blob: 926b75e35f0a79e620a05c314d2773b099a27669 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_x86.h"
#include <cstdarg>
#include <inttypes.h>
#include <string>
#include "arch/instruction_set_features.h"
#include "backend_x86.h"
#include "base/logging.h"
#include "dex/compiler_ir.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/reg_storage_eq.h"
#include "driver/compiler_driver.h"
#include "mirror/array-inl.h"
#include "mirror/art_method.h"
#include "mirror/string.h"
#include "oat.h"
#include "x86_lir.h"
namespace art {
static constexpr RegStorage core_regs_arr_32[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
};
static constexpr RegStorage core_regs_arr_64[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
};
static constexpr RegStorage core_regs_arr_64q[] = {
rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
};
static constexpr RegStorage sp_regs_arr_32[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
};
static constexpr RegStorage sp_regs_arr_64[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
};
static constexpr RegStorage dp_regs_arr_32[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
};
static constexpr RegStorage dp_regs_arr_64[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
};
static constexpr RegStorage xp_regs_arr_32[] = {
rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
};
static constexpr RegStorage xp_regs_arr_64[] = {
rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
};
static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
static constexpr RegStorage core_temps_arr_64[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
rs_r8, rs_r9, rs_r10, rs_r11
};
// How to add register to be available for promotion:
// 1) Remove register from array defining temp
// 2) Update ClobberCallerSave
// 3) Update JNI compiler ABI:
// 3.1) add reg in JniCallingConvention method
// 3.2) update CoreSpillMask/FpSpillMask
// 4) Update entrypoints
// 4.1) Update constants in asm_support_x86_64.h for new frame size
// 4.2) Remove entry in SmashCallerSaves
// 4.3) Update jni_entrypoints to spill/unspill new callee save reg
// 4.4) Update quick_entrypoints to spill/unspill new callee save reg
// 5) Update runtime ABI
// 5.1) Update quick_method_frame_info with new required spills
// 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
// Note that you cannot use register corresponding to incoming args
// according to ABI and QCG needs one additional XMM temp for
// bulk copy in preparation to call.
static constexpr RegStorage core_temps_arr_64q[] = {
rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
rs_r8q, rs_r9q, rs_r10q, rs_r11q
};
static constexpr RegStorage sp_temps_arr_32[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
};
static constexpr RegStorage sp_temps_arr_64[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
rs_fr8, rs_fr9, rs_fr10, rs_fr11
};
static constexpr RegStorage dp_temps_arr_32[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
};
static constexpr RegStorage dp_temps_arr_64[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
rs_dr8, rs_dr9, rs_dr10, rs_dr11
};
static constexpr RegStorage xp_temps_arr_32[] = {
rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
};
static constexpr RegStorage xp_temps_arr_64[] = {
rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
rs_xr8, rs_xr9, rs_xr10, rs_xr11
};
static constexpr ArrayRef<const RegStorage> empty_pool;
static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
RegLocation X86Mir2Lir::LocCReturn() {
return x86_loc_c_return;
}
RegLocation X86Mir2Lir::LocCReturnRef() {
return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
}
RegLocation X86Mir2Lir::LocCReturnWide() {
return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
}
RegLocation X86Mir2Lir::LocCReturnFloat() {
return x86_loc_c_return_float;
}
RegLocation X86Mir2Lir::LocCReturnDouble() {
return x86_loc_c_return_double;
}
// 32-bit reg storage locations for 32-bit targets.
static const RegStorage RegStorage32FromSpecialTargetRegister_Target32[] {
RegStorage::InvalidReg(), // kSelf - Thread pointer.
RegStorage::InvalidReg(), // kSuspend - Used to reduce suspend checks for some targets.
RegStorage::InvalidReg(), // kLr - no register as the return address is pushed on entry.
RegStorage::InvalidReg(), // kPc - not exposed on X86 see kX86StartOfMethod.
rs_rX86_SP_32, // kSp
rs_rAX, // kArg0
rs_rCX, // kArg1
rs_rDX, // kArg2
rs_rBX, // kArg3
RegStorage::InvalidReg(), // kArg4
RegStorage::InvalidReg(), // kArg5
RegStorage::InvalidReg(), // kArg6
RegStorage::InvalidReg(), // kArg7
rs_fr0, // kFArg0
rs_fr1, // kFArg1
rs_fr2, // kFArg2
rs_fr3, // kFArg3
RegStorage::InvalidReg(), // kFArg4
RegStorage::InvalidReg(), // kFArg5
RegStorage::InvalidReg(), // kFArg6
RegStorage::InvalidReg(), // kFArg7
RegStorage::InvalidReg(), // kFArg8
RegStorage::InvalidReg(), // kFArg9
RegStorage::InvalidReg(), // kFArg10
RegStorage::InvalidReg(), // kFArg11
RegStorage::InvalidReg(), // kFArg12
RegStorage::InvalidReg(), // kFArg13
RegStorage::InvalidReg(), // kFArg14
RegStorage::InvalidReg(), // kFArg15
rs_rAX, // kRet0
rs_rDX, // kRet1
rs_rAX, // kInvokeTgt
rs_rAX, // kHiddenArg - used to hold the method index before copying to fr0.
rs_fr7, // kHiddenFpArg
rs_rCX, // kCount
};
// 32-bit reg storage locations for 64-bit targets.
static const RegStorage RegStorage32FromSpecialTargetRegister_Target64[] {
RegStorage::InvalidReg(), // kSelf - Thread pointer.
RegStorage::InvalidReg(), // kSuspend - Used to reduce suspend checks for some targets.
RegStorage::InvalidReg(), // kLr - no register as the return address is pushed on entry.
RegStorage(kRIPReg), // kPc
rs_rX86_SP_32, // kSp
rs_rDI, // kArg0
rs_rSI, // kArg1
rs_rDX, // kArg2
rs_rCX, // kArg3
rs_r8, // kArg4
rs_r9, // kArg5
RegStorage::InvalidReg(), // kArg6
RegStorage::InvalidReg(), // kArg7
rs_fr0, // kFArg0
rs_fr1, // kFArg1
rs_fr2, // kFArg2
rs_fr3, // kFArg3
rs_fr4, // kFArg4
rs_fr5, // kFArg5
rs_fr6, // kFArg6
rs_fr7, // kFArg7
RegStorage::InvalidReg(), // kFArg8
RegStorage::InvalidReg(), // kFArg9
RegStorage::InvalidReg(), // kFArg10
RegStorage::InvalidReg(), // kFArg11
RegStorage::InvalidReg(), // kFArg12
RegStorage::InvalidReg(), // kFArg13
RegStorage::InvalidReg(), // kFArg14
RegStorage::InvalidReg(), // kFArg15
rs_rAX, // kRet0
rs_rDX, // kRet1
rs_rAX, // kInvokeTgt
rs_rAX, // kHiddenArg
RegStorage::InvalidReg(), // kHiddenFpArg
rs_rCX, // kCount
};
static_assert(arraysize(RegStorage32FromSpecialTargetRegister_Target32) ==
arraysize(RegStorage32FromSpecialTargetRegister_Target64),
"Mismatch in RegStorage array sizes");
// Return a target-dependent special register for 32-bit.
RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) const {
DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target32[kCount], rs_rCX);
DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target64[kCount], rs_rCX);
DCHECK_LT(reg, arraysize(RegStorage32FromSpecialTargetRegister_Target32));
return cu_->target64 ? RegStorage32FromSpecialTargetRegister_Target64[reg]
: RegStorage32FromSpecialTargetRegister_Target32[reg];
}
RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
UNUSED(reg);
LOG(FATAL) << "Do not use this function!!!";
UNREACHABLE();
}
/*
* Decode the register id.
*/
ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
/* Double registers in x86 are just a single FP register. This is always just a single bit. */
return ResourceMask::Bit(
/* FP register starts at bit position 16 */
((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
}
ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
return kEncodeNone;
}
void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
ResourceMask* use_mask, ResourceMask* def_mask) {
DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
DCHECK(!lir->flags.use_def_invalid);
// X86-specific resource map setup here.
if (flags & REG_USE_SP) {
use_mask->SetBit(kX86RegSP);
}
if (flags & REG_DEF_SP) {
def_mask->SetBit(kX86RegSP);
}
if (flags & REG_DEFA) {
SetupRegMask(def_mask, rs_rAX.GetReg());
}
if (flags & REG_DEFD) {
SetupRegMask(def_mask, rs_rDX.GetReg());
}
if (flags & REG_USEA) {
SetupRegMask(use_mask, rs_rAX.GetReg());
}
if (flags & REG_USEC) {
SetupRegMask(use_mask, rs_rCX.GetReg());
}
if (flags & REG_USED) {
SetupRegMask(use_mask, rs_rDX.GetReg());
}
if (flags & REG_USEB) {
SetupRegMask(use_mask, rs_rBX.GetReg());
}
// Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
if (lir->opcode == kX86RepneScasw) {
SetupRegMask(use_mask, rs_rAX.GetReg());
SetupRegMask(use_mask, rs_rCX.GetReg());
SetupRegMask(use_mask, rs_rDI.GetReg());
SetupRegMask(def_mask, rs_rDI.GetReg());
}
if (flags & USE_FP_STACK) {
use_mask->SetBit(kX86FPStack);
def_mask->SetBit(kX86FPStack);
}
}
/* For dumping instructions */
static const char* x86RegName[] = {
"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
static const char* x86CondName[] = {
"O",
"NO",
"B/NAE/C",
"NB/AE/NC",
"Z/EQ",
"NZ/NE",
"BE/NA",
"NBE/A",
"S",
"NS",
"P/PE",
"NP/PO",
"L/NGE",
"NL/GE",
"LE/NG",
"NLE/G"
};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.cc.
*/
std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
std::string buf;
size_t i = 0;
size_t fmt_len = strlen(fmt);
while (i < fmt_len) {
if (fmt[i] != '!') {
buf += fmt[i];
i++;
} else {
i++;
DCHECK_LT(i, fmt_len);
char operand_number_ch = fmt[i];
i++;
if (operand_number_ch == '!') {
buf += "!";
} else {
int operand_number = operand_number_ch - '0';
DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
DCHECK_LT(i, fmt_len);
int operand = lir->operands[operand_number];
switch (fmt[i]) {
case 'c':
DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
buf += x86CondName[operand];
break;
case 'd':
buf += StringPrintf("%d", operand);
break;
case 'q': {
int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
static_cast<uint32_t>(lir->operands[operand_number+1]));
buf +=StringPrintf("%" PRId64, value);
break;
}
case 'p': {
const EmbeddedData* tab_rec = UnwrapPointer<EmbeddedData>(operand);
buf += StringPrintf("0x%08x", tab_rec->offset);
break;
}
case 'r':
if (RegStorage::IsFloat(operand)) {
int fp_reg = RegStorage::RegNum(operand);
buf += StringPrintf("xmm%d", fp_reg);
} else {
int reg_num = RegStorage::RegNum(operand);
DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
buf += x86RegName[reg_num];
}
break;
case 't':
buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
lir->target);
break;
default:
buf += StringPrintf("DecodeError '%c'", fmt[i]);
break;
}
i++;
}
}
}
return buf;
}
void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
char buf[256];
buf[0] = 0;
if (mask.Equals(kEncodeAll)) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kX86RegEnd; i++) {
if (mask.HasBit(i)) {
snprintf(num, arraysize(num), "%d ", i);
strcat(buf, num);
}
}
if (mask.HasBit(ResourceMask::kCCode)) {
strcat(buf, "cc ");
}
/* Memory bits */
if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
(DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
}
if (mask.HasBit(ResourceMask::kLiteral)) {
strcat(buf, "lit ");
}
if (mask.HasBit(ResourceMask::kHeapRef)) {
strcat(buf, "heap ");
}
if (mask.HasBit(ResourceMask::kMustNotAlias)) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
void X86Mir2Lir::AdjustSpillMask() {
// Adjustment for LR spilling, x86 has no LR so nothing to do here
core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
num_core_spills_++;
}
RegStorage X86Mir2Lir::AllocateByteRegister() {
RegStorage reg = AllocTypedTemp(false, kCoreReg);
if (!cu_->target64) {
DCHECK_LT(reg.GetRegNum(), rs_rX86_SP_32.GetRegNum());
}
return reg;
}
RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
return GetRegInfo(reg)->Master()->GetReg();
}
bool X86Mir2Lir::IsByteRegister(RegStorage reg) const {
return cu_->target64 || reg.GetRegNum() < rs_rX86_SP_32.GetRegNum();
}
/* Clobber all regs that might be used by an external C call */
void X86Mir2Lir::ClobberCallerSave() {
if (cu_->target64) {
Clobber(rs_rAX);
Clobber(rs_rCX);
Clobber(rs_rDX);
Clobber(rs_rSI);
Clobber(rs_rDI);
Clobber(rs_r8);
Clobber(rs_r9);
Clobber(rs_r10);
Clobber(rs_r11);
Clobber(rs_fr8);
Clobber(rs_fr9);
Clobber(rs_fr10);
Clobber(rs_fr11);
} else {
Clobber(rs_rAX);
Clobber(rs_rCX);
Clobber(rs_rDX);
Clobber(rs_rBX);
}
Clobber(rs_fr0);
Clobber(rs_fr1);
Clobber(rs_fr2);
Clobber(rs_fr3);
Clobber(rs_fr4);
Clobber(rs_fr5);
Clobber(rs_fr6);
Clobber(rs_fr7);
}
RegLocation X86Mir2Lir::GetReturnWideAlt() {
RegLocation res = LocCReturnWide();
DCHECK_EQ(res.reg.GetLowReg(), rs_rAX.GetReg());
DCHECK_EQ(res.reg.GetHighReg(), rs_rDX.GetReg());
Clobber(rs_rAX);
Clobber(rs_rDX);
MarkInUse(rs_rAX);
MarkInUse(rs_rDX);
MarkWide(res.reg);
return res;
}
RegLocation X86Mir2Lir::GetReturnAlt() {
RegLocation res = LocCReturn();
res.reg.SetReg(rs_rDX.GetReg());
Clobber(rs_rDX);
MarkInUse(rs_rDX);
return res;
}
/* To be used when explicitly managing register use */
void X86Mir2Lir::LockCallTemps() {
LockTemp(TargetReg32(kArg0));
LockTemp(TargetReg32(kArg1));
LockTemp(TargetReg32(kArg2));
LockTemp(TargetReg32(kArg3));
LockTemp(TargetReg32(kFArg0));
LockTemp(TargetReg32(kFArg1));
LockTemp(TargetReg32(kFArg2));
LockTemp(TargetReg32(kFArg3));
if (cu_->target64) {
LockTemp(TargetReg32(kArg4));
LockTemp(TargetReg32(kArg5));
LockTemp(TargetReg32(kFArg4));
LockTemp(TargetReg32(kFArg5));
LockTemp(TargetReg32(kFArg6));
LockTemp(TargetReg32(kFArg7));
}
}
/* To be used when explicitly managing register use */
void X86Mir2Lir::FreeCallTemps() {
FreeTemp(TargetReg32(kArg0));
FreeTemp(TargetReg32(kArg1));
FreeTemp(TargetReg32(kArg2));
FreeTemp(TargetReg32(kArg3));
FreeTemp(TargetReg32(kHiddenArg));
FreeTemp(TargetReg32(kFArg0));
FreeTemp(TargetReg32(kFArg1));
FreeTemp(TargetReg32(kFArg2));
FreeTemp(TargetReg32(kFArg3));
if (cu_->target64) {
FreeTemp(TargetReg32(kArg4));
FreeTemp(TargetReg32(kArg5));
FreeTemp(TargetReg32(kFArg4));
FreeTemp(TargetReg32(kFArg5));
FreeTemp(TargetReg32(kFArg6));
FreeTemp(TargetReg32(kFArg7));
}
}
bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
switch (opcode) {
case kX86LockCmpxchgMR:
case kX86LockCmpxchgAR:
case kX86LockCmpxchg64M:
case kX86LockCmpxchg64A:
case kX86XchgMR:
case kX86Mfence:
// Atomic memory instructions provide full barrier.
return true;
default:
break;
}
// Conservative if cannot prove it provides full barrier.
return false;
}
bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
if (!cu_->compiler_driver->GetInstructionSetFeatures()->IsSmp()) {
return false;
}
// Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
LIR* mem_barrier = last_lir_insn_;
bool ret = false;
/*
* According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
* All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
* For those cases, all we need to ensure is that there is a scheduling barrier in place.
*/
if (barrier_kind == kAnyAny) {
// If no LIR exists already that can be used a barrier, then generate an mfence.
if (mem_barrier == nullptr) {
mem_barrier = NewLIR0(kX86Mfence);
ret = true;
}
// If last instruction does not provide full barrier, then insert an mfence.
if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
mem_barrier = NewLIR0(kX86Mfence);
ret = true;
}
} else if (barrier_kind == kNTStoreStore) {
mem_barrier = NewLIR0(kX86Sfence);
ret = true;
}
// Now ensure that a scheduling barrier is in place.
if (mem_barrier == nullptr) {
GenBarrier();
} else {
// Mark as a scheduling barrier.
DCHECK(!mem_barrier->flags.use_def_invalid);
mem_barrier->u.m.def_mask = &kEncodeAll;
}
return ret;
}
void X86Mir2Lir::CompilerInitializeRegAlloc() {
if (cu_->target64) {
reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
dp_regs_64, reserved_regs_64, reserved_regs_64q,
core_temps_64, core_temps_64q,
sp_temps_64, dp_temps_64));
} else {
reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
dp_regs_32, reserved_regs_32, empty_pool,
core_temps_32, empty_pool,
sp_temps_32, dp_temps_32));
}
// Target-specific adjustments.
// Add in XMM registers.
const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
for (RegStorage reg : *xp_regs) {
RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
reginfo_map_[reg.GetReg()] = info;
}
const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
for (RegStorage reg : *xp_temps) {
RegisterInfo* xp_reg_info = GetRegInfo(reg);
xp_reg_info->SetIsTemp(true);
}
// Special Handling for x86_64 RIP addressing.
if (cu_->target64) {
RegisterInfo* info = new (arena_) RegisterInfo(RegStorage(kRIPReg), kEncodeNone);
reginfo_map_[kRIPReg] = info;
}
// Alias single precision xmm to double xmms.
// TODO: as needed, add larger vector sizes - alias all to the largest.
for (RegisterInfo* info : reg_pool_->sp_regs_) {
int sp_reg_num = info->GetReg().GetRegNum();
RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
// 128-bit xmm vector register's master storage should refer to itself.
DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
// Redirect 32-bit vector's master storage to 128-bit vector.
info->SetMaster(xp_reg_info);
RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
// Redirect 64-bit vector's master storage to 128-bit vector.
dp_reg_info->SetMaster(xp_reg_info);
// Singles should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
}
if (cu_->target64) {
// Alias 32bit W registers to corresponding 64bit X registers.
for (RegisterInfo* info : reg_pool_->core_regs_) {
int x_reg_num = info->GetReg().GetRegNum();
RegStorage x_reg = RegStorage::Solo64(x_reg_num);
RegisterInfo* x_reg_info = GetRegInfo(x_reg);
// 64bit X register's master storage should refer to itself.
DCHECK_EQ(x_reg_info, x_reg_info->Master());
// Redirect 32bit W master storage to 64bit X.
info->SetMaster(x_reg_info);
// 32bit W should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
}
}
// Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
// TODO: adjust for x86/hard float calling convention.
reg_pool_->next_core_reg_ = 2;
reg_pool_->next_sp_reg_ = 2;
reg_pool_->next_dp_reg_ = 1;
}
int X86Mir2Lir::VectorRegisterSize() {
return 128;
}
int X86Mir2Lir::NumReservableVectorRegisters(bool long_or_fp) {
int num_vector_temps = cu_->target64 ? xp_temps_64.size() : xp_temps_32.size();
// Leave a few temps for use by backend as scratch.
return long_or_fp ? num_vector_temps - 2 : num_vector_temps - 1;
}
static dwarf::Reg DwarfCoreReg(bool is_x86_64, int num) {
return is_x86_64 ? dwarf::Reg::X86_64Core(num) : dwarf::Reg::X86Core(num);
}
static dwarf::Reg DwarfFpReg(bool is_x86_64, int num) {
return is_x86_64 ? dwarf::Reg::X86_64Fp(num) : dwarf::Reg::X86Fp(num);
}
void X86Mir2Lir::SpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
// Spill mask not including fake return address register
uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
int offset =
frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
OpSize size = cu_->target64 ? k64 : k32;
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
if ((mask & 0x1) != 0u) {
RegStorage r_src = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg);
StoreBaseDisp(rs_rSP, offset, r_src, size, kNotVolatile);
cfi_.RelOffset(DwarfCoreReg(cu_->target64, reg), offset);
offset += GetInstructionSetPointerSize(cu_->instruction_set);
}
}
}
void X86Mir2Lir::UnSpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
// Spill mask not including fake return address register
uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
OpSize size = cu_->target64 ? k64 : k32;
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
if ((mask & 0x1) != 0u) {
RegStorage r_dest = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg);
LoadBaseDisp(rs_rSP, offset, r_dest, size, kNotVolatile);
cfi_.Restore(DwarfCoreReg(cu_->target64, reg));
offset += GetInstructionSetPointerSize(cu_->instruction_set);
}
}
}
void X86Mir2Lir::SpillFPRegs() {
if (num_fp_spills_ == 0) {
return;
}
uint32_t mask = fp_spill_mask_;
int offset = frame_size_ -
(GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
if ((mask & 0x1) != 0u) {
StoreBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile);
cfi_.RelOffset(DwarfFpReg(cu_->target64, reg), offset);
offset += sizeof(double);
}
}
}
void X86Mir2Lir::UnSpillFPRegs() {
if (num_fp_spills_ == 0) {
return;
}
uint32_t mask = fp_spill_mask_;
int offset = frame_size_ -
(GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
if ((mask & 0x1) != 0u) {
LoadBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg),
k64, kNotVolatile);
cfi_.Restore(DwarfFpReg(cu_->target64, reg));
offset += sizeof(double);
}
}
}
bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
}
RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
// Prefer XMM registers. Fixes a problem with iget/iput to a FP when cached temporary
// with same VR is a Core register.
if (size == kSingle || size == kDouble) {
return kFPReg;
}
// X86_64 can handle any size.
if (cu_->target64) {
return RegClassBySize(size);
}
if (UNLIKELY(is_volatile)) {
// On x86, atomic 64-bit load/store requires an fp register.
// Smaller aligned load/store is atomic for both core and fp registers.
if (size == k64 || size == kDouble) {
return kFPReg;
}
}
return RegClassBySize(size);
}
X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena),
in_to_reg_storage_x86_64_mapper_(this), in_to_reg_storage_x86_mapper_(this),
base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
method_address_insns_(arena->Adapter()),
class_type_address_insns_(arena->Adapter()),
call_method_insns_(arena->Adapter()),
dex_cache_access_insns_(arena->Adapter()),
const_vectors_(nullptr) {
method_address_insns_.reserve(100);
class_type_address_insns_.reserve(100);
call_method_insns_.reserve(100);
store_method_addr_used_ = false;
for (int i = 0; i < kX86Last; i++) {
DCHECK_EQ(X86Mir2Lir::EncodingMap[i].opcode, i)
<< "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
}
}
Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new X86Mir2Lir(cu, mir_graph, arena);
}
// Not used in x86(-64)
RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
UNUSED(trampoline);
LOG(FATAL) << "Unexpected use of LoadHelper in x86";
UNREACHABLE();
}
LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
// First load the pointer in fs:[suspend-trigger] into eax
// Then use a test instruction to indirect via that address.
if (cu_->target64) {
NewLIR2(kX86Mov64RT, rs_rAX.GetReg(),
Thread::ThreadSuspendTriggerOffset<8>().Int32Value());
} else {
NewLIR2(kX86Mov32RT, rs_rAX.GetReg(),
Thread::ThreadSuspendTriggerOffset<4>().Int32Value());
}
return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0);
}
uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].flags;
}
const char* X86Mir2Lir::GetTargetInstName(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].name;
}
const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].fmt;
}
void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
// Can we do this directly to memory?
rl_dest = UpdateLocWide(rl_dest);
if ((rl_dest.location == kLocDalvikFrame) ||
(rl_dest.location == kLocCompilerTemp)) {
int32_t val_lo = Low32Bits(value);
int32_t val_hi = High32Bits(value);
int r_base = rs_rX86_SP_32.GetReg();
int displacement = SRegOffset(rl_dest.s_reg_low);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
return;
}
// Just use the standard code to do the generation.
Mir2Lir::GenConstWide(rl_dest, value);
}
// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
LOG(INFO) << "location: " << loc.location << ','
<< (loc.wide ? " w" : " ")
<< (loc.defined ? " D" : " ")
<< (loc.is_const ? " c" : " ")
<< (loc.fp ? " F" : " ")
<< (loc.core ? " C" : " ")
<< (loc.ref ? " r" : " ")
<< (loc.high_word ? " h" : " ")
<< (loc.home ? " H" : " ")
<< ", low: " << static_cast<int>(loc.reg.GetLowReg())
<< ", high: " << static_cast<int>(loc.reg.GetHighReg())
<< ", s_reg: " << loc.s_reg_low
<< ", orig: " << loc.orig_sreg;
}
void X86Mir2Lir::Materialize() {
// A good place to put the analysis before starting.
AnalyzeMIR();
// Now continue with regular code generation.
Mir2Lir::Materialize();
}
void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg) {
/*
* For x86, just generate a 32 bit move immediate instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
int target_method_idx = target_method.dex_method_index;
const DexFile* target_dex_file = target_method.dex_file;
const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
// Generate the move instruction with the unique pointer and save index, dex_file, and type.
LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
TargetReg(symbolic_reg, kNotWide).GetReg(),
static_cast<int>(target_method_id_ptr), target_method_idx,
WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
AppendLIR(move);
method_address_insns_.push_back(move);
}
void X86Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx,
SpecialTargetRegister symbolic_reg) {
/*
* For x86, just generate a 32 bit move immediate instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
const DexFile::TypeId& id = dex_file.GetTypeId(type_idx);
uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
// Generate the move instruction with the unique pointer and save index and type.
LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
TargetReg(symbolic_reg, kNotWide).GetReg(),
static_cast<int>(ptr), type_idx,
WrapPointer(const_cast<DexFile*>(&dex_file)));
AppendLIR(move);
class_type_address_insns_.push_back(move);
}
LIR* X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
/*
* For x86, just generate a 32 bit call relative instruction, that will be filled
* in at 'link time'.
*/
int target_method_idx = target_method.dex_method_index;
const DexFile* target_dex_file = target_method.dex_file;
// Generate the call instruction with the unique pointer and save index, dex_file, and type.
// NOTE: Method deduplication takes linker patches into account, so we can just pass 0
// as a placeholder for the offset.
LIR* call = RawLIR(current_dalvik_offset_, kX86CallI, 0,
target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
AppendLIR(call);
call_method_insns_.push_back(call);
return call;
}
static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) {
QuickEntrypointEnum trampoline;
switch (type) {
case kInterface:
trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
break;
case kDirect:
trampoline = kQuickInvokeDirectTrampolineWithAccessCheck;
break;
case kStatic:
trampoline = kQuickInvokeStaticTrampolineWithAccessCheck;
break;
case kSuper:
trampoline = kQuickInvokeSuperTrampolineWithAccessCheck;
break;
case kVirtual:
trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck;
break;
default:
LOG(FATAL) << "Unexpected invoke type";
trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
}
return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline);
}
LIR* X86Mir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) {
LIR* call_insn;
if (method_info.FastPath()) {
if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
// We can have the linker fixup a call relative.
call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType());
} else {
call_insn = OpMem(kOpBlx, TargetReg(kArg0, kRef),
mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
cu_->target64 ? 8 : 4).Int32Value());
}
} else {
call_insn = GenInvokeNoInlineCall(this, method_info.GetSharpType());
}
return call_insn;
}
void X86Mir2Lir::InstallLiteralPools() {
// These are handled differently for x86.
DCHECK(code_literal_list_ == nullptr);
DCHECK(method_literal_list_ == nullptr);
DCHECK(class_literal_list_ == nullptr);
if (const_vectors_ != nullptr) {
// Vector literals must be 16-byte aligned. The header that is placed
// in the code section causes misalignment so we take it into account.
// Otherwise, we are sure that for x86 method is aligned to 16.
DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u);
uint32_t bytes_to_fill = (0x10 - ((code_buffer_.size() + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF;
while (bytes_to_fill > 0) {
code_buffer_.push_back(0);
bytes_to_fill--;
}
for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
Push32(&code_buffer_, p->operands[0]);
Push32(&code_buffer_, p->operands[1]);
Push32(&code_buffer_, p->operands[2]);
Push32(&code_buffer_, p->operands[3]);
}
}
patches_.reserve(method_address_insns_.size() + class_type_address_insns_.size() +
call_method_insns_.size() + dex_cache_access_insns_.size());
// Handle the fixups for methods.
for (LIR* p : method_address_insns_) {
DCHECK_EQ(p->opcode, kX86Mov32RI);
uint32_t target_method_idx = p->operands[2];
const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[3]);
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
patches_.push_back(LinkerPatch::MethodPatch(patch_offset,
target_dex_file, target_method_idx));
}
// Handle the fixups for class types.
for (LIR* p : class_type_address_insns_) {
DCHECK_EQ(p->opcode, kX86Mov32RI);
const DexFile* class_dex_file = UnwrapPointer<DexFile>(p->operands[3]);
uint32_t target_type_idx = p->operands[2];
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
patches_.push_back(LinkerPatch::TypePatch(patch_offset,
class_dex_file, target_type_idx));
}
// And now the PC-relative calls to methods.
for (LIR* p : call_method_insns_) {
DCHECK_EQ(p->opcode, kX86CallI);
uint32_t target_method_idx = p->operands[1];
const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[2]);
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
patches_.push_back(LinkerPatch::RelativeCodePatch(patch_offset,
target_dex_file, target_method_idx));
}
// PC-relative references to dex cache arrays.
for (LIR* p : dex_cache_access_insns_) {
DCHECK(p->opcode == kX86Mov32RM);
const DexFile* dex_file = UnwrapPointer<DexFile>(p->operands[3]);
uint32_t offset = p->operands[4];
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
DCHECK(!p->flags.is_nop);
patches_.push_back(LinkerPatch::DexCacheArrayPatch(patch_offset, dex_file, p->offset, offset));
}
// And do the normal processing.
Mir2Lir::InstallLiteralPools();
}
bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_srcPos = info->args[1];
RegLocation rl_dst = info->args[2];
RegLocation rl_dstPos = info->args[3];
RegLocation rl_length = info->args[4];
if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
return false;
}
if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
return false;
}
ClobberCallerSave();
LockCallTemps(); // Using fixed registers.
RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX;
LoadValueDirectFixed(rl_src, rs_rAX);
LoadValueDirectFixed(rl_dst, rs_rCX);
LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr);
LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr);
LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
LoadValueDirectFixed(rl_length, rs_rDX);
// If the length of the copy is > 128 characters (256 bytes) or negative then go slow path.
LIR* len_too_big = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr);
LoadValueDirectFixed(rl_src, rs_rAX);
LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
LIR* src_bad_len = nullptr;
LIR* src_bad_off = nullptr;
LIR* srcPos_negative = nullptr;
if (!rl_srcPos.is_const) {
LoadValueDirectFixed(rl_srcPos, tmp_reg);
srcPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
// src_pos < src_len
src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
// src_len - src_pos < copy_len
OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
} else {
int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
if (pos_val == 0) {
src_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
} else {
// src_pos < src_len
src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
// src_len - src_pos < copy_len
OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
}
}
LIR* dstPos_negative = nullptr;
LIR* dst_bad_len = nullptr;
LIR* dst_bad_off = nullptr;
LoadValueDirectFixed(rl_dst, rs_rAX);
LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
if (!rl_dstPos.is_const) {
LoadValueDirectFixed(rl_dstPos, tmp_reg);
dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
// dst_pos < dst_len
dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
// dst_len - dst_pos < copy_len
OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
} else {
int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
if (pos_val == 0) {
dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
} else {
// dst_pos < dst_len
dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
// dst_len - dst_pos < copy_len
OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
}
}
// Everything is checked now.
LoadValueDirectFixed(rl_src, rs_rAX);
LoadValueDirectFixed(rl_dst, tmp_reg);
LoadValueDirectFixed(rl_srcPos, rs_rCX);
NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value());
// RAX now holds the address of the first src element to be copied.
LoadValueDirectFixed(rl_dstPos, rs_rCX);
NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(),
rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() );
// RBX now holds the address of the first dst element to be copied.
// Check if the number of elements to be copied is odd or even. If odd
// then copy the first element (so that the remaining number of elements
// is even).
LoadValueDirectFixed(rl_length, rs_rCX);
OpRegImm(kOpAnd, rs_rCX, 1);
LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
OpRegImm(kOpSub, rs_rDX, 1);
LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
// Since the remaining number of elements is even, we will copy by
// two elements at a time.
LIR* beginLoop = NewLIR0(kPseudoTargetLabel);
LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr);
OpRegImm(kOpSub, rs_rDX, 2);
LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle);
OpUnconditionalBranch(beginLoop);
LIR *check_failed = NewLIR0(kPseudoTargetLabel);
LIR* launchpad_branch = OpUnconditionalBranch(nullptr);
LIR *return_point = NewLIR0(kPseudoTargetLabel);
jmp_to_ret->target = return_point;
jmp_to_begin_loop->target = beginLoop;
src_dst_same->target = check_failed;
len_too_big->target = check_failed;
src_null_branch->target = check_failed;
if (srcPos_negative != nullptr)
srcPos_negative ->target = check_failed;
if (src_bad_off != nullptr)
src_bad_off->target = check_failed;
if (src_bad_len != nullptr)
src_bad_len->target = check_failed;
dst_null_branch->target = check_failed;
if (dstPos_negative != nullptr)
dstPos_negative->target = check_failed;
if (dst_bad_off != nullptr)
dst_bad_off->target = check_failed;
if (dst_bad_len != nullptr)
dst_bad_len->target = check_failed;
AddIntrinsicSlowPath(info, launchpad_branch, return_point);
ClobberCallerSave(); // We must clobber everything because slow path will return here
return true;
}
/*
* Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
* otherwise bails to standard library code.
*/
bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
RegLocation rl_obj = info->args[0];
RegLocation rl_char = info->args[1];
RegLocation rl_start; // Note: only present in III flavor or IndexOf.
// RBX is promotable in 64-bit mode.
RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX;
int start_value = -1;
uint32_t char_value =
rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
if (char_value > 0xFFFF) {
// We have to punt to the real String.indexOf.
return false;
}
// Okay, we are commited to inlining this.
// EAX: 16 bit character being searched.
// ECX: count: number of words to be searched.
// EDI: String being searched.
// EDX: temporary during execution.
// EBX or R11: temporary during execution (depending on mode).
// REP SCASW: search instruction.
FlushAllRegs();
RegLocation rl_return = GetReturn(kCoreReg);
RegLocation rl_dest = InlineTarget(info);
// Is the string non-NULL?
LoadValueDirectFixed(rl_obj, rs_rDX);
GenNullCheck(rs_rDX, info->opt_flags);
info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
LIR *slowpath_branch = nullptr, *length_compare = nullptr;
// We need the value in EAX.
if (rl_char.is_const) {
LoadConstantNoClobber(rs_rAX, char_value);
} else {
// Does the character fit in 16 bits? Compare it at runtime.
LoadValueDirectFixed(rl_char, rs_rAX);
slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
}
// From here down, we know that we are looking for a char that fits in 16 bits.
// Location of reference to data array within the String object.
int value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count within the String object.
int count_offset = mirror::String::CountOffset().Int32Value();
// Starting offset within data array.
int offset_offset = mirror::String::OffsetOffset().Int32Value();
// Start of char data with array_.
int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
// Compute the number of words to search in to rCX.
Load32Disp(rs_rDX, count_offset, rs_rCX);
// Possible signal here due to null pointer dereference.
// Note that the signal handler will expect the top word of
// the stack to be the ArtMethod*. If the PUSH edi instruction
// below is ahead of the load above then this will not be true
// and the signal handler will not work.
MarkPossibleNullPointerException(0);
if (!cu_->target64) {
// EDI is promotable in 32-bit mode.
NewLIR1(kX86Push32R, rs_rDI.GetReg());
cfi_.AdjustCFAOffset(4);
// Record cfi only if it is not already spilled.
if (!CoreSpillMaskContains(rs_rDI.GetReg())) {
cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rDI.GetReg()), 0);
}
}
if (zero_based) {
// Start index is not present.
// We have to handle an empty string. Use special instruction JECXZ.
length_compare = NewLIR0(kX86Jecxz8);
// Copy the number of words to search in a temporary register.
// We will use the register at the end to calculate result.
OpRegReg(kOpMov, rs_tmp, rs_rCX);
} else {
// Start index is present.
rl_start = info->args[2];
// We have to offset by the start index.
if (rl_start.is_const) {
start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
start_value = std::max(start_value, 0);
// Is the start > count?
length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
OpRegImm(kOpMov, rs_rDI, start_value);
// Copy the number of words to search in a temporary register.
// We will use the register at the end to calculate result.
OpRegReg(kOpMov, rs_tmp, rs_rCX);
if (start_value != 0) {
// Decrease the number of words to search by the start index.
OpRegImm(kOpSub, rs_rCX, start_value);
}
} else {
// Handle "start index < 0" case.
if (!cu_->target64 && rl_start.location != kLocPhysReg) {
// Load the start index from stack, remembering that we pushed EDI.
int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Load32Disp(rs_rX86_SP_32, displacement, rs_rDI);
// Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1;
AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
} else {
LoadValueDirectFixed(rl_start, rs_rDI);
}
OpRegReg(kOpXor, rs_tmp, rs_tmp);
OpRegReg(kOpCmp, rs_rDI, rs_tmp);
OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp);
// The length of the string should be greater than the start index.
length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr);
// Copy the number of words to search in a temporary register.
// We will use the register at the end to calculate result.
OpRegReg(kOpMov, rs_tmp, rs_rCX);
// Decrease the number of words to search by the start index.
OpRegReg(kOpSub, rs_rCX, rs_rDI);
}
}
// Load the address of the string into EDI.
// In case of start index we have to add the address to existing value in EDI.
// The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) {
Load32Disp(rs_rDX, offset_offset, rs_rDI);
} else {
OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset);
}
OpRegImm(kOpLsl, rs_rDI, 1);
OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset);
OpRegImm(kOpAdd, rs_rDI, data_offset);
// EDI now contains the start of the string to be searched.
// We are all prepared to do the search for the character.
NewLIR0(kX86RepneScasw);
// Did we find a match?
LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
// yes, we matched. Compute the index of the result.
OpRegReg(kOpSub, rs_tmp, rs_rCX);
NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1);
LIR *all_done = NewLIR1(kX86Jmp8, 0);
// Failed to match; return -1.
LIR *not_found = NewLIR0(kPseudoTargetLabel);
length_compare->target = not_found;
failed_branch->target = not_found;
LoadConstantNoClobber(rl_return.reg, -1);
// And join up at the end.
all_done->target = NewLIR0(kPseudoTargetLabel);
if (!cu_->target64) {
NewLIR1(kX86Pop32R, rs_rDI.GetReg());
cfi_.AdjustCFAOffset(-4);
if (!CoreSpillMaskContains(rs_rDI.GetReg())) {
cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rDI.GetReg()));
}
}
// Out of line code returns here.
if (slowpath_branch != nullptr) {
LIR *return_point = NewLIR0(kPseudoTargetLabel);
AddIntrinsicSlowPath(info, slowpath_branch, return_point);
ClobberCallerSave(); // We must clobber everything because slow path will return here
}
StoreValue(rl_dest, rl_return);
return true;
}
void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
case kMirOpReserveVectorRegisters:
ReserveVectorRegisters(mir);
break;
case kMirOpReturnVectorRegisters:
ReturnVectorRegisters(mir);
break;
case kMirOpConstVector:
GenConst128(mir);
break;
case kMirOpMoveVector:
GenMoveVector(mir);
break;
case kMirOpPackedMultiply:
GenMultiplyVector(mir);
break;
case kMirOpPackedAddition:
GenAddVector(mir);
break;
case kMirOpPackedSubtract:
GenSubtractVector(mir);
break;
case kMirOpPackedShiftLeft:
GenShiftLeftVector(mir);
break;
case kMirOpPackedSignedShiftRight:
GenSignedShiftRightVector(mir);
break;
case kMirOpPackedUnsignedShiftRight:
GenUnsignedShiftRightVector(mir);
break;
case kMirOpPackedAnd:
GenAndVector(mir);
break;
case kMirOpPackedOr:
GenOrVector(mir);
break;
case kMirOpPackedXor:
GenXorVector(mir);
break;
case kMirOpPackedAddReduce:
GenAddReduceVector(mir);
break;
case kMirOpPackedReduce:
GenReduceVector(mir);
break;
case kMirOpPackedSet:
GenSetVector(mir);
break;
case kMirOpMemBarrier:
GenMemBarrier(static_cast<MemBarrierKind>(mir->dalvikInsn.vA));
break;
case kMirOpPackedArrayGet:
GenPackedArrayGet(bb, mir);
break;
case kMirOpPackedArrayPut:
GenPackedArrayPut(bb, mir);
break;
default:
break;
}
}
void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) {
RegStorage xp_reg = RegStorage::Solo128(i);
RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
Clobber(xp_reg);
for (RegisterInfo *info = xp_reg_info->GetAliasChain();
info != nullptr;
info = info->GetAliasChain()) {
ArenaVector<RegisterInfo*>* regs =
info->GetReg().IsSingle() ? &reg_pool_->sp_regs_ : &reg_pool_->dp_regs_;
auto it = std::find(regs->begin(), regs->end(), info);
DCHECK(it != regs->end());
regs->erase(it);
}
}
}
void X86Mir2Lir::ReturnVectorRegisters(MIR* mir) {
for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) {
RegStorage xp_reg = RegStorage::Solo128(i);
RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
for (RegisterInfo *info = xp_reg_info->GetAliasChain();
info != nullptr;
info = info->GetAliasChain()) {
if (info->GetReg().IsSingle()) {
reg_pool_->sp_regs_.push_back(info);
} else {
reg_pool_->dp_regs_.push_back(info);
}
}
}
}
void X86Mir2Lir::GenConst128(MIR* mir) {
RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest);
uint32_t *args = mir->dalvikInsn.arg;
int reg = rs_dest.GetReg();
// Check for all 0 case.
if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
NewLIR2(kX86XorpsRR, reg, reg);
return;
}
// Append the mov const vector to reg opcode.
AppendOpcodeWithConst(kX86MovdqaRM, reg, mir);
}
void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
// To deal with correct memory ordering, reverse order of constants.
int32_t constants[4];
constants[3] = mir->dalvikInsn.arg[0];
constants[2] = mir->dalvikInsn.arg[1];
constants[1] = mir->dalvikInsn.arg[2];
constants[0] = mir->dalvikInsn.arg[3];
// Search if there is already a constant in pool with this value.
LIR *data_target = ScanVectorLiteral(constants);
if (data_target == nullptr) {
data_target = AddVectorLiteral(constants);
}
// Load the proper value from the literal area.
// We don't know the proper offset for the value, so pick one that will force
// 4 byte offset. We will fix this up in the assembler later to have the
// right value.
LIR* load;
ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
if (cu_->target64) {
load = NewLIR3(opcode, reg, kRIPReg, 256 /* bogus */);
} else {
// Address the start of the method.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
if (rl_method.wide) {
rl_method = LoadValueWide(rl_method, kCoreReg);
} else {
rl_method = LoadValue(rl_method, kCoreReg);
}
load = NewLIR3(opcode, reg, rl_method.reg.GetReg(), 256 /* bogus */);
// The literal pool needs position independent logic.
store_method_addr_used_ = true;
}
load->flags.fixup = kFixupLoad;
load->target = data_target;
}
void X86Mir2Lir::GenMoveVector(MIR* mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest);
RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
NewLIR2(kX86MovdqaRR, rs_dest.GetReg(), rs_src.GetReg());
}
void X86Mir2Lir::GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2) {
/*
* Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
* and multiplying 8 at a time before recombining back into one XMM register.
*
* let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
* xmm3 is tmp (operate on high bits of 16bit lanes)
*
* xmm3 = xmm1
* xmm1 = xmm1 .* xmm2
* xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff // xmm1 now has low bits
* xmm3 = xmm3 .>> 8
* xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
* xmm2 = xmm2 .* xmm3 // xmm2 now has high bits
* xmm1 = xmm1 | xmm2 // combine results
*/
// Copy xmm1.
RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempDouble());
RegStorage rs_dest_high_tmp = Get128BitRegister(AllocTempDouble());
NewLIR2(kX86MovdqaRR, rs_src1_high_tmp.GetReg(), rs_src2.GetReg());
NewLIR2(kX86MovdqaRR, rs_dest_high_tmp.GetReg(), rs_dest_src1.GetReg());
// Multiply low bits.
// x7 *= x3
NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
// xmm1 now has low bits.
AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
// Prepare high bits for multiplication.
NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), 0x8);
AndMaskVectorRegister(rs_dest_high_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
// Multiply high bits and xmm2 now has high bits.
NewLIR2(kX86PmullwRR, rs_src1_high_tmp.GetReg(), rs_dest_high_tmp.GetReg());
// Combine back into dest XMM register.
NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src1_high_tmp.GetReg());
}
void X86Mir2Lir::GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2) {
/*
* We need to emulate the packed long multiply.
* For kMirOpPackedMultiply xmm1, xmm0:
* - xmm1 is src/dest
* - xmm0 is src
* - Get xmm2 and xmm3 as temp
* - Idea is to multiply the lower 32 of each operand with the higher 32 of the other.
* - Then add the two results.
