blob: 7c81588cda6b41749a96f80ff387f11bff1b0670 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_mips.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "art_method.h"
#include "code_generator_mips.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "intrinsics.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
#include "thread.h"
#include "utils/mips/assembler_mips.h"
#include "utils/mips/constants_mips.h"
namespace art {
namespace mips {
IntrinsicLocationsBuilderMIPS::IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS* codegen)
: arena_(codegen->GetGraph()->GetArena()) {
}
MipsAssembler* IntrinsicCodeGeneratorMIPS::GetAssembler() {
return reinterpret_cast<MipsAssembler*>(codegen_->GetAssembler());
}
ArenaAllocator* IntrinsicCodeGeneratorMIPS::GetAllocator() {
return codegen_->GetGraph()->GetArena();
}
inline bool IntrinsicCodeGeneratorMIPS::IsR2OrNewer() const {
return codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
}
inline bool IntrinsicCodeGeneratorMIPS::IsR6() const {
return codegen_->GetInstructionSetFeatures().IsR6();
}
inline bool IntrinsicCodeGeneratorMIPS::Is32BitFPU() const {
return codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint();
}
#define __ codegen->GetAssembler()->
static void MoveFromReturnRegister(Location trg,
Primitive::Type type,
CodeGeneratorMIPS* codegen) {
if (!trg.IsValid()) {
DCHECK_EQ(type, Primitive::kPrimVoid);
return;
}
DCHECK_NE(type, Primitive::kPrimVoid);
if (Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) {
Register trg_reg = trg.AsRegister<Register>();
if (trg_reg != V0) {
__ Move(V0, trg_reg);
}
} else {
FRegister trg_reg = trg.AsFpuRegister<FRegister>();
if (trg_reg != F0) {
if (type == Primitive::kPrimFloat) {
__ MovS(F0, trg_reg);
} else {
__ MovD(F0, trg_reg);
}
}
}
}
static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
}
// Slow-path for fallback (calling the managed code to handle the
// intrinsic) in an intrinsified call. This will copy the arguments
// into the positions for a regular call.
//
// Note: The actual parameters are required to be in the locations
// given by the invoke's location summary. If an intrinsic
// modifies those locations before a slowpath call, they must be
// restored!
class IntrinsicSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit IntrinsicSlowPathMIPS(HInvoke* invoke) : SlowPathCodeMIPS(invoke), invoke_(invoke) { }
void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE {
CodeGeneratorMIPS* codegen = down_cast<CodeGeneratorMIPS*>(codegen_in);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, invoke_->GetLocations());
MoveArguments(invoke_, codegen);
if (invoke_->IsInvokeStaticOrDirect()) {
codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(),
Location::RegisterLocation(A0));
} else {
codegen->GenerateVirtualCall(invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0));
}
codegen->RecordPcInfo(invoke_, invoke_->GetDexPc(), this);
// Copy the result back to the expected output.
Location out = invoke_->GetLocations()->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
MoveFromReturnRegister(out, invoke_->GetType(), codegen);
}
RestoreLiveRegisters(codegen, invoke_->GetLocations());
__ B(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathMIPS"; }
private:
// The instruction where this slow path is happening.
HInvoke* const invoke_;
DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS);
};
#undef __
bool IntrinsicLocationsBuilderMIPS::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
return res != nullptr && res->Intrinsified();
}
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
if (is64bit) {
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
__ Mfc1(out_lo, in);
__ MoveFromFpuHigh(out_hi, in);
} else {
Register out = locations->Out().AsRegister<Register>();
__ Mfc1(out, in);
}
}
// long java.lang.Double.doubleToRawLongBits(double)
void IntrinsicLocationsBuilderMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
// int java.lang.Float.floatToRawIntBits(float)
void IntrinsicLocationsBuilderMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
FRegister out = locations->Out().AsFpuRegister<FRegister>();
if (is64bit) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
__ Mtc1(in_lo, out);
__ MoveToFpuHigh(in_hi, out);
} else {
Register in = locations->InAt(0).AsRegister<Register>();
__ Mtc1(in, out);
}
}
// double java.lang.Double.longBitsToDouble(long)
void IntrinsicLocationsBuilderMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
// float java.lang.Float.intBitsToFloat(int)
void IntrinsicLocationsBuilderMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* arena,
HInvoke* invoke,
Location::OutputOverlap overlaps = Location::kNoOutputOverlap) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), overlaps);
}
static void GenReverse(LocationSummary* locations,
Primitive::Type type,
bool isR2OrNewer,
bool isR6,
bool reverseBits,
MipsAssembler* assembler) {
DCHECK(type == Primitive::kPrimShort ||
type == Primitive::kPrimInt ||
type == Primitive::kPrimLong);
DCHECK(type != Primitive::kPrimShort || !reverseBits);
if (type == Primitive::kPrimShort) {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (isR2OrNewer) {
__ Wsbh(out, in);
__ Seh(out, out);
} else {
__ Sll(TMP, in, 24);
__ Sra(TMP, TMP, 16);
__ Sll(out, in, 16);
__ Srl(out, out, 24);
__ Or(out, out, TMP);
}
} else if (type == Primitive::kPrimInt) {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (isR2OrNewer) {
__ Rotr(out, in, 16);
__ Wsbh(out, out);
} else {
// MIPS32r1
// __ Rotr(out, in, 16);
__ Sll(TMP, in, 16);
__ Srl(out, in, 16);
__ Or(out, out, TMP);
// __ Wsbh(out, out);
__ LoadConst32(AT, 0x00FF00FF);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 8);
__ Srl(out, out, 8);
__ And(out, out, AT);
__ Or(out, out, TMP);
}
if (reverseBits) {
if (isR6) {
__ Bitswap(out, out);
} else {
__ LoadConst32(AT, 0x0F0F0F0F);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 4);
__ Srl(out, out, 4);
__ And(out, out, AT);
__ Or(out, TMP, out);
__ LoadConst32(AT, 0x33333333);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 2);
__ Srl(out, out, 2);
__ And(out, out, AT);
__ Or(out, TMP, out);
__ LoadConst32(AT, 0x55555555);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 1);
__ Srl(out, out, 1);
__ And(out, out, AT);
__ Or(out, TMP, out);
}
}
} else if (type == Primitive::kPrimLong) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
if (isR2OrNewer) {
__ Rotr(AT, in_hi, 16);
__ Rotr(TMP, in_lo, 16);
__ Wsbh(out_lo, AT);
__ Wsbh(out_hi, TMP);
} else {
// When calling CreateIntToIntLocations() we promised that the
// use of the out_lo/out_hi wouldn't overlap with the use of
// in_lo/in_hi. Be very careful not to write to out_lo/out_hi
// until we're completely done reading from in_lo/in_hi.
// __ Rotr(TMP, in_lo, 16);
__ Sll(TMP, in_lo, 16);
__ Srl(AT, in_lo, 16);
__ Or(TMP, TMP, AT); // Hold in TMP until it's safe
// to write to out_hi.
// __ Rotr(out_lo, in_hi, 16);
__ Sll(AT, in_hi, 16);
__ Srl(out_lo, in_hi, 16); // Here we are finally done reading
// from in_lo/in_hi so it's okay to
// write to out_lo/out_hi.
__ Or(out_lo, out_lo, AT);
// __ Wsbh(out_hi, out_hi);
__ LoadConst32(AT, 0x00FF00FF);
__ And(out_hi, TMP, AT);
__ Sll(out_hi, out_hi, 8);
__ Srl(TMP, TMP, 8);
__ And(TMP, TMP, AT);
__ Or(out_hi, out_hi, TMP);
// __ Wsbh(out_lo, out_lo);
__ And(TMP, out_lo, AT); // AT already holds the correct mask value
__ Sll(TMP, TMP, 8);
__ Srl(out_lo, out_lo, 8);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, out_lo, TMP);
}
if (reverseBits) {
if (isR6) {
__ Bitswap(out_hi, out_hi);
__ Bitswap(out_lo, out_lo);
} else {
__ LoadConst32(AT, 0x0F0F0F0F);
__ And(TMP, out_hi, AT);
__ Sll(TMP, TMP, 4);
__ Srl(out_hi, out_hi, 4);
__ And(out_hi, out_hi, AT);
__ Or(out_hi, TMP, out_hi);
__ And(TMP, out_lo, AT);
__ Sll(TMP, TMP, 4);
__ Srl(out_lo, out_lo, 4);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, TMP, out_lo);
__ LoadConst32(AT, 0x33333333);
__ And(TMP, out_hi, AT);
__ Sll(TMP, TMP, 2);
__ Srl(out_hi, out_hi, 2);
__ And(out_hi, out_hi, AT);
__ Or(out_hi, TMP, out_hi);
__ And(TMP, out_lo, AT);
__ Sll(TMP, TMP, 2);
__ Srl(out_lo, out_lo, 2);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, TMP, out_lo);
__ LoadConst32(AT, 0x55555555);
__ And(TMP, out_hi, AT);
__ Sll(TMP, TMP, 1);
__ Srl(out_hi, out_hi, 1);
__ And(out_hi, out_hi, AT);
__ Or(out_hi, TMP, out_hi);
__ And(TMP, out_lo, AT);
__ Sll(TMP, TMP, 1);
__ Srl(out_lo, out_lo, 1);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, TMP, out_lo);
}
}
}
}
// int java.lang.Integer.reverseBytes(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
Primitive::kPrimInt,
IsR2OrNewer(),
IsR6(),
/* reverseBits */ false,
GetAssembler());
}
// long java.lang.Long.reverseBytes(long)
void IntrinsicLocationsBuilderMIPS::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongReverseBytes(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
Primitive::kPrimLong,
IsR2OrNewer(),
IsR6(),
/* reverseBits */ false,
GetAssembler());
}
// short java.lang.Short.reverseBytes(short)
void IntrinsicLocationsBuilderMIPS::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitShortReverseBytes(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
Primitive::kPrimShort,
IsR2OrNewer(),
IsR6(),
/* reverseBits */ false,
GetAssembler());
}
static void GenNumberOfLeadingZeroes(LocationSummary* locations,
bool is64bit,
bool isR6,
MipsAssembler* assembler) {
Register out = locations->Out().AsRegister<Register>();
if (is64bit) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
if (isR6) {
__ ClzR6(AT, in_hi);
__ ClzR6(TMP, in_lo);
__ Seleqz(TMP, TMP, in_hi);
} else {
__ ClzR2(AT, in_hi);
__ ClzR2(TMP, in_lo);
__ Movn(TMP, ZERO, in_hi);
}
__ Addu(out, AT, TMP);
} else {
Register in = locations->InAt(0).AsRegister<Register>();
if (isR6) {
__ ClzR6(out, in);
} else {
__ ClzR2(out, in);
}
}
}
// int java.lang.Integer.numberOfLeadingZeros(int i)
void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
}
// int java.lang.Long.numberOfLeadingZeros(long i)
void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
}
static void GenNumberOfTrailingZeroes(LocationSummary* locations,
bool is64bit,
bool isR6,
MipsAssembler* assembler) {
Register out = locations->Out().AsRegister<Register>();
Register in_lo;
Register in;
if (is64bit) {
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
// If in_lo is zero then count the number of trailing zeroes in in_hi;
// otherwise count the number of trailing zeroes in in_lo.
// out = in_lo ? in_lo : in_hi;
if (isR6) {
__ Seleqz(out, in_hi, in_lo);
__ Selnez(TMP, in_lo, in_lo);
__ Or(out, out, TMP);
} else {
__ Movz(out, in_hi, in_lo);
__ Movn(out, in_lo, in_lo);
}
in = out;
} else {
in = locations->InAt(0).AsRegister<Register>();
// Give in_lo a dummy value to keep the compiler from complaining.
// Since we only get here in the 32-bit case, this value will never
// be used.
in_lo = in;
}
if (isR6) {
// We don't have an instruction to count the number of trailing zeroes.
// Start by flipping the bits end-for-end so we can count the number of
// leading zeroes instead.
__ Rotr(out, in, 16);
__ Wsbh(out, out);
__ Bitswap(out, out);
__ ClzR6(out, out);
} else {
// Convert trailing zeroes to trailing ones, and bits to their left
// to zeroes.
__ Addiu(TMP, in, -1);
__ Xor(out, TMP, in);
__ And(out, out, TMP);
// Count number of leading zeroes.
__ ClzR2(out, out);
// Subtract number of leading zeroes from 32 to get number of trailing ones.
// Remember that the trailing ones were formerly trailing zeroes.
__ LoadConst32(TMP, 32);
__ Subu(out, TMP, out);
}
if (is64bit) {
// If in_lo is zero, then we counted the number of trailing zeroes in in_hi so we must add the
// number of trailing zeroes in in_lo (32) to get the correct final count
__ LoadConst32(TMP, 32);
if (isR6) {
__ Seleqz(TMP, TMP, in_lo);
} else {
__ Movn(TMP, ZERO, in_lo);
}
__ Addu(out, out, TMP);
}
}
// int java.lang.Integer.numberOfTrailingZeros(int i)
void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
}
// int java.lang.Long.numberOfTrailingZeros(long i)
void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
}
// int java.lang.Integer.reverse(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerReverse(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
Primitive::kPrimInt,
IsR2OrNewer(),
IsR6(),
/* reverseBits */ true,
GetAssembler());
}
// long java.lang.Long.reverse(long)
void IntrinsicLocationsBuilderMIPS::VisitLongReverse(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
Primitive::kPrimLong,
IsR2OrNewer(),
IsR6(),
/* reverseBits */ true,
GetAssembler());
}
static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
static void GenBitCount(LocationSummary* locations,
Primitive::Type type,
bool isR6,
MipsAssembler* assembler) {
Register out = locations->Out().AsRegister<Register>();
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
//
// A generalization of the best bit counting method to integers of
// bit-widths up to 128 (parameterized by type T) is this:
//
// v = v - ((v >> 1) & (T)~(T)0/3); // temp
// v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
// v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
// c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count
//
// For comparison, for 32-bit quantities, this algorithm can be executed
// using 20 MIPS instructions (the calls to LoadConst32() generate two
// machine instructions each for the values being used in this algorithm).
// A(n unrolled) loop-based algorithm required 25 instructions.
//
// For 64-bit quantities, this algorithm gets executed twice, (once
// for in_lo, and again for in_hi), but saves a few instructions
// because the mask values only have to be loaded once. Using this
// algorithm the count for a 64-bit operand can be performed in 29
// instructions compared to a loop-based algorithm which required 47
// instructions.
if (type == Primitive::kPrimInt) {
Register in = locations->InAt(0).AsRegister<Register>();
__ Srl(TMP, in, 1);
__ LoadConst32(AT, 0x55555555);
__ And(TMP, TMP, AT);
__ Subu(TMP, in, TMP);
__ LoadConst32(AT, 0x33333333);
__ And(out, TMP, AT);
__ Srl(TMP, TMP, 2);
__ And(TMP, TMP, AT);
__ Addu(TMP, out, TMP);
__ Srl(out, TMP, 4);
__ Addu(out, out, TMP);
__ LoadConst32(AT, 0x0F0F0F0F);
__ And(out, out, AT);
__ LoadConst32(TMP, 0x01010101);
if (isR6) {
__ MulR6(out, out, TMP);
} else {
__ MulR2(out, out, TMP);
}
__ Srl(out, out, 24);
} else {
DCHECK_EQ(type, Primitive::kPrimLong);
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register tmp_hi = locations->GetTemp(0).AsRegister<Register>();
Register out_hi = locations->GetTemp(1).AsRegister<Register>();
Register tmp_lo = TMP;
Register out_lo = out;
__ Srl(tmp_lo, in_lo, 1);
__ Srl(tmp_hi, in_hi, 1);
__ LoadConst32(AT, 0x55555555);
__ And(tmp_lo, tmp_lo, AT);
__ Subu(tmp_lo, in_lo, tmp_lo);
__ And(tmp_hi, tmp_hi, AT);
__ Subu(tmp_hi, in_hi, tmp_hi);
__ LoadConst32(AT, 0x33333333);
__ And(out_lo, tmp_lo, AT);
__ Srl(tmp_lo, tmp_lo, 2);
__ And(tmp_lo, tmp_lo, AT);
__ Addu(tmp_lo, out_lo, tmp_lo);
__ And(out_hi, tmp_hi, AT);
__ Srl(tmp_hi, tmp_hi, 2);
__ And(tmp_hi, tmp_hi, AT);
__ Addu(tmp_hi, out_hi, tmp_hi);
// Here we deviate from the original algorithm a bit. We've reached
// the stage where the bitfields holding the subtotals are large
// enough to hold the combined subtotals for both the low word, and
// the high word. This means that we can add the subtotals for the
// the high, and low words into a single word, and compute the final
// result for both the high, and low words using fewer instructions.
__ LoadConst32(AT, 0x0F0F0F0F);
__ Addu(TMP, tmp_hi, tmp_lo);
__ Srl(out, TMP, 4);
__ And(out, out, AT);
__ And(TMP, TMP, AT);
__ Addu(out, out, TMP);
__ LoadConst32(AT, 0x01010101);
if (isR6) {
__ MulR6(out, out, AT);
} else {
__ MulR2(out, out, AT);
}
__ Srl(out, out, 24);
}
}
// int java.lang.Integer.bitCount(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerBitCount(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
}
// int java.lang.Long.bitCount(int)
void IntrinsicLocationsBuilderMIPS::VisitLongBitCount(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
}
static void MathAbsFP(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
if (is64bit) {
__ AbsD(out, in);
} else {
__ AbsS(out, in);
}
}
// double java.lang.Math.abs(double)
void IntrinsicLocationsBuilderMIPS::VisitMathAbsDouble(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAbsDouble(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
// float java.lang.Math.abs(float)
void IntrinsicLocationsBuilderMIPS::VisitMathAbsFloat(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAbsFloat(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void GenAbsInteger(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
if (is64bit) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
// The comments in this section show the analogous operations which would
// be performed if we had 64-bit registers "in", and "out".
// __ Dsra32(AT, in, 31);
__ Sra(AT, in_hi, 31);
// __ Xor(out, in, AT);
__ Xor(TMP, in_lo, AT);
__ Xor(out_hi, in_hi, AT);
// __ Dsubu(out, out, AT);
__ Subu(out_lo, TMP, AT);
__ Sltu(TMP, out_lo, TMP);
__ Addu(out_hi, out_hi, TMP);
} else {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ Sra(AT, in, 31);
__ Xor(out, in, AT);
__ Subu(out, out, AT);
}
}
// int java.lang.Math.abs(int)
void IntrinsicLocationsBuilderMIPS::VisitMathAbsInt(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAbsInt(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
// long java.lang.Math.abs(long)
void IntrinsicLocationsBuilderMIPS::VisitMathAbsLong(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAbsLong(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
static void GenMinMaxFP(LocationSummary* locations,
bool is_min,
Primitive::Type type,
bool is_R6,
MipsAssembler* assembler) {
FRegister out = locations->Out().AsFpuRegister<FRegister>();
FRegister a = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister b = locations->InAt(1).AsFpuRegister<FRegister>();
if (is_R6) {
MipsLabel noNaNs;
MipsLabel done;
FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP;
// When Java computes min/max it prefers a NaN to a number; the
// behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of
// the inputs is a NaN and the other is a valid number, the MIPS
// instruction will return the number; Java wants the NaN value
// returned. This is why there is extra logic preceding the use of
// the MIPS min.fmt/max.fmt instructions. If either a, or b holds a
// NaN, return the NaN, otherwise return the min/max.
if (type == Primitive::kPrimDouble) {
__ CmpUnD(FTMP, a, b);
__ Bc1eqz(FTMP, &noNaNs);
// One of the inputs is a NaN
__ CmpEqD(ftmp, a, a);
// If a == a then b is the NaN, otherwise a is the NaN.
__ SelD(ftmp, a, b);
if (ftmp != out) {
__ MovD(out, ftmp);
}
__ B(&done);
__ Bind(&noNaNs);
if (is_min) {
__ MinD(out, a, b);
} else {
__ MaxD(out, a, b);
}
} else {
DCHECK_EQ(type, Primitive::kPrimFloat);
__ CmpUnS(FTMP, a, b);
__ Bc1eqz(FTMP, &noNaNs);
// One of the inputs is a NaN
__ CmpEqS(ftmp, a, a);
// If a == a then b is the NaN, otherwise a is the NaN.
__ SelS(ftmp, a, b);
if (ftmp != out) {
__ MovS(out, ftmp);
}
__ B(&done);
__ Bind(&noNaNs);
if (is_min) {
__ MinS(out, a, b);
} else {
__ MaxS(out, a, b);
}
}
__ Bind(&done);
} else {
MipsLabel ordered;
MipsLabel compare;
MipsLabel select;
MipsLabel done;
if (type == Primitive::kPrimDouble) {
__ CunD(a, b);
} else {
DCHECK_EQ(type, Primitive::kPrimFloat);
__ CunS(a, b);
}
__ Bc1f(&ordered);
// a or b (or both) is a NaN. Return one, which is a NaN.
if (type == Primitive::kPrimDouble) {
__ CeqD(b, b);
} else {
__ CeqS(b, b);
}
__ B(&select);
__ Bind(&ordered);
// Neither is a NaN.
// a == b? (-0.0 compares equal with +0.0)
// If equal, handle zeroes, else compare further.
if (type == Primitive::kPrimDouble) {
__ CeqD(a, b);
} else {
__ CeqS(a, b);
}
__ Bc1f(&compare);
// a == b either bit for bit or one is -0.0 and the other is +0.0.
if (type == Primitive::kPrimDouble) {
__ MoveFromFpuHigh(TMP, a);
__ MoveFromFpuHigh(AT, b);
} else {
__ Mfc1(TMP, a);
__ Mfc1(AT, b);
}
if (is_min) {
// -0.0 prevails over +0.0.
__ Or(TMP, TMP, AT);
} else {
// +0.0 prevails over -0.0.
__ And(TMP, TMP, AT);
}
if (type == Primitive::kPrimDouble) {
__ Mfc1(AT, a);
__ Mtc1(AT, out);
__ MoveToFpuHigh(TMP, out);
} else {
__ Mtc1(TMP, out);
}
__ B(&done);
__ Bind(&compare);
if (type == Primitive::kPrimDouble) {
if (is_min) {
// return (a <= b) ? a : b;
__ ColeD(a, b);
} else {
// return (a >= b) ? a : b;
__ ColeD(b, a); // b <= a
}
} else {
if (is_min) {
// return (a <= b) ? a : b;
__ ColeS(a, b);
} else {
// return (a >= b) ? a : b;
__ ColeS(b, a); // b <= a
}
}
__ Bind(&select);
if (type == Primitive::kPrimDouble) {
__ MovtD(out, a);
__ MovfD(out, b);
} else {
__ MovtS(out, a);
__ MovfS(out, b);
}
__ Bind(&done);
}
}
static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap);
}
// double java.lang.Math.min(double, double)
void IntrinsicLocationsBuilderMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
CreateFPFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(),
/* is_min */ true,
Primitive::kPrimDouble,
IsR6(),
GetAssembler());
}
// float java.lang.Math.min(float, float)
void IntrinsicLocationsBuilderMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
CreateFPFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(),
/* is_min */ true,
Primitive::kPrimFloat,
IsR6(),
GetAssembler());
}
// double java.lang.Math.max(double, double)
void IntrinsicLocationsBuilderMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
CreateFPFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(),
/* is_min */ false,
Primitive::kPrimDouble,
IsR6(),
GetAssembler());
}
// float java.lang.Math.max(float, float)
void IntrinsicLocationsBuilderMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
CreateFPFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
GenMinMaxFP(invoke->GetLocations(),
/* is_min */ false,
Primitive::kPrimFloat,
IsR6(),
GetAssembler());
}
static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
static void GenMinMax(LocationSummary* locations,
bool is_min,
Primitive::Type type,
bool is_R6,
MipsAssembler* assembler) {
if (is_R6) {
// Some architectures, such as ARM and MIPS (prior to r6), have a
// conditional move instruction which only changes the target
// (output) register if the condition is true (MIPS prior to r6 had
// MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions
// always change the target (output) register. If the condition is
// true the output register gets the contents of the "rs" register;
// otherwise, the output register is set to zero. One consequence
// of this is that to implement something like "rd = c==0 ? rs : rt"
// MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions.
// After executing this pair of instructions one of the output
// registers from the pair will necessarily contain zero. Then the
// code ORs the output registers from the SELEQZ/SELNEZ instructions
// to get the final result.
//
// The initial test to see if the output register is same as the
// first input register is needed to make sure that value in the
// first input register isn't clobbered before we've finished
// computing the output value. The logic in the corresponding else
// clause performs the same task but makes sure the second input
// register isn't clobbered in the event that it's the same register
// as the output register; the else clause also handles the case
// where the output register is distinct from both the first, and the
// second input registers.
if (type == Primitive::kPrimLong) {
Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
MipsLabel compare_done;
if (a_lo == b_lo) {
if (out_lo != a_lo) {
__ Move(out_lo, a_lo);
__ Move(out_hi, a_hi);
}
} else {
__ Slt(TMP, b_hi, a_hi);
__ Bne(b_hi, a_hi, &compare_done);
__ Sltu(TMP, b_lo, a_lo);
__ Bind(&compare_done);
if (is_min) {
__ Seleqz(AT, a_lo, TMP);
__ Selnez(out_lo, b_lo, TMP); // Safe even if out_lo == a_lo/b_lo
// because at this point we're
// done using a_lo/b_lo.
} else {
__ Selnez(AT, a_lo, TMP);
__ Seleqz(out_lo, b_lo, TMP); // ditto
}
__ Or(out_lo, out_lo, AT);
if (is_min) {
__ Seleqz(AT, a_hi, TMP);
__ Selnez(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
} else {
__ Selnez(AT, a_hi, TMP);
__ Seleqz(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
}
__ Or(out_hi, out_hi, AT);
}
} else {
DCHECK_EQ(type, Primitive::kPrimInt);
Register a = locations->InAt(0).AsRegister<Register>();
Register b = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (a == b) {
if (out != a) {
__ Move(out, a);
}
} else {
__ Slt(AT, b, a);
if (is_min) {
__ Seleqz(TMP, a, AT);
__ Selnez(AT, b, AT);
} else {
__ Selnez(TMP, a, AT);
__ Seleqz(AT, b, AT);
}
__ Or(out, TMP, AT);
}
}
} else {
if (type == Primitive::kPrimLong) {
Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
MipsLabel compare_done;
if (a_lo == b_lo) {
if (out_lo != a_lo) {
__ Move(out_lo, a_lo);
__ Move(out_hi, a_hi);
}
} else {
__ Slt(TMP, a_hi, b_hi);
__ Bne(a_hi, b_hi, &compare_done);
__ Sltu(TMP, a_lo, b_lo);
__ Bind(&compare_done);
if (is_min) {
if (out_lo != a_lo) {
__ Movn(out_hi, a_hi, TMP);
__ Movn(out_lo, a_lo, TMP);
}
if (out_lo != b_lo) {
__ Movz(out_hi, b_hi, TMP);
__ Movz(out_lo, b_lo, TMP);
}
} else {
if (out_lo != a_lo) {
__ Movz(out_hi, a_hi, TMP);
__ Movz(out_lo, a_lo, TMP);
}
if (out_lo != b_lo) {
__ Movn(out_hi, b_hi, TMP);
__ Movn(out_lo, b_lo, TMP);
}
}
}
} else {
DCHECK_EQ(type, Primitive::kPrimInt);
Register a = locations->InAt(0).AsRegister<Register>();
Register b = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (a == b) {
if (out != a) {
__ Move(out, a);
}
} else {
__ Slt(AT, a, b);
if (is_min) {
if (out != a) {
__ Movn(out, a, AT);
}
if (out != b) {
__ Movz(out, b, AT);
}
} else {
if (out != a) {
__ Movz(out, a, AT);
}
if (out != b) {
__ Movn(out, b, AT);
}
}
}
}
}
}
// int java.lang.Math.min(int, int)
void IntrinsicLocationsBuilderMIPS::VisitMathMinIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMinIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(),
/* is_min */ true,
Primitive::kPrimInt,
IsR6(),
GetAssembler());
}
// long java.lang.Math.min(long, long)
void IntrinsicLocationsBuilderMIPS::VisitMathMinLongLong(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMinLongLong(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(),
/* is_min */ true,
Primitive::kPrimLong,
IsR6(),
GetAssembler());
}
// int java.lang.Math.max(int, int)
void IntrinsicLocationsBuilderMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(),
/* is_min */ false,
Primitive::kPrimInt,
IsR6(),
GetAssembler());
}
// long java.lang.Math.max(long, long)
void IntrinsicLocationsBuilderMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(),
/* is_min */ false,
Primitive::kPrimLong,
IsR6(),
GetAssembler());
}
// double java.lang.Math.sqrt(double)
void IntrinsicLocationsBuilderMIPS::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MipsAssembler* assembler = GetAssembler();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
__ SqrtD(out, in);
}
// byte libcore.io.Memory.peekByte(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
__ Lb(out, adr, 0);
}
// short libcore.io.Memory.peekShort(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
if (IsR6()) {
__ Lh(out, adr, 0);
} else if (IsR2OrNewer()) {
// Unlike for words, there are no lhl/lhr instructions to load
// unaligned halfwords so the code loads individual bytes, in case
// the address isn't halfword-aligned, and assembles them into a
// signed halfword.
__ Lb(AT, adr, 1); // This byte must be sign-extended.
__ Lb(out, adr, 0); // This byte can be either sign-extended, or
// zero-extended because the following
// instruction overwrites the sign bits.
__ Ins(out, AT, 8, 24);
} else {
__ Lbu(AT, adr, 0); // This byte must be zero-extended. If it's not
// the "or" instruction below will destroy the upper
// 24 bits of the final result.
__ Lb(out, adr, 1); // This byte must be sign-extended.
__ Sll(out, out, 8);
__ Or(out, out, AT);
}
}
// int libcore.io.Memory.peekInt(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
if (IsR6()) {
__ Lw(out, adr, 0);
} else {
__ Lwr(out, adr, 0);
__ Lwl(out, adr, 3);
}
}
// long libcore.io.Memory.peekLong(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out_lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>();
Register out_hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>();
if (IsR6()) {
__ Lw(out_lo, adr, 0);
__ Lw(out_hi, adr, 4);
} else {
__ Lwr(out_lo, adr, 0);
__ Lwl(out_lo, adr, 3);
__ Lwr(out_hi, adr, 4);
__ Lwl(out_hi, adr, 7);
}
}
static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
// void libcore.io.Memory.pokeByte(long address, byte value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
__ Sb(val, adr, 0);
}
// void libcore.io.Memory.pokeShort(long address, short value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
if (IsR6()) {
__ Sh(val, adr, 0);
} else {
// Unlike for words, there are no shl/shr instructions to store
// unaligned halfwords so the code stores individual bytes, in case
// the address isn't halfword-aligned.
__ Sb(val, adr, 0);
__ Srl(AT, val, 8);
__ Sb(AT, adr, 1);
}
}
// void libcore.io.Memory.pokeInt(long address, int value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
if (IsR6()) {
__ Sw(val, adr, 0);
} else {
__ Swr(val, adr, 0);
__ Swl(val, adr, 3);
}
}
// void libcore.io.Memory.pokeLong(long address, long value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val_lo = invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>();
Register val_hi = invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>();
if (IsR6()) {
__ Sw(val_lo, adr, 0);
__ Sw(val_hi, adr, 4);
} else {
__ Swr(val_lo, adr, 0);
__ Swl(val_lo, adr, 3);
__ Swr(val_hi, adr, 4);
__ Swl(val_hi, adr, 7);
}
}
// Thread java.lang.Thread.currentThread()
void IntrinsicLocationsBuilderMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord,
out,
TR,
Thread::PeerOffset<kMipsPointerSize>().Int32Value());
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
bool can_call =
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile;
LocationSummary* locations = new (arena) LocationSummary(invoke,
can_call ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
static void GenUnsafeGet(HInvoke* invoke,
Primitive::Type type,
bool is_volatile,
bool is_R6,
CodeGeneratorMIPS* codegen) {
LocationSummary* locations = invoke->GetLocations();
DCHECK((type == Primitive::kPrimInt) ||
(type == Primitive::kPrimLong) ||
(type == Primitive::kPrimNot)) << type;
MipsAssembler* assembler = codegen->GetAssembler();
// Object pointer.
Register base = locations->InAt(1).AsRegister<Register>();
// The "offset" argument is passed as a "long". Since this code is for
// a 32-bit processor, we can only use 32-bit addresses, so we only
// need the low 32-bits of offset.
Register offset_lo = invoke->GetLocations()->InAt(2).AsRegisterPairLow<Register>();
__ Addu(TMP, base, offset_lo);
if (is_volatile) {
__ Sync(0);
}
if (type == Primitive::kPrimLong) {
Register trg_lo = locations->Out().AsRegisterPairLow<Register>();
Register trg_hi = locations->Out().AsRegisterPairHigh<Register>();
if (is_R6) {
__ Lw(trg_lo, TMP, 0);
__ Lw(trg_hi, TMP, 4);
} else {
__ Lwr(trg_lo, TMP, 0);
__ Lwl(trg_lo, TMP, 3);
__ Lwr(trg_hi, TMP, 4);
__ Lwl(trg_hi, TMP, 7);
}
} else {
Register trg = locations->Out().AsRegister<Register>();
if (is_R6) {
__ Lw(trg, TMP, 0);
} else {
__ Lwr(trg, TMP, 0);
__ Lwl(trg, TMP, 3);
}
}
}
// int sun.misc.Unsafe.getInt(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, IsR6(), codegen_);
}
// int sun.misc.Unsafe.getIntVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, IsR6(), codegen_);
}
// long sun.misc.Unsafe.getLong(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, IsR6(), codegen_);
}
// long sun.misc.Unsafe.getLongVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, IsR6(), codegen_);
}
// Object sun.misc.Unsafe.getObject(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, IsR6(), codegen_);
}
// Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, IsR6(), codegen_);
}
static void CreateIntIntIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
}
static void GenUnsafePut(LocationSummary* locations,
Primitive::Type type,
bool is_volatile,
bool is_ordered,
bool is_R6,
CodeGeneratorMIPS* codegen) {
DCHECK((type == Primitive::kPrimInt) ||
(type == Primitive::kPrimLong) ||
(type == Primitive::kPrimNot)) << type;
MipsAssembler* assembler = codegen->GetAssembler();
// Object pointer.
Register base = locations->InAt(1).AsRegister<Register>();
// The "offset" argument is passed as a "long", i.e., it's 64-bits in
// size. Since this code is for a 32-bit processor, we can only use
// 32-bit addresses, so we only need the low 32-bits of offset.
Register offset_lo = locations->InAt(2).AsRegisterPairLow<Register>();
__ Addu(TMP, base, offset_lo);
if (is_volatile || is_ordered) {
__ Sync(0);
}
if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
Register value = locations->InAt(3).AsRegister<Register>();
if (is_R6) {
__ Sw(value, TMP, 0);
} else {
__ Swr(value, TMP, 0);
__ Swl(value, TMP, 3);
}
} else {
Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>();
Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>();
if (is_R6) {
__ Sw(value_lo, TMP, 0);
__ Sw(value_hi, TMP, 4);
} else {
__ Swr(value_lo, TMP, 0);
__ Swl(value_lo, TMP, 3);
__ Swr(value_hi, TMP, 4);
__ Swl(value_hi, TMP, 7);
}
}
if (is_volatile) {
__ Sync(0);
}
if (type == Primitive::kPrimNot) {
codegen->MarkGCCard(base, locations->InAt(3).AsRegister<Register>());
}
}
// void sun.misc.Unsafe.putInt(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ false,
/* is_ordered */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ false,
/* is_ordered */ true,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ true,
/* is_ordered */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putObject(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ false,
/* is_ordered */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ false,
/* is_ordered */ true,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ true,
/* is_ordered */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putLong(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ false,
/* is_ordered */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ false,
/* is_ordered */ true,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putLongVolatile(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ true,
/* is_ordered */ false,
IsR6(),
codegen_);
}
static void CreateIntIntIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
static void GenCas(LocationSummary* locations, Primitive::Type type, CodeGeneratorMIPS* codegen) {
MipsAssembler* assembler = codegen->GetAssembler();
bool isR6 = codegen->GetInstructionSetFeatures().IsR6();
Register base = locations->InAt(1).AsRegister<Register>();
Register offset_lo = locations->InAt(2).AsRegisterPairLow<Register>();
Register expected = locations->InAt(3).AsRegister<Register>();
Register value = locations->InAt(4).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
DCHECK_NE(base, out);
DCHECK_NE(offset_lo, out);
DCHECK_NE(expected, out);
if (type == Primitive::kPrimNot) {
// Mark card for object assuming new value is stored.
codegen->MarkGCCard(base, value);
}
// do {
// tmp_value = [tmp_ptr] - expected;
// } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
// result = tmp_value != 0;
MipsLabel loop_head, exit_loop;
__ Addu(TMP, base, offset_lo);
__ Sync(0);
__ Bind(&loop_head);
if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
if (isR6) {
__ LlR6(out, TMP);
} else {
__ LlR2(out, TMP);
}
} else {
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
__ Subu(out, out, expected); // If we didn't get the 'expected'
__ Sltiu(out, out, 1); // value, set 'out' to false, and
__ Beqz(out, &exit_loop); // return.
__ Move(out, value); // Use 'out' for the 'store conditional' instruction.
// If we use 'value' directly, we would lose 'value'
// in the case that the store fails. Whether the
// store succeeds, or fails, it will load the
// correct boolean value into the 'out' register.
// This test isn't really necessary. We only support Primitive::kPrimInt,
// Primitive::kPrimNot, and we already verified that we're working on one
// of those two types. It's left here in case the code needs to support
// other types in the future.
if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
if (isR6) {
__ ScR6(out, TMP);
} else {
__ ScR2(out, TMP);
}
}
__ Beqz(out, &loop_head); // If we couldn't do the read-modify-write
// cycle atomically then retry.
__ Bind(&exit_loop);
__ Sync(0);
}
// boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
GenCas(invoke->GetLocations(), Primitive::kPrimInt, codegen_);
}
// boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
CreateIntIntIntIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
GenCas(invoke->GetLocations(), Primitive::kPrimNot, codegen_);
}
// int java.lang.String.compareTo(String anotherString)
void IntrinsicLocationsBuilderMIPS::VisitStringCompareTo(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringCompareTo(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
Register argument = locations->InAt(1).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(argument, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
// boolean java.lang.String.equals(Object anObject)
void IntrinsicLocationsBuilderMIPS::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
// Temporary registers to store lengths of strings and for calculations.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitStringEquals(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = locations->InAt(0).AsRegister<Register>();
Register arg = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
Register temp1 = locations->GetTemp(0).AsRegister<Register>();
Register temp2 = locations->GetTemp(1).AsRegister<Register>();
Register temp3 = locations->GetTemp(2).AsRegister<Register>();
MipsLabel loop;
MipsLabel end;
MipsLabel return_true;
MipsLabel return_false;
// Get offsets of count, value, and class fields within a string object.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// If the register containing the pointer to "this", and the register
// containing the pointer to "anObject" are the same register then
// "this", and "anObject" are the same object and we can
// short-circuit the logic to a true result.
if (str == arg) {
__ LoadConst32(out, 1);
return;
}
// Check if input is null, return false if it is.
