  |  | 
|  | bool Done() const { return index_ == 0; } | 
|  | HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; } | 
|  | void Advance() { --index_; } | 
|  |  | 
|  | private: | 
|  | const HGraph& graph_; | 
|  | size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator); | 
|  | }; | 
|  |  | 
|  | class HLinearPostOrderIterator : public ValueObject { | 
|  | public: | 
|  | explicit HLinearPostOrderIterator(const HGraph& graph) | 
|  | : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {} | 
|  |  | 
|  | bool Done() const { return index_ == 0; } | 
|  |  | 
|  | HBasicBlock* Current() const { return order_[index_ - 1u]; } | 
|  |  | 
|  | void Advance() { | 
|  | --index_; | 
|  | DCHECK_GE(index_, 0U); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const ArenaVector<HBasicBlock*>& order_; | 
|  | size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator); | 
|  | }; | 
|  |  | 
|  | class HLinearOrderIterator : public ValueObject { | 
|  | public: | 
|  | explicit HLinearOrderIterator(const HGraph& graph) | 
|  | : order_(graph.GetLinearOrder()), index_(0) {} | 
|  |  | 
|  | bool Done() const { return index_ == order_.size(); } | 
|  | HBasicBlock* Current() const { return order_[index_]; } | 
|  | void Advance() { ++index_; } | 
|  |  | 
|  | private: | 
|  | const ArenaVector<HBasicBlock*>& order_; | 
|  | size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator); | 
|  | }; | 
|  |  | 
|  | // Iterator over the blocks that art part of the loop. Includes blocks part | 
|  | // of an inner loop. The order in which the blocks are iterated is on their | 
|  | // block id. | 
|  | class HBlocksInLoopIterator : public ValueObject { | 
|  | public: | 
|  | explicit HBlocksInLoopIterator(const HLoopInformation& info) | 
|  | : blocks_in_loop_(info.GetBlocks()), | 
|  | blocks_(info.GetHeader()->GetGraph()->GetBlocks()), | 
|  | index_(0) { | 
|  | if (!blocks_in_loop_.IsBitSet(index_)) { | 
|  | Advance(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Done() const { return index_ == blocks_.size(); } | 
|  | HBasicBlock* Current() const { return blocks_[index_]; } | 
|  | void Advance() { | 
|  | ++index_; | 
|  | for (size_t e = blocks_.size(); index_ < e; ++index_) { | 
|  | if (blocks_in_loop_.IsBitSet(index_)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | const BitVector& blocks_in_loop_; | 
|  | const ArenaVector<HBasicBlock*>& blocks_; | 
|  | size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator); | 
|  | }; | 
|  |  | 
|  | // Iterator over the blocks that art part of the loop. Includes blocks part | 
|  | // of an inner loop. The order in which the blocks are iterated is reverse | 
|  | // post order. | 
|  | class HBlocksInLoopReversePostOrderIterator : public ValueObject { | 
|  | public: | 
|  | explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info) | 
|  | : blocks_in_loop_(info.GetBlocks()), | 
|  | blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()), | 
|  | index_(0) { | 
|  | if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { | 
|  | Advance(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Done() const { return index_ == blocks_.size(); } | 
|  | HBasicBlock* Current() const { return blocks_[index_]; } | 
|  | void Advance() { | 
|  | ++index_; | 
|  | for (size_t e = blocks_.size(); index_ < e; ++index_) { | 
|  | if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | const BitVector& blocks_in_loop_; | 
|  | const ArenaVector<HBasicBlock*>& blocks_; | 
|  | size_t index_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator); | 
|  | }; | 
|  |  | 
|  | inline int64_t Int64FromConstant(HConstant* constant) { | 
|  | if (constant->IsIntConstant()) { | 
|  | return constant->AsIntConstant()->GetValue(); | 
|  | } else if (constant->IsLongConstant()) { | 
|  | return constant->AsLongConstant()->GetValue(); | 
|  | } else { | 
|  | DCHECK(constant->IsNullConstant()) << constant->DebugName(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define INSTRUCTION_TYPE_CHECK(type, super)                                    \ | 
|  | inline bool HInstruction::Is##type() const { return GetKind() == k##type; }  \ | 
|  | inline const H##type* HInstruction::As##type() const {                       \ | 
|  | return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \ | 
|  | }                                                                            \ | 
|  | inline H##type* HInstruction::As##type() {                                   \ | 
|  | return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \ | 
|  | } | 
|  |  | 
|  | FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) | 
|  | #undef INSTRUCTION_TYPE_CHECK | 
|  |  | 
|  | // Create space in `blocks` for adding `number_of_new_blocks` entries | 
|  | // starting at location `at`. Blocks after `at` are moved accordingly. | 
|  | inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks, | 
|  | size_t number_of_new_blocks, | 
|  | size_t after) { | 
|  | DCHECK_LT(after, blocks->size()); | 
|  | size_t old_size = blocks->size(); | 
|  | size_t new_size = old_size + number_of_new_blocks; | 
|  | blocks->resize(new_size); | 
|  | std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end()); | 
|  | } | 
|  |  | 
|  | }  // namespace art | 
|  |  | 
|  | #endif  // ART_COMPILER_OPTIMIZING_NODES_H_ |