blob: 2955faa3c8151aa5f1554bb7ff0d7b01317b04b0 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
#define ART_RUNTIME_MIRROR_ARRAY_INL_H_
#include "array.h"
#include "class.h"
#include "gc/heap-inl.h"
#include "thread.h"
#include "utils.h"
namespace art {
namespace mirror {
inline size_t Array::SizeOf() const {
// This is safe from overflow because the array was already allocated, so we know it's sane.
size_t component_size = GetClass()->GetComponentSize();
int32_t component_count = GetLength();
size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4);
size_t data_size = component_count * component_size;
return header_size + data_size;
}
static inline size_t ComputeArraySize(Thread* self, Class* array_class, int32_t component_count,
size_t component_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(array_class != NULL);
DCHECK_GE(component_count, 0);
DCHECK(array_class->IsArrayClass());
size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4);
size_t data_size = component_count * component_size;
size_t size = header_size + data_size;
// Check for overflow and throw OutOfMemoryError if this was an unreasonable request.
size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size);
if (UNLIKELY(data_size >> component_shift != size_t(component_count) || size < data_size)) {
self->ThrowOutOfMemoryError(StringPrintf("%s of length %d would overflow",
PrettyDescriptor(array_class).c_str(),
component_count).c_str());
return 0; // failure
}
return size;
}
static inline Array* SetArrayLength(Array* array, size_t length) {
if (LIKELY(array != nullptr)) {
DCHECK(array->IsArrayInstance());
array->SetLength(length);
}
return array;
}
template <bool kIsInstrumented>
inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count,
size_t component_size, gc::AllocatorType allocator_type) {
size_t size = ComputeArraySize(self, array_class, component_count, component_size);
if (UNLIKELY(size == 0)) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
Array* array = down_cast<Array*>(
heap->AllocObjectWithAllocator<kIsInstrumented>(self, array_class, size, allocator_type));
return SetArrayLength(array, component_count);
}
template <bool kIsInstrumented>
inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count,
gc::AllocatorType allocator_type) {
DCHECK(array_class->IsArrayClass());
return Alloc<kIsInstrumented>(self, array_class, component_count, array_class->GetComponentSize(),
allocator_type);
}
template <bool kIsInstrumented>
inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count) {
return Alloc<kIsInstrumented>(self, array_class, component_count,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
}
template <bool kIsInstrumented>
inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count,
size_t component_size) {
return Alloc<kIsInstrumented>(self, array_class, component_count, component_size,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_