__ Beqz(arg, &return_false);
// Reference equality check, return true if same reference.
__ Beq(str, arg, &return_true);
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
__ Lw(temp1, str, class_offset);
__ Lw(temp2, arg, class_offset);
__ Bne(temp1, temp2, &return_false);
// Load lengths of this and argument strings.
__ Lw(temp1, str, count_offset);
__ Lw(temp2, arg, count_offset);
// Check if lengths are equal, return false if they're not.
__ Bne(temp1, temp2, &return_false);
// Return true if both strings are empty.
__ Beqz(temp1, &return_true);
// Don't overwrite input registers
__ Move(TMP, str);
__ Move(temp3, arg);
// Assertions that must hold in order to compare strings 2 characters at a time.
DCHECK_ALIGNED(value_offset, 4);
static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
// Loop to compare strings 2 characters at a time starting at the beginning of the string.
// Ok to do this because strings are zero-padded.
__ Bind(&loop);
__ Lw(out, TMP, value_offset);
__ Lw(temp2, temp3, value_offset);
__ Bne(out, temp2, &return_false);
__ Addiu(TMP, TMP, 4);
__ Addiu(temp3, temp3, 4);
__ Addiu(temp1, temp1, -2);
__ Bgtz(temp1, &loop);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ LoadConst32(out, 1);
__ B(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ LoadConst32(out, 0);
__ Bind(&end);
}
static void GenerateStringIndexOf(HInvoke* invoke,
bool start_at_zero,
MipsAssembler* assembler,
CodeGeneratorMIPS* codegen,
ArenaAllocator* allocator) {
LocationSummary* locations = invoke->GetLocations();
Register tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister<Register>() : TMP;
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCodeMIPS* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) {
// Always needs the slow-path. We could directly dispatch to it,
// but this case should be rare, so for simplicity just put the
// full slow-path down and branch unconditionally.
slow_path = new (allocator) IntrinsicSlowPathMIPS(invoke);
codegen->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != Primitive::kPrimChar) {
Register char_reg = locations->InAt(1).AsRegister<Register>();
// The "bltu" conditional branch tests to see if the character value
// fits in a valid 16-bit (MIPS halfword) value. If it doesn't then
// the character being searched for, if it exists in the string, is
// encoded using UTF-16 and stored in the string as two (16-bit)
// halfwords. Currently the assembly code used to implement this
// intrinsic doesn't support searching for a character stored as
// two halfwords so we fallback to using the generic implementation
// of indexOf().
__ LoadConst32(tmp_reg, std::numeric_limits<uint16_t>::max());
slow_path = new (allocator) IntrinsicSlowPathMIPS(invoke);
codegen->AddSlowPath(slow_path);
__ Bltu(tmp_reg, char_reg, slow_path->GetEntryLabel());
}
if (start_at_zero) {
DCHECK_EQ(tmp_reg, A2);
// Start-index = 0.
__ Clear(tmp_reg);
}
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
// int java.lang.String.indexOf(int ch)
void IntrinsicLocationsBuilderMIPS::VisitStringIndexOf(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime
// calling convention. So it's best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
// Need a temp for slow-path codepoint compare, and need to send start-index=0.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
}
void IntrinsicCodeGeneratorMIPS::VisitStringIndexOf(HInvoke* invoke) {
GenerateStringIndexOf(invoke,
/* start_at_zero */ true,
GetAssembler(),
codegen_,
GetAllocator());
}
// int java.lang.String.indexOf(int ch, int fromIndex)
void IntrinsicLocationsBuilderMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime
// calling convention. So it's best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
// Need a temp for slow-path codepoint compare.
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateStringIndexOf(invoke,
/* start_at_zero */ false,
GetAssembler(),
codegen_,
GetAllocator());
}
// java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount)
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register byte_array = locations->InAt(0).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(byte_array, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainOnly,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
}
// java.lang.StringFactory.newStringFromString(String toCopy)
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnMainAndSlowPath,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register string_to_copy = locations->InAt(0).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(string_to_copy, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
__ Bind(slow_path->GetExitLabel());
}
static void GenIsInfinite(LocationSummary* locations,
const Primitive::Type type,
const bool isR6,
MipsAssembler* assembler) {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
Register out = locations->Out().AsRegister<Register>();
DCHECK(type == Primitive::kPrimFloat || type == Primitive::kPrimDouble);
if (isR6) {
if (type == Primitive::kPrimDouble) {
__ ClassD(FTMP, in);
} else {
__ ClassS(FTMP, in);
}
__ Mfc1(out, FTMP);
__ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
__ Sltu(out, ZERO, out);
} else {
// If one, or more, of the exponent bits is zero, then the number can't be infinite.
if (type == Primitive::kPrimDouble) {
__ MoveFromFpuHigh(TMP, in);
__ LoadConst32(AT, High32Bits(kPositiveInfinityDouble));
} else {
__ Mfc1(TMP, in);
__ LoadConst32(AT, kPositiveInfinityFloat);
}
__ Xor(TMP, TMP, AT);
__ Sll(TMP, TMP, 1);
if (type == Primitive::kPrimDouble) {
__ Mfc1(AT, in);
__ Or(TMP, TMP, AT);
}
// If any of the significand bits are one, then the number is not infinite.
__ Sltiu(out, TMP, 1);
}
}
// boolean java.lang.Float.isInfinite(float)
void IntrinsicLocationsBuilderMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), Primitive::kPrimFloat, IsR6(), GetAssembler());
}
// boolean java.lang.Double.isInfinite(double)
void IntrinsicLocationsBuilderMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), Primitive::kPrimDouble, IsR6(), GetAssembler());
}
static void GenHighestOneBit(LocationSummary* locations,
const Primitive::Type type,
bool isR6,
MipsAssembler* assembler) {
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
if (type == Primitive::kPrimLong) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