* - Move it to the upper 32 of the destination
* - Then multiply the lower 32-bits of the operands and add the result to the destination.
*
* (op dest src )
* movdqa %xmm2, %xmm1
* movdqa %xmm3, %xmm0
* psrlq %xmm3, $0x20
* pmuludq %xmm3, %xmm2
* psrlq %xmm1, $0x20
* pmuludq %xmm1, %xmm0
* paddq %xmm1, %xmm3
* psllq %xmm1, $0x20
* pmuludq %xmm2, %xmm0
* paddq %xmm1, %xmm2
*
* When both the operands are the same, then we need to calculate the lower-32 * higher-32
* calculation only once. Thus we don't need the xmm3 temp above. That sequence becomes:
*
* (op dest src )
* movdqa %xmm2, %xmm1
* psrlq %xmm1, $0x20
* pmuludq %xmm1, %xmm0
* paddq %xmm1, %xmm1
* psllq %xmm1, $0x20
* pmuludq %xmm2, %xmm0
* paddq %xmm1, %xmm2
*
*/
bool both_operands_same = (rs_dest_src1.GetReg() == rs_src2.GetReg());
RegStorage rs_tmp_vector_1;
RegStorage rs_tmp_vector_2;
rs_tmp_vector_1 = Get128BitRegister(AllocTempDouble());
NewLIR2(kX86MovdqaRR, rs_tmp_vector_1.GetReg(), rs_dest_src1.GetReg());
if (both_operands_same == false) {
rs_tmp_vector_2 = Get128BitRegister(AllocTempDouble());
NewLIR2(kX86MovdqaRR, rs_tmp_vector_2.GetReg(), rs_src2.GetReg());
NewLIR2(kX86PsrlqRI, rs_tmp_vector_2.GetReg(), 0x20);
NewLIR2(kX86PmuludqRR, rs_tmp_vector_2.GetReg(), rs_tmp_vector_1.GetReg());
}
NewLIR2(kX86PsrlqRI, rs_dest_src1.GetReg(), 0x20);
NewLIR2(kX86PmuludqRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
if (both_operands_same == false) {
NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_2.GetReg());
} else {
NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg());
}
NewLIR2(kX86PsllqRI, rs_dest_src1.GetReg(), 0x20);
NewLIR2(kX86PmuludqRR, rs_tmp_vector_1.GetReg(), rs_src2.GetReg());
NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_1.GetReg());
}
void X86Mir2Lir::GenMultiplyVector(MIR* mir) {
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PmulldRR;
break;
case kSignedHalf:
opcode = kX86PmullwRR;
break;
case kSingle:
opcode = kX86MulpsRR;
break;
case kDouble:
opcode = kX86MulpdRR;
break;
case kSignedByte:
// HW doesn't support 16x16 byte multiplication so emulate it.
GenMultiplyVectorSignedByte(rs_dest_src1, rs_src2);
return;
case k64:
GenMultiplyVectorLong(rs_dest_src1, rs_src2);
return;
default:
LOG(FATAL) << "Unsupported vector multiply " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenAddVector(MIR* mir) {
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PadddRR;
break;
case k64:
opcode = kX86PaddqRR;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PaddwRR;
break;
case kUnsignedByte:
case kSignedByte:
opcode = kX86PaddbRR;
break;
case kSingle:
opcode = kX86AddpsRR;
break;
case kDouble:
opcode = kX86AddpdRR;
break;
default:
LOG(FATAL) << "Unsupported vector addition " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenSubtractVector(MIR* mir) {
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PsubdRR;
break;
case k64:
opcode = kX86PsubqRR;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsubwRR;
break;
case kUnsignedByte:
case kSignedByte:
opcode = kX86PsubbRR;
break;
case kSingle:
opcode = kX86SubpsRR;
break;
case kDouble:
opcode = kX86SubpdRR;
break;
default:
LOG(FATAL) << "Unsupported vector subtraction " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenShiftByteVector(MIR* mir) {
// Destination does not need clobbered because it has already been as part
// of the general packed shift handler (caller of this method).
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
int opcode = 0;
switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
case kMirOpPackedShiftLeft:
opcode = kX86PsllwRI;
break;
case kMirOpPackedSignedShiftRight:
case kMirOpPackedUnsignedShiftRight:
// TODO Add support for emulated byte shifts.
default:
LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
break;
}
// Clear xmm register and return if shift more than byte length.
int imm = mir->dalvikInsn.vB;
if (imm >= 8) {
NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg());
return;
}
// Shift lower values.
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
/*
* The above shift will shift the whole word, but that means
* both the bytes will shift as well. To emulate a byte level
* shift, we can just throw away the lower (8 - N) bits of the
* upper byte, and we are done.
*/
uint8_t byte_mask = 0xFF << imm;
uint32_t int_mask = byte_mask;
int_mask = int_mask << 8 | byte_mask;
int_mask = int_mask << 8 | byte_mask;
int_mask = int_mask << 8 | byte_mask;
// And the destination with the mask
AndMaskVectorRegister(rs_dest_src1, int_mask, int_mask, int_mask, int_mask);
}
void X86Mir2Lir::GenShiftLeftVector(MIR* mir) {
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
int imm = mir->dalvikInsn.vB;
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PslldRI;
break;
case k64:
opcode = kX86PsllqRI;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsllwRI;
break;
case kSignedByte:
case kUnsignedByte:
GenShiftByteVector(mir);
return;
default:
LOG(FATAL) << "Unsupported vector shift left " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
}
void X86Mir2Lir::GenSignedShiftRightVector(MIR* mir) {
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
int imm = mir->dalvikInsn.vB;
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PsradRI;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsrawRI;
break;
case kSignedByte:
case kUnsignedByte:
GenShiftByteVector(mir);
return;
case k64:
// TODO Implement emulated shift algorithm.
default:
LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
UNREACHABLE();
}
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
}
void X86Mir2Lir::GenUnsignedShiftRightVector(MIR* mir) {
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
int imm = mir->dalvikInsn.vB;
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PsrldRI;
break;
case k64:
opcode = kX86PsrlqRI;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsrlwRI;
break;
case kSignedByte:
case kUnsignedByte:
GenShiftByteVector(mir);
return;
default:
LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
}
void X86Mir2Lir::GenAndVector(MIR* mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenOrVector(MIR* mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenXorVector(MIR* mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest_src1);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
}
void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
// Create temporary MIR as container for 128-bit binary mask.
MIR const_mir;
MIR* const_mirp = &const_mir;
const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
const_mirp->dalvikInsn.arg[0] = m0;
const_mirp->dalvikInsn.arg[1] = m1;
const_mirp->dalvikInsn.arg[2] = m2;
const_mirp->dalvikInsn.arg[3] = m3;
// Mask vector with const from literal pool.
AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
}
void X86Mir2Lir::GenAddReduceVector(MIR* mir) {
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB);
bool is_wide = opsize == k64 || opsize == kDouble;
// Get the location of the virtual register. Since this bytecode is overloaded
// for different types (and sizes), we need different logic for each path.
// The design of bytecode uses same VR for source and destination.
RegLocation rl_src, rl_dest, rl_result;
if (is_wide) {
rl_src = mir_graph_->GetSrcWide(mir, 0);
rl_dest = mir_graph_->GetDestWide(mir);
} else {
rl_src = mir_graph_->GetSrc(mir, 0);
rl_dest = mir_graph_->GetDest(mir);
}
// We need a temp for byte and short values
RegStorage temp;
// There is a different path depending on type and size.
if (opsize == kSingle) {
// Handle float case.
// TODO Add support for fast math (not value safe) and do horizontal add in that case.
rl_src = LoadValue(rl_src, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg, true);
// Since we are doing an add-reduce, we move the reg holding the VR
// into the result so we include it in result.
OpRegCopy(rl_result.reg, rl_src.reg);
NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
// Since FP must keep order of operation for value safety, we shift to low
// 32-bits and add to result.
for (int i = 0; i < 3; i++) {
NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), 0x39);
NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
}
StoreValue(rl_dest, rl_result);
} else if (opsize == kDouble) {
// Handle double case.
rl_src = LoadValueWide(rl_src, kFPReg);
rl_result = EvalLocWide(rl_dest, kFPReg, true);
LOG(FATAL) << "Unsupported vector add reduce for double.";
} else if (opsize == k64) {
/*
* Handle long case:
* 1) Reduce the vector register to lower half (with addition).
* 1-1) Get an xmm temp and fill it with vector register.
* 1-2) Shift the xmm temp by 8-bytes.
* 1-3) Add the xmm temp to vector register that is being reduced.
* 2) Allocate temp GP / GP pair.
* 2-1) In 64-bit case, use movq to move result to a 64-bit GP.
* 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair.
* 3) Finish the add reduction by doing what add-long/2addr does,
* but instead of having a VR as one of the sources, we have our temp GP.
*/
RegStorage rs_tmp_vector = Get128BitRegister(AllocTempDouble());
NewLIR2(kX86MovdqaRR, rs_tmp_vector.GetReg(), vector_src.GetReg());
NewLIR2(kX86PsrldqRI, rs_tmp_vector.GetReg(), 8);
NewLIR2(kX86PaddqRR, vector_src.GetReg(), rs_tmp_vector.GetReg());
FreeTemp(rs_tmp_vector);
// We would like to be able to reuse the add-long implementation, so set up a fake
// register location to pass it.
RegLocation temp_loc = mir_graph_->GetBadLoc();
temp_loc.core = 1;
temp_loc.wide = 1;
temp_loc.location = kLocPhysReg;
temp_loc.reg = AllocTempWide();
if (cu_->target64) {
DCHECK(!temp_loc.reg.IsPair());
NewLIR2(kX86MovqrxRR, temp_loc.reg.GetReg(), vector_src.GetReg());
} else {
NewLIR2(kX86MovdrxRR, temp_loc.reg.GetLowReg(), vector_src.GetReg());
NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20);
NewLIR2(kX86MovdrxRR, temp_loc.reg.GetHighReg(), vector_src.GetReg());
}
GenArithOpLong(Instruction::ADD_LONG_2ADDR, rl_dest, temp_loc, temp_loc, mir->optimization_flags);
} else if (opsize == kSignedByte || opsize == kUnsignedByte) {
RegStorage rs_tmp = Get128BitRegister(AllocTempDouble());
NewLIR2(kX86PxorRR, rs_tmp.GetReg(), rs_tmp.GetReg());
NewLIR2(kX86PsadbwRR, vector_src.GetReg(), rs_tmp.GetReg());
NewLIR3(kX86PshufdRRI, rs_tmp.GetReg(), vector_src.GetReg(), 0x4e);
NewLIR2(kX86PaddbRR, vector_src.GetReg(), rs_tmp.GetReg());
// Move to a GPR
temp = AllocTemp();
NewLIR2(kX86MovdrxRR, temp.GetReg(), vector_src.GetReg());
} else {
// Handle and the int and short cases together
// Initialize as if we were handling int case. Below we update
// the opcode if handling byte or short.
int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
int vec_unit_size;
int horizontal_add_opcode;
int extract_opcode;
if (opsize == kSignedHalf || opsize == kUnsignedHalf) {
extract_opcode = kX86PextrwRRI;
horizontal_add_opcode = kX86PhaddwRR;
vec_unit_size = 2;
} else if (opsize == k32) {
vec_unit_size = 4;
horizontal_add_opcode = kX86PhadddRR;
extract_opcode = kX86PextrdRRI;
} else {
LOG(FATAL) << "Unsupported vector add reduce " << opsize;
return;
}
int elems = vec_bytes / vec_unit_size;
while (elems > 1) {
NewLIR2(horizontal_add_opcode, vector_src.GetReg(), vector_src.GetReg());
elems >>= 1;
}
// Handle this as arithmetic unary case.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
// Extract to a GP register because this is integral typed.
temp = AllocTemp();
NewLIR3(extract_opcode, temp.GetReg(), vector_src.GetReg(), 0);
}
if (opsize != k64 && opsize != kSingle && opsize != kDouble) {
// The logic below looks very similar to the handling of ADD_INT_2ADDR
// except the rhs is not a VR but a physical register allocated above.
// No load of source VR is done because it assumes that rl_result will
// share physical register / memory location.
rl_result = UpdateLocTyped(rl_dest);
if (rl_result.location == kLocPhysReg) {
// Ensure res is in a core reg.
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegReg(kOpAdd, rl_result.reg, temp);
StoreFinalValue(rl_dest, rl_result);
} else {
// Do the addition directly to memory.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
OpMemReg(kOpAdd, rl_result, temp.GetReg());
}
}
}
void X86Mir2Lir::GenReduceVector(MIR* mir) {
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegLocation rl_dest = mir_graph_->GetDest(mir);
RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB);
RegLocation rl_result;
bool is_wide = false;
// There is a different path depending on type and size.
if (opsize == kSingle) {
// Handle float case.
// TODO Add support for fast math (not value safe) and do horizontal add in that case.
int extract_index = mir->dalvikInsn.arg[0];
rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(kX86PxorRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
if (LIKELY(extract_index != 0)) {
// We know the index of element which we want to extract. We want to extract it and
// keep values in vector register correct for future use. So the way we act is:
// 1. Generate shuffle mask that allows to swap zeroth and required elements;
// 2. Shuffle vector register with this mask;
// 3. Extract zeroth element where required value lies;
// 4. Shuffle with same mask again to restore original values in vector register.
// The mask is generated from equivalence mask 0b11100100 swapping 0th and extracted
// element indices.
int shuffle[4] = {0b00, 0b01, 0b10, 0b11};
shuffle[0] = extract_index;
shuffle[extract_index] = 0;
int mask = 0;
for (int i = 0; i < 4; i++) {
mask |= (shuffle[i] << (2 * i));
}
NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask);
NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask);
} else {
// We need to extract zeroth element and don't need any complex stuff to do it.
NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
}
StoreFinalValue(rl_dest, rl_result);
} else if (opsize == kDouble) {
// TODO Handle double case.
LOG(FATAL) << "Unsupported add reduce for double.";
} else if (opsize == k64) {
/*
* Handle long case:
* 1) Reduce the vector register to lower half (with addition).
* 1-1) Get an xmm temp and fill it with vector register.
* 1-2) Shift the xmm temp by 8-bytes.
* 1-3) Add the xmm temp to vector register that is being reduced.
* 2) Evaluate destination to a GP / GP pair.
* 2-1) In 64-bit case, use movq to move result to a 64-bit GP.
* 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair.
* 3) Store the result to the final destination.
*/
NewLIR2(kX86PsrldqRI, vector_src.GetReg(), 8);
rl_result = EvalLocWide(rl_dest, kCoreReg, true);
if (cu_->target64) {
DCHECK(!rl_result.reg.IsPair());
NewLIR2(kX86MovqrxRR, rl_result.reg.GetReg(), vector_src.GetReg());
} else {
NewLIR2(kX86MovdrxRR, rl_result.reg.GetLowReg(), vector_src.GetReg());
NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20);
NewLIR2(kX86MovdrxRR, rl_result.reg.GetHighReg(), vector_src.GetReg());
}
StoreValueWide(rl_dest, rl_result);
} else {
int extract_index = mir->dalvikInsn.arg[0];
int extr_opcode = 0;
rl_result = UpdateLocTyped(rl_dest);
// Handle the rest of integral types now.
switch (opsize) {
case k32:
extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdRRI : kX86PextrdMRI;
break;
case kSignedHalf:
case kUnsignedHalf:
extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwRRI : kX86PextrwMRI;
break;
case kSignedByte:
extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrbRRI : kX86PextrbMRI;
break;
default:
LOG(FATAL) << "Unsupported vector reduce " << opsize;
UNREACHABLE();
}
if (rl_result.location == kLocPhysReg) {
NewLIR3(extr_opcode, rl_result.reg.GetReg(), vector_src.GetReg(), extract_index);
StoreFinalValue(rl_dest, rl_result);
} else {
int displacement = SRegOffset(rl_result.s_reg_low);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR *l = NewLIR4(extr_opcode, rs_rX86_SP_32.GetReg(), displacement, vector_src.GetReg(),
extract_index);
AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
}
}
}
void X86Mir2Lir::LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src,
OpSize opsize, int op_mov) {
if (!cu_->target64 && opsize == k64) {
// Logic assumes that longs are loaded in GP register pairs.
NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rs_src.GetLowReg());
RegStorage r_tmp = AllocTempDouble();
NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), rs_src.GetHighReg());
NewLIR2(kX86PunpckldqRR, rs_dest.GetReg(), r_tmp.GetReg());
FreeTemp(r_tmp);
} else {
NewLIR2(op_mov, rs_dest.GetReg(), rs_src.GetReg());
}
}
void X86Mir2Lir::GenSetVector(MIR* mir) {
DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
Clobber(rs_dest);
int op_shuffle = 0, op_shuffle_high = 0, op_mov = kX86MovdxrRR;
RegisterClass reg_type = kCoreReg;
bool is_wide = false;
switch (opsize) {
case k32:
op_shuffle = kX86PshufdRRI;
break;
case kSingle:
op_shuffle = kX86PshufdRRI;
op_mov = kX86MovdqaRR;
reg_type = kFPReg;
break;
case k64:
op_shuffle = kX86PunpcklqdqRR;
op_mov = kX86MovqxrRR;
is_wide = true;
break;
case kSignedByte:
case kUnsignedByte:
// We will have the source loaded up in a
// double-word before we use this shuffle
op_shuffle = kX86PshufdRRI;
break;
case kSignedHalf:
case kUnsignedHalf:
// Handles low quadword.
op_shuffle = kX86PshuflwRRI;
// Handles upper quadword.
op_shuffle_high = kX86PshufdRRI;
break;
default:
LOG(FATAL) << "Unsupported vector set " << opsize;
break;
}
// Load the value from the VR into a physical register.
RegLocation rl_src;
if (!is_wide) {
rl_src = mir_graph_->GetSrc(mir, 0);
rl_src = LoadValue(rl_src, reg_type);
} else {
rl_src = mir_graph_->GetSrcWide(mir, 0);
rl_src = LoadValueWide(rl_src, reg_type);
}
RegStorage reg_to_shuffle = rl_src.reg;
// Load the value into the XMM register.
