| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "codegen_x86.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| /* This file contains codegen for the X86 ISA */ |
| |
| LIR* X86Mir2Lir::OpFpRegCopy(int r_dest, int r_src) { |
| int opcode; |
| /* must be both DOUBLE or both not DOUBLE */ |
| DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src)); |
| if (X86_DOUBLEREG(r_dest)) { |
| opcode = kX86MovsdRR; |
| } else { |
| if (X86_SINGLEREG(r_dest)) { |
| if (X86_SINGLEREG(r_src)) { |
| opcode = kX86MovssRR; |
| } else { // Fpr <- Gpr |
| opcode = kX86MovdxrRR; |
| } |
| } else { // Gpr <- Fpr |
| DCHECK(X86_SINGLEREG(r_src)); |
| opcode = kX86MovdrxRR; |
| } |
| } |
| DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL); |
| LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest, r_src); |
| if (r_dest == r_src) { |
| res->flags.is_nop = true; |
| } |
| return res; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) { |
| return true; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) { |
| return false; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) { |
| return true; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) { |
| return false; // TUNING |
| } |
| |
| /* |
| * Load a immediate using a shortcut if possible; otherwise |
| * grab from the per-translation literal pool. If target is |
| * a high register, build constant into a low register and copy. |
| * |
| * No additional register clobbering operation performed. Use this version when |
| * 1) r_dest is freshly returned from AllocTemp or |
| * 2) The codegen is under fixed register usage |
| */ |
| LIR* X86Mir2Lir::LoadConstantNoClobber(int r_dest, int value) { |
| int r_dest_save = r_dest; |
| if (X86_FPREG(r_dest)) { |
| if (value == 0) { |
| return NewLIR2(kX86XorpsRR, r_dest, r_dest); |
| } |
| DCHECK(X86_SINGLEREG(r_dest)); |
| r_dest = AllocTemp(); |
| } |
| |
| LIR *res; |
| if (value == 0) { |
| res = NewLIR2(kX86Xor32RR, r_dest, r_dest); |
| } else { |
| // Note, there is no byte immediate form of a 32 bit immediate move. |
| res = NewLIR2(kX86Mov32RI, r_dest, value); |
| } |
| |
| if (X86_FPREG(r_dest_save)) { |
| NewLIR2(kX86MovdxrRR, r_dest_save, r_dest); |
| FreeTemp(r_dest); |
| } |
| |
| return res; |
| } |
| |
| LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) { |
| LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/); |
| res->target = target; |
| return res; |
| } |
| |
| LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) { |
| LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */, |
| X86ConditionEncoding(cc)); |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* X86Mir2Lir::OpReg(OpKind op, int r_dest_src) { |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpNeg: opcode = kX86Neg32R; break; |
| case kOpNot: opcode = kX86Not32R; break; |
| case kOpRev: opcode = kX86Bswap32R; break; |
| case kOpBlx: opcode = kX86CallR; break; |
| default: |
| LOG(FATAL) << "Bad case in OpReg " << op; |
| } |
| return NewLIR1(opcode, r_dest_src); |
| } |
| |
| LIR* X86Mir2Lir::OpRegImm(OpKind op, int r_dest_src1, int value) { |
| X86OpCode opcode = kX86Bkpt; |
| bool byte_imm = IS_SIMM8(value); |
| DCHECK(!X86_FPREG(r_dest_src1)); |
| switch (op) { |
| case kOpLsl: opcode = kX86Sal32RI; break; |
| case kOpLsr: opcode = kX86Shr32RI; break; |
| case kOpAsr: opcode = kX86Sar32RI; break; |
| case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break; |
| case kOpOr: opcode = byte_imm ? kX86Or32RI8 : kX86Or32RI; break; |
| case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break; |
| // case kOpSbb: opcode = kX86Sbb32RI; break; |
| case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break; |
| case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break; |
| case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break; |
| case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break; |
| case kOpMov: |
| /* |
| * Moving the constant zero into register can be specialized as an xor of the register. |
| * However, that sets eflags while the move does not. For that reason here, always do |
| * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead. |
| */ |
| opcode = kX86Mov32RI; |
| break; |
| case kOpMul: |
| opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI; |
| return NewLIR3(opcode, r_dest_src1, r_dest_src1, value); |
| default: |
| LOG(FATAL) << "Bad case in OpRegImm " << op; |
| } |
| return NewLIR2(opcode, r_dest_src1, value); |
| } |
| |
| LIR* X86Mir2Lir::OpRegReg(OpKind op, int r_dest_src1, int r_src2) { |
| X86OpCode opcode = kX86Nop; |
| bool src2_must_be_cx = false; |
| switch (op) { |
| // X86 unary opcodes |
| case kOpMvn: |
| OpRegCopy(r_dest_src1, r_src2); |
| return OpReg(kOpNot, r_dest_src1); |
| case kOpNeg: |
| OpRegCopy(r_dest_src1, r_src2); |
| return OpReg(kOpNeg, r_dest_src1); |
| case kOpRev: |
| OpRegCopy(r_dest_src1, r_src2); |
| return OpReg(kOpRev, r_dest_src1); |
| case kOpRevsh: |
| OpRegCopy(r_dest_src1, r_src2); |
| OpReg(kOpRev, r_dest_src1); |
| return OpRegImm(kOpAsr, r_dest_src1, 16); |
| // X86 binary opcodes |
| case kOpSub: opcode = kX86Sub32RR; break; |
| case kOpSbc: opcode = kX86Sbb32RR; break; |
| case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break; |
| case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break; |
| case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break; |
| case kOpMov: opcode = kX86Mov32RR; break; |
| case kOpCmp: opcode = kX86Cmp32RR; break; |
| case kOpAdd: opcode = kX86Add32RR; break; |
| case kOpAdc: opcode = kX86Adc32RR; break; |
| case kOpAnd: opcode = kX86And32RR; break; |
| case kOpOr: opcode = kX86Or32RR; break; |
| case kOpXor: opcode = kX86Xor32RR; break; |
| case kOp2Byte: |
| // Use shifts instead of a byte operand if the source can't be byte accessed. |
| if (r_src2 >= 4) { |
| NewLIR2(kX86Mov32RR, r_dest_src1, r_src2); |
| NewLIR2(kX86Sal32RI, r_dest_src1, 24); |
| return NewLIR2(kX86Sar32RI, r_dest_src1, 24); |
| } else { |
| opcode = kX86Movsx8RR; |
| } |
| break; |
| case kOp2Short: opcode = kX86Movsx16RR; break; |
| case kOp2Char: opcode = kX86Movzx16RR; break; |
| case kOpMul: opcode = kX86Imul32RR; break; |
| default: |
| LOG(FATAL) << "Bad case in OpRegReg " << op; |
| break; |
| } |
| CHECK(!src2_must_be_cx || r_src2 == rCX); |
| return NewLIR2(opcode, r_dest_src1, r_src2); |
| } |
| |
| LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) { |
| // The only conditional reg to reg operation supported is Cmov |
| DCHECK_EQ(op, kOpCmov); |
| return NewLIR3(kX86Cmov32RRC, r_dest, r_src, X86ConditionEncoding(cc)); |
| } |
| |
| LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, int rBase, |
| int offset) { |
| X86OpCode opcode = kX86Nop; |
| switch (op) { |
| // X86 binary opcodes |
| case kOpSub: opcode = kX86Sub32RM; break; |
| case kOpMov: opcode = kX86Mov32RM; break; |
| case kOpCmp: opcode = kX86Cmp32RM; break; |
| case kOpAdd: opcode = kX86Add32RM; break; |
| case kOpAnd: opcode = kX86And32RM; break; |
| case kOpOr: opcode = kX86Or32RM; break; |
| case kOpXor: opcode = kX86Xor32RM; break; |
| case kOp2Byte: opcode = kX86Movsx8RM; break; |
| case kOp2Short: opcode = kX86Movsx16RM; break; |
| case kOp2Char: opcode = kX86Movzx16RM; break; |
| case kOpMul: |
| default: |
| LOG(FATAL) << "Bad case in OpRegMem " << op; |
| break; |
| } |
| return NewLIR3(opcode, r_dest, rBase, offset); |
| } |
| |
| LIR* X86Mir2Lir::OpRegRegReg(OpKind op, int r_dest, int r_src1, |
| int r_src2) { |
| if (r_dest != r_src1 && r_dest != r_src2) { |
| if (op == kOpAdd) { // lea special case, except can't encode rbp as base |
| if (r_src1 == r_src2) { |
| OpRegCopy(r_dest, r_src1); |
| return OpRegImm(kOpLsl, r_dest, 1); |
| } else if (r_src1 != rBP) { |
| return NewLIR5(kX86Lea32RA, r_dest, r_src1 /* base */, |
| r_src2 /* index */, 0 /* scale */, 0 /* disp */); |
| } else { |
| return NewLIR5(kX86Lea32RA, r_dest, r_src2 /* base */, |
| r_src1 /* index */, 0 /* scale */, 0 /* disp */); |
| } |
| } else { |
| OpRegCopy(r_dest, r_src1); |
| return OpRegReg(op, r_dest, r_src2); |
| } |
| } else if (r_dest == r_src1) { |
| return OpRegReg(op, r_dest, r_src2); |
| } else { // r_dest == r_src2 |
| switch (op) { |
| case kOpSub: // non-commutative |
| OpReg(kOpNeg, r_dest); |
| op = kOpAdd; |
| break; |
| case kOpSbc: |
| case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: { |
| int t_reg = AllocTemp(); |
| OpRegCopy(t_reg, r_src1); |
| OpRegReg(op, t_reg, r_src2); |
| LIR* res = OpRegCopy(r_dest, t_reg); |
| FreeTemp(t_reg); |
| return res; |
| } |
| case kOpAdd: // commutative |
| case kOpOr: |
| case kOpAdc: |
| case kOpAnd: |
| case kOpXor: |
| break; |
| default: |
| LOG(FATAL) << "Bad case in OpRegRegReg " << op; |
| } |
| return OpRegReg(op, r_dest, r_src1); |
| } |
| } |
| |
| LIR* X86Mir2Lir::OpRegRegImm(OpKind op, int r_dest, int r_src, |
| int value) { |
| if (op == kOpMul) { |
| X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI; |
| return NewLIR3(opcode, r_dest, r_src, value); |
| } else if (op == kOpAnd) { |
| if (value == 0xFF && r_src < 4) { |
| return NewLIR2(kX86Movzx8RR, r_dest, r_src); |
| } else if (value == 0xFFFF) { |
| return NewLIR2(kX86Movzx16RR, r_dest, r_src); |
| } |
| } |
| if (r_dest != r_src) { |
| if (false && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case |
| // TODO: fix bug in LEA encoding when disp == 0 |
| return NewLIR5(kX86Lea32RA, r_dest, r5sib_no_base /* base */, |
| r_src /* index */, value /* scale */, 0 /* disp */); |
| } else if (op == kOpAdd) { // lea add special case |
| return NewLIR5(kX86Lea32RA, r_dest, r_src /* base */, |
| r4sib_no_index /* index */, 0 /* scale */, value /* disp */); |
| } |
| OpRegCopy(r_dest, r_src); |
| } |
| return OpRegImm(op, r_dest, value); |
| } |
| |
| LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) { |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpBlx: opcode = kX86CallT; break; |
| default: |
| LOG(FATAL) << "Bad opcode: " << op; |
| break; |
| } |
| return NewLIR1(opcode, thread_offset.Int32Value()); |
| } |
| |
| LIR* X86Mir2Lir::OpMem(OpKind op, int rBase, int disp) { |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpBlx: opcode = kX86CallM; break; |
| default: |
| LOG(FATAL) << "Bad opcode: " << op; |
| break; |
| } |
| return NewLIR2(opcode, rBase, disp); |
| } |
| |
| LIR* X86Mir2Lir::LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) { |
| int32_t val_lo = Low32Bits(value); |
| int32_t val_hi = High32Bits(value); |
| LIR *res; |
| if (X86_FPREG(r_dest_lo)) { |
| DCHECK(X86_FPREG(r_dest_hi)); // ignore r_dest_hi |
| DCHECK_EQ(r_dest_lo, r_dest_hi); |
| if (value == 0) { |
| return NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo); |
| } else { |
| if (val_lo == 0) { |
| res = NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo); |
| } else { |
| res = LoadConstantNoClobber(r_dest_lo, val_lo); |
| } |
| if (val_hi != 0) { |
| r_dest_hi = AllocTempDouble(); |
| LoadConstantNoClobber(r_dest_hi, val_hi); |
| NewLIR2(kX86PsllqRI, r_dest_hi, 32); |
| NewLIR2(kX86OrpsRR, r_dest_lo, r_dest_hi); |
| FreeTemp(r_dest_hi); |
| } |
| } |
| } else { |
| res = LoadConstantNoClobber(r_dest_lo, val_lo); |
| LoadConstantNoClobber(r_dest_hi, val_hi); |
| } |
| return res; |
| } |
| |
| LIR* X86Mir2Lir::LoadBaseIndexedDisp(int rBase, int r_index, int scale, |
| int displacement, int r_dest, int r_dest_hi, OpSize size, |
| int s_reg) { |
| LIR *load = NULL; |
| LIR *load2 = NULL; |
| bool is_array = r_index != INVALID_REG; |
| bool pair = false; |
| bool is64bit = false; |
| X86OpCode opcode = kX86Nop; |
| switch (size) { |
| case kLong: |
| case kDouble: |
| is64bit = true; |
| if (X86_FPREG(r_dest)) { |
| opcode = is_array ? kX86MovsdRA : kX86MovsdRM; |
| } else { |
| pair = true; |
| opcode = is_array ? kX86Mov32RA : kX86Mov32RM; |
| } |
| // TODO: double store is to unaligned address |
| DCHECK_EQ((displacement & 0x3), 0); |
| break; |
| case kWord: |
| case kSingle: |
| opcode = is_array ? kX86Mov32RA : kX86Mov32RM; |
| if (X86_FPREG(r_dest)) { |
| opcode = is_array ? kX86MovssRA : kX86MovssRM; |
| DCHECK(X86_SINGLEREG(r_dest)); |
| } |
| DCHECK_EQ((displacement & 0x3), 0); |
| break; |
| case kUnsignedHalf: |
| opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM; |
| DCHECK_EQ((displacement & 0x1), 0); |
| break; |
| case kSignedHalf: |
| opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM; |
| DCHECK_EQ((displacement & 0x1), 0); |
| break; |
| case kUnsignedByte: |
| opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM; |
| break; |
| case kSignedByte: |
| opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM; |
| break; |
| default: |
| LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody"; |
| } |
| |
| if (!is_array) { |
| if (!pair) { |
| load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET); |
| } else { |
| if (rBase == r_dest) { |
| load2 = NewLIR3(opcode, r_dest_hi, rBase, |
| displacement + HIWORD_OFFSET); |
| load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET); |
| } else { |
| load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET); |
| load2 = NewLIR3(opcode, r_dest_hi, rBase, |
| displacement + HIWORD_OFFSET); |
| } |
| } |
| if (rBase == rX86_SP) { |
| AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2, |
| true /* is_load */, is64bit); |
| if (pair) { |
| AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2, |
| true /* is_load */, is64bit); |
| } |
| } |
| } else { |
| if (!pair) { |
| load = NewLIR5(opcode, r_dest, rBase, r_index, scale, |
| displacement + LOWORD_OFFSET); |
| } else { |
| if (rBase == r_dest) { |
| if (r_dest_hi == r_index) { |
| // We can't use either register for the first load. |
| int temp = AllocTemp(); |
| load2 = NewLIR5(opcode, temp, rBase, r_index, scale, |
| displacement + HIWORD_OFFSET); |
| load = NewLIR5(opcode, r_dest, rBase, r_index, scale, |
| displacement + LOWORD_OFFSET); |
| OpRegCopy(r_dest_hi, temp); |
| FreeTemp(temp); |
| } else { |
| load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale, |
| displacement + HIWORD_OFFSET); |
| load = NewLIR5(opcode, r_dest, rBase, r_index, scale, |
| displacement + LOWORD_OFFSET); |
| } |
| } else { |
| if (r_dest == r_index) { |
| // We can't use either register for the first load. |
| int temp = AllocTemp(); |
| load = NewLIR5(opcode, temp, rBase, r_index, scale, |
| displacement + LOWORD_OFFSET); |
| load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale, |
| displacement + HIWORD_OFFSET); |
| OpRegCopy(r_dest, temp); |
| FreeTemp(temp); |
| } else { |
| load = NewLIR5(opcode, r_dest, rBase, r_index, scale, |
| displacement + LOWORD_OFFSET); |
| load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale, |
| displacement + HIWORD_OFFSET); |
| } |
| } |
| } |
| } |
| |
| return load; |
| } |
| |
| /* Load value from base + scaled index. */ |
| LIR* X86Mir2Lir::LoadBaseIndexed(int rBase, |
| int r_index, int r_dest, int scale, OpSize size) { |
| return LoadBaseIndexedDisp(rBase, r_index, scale, 0, |
| r_dest, INVALID_REG, size, INVALID_SREG); |
| } |
| |
| LIR* X86Mir2Lir::LoadBaseDisp(int rBase, int displacement, |
| int r_dest, OpSize size, int s_reg) { |
| return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement, |
| r_dest, INVALID_REG, size, s_reg); |
| } |
| |
| LIR* X86Mir2Lir::LoadBaseDispWide(int rBase, int displacement, |
| int r_dest_lo, int r_dest_hi, int s_reg) { |
| return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement, |
| r_dest_lo, r_dest_hi, kLong, s_reg); |
| } |
| |
| LIR* X86Mir2Lir::StoreBaseIndexedDisp(int rBase, int r_index, int scale, |
| int displacement, int r_src, int r_src_hi, OpSize size, |
| int s_reg) { |
| LIR *store = NULL; |
| LIR *store2 = NULL; |
| bool is_array = r_index != INVALID_REG; |
| bool pair = false; |
| bool is64bit = false; |
| X86OpCode opcode = kX86Nop; |
| switch (size) { |
| case kLong: |
| case kDouble: |
| is64bit = true; |
| if (X86_FPREG(r_src)) { |
| opcode = is_array ? kX86MovsdAR : kX86MovsdMR; |
| } else { |
| pair = true; |
| opcode = is_array ? kX86Mov32AR : kX86Mov32MR; |
| } |
| // TODO: double store is to unaligned address |
| DCHECK_EQ((displacement & 0x3), 0); |
| break; |
| case kWord: |
| case kSingle: |
| opcode = is_array ? kX86Mov32AR : kX86Mov32MR; |
| if (X86_FPREG(r_src)) { |
| opcode = is_array ? kX86MovssAR : kX86MovssMR; |
| DCHECK(X86_SINGLEREG(r_src)); |
| } |
| DCHECK_EQ((displacement & 0x3), 0); |
| break; |
| case kUnsignedHalf: |
| case kSignedHalf: |
| opcode = is_array ? kX86Mov16AR : kX86Mov16MR; |
| DCHECK_EQ((displacement & 0x1), 0); |
| break; |
| case kUnsignedByte: |
| case kSignedByte: |
| opcode = is_array ? kX86Mov8AR : kX86Mov8MR; |
| break; |
| default: |
| LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody"; |
| } |
| |
| if (!is_array) { |
| if (!pair) { |
| store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src); |
| } else { |
| store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src); |
| store2 = NewLIR3(opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi); |
| } |
| if (rBase == rX86_SP) { |
| AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2, |
| false /* is_load */, is64bit); |
| if (pair) { |
| AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2, |
| false /* is_load */, is64bit); |
| } |
| } |
| } else { |
| if (!pair) { |
| store = NewLIR5(opcode, rBase, r_index, scale, |
| displacement + LOWORD_OFFSET, r_src); |
| } else { |
| store = NewLIR5(opcode, rBase, r_index, scale, |
| displacement + LOWORD_OFFSET, r_src); |
| store2 = NewLIR5(opcode, rBase, r_index, scale, |
| displacement + HIWORD_OFFSET, r_src_hi); |
| } |
| } |
| |
| return store; |
| } |
| |
| /* store value base base + scaled index. */ |
| LIR* X86Mir2Lir::StoreBaseIndexed(int rBase, int r_index, int r_src, |
| int scale, OpSize size) { |
| return StoreBaseIndexedDisp(rBase, r_index, scale, 0, |
| r_src, INVALID_REG, size, INVALID_SREG); |
| } |
| |
| LIR* X86Mir2Lir::StoreBaseDisp(int rBase, int displacement, |
| int r_src, OpSize size) { |
| return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, |
| displacement, r_src, INVALID_REG, size, |
| INVALID_SREG); |
| } |
| |
| LIR* X86Mir2Lir::StoreBaseDispWide(int rBase, int displacement, |
| int r_src_lo, int r_src_hi) { |
| return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, displacement, |
| r_src_lo, r_src_hi, kLong, INVALID_SREG); |
| } |
| |
| /* |
| * Copy a long value in Core registers to an XMM register |
| * |
| */ |
| void X86Mir2Lir::OpVectorRegCopyWide(uint8_t fp_reg, uint8_t low_reg, uint8_t high_reg) { |
| NewLIR2(kX86MovdxrRR, fp_reg, low_reg); |
| int tmp_reg = AllocTempDouble(); |
| NewLIR2(kX86MovdxrRR, tmp_reg, high_reg); |
| NewLIR2(kX86PsllqRI, tmp_reg, 32); |
| NewLIR2(kX86OrpsRR, fp_reg, tmp_reg); |
| FreeTemp(tmp_reg); |
| } |
| |
| } // namespace art |