if (isR6) {
__ ClzR6(TMP, in_hi);
} else {
__ ClzR2(TMP, in_hi);
}
__ LoadConst32(AT, 0x80000000);
__ Srlv(out_hi, AT, TMP);
__ And(out_hi, out_hi, in_hi);
if (isR6) {
__ ClzR6(TMP, in_lo);
} else {
__ ClzR2(TMP, in_lo);
}
__ Srlv(out_lo, AT, TMP);
__ And(out_lo, out_lo, in_lo);
if (isR6) {
__ Seleqz(out_lo, out_lo, out_hi);
} else {
__ Movn(out_lo, ZERO, out_hi);
}
} else {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (isR6) {
__ ClzR6(TMP, in);
} else {
__ ClzR2(TMP, in);
}
__ LoadConst32(AT, 0x80000000);
__ Srlv(AT, AT, TMP); // Srlv shifts in the range of [0;31] bits (lower 5 bits of arg).
__ And(out, AT, in); // So this is required for 0 (=shift by 32).
}
}
// int java.lang.Integer.highestOneBit(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
}
// long java.lang.Long.highestOneBit(long)
void IntrinsicLocationsBuilderMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
}
static void GenLowestOneBit(LocationSummary* locations,
const Primitive::Type type,
bool isR6,
MipsAssembler* assembler) {
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
if (type == Primitive::kPrimLong) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
__ Subu(TMP, ZERO, in_lo);
__ And(out_lo, TMP, in_lo);
__ Subu(TMP, ZERO, in_hi);
__ And(out_hi, TMP, in_hi);
if (isR6) {
__ Seleqz(out_hi, out_hi, out_lo);
} else {
__ Movn(out_hi, ZERO, out_lo);
}
} else {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ Subu(TMP, ZERO, in);
__ And(out, TMP, in);
}
}
// int java.lang.Integer.lowestOneBit(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
}
// long java.lang.Long.lowestOneBit(long)
void IntrinsicLocationsBuilderMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
}
// int java.lang.Math.round(float)
void IntrinsicLocationsBuilderMIPS::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MipsAssembler* assembler = GetAssembler();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister half = locations->GetTemp(0).AsFpuRegister<FRegister>();
Register out = locations->Out().AsRegister<Register>();
MipsLabel done;
MipsLabel finite;
MipsLabel add;
// if (in.isNaN) {
// return 0;
// }
//
// out = floor.w.s(in);
//
// /*
// * This "if" statement is only needed for the pre-R6 version of floor.w.s
// * which outputs Integer.MAX_VALUE for negative numbers with magnitudes
// * too large to fit in a 32-bit integer.
// *
// * Starting with MIPSR6, which always sets FCSR.NAN2008=1, negative
// * numbers which are too large to be represented in a 32-bit signed
// * integer will be processed by floor.w.s to output Integer.MIN_VALUE,
// * and will no longer be processed by this "if" statement.
// */
// if (out == Integer.MAX_VALUE) {
// TMP = (in < 0.0f) ? 1 : 0;
// /*
// * If TMP is 1, then adding it to out will wrap its value from
// * Integer.MAX_VALUE to Integer.MIN_VALUE.
// */
// return out += TMP;
// }
//
// /*
// * For negative values not handled by the previous "if" statement the
// * test here will correctly set the value of TMP.
// */
// TMP = ((in - out) >= 0.5f) ? 1 : 0;
// return out += TMP;
// Test for NaN.
if (IsR6()) {
__ CmpUnS(FTMP, in, in);
} else {
__ CunS(in, in);
}
// Return zero for NaN.
__ Move(out, ZERO);
if (IsR6()) {
__ Bc1nez(FTMP, &done);
} else {
__ Bc1t(&done);
}
// out = floor(in);
__ FloorWS(FTMP, in);
__ Mfc1(out, FTMP);
if (!IsR6()) {
__ LoadConst32(TMP, -1);
}
// TMP = (out = java.lang.Integer.MAX_VALUE) ? -1 : 0;
__ LoadConst32(AT, std::numeric_limits<int32_t>::max());
__ Bne(AT, out, &finite);
__ Mtc1(ZERO, FTMP);
if (IsR6()) {
__ CmpLtS(FTMP, in, FTMP);
__ Mfc1(TMP, FTMP);
} else {
__ ColtS(in, FTMP);
}
__ B(&add);
__ Bind(&finite);
// TMP = (0.5f <= (in - out)) ? -1 : 0;
__ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float".
__ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
__ SubS(FTMP, in, FTMP);
__ Mtc1(AT, half);
if (IsR6()) {
__ CmpLeS(FTMP, half, FTMP);
__ Mfc1(TMP, FTMP);
} else {
__ ColeS(half, FTMP);
}
__ Bind(&add);
if (!IsR6()) {
__ Movf(TMP, ZERO);
}
// Return out -= TMP.
__ Subu(out, out, TMP);
__ Bind(&done);
}
// Unimplemented intrinsics.
UNIMPLEMENTED_INTRINSIC(MIPS, MathCeil)
UNIMPLEMENTED_INTRINSIC(MIPS, MathFloor)
UNIMPLEMENTED_INTRINSIC(MIPS, MathRint)
UNIMPLEMENTED_INTRINSIC(MIPS, MathRoundDouble)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeCASLong)
UNIMPLEMENTED_INTRINSIC(MIPS, ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(MIPS, StringGetCharsNoCheck)
UNIMPLEMENTED_INTRINSIC(MIPS, SystemArrayCopyChar)
UNIMPLEMENTED_INTRINSIC(MIPS, SystemArrayCopy)
UNIMPLEMENTED_INTRINSIC(MIPS, MathCos)
UNIMPLEMENTED_INTRINSIC(MIPS, MathSin)
UNIMPLEMENTED_INTRINSIC(MIPS, MathAcos)
UNIMPLEMENTED_INTRINSIC(MIPS, MathAsin)
UNIMPLEMENTED_INTRINSIC(MIPS, MathAtan)
UNIMPLEMENTED_INTRINSIC(MIPS, MathAtan2)
UNIMPLEMENTED_INTRINSIC(MIPS, MathCbrt)
UNIMPLEMENTED_INTRINSIC(MIPS, MathCosh)
UNIMPLEMENTED_INTRINSIC(MIPS, MathExp)
UNIMPLEMENTED_INTRINSIC(MIPS, MathExpm1)
UNIMPLEMENTED_INTRINSIC(MIPS, MathHypot)
UNIMPLEMENTED_INTRINSIC(MIPS, MathLog)
UNIMPLEMENTED_INTRINSIC(MIPS, MathLog10)
UNIMPLEMENTED_INTRINSIC(MIPS, MathNextAfter)
UNIMPLEMENTED_INTRINSIC(MIPS, MathSinh)
UNIMPLEMENTED_INTRINSIC(MIPS, MathTan)
UNIMPLEMENTED_INTRINSIC(MIPS, MathTanh)
UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOf);
UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOfAfter);
// 1.8.
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddInt)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddLong)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetInt)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetLong)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetObject)
UNREACHABLE_INTRINSICS(MIPS)
#undef __
} // namespace mips
} // namespace art