LoadVectorRegister(rs_dest, reg_to_shuffle, opsize, op_mov);
if (opsize == kSignedByte || opsize == kUnsignedByte) {
// In the byte case, first duplicate it to be a word
// Then duplicate it to be a double-word
NewLIR2(kX86PunpcklbwRR, rs_dest.GetReg(), rs_dest.GetReg());
NewLIR2(kX86PunpcklwdRR, rs_dest.GetReg(), rs_dest.GetReg());
}
// Now shuffle the value across the destination.
if (op_shuffle == kX86PunpcklqdqRR) {
NewLIR2(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg());
} else {
NewLIR3(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg(), 0);
}
// And then repeat as needed.
if (op_shuffle_high != 0) {
NewLIR3(op_shuffle_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
}
}
void X86Mir2Lir::GenPackedArrayGet(BasicBlock* bb, MIR* mir) {
UNUSED(bb, mir);
UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayGet not supported.";
}
void X86Mir2Lir::GenPackedArrayPut(BasicBlock* bb, MIR* mir) {
UNUSED(bb, mir);
UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayPut not supported.";
}
LIR* X86Mir2Lir::ScanVectorLiteral(int32_t* constants) {
for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
if (constants[0] == p->operands[0] && constants[1] == p->operands[1] &&
constants[2] == p->operands[2] && constants[3] == p->operands[3]) {
return p;
}
}
return nullptr;
}
LIR* X86Mir2Lir::AddVectorLiteral(int32_t* constants) {
LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
new_value->operands[0] = constants[0];
new_value->operands[1] = constants[1];
new_value->operands[2] = constants[2];
new_value->operands[3] = constants[3];
new_value->next = const_vectors_;
if (const_vectors_ == nullptr) {
estimated_native_code_size_ += 12; // Maximum needed to align to 16 byte boundary.
}
estimated_native_code_size_ += 16; // Space for one vector.
const_vectors_ = new_value;
return new_value;
}
// ------------ ABI support: mapping of args to physical registers -------------
RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(ShortyArg arg) {
const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
kFArg4, kFArg5, kFArg6, kFArg7};
const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
if (arg.IsFP()) {
if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++],
arg.IsWide() ? kWide : kNotWide);
}
} else {
if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
return m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
arg.IsRef() ? kRef : (arg.IsWide() ? kWide : kNotWide));
}
}
return RegStorage::InvalidReg();
}
RegStorage X86Mir2Lir::InToRegStorageX86Mapper::GetNextReg(ShortyArg arg) {
const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3};
const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3};
const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
RegStorage result = RegStorage::InvalidReg();
if (arg.IsFP()) {
if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++],
arg.IsWide() ? kWide : kNotWide);
}
} else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
result = m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
arg.IsRef() ? kRef : kNotWide);
if (arg.IsWide()) {
// This must be a long, as double is handled above.
// Ensure that we don't split a long across the last register and the stack.
if (cur_core_reg_ == coreArgMappingToPhysicalRegSize) {
// Leave the last core register unused and force the whole long to the stack.
cur_core_reg_++;
result = RegStorage::InvalidReg();
} else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
result = RegStorage::MakeRegPair(
result, m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], kNotWide));
}
}
}
return result;
}
// ---------End of ABI support: mapping of args to physical registers -------------
bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) {
// Location of reference to data array
int value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count
int count_offset = mirror::String::CountOffset().Int32Value();
// Starting offset within data array
int offset_offset = mirror::String::OffsetOffset().Int32Value();
// Start of char data with array_
int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
RegLocation rl_obj = info->args[0];
RegLocation rl_idx = info->args[1];
rl_obj = LoadValue(rl_obj, kRefReg);
// X86 wants to avoid putting a constant index into a register.
if (!rl_idx.is_const) {
rl_idx = LoadValue(rl_idx, kCoreReg);
}
RegStorage reg_max;
GenNullCheck(rl_obj.reg, info->opt_flags);
bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
LIR* range_check_branch = nullptr;
RegStorage reg_off;
RegStorage reg_ptr;
if (range_check) {
// On x86, we can compare to memory directly
// Set up a launch pad to allow retry in case of bounds violation */
if (rl_idx.is_const) {
LIR* comparison;
range_check_branch = OpCmpMemImmBranch(
kCondLs, RegStorage::InvalidReg(), rl_obj.reg, count_offset,
mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison);
MarkPossibleNullPointerExceptionAfter(0, comparison);
} else {
OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset);
MarkPossibleNullPointerException(0);
range_check_branch = OpCondBranch(kCondUge, nullptr);
}
}
reg_off = AllocTemp();
reg_ptr = AllocTempRef();
Load32Disp(rl_obj.reg, offset_offset, reg_off);
LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
if (rl_idx.is_const) {
OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
} else {
OpRegReg(kOpAdd, reg_off, rl_idx.reg);
}
FreeTemp(rl_obj.reg);
if (rl_idx.location == kLocPhysReg) {
FreeTemp(rl_idx.reg);
}
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf);
FreeTemp(reg_off);
FreeTemp(reg_ptr);
StoreValue(rl_dest, rl_result);
if (range_check) {
DCHECK(range_check_branch != nullptr);
info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked.
AddIntrinsicSlowPath(info, range_check_branch);
}
return true;
}
bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
RegLocation rl_dest = InlineTarget(info);
// Early exit if the result is unused.
if (rl_dest.orig_sreg < 0) {
return true;
}
RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
if (cu_->target64) {
OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>());
} else {
OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>());
}
StoreValue(rl_dest, rl_result);
return true;
}
/**
* Lock temp registers for explicit usage. Registers will be freed in destructor.
*/
X86Mir2Lir::ExplicitTempRegisterLock::ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir,
int n_regs, ...) :
temp_regs_(n_regs),
mir_to_lir_(mir_to_lir) {
va_list regs;
va_start(regs, n_regs);
for (int i = 0; i < n_regs; i++) {
RegStorage reg = *(va_arg(regs, RegStorage*));
RegisterInfo* info = mir_to_lir_->GetRegInfo(reg);
// Make sure we don't have promoted register here.
DCHECK(info->IsTemp());
temp_regs_.push_back(reg);
mir_to_lir_->FlushReg(reg);
if (reg.IsPair()) {
RegStorage partner = info->Partner();
temp_regs_.push_back(partner);
mir_to_lir_->FlushReg(partner);
}
mir_to_lir_->Clobber(reg);
mir_to_lir_->LockTemp(reg);
}
va_end(regs);
}
/*
* Free all locked registers.
*/
X86Mir2Lir::ExplicitTempRegisterLock::~ExplicitTempRegisterLock() {
// Free all locked temps.
for (auto it : temp_regs_) {
mir_to_lir_->FreeTemp(it);
}
}
int X86Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
if (count < 4) {
// It does not make sense to use this utility if we have no chance to use
// 128-bit move.
return count;
}
GenDalvikArgsFlushPromoted(info, first);
// The rest can be copied together
int current_src_offset = SRegOffset(info->args[first].s_reg_low);
int current_dest_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set);
// Only davik regs are accessed in this loop; no next_call_insn() calls.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
while (count > 0) {
// This is based on the knowledge that the stack itself is 16-byte aligned.
bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
size_t bytes_to_move;
/*
* The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
* a 128-bit move because we won't get the chance to try to aligned. If there are more than
* 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
* We do this because we could potentially do a smaller move to align.
*/
if (count == 4 || (count > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
// Moving 128-bits via xmm register.
bytes_to_move = sizeof(uint32_t) * 4;
// Allocate a free xmm temp. Since we are working through the calling sequence,
// we expect to have an xmm temporary available. AllocTempDouble will abort if
// there are no free registers.
RegStorage temp = AllocTempDouble();
LIR* ld1 = nullptr;
LIR* ld2 = nullptr;
LIR* st1 = nullptr;
LIR* st2 = nullptr;
/*
* The logic is similar for both loads and stores. If we have 16-byte alignment,
* do an aligned move. If we have 8-byte alignment, then do the move in two
* parts. This approach prevents possible cache line splits. Finally, fall back
* to doing an unaligned move. In most cases we likely won't split the cache
* line but we cannot prove it and thus take a conservative approach.
*/
bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
if (src_is_16b_aligned) {
ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP);
} else if (src_is_8b_aligned) {
ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP);
ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1),
kMovHi128FP);
} else {
ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP);
}
if (dest_is_16b_aligned) {
st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP);
} else if (dest_is_8b_aligned) {
st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP);
st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1),
temp, kMovHi128FP);
} else {
st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP);
}
// TODO If we could keep track of aliasing information for memory accesses that are wider
// than 64-bit, we wouldn't need to set up a barrier.
if (ld1 != nullptr) {
if (ld2 != nullptr) {
// For 64-bit load we can actually set up the aliasing information.
AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true,
true);
} else {
// Set barrier for 128-bit load.
ld1->u.m.def_mask = &kEncodeAll;
}
}
if (st1 != nullptr) {
if (st2 != nullptr) {
// For 64-bit store we can actually set up the aliasing information.
AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false,
true);
} else {
// Set barrier for 128-bit store.
st1->u.m.def_mask = &kEncodeAll;
}
}
// Free the temporary used for the data movement.
FreeTemp(temp);
} else {
// Moving 32-bits via general purpose register.
bytes_to_move = sizeof(uint32_t);
// Instead of allocating a new temp, simply reuse one of the registers being used
// for argument passing.
RegStorage temp = TargetReg(kArg3, kNotWide);
// Now load the argument VR and store to the outs.
Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
}
current_src_offset += bytes_to_move;
current_dest_offset += bytes_to_move;
count -= (bytes_to_move >> 2);
}
DCHECK_EQ(count, 0);
return count;
}
} // namespace art