| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "codegen_x86.h" |
| |
| #include "base/logging.h" |
| #include "dex/mir_graph.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "dex/dataflow_iterator-inl.h" |
| #include "dex/quick/dex_file_method_inliner.h" |
| #include "dex/quick/dex_file_to_method_inliner_map.h" |
| #include "dex/reg_storage_eq.h" |
| #include "driver/compiler_driver.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| /* This file contains codegen for the X86 ISA */ |
| |
| LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) { |
| int opcode; |
| /* must be both DOUBLE or both not DOUBLE */ |
| DCHECK(r_dest.IsFloat() || r_src.IsFloat()); |
| DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble()); |
| if (r_dest.IsDouble()) { |
| opcode = kX86MovsdRR; |
| } else { |
| if (r_dest.IsSingle()) { |
| if (r_src.IsSingle()) { |
| opcode = kX86MovssRR; |
| } else { // Fpr <- Gpr |
| opcode = kX86MovdxrRR; |
| } |
| } else { // Gpr <- Fpr |
| DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits(); |
| opcode = kX86MovdrxRR; |
| } |
| } |
| DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL); |
| LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg()); |
| if (r_dest == r_src) { |
| res->flags.is_nop = true; |
| } |
| return res; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) { |
| UNUSED(value); |
| return true; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) { |
| return value == 0; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) { |
| UNUSED(value); |
| return true; |
| } |
| |
| bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) { |
| return value == 0; |
| } |
| |
| /* |
| * Load a immediate using a shortcut if possible; otherwise |
| * grab from the per-translation literal pool. If target is |
| * a high register, build constant into a low register and copy. |
| * |
| * No additional register clobbering operation performed. Use this version when |
| * 1) r_dest is freshly returned from AllocTemp or |
| * 2) The codegen is under fixed register usage |
| */ |
| LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) { |
| RegStorage r_dest_save = r_dest; |
| if (r_dest.IsFloat()) { |
| if (value == 0) { |
| return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg()); |
| } |
| r_dest = AllocTemp(); |
| } |
| |
| LIR *res; |
| if (value == 0) { |
| res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg()); |
| } else { |
| // Note, there is no byte immediate form of a 32 bit immediate move. |
| // 64-bit immediate is not supported by LIR structure |
| res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value); |
| } |
| |
| if (r_dest_save.IsFloat()) { |
| NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg()); |
| FreeTemp(r_dest); |
| } |
| |
| return res; |
| } |
| |
| LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) { |
| LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/); |
| res->target = target; |
| return res; |
| } |
| |
| LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) { |
| LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */, |
| X86ConditionEncoding(cc)); |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) { |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break; |
| case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break; |
| case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break; |
| case kOpBlx: opcode = kX86CallR; break; |
| default: |
| LOG(FATAL) << "Bad case in OpReg " << op; |
| } |
| return NewLIR1(opcode, r_dest_src.GetReg()); |
| } |
| |
| LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) { |
| X86OpCode opcode = kX86Bkpt; |
| bool byte_imm = IS_SIMM8(value); |
| DCHECK(!r_dest_src1.IsFloat()); |
| if (r_dest_src1.Is64Bit()) { |
| switch (op) { |
| case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break; |
| case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break; |
| case kOpLsl: opcode = kX86Sal64RI; break; |
| case kOpLsr: opcode = kX86Shr64RI; break; |
| case kOpAsr: opcode = kX86Sar64RI; break; |
| case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break; |
| default: |
| LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op; |
| } |
| } else { |
| switch (op) { |
| case kOpLsl: opcode = kX86Sal32RI; break; |
| case kOpLsr: opcode = kX86Shr32RI; break; |
| case kOpAsr: opcode = kX86Sar32RI; break; |
| case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break; |
| case kOpOr: opcode = byte_imm ? kX86Or32RI8 : kX86Or32RI; break; |
| case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break; |
| // case kOpSbb: opcode = kX86Sbb32RI; break; |
| case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break; |
| case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break; |
| case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break; |
| case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break; |
| case kOpMov: |
| /* |
| * Moving the constant zero into register can be specialized as an xor of the register. |
| * However, that sets eflags while the move does not. For that reason here, always do |
| * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead. |
| */ |
| opcode = kX86Mov32RI; |
| break; |
| case kOpMul: |
| opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI; |
| return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value); |
| case kOp2Byte: |
| opcode = kX86Mov32RI; |
| value = static_cast<int8_t>(value); |
| break; |
| case kOp2Short: |
| opcode = kX86Mov32RI; |
| value = static_cast<int16_t>(value); |
| break; |
| case kOp2Char: |
| opcode = kX86Mov32RI; |
| value = static_cast<uint16_t>(value); |
| break; |
| case kOpNeg: |
| opcode = kX86Mov32RI; |
| value = -value; |
| break; |
| default: |
| LOG(FATAL) << "Bad case in OpRegImm " << op; |
| } |
| } |
| return NewLIR2(opcode, r_dest_src1.GetReg(), value); |
| } |
| |
| LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) { |
| bool is64Bit = r_dest_src1.Is64Bit(); |
| X86OpCode opcode = kX86Nop; |
| bool src2_must_be_cx = false; |
| switch (op) { |
| // X86 unary opcodes |
| case kOpMvn: |
| OpRegCopy(r_dest_src1, r_src2); |
| return OpReg(kOpNot, r_dest_src1); |
| case kOpNeg: |
| OpRegCopy(r_dest_src1, r_src2); |
| return OpReg(kOpNeg, r_dest_src1); |
| case kOpRev: |
| OpRegCopy(r_dest_src1, r_src2); |
| return OpReg(kOpRev, r_dest_src1); |
| case kOpRevsh: |
| OpRegCopy(r_dest_src1, r_src2); |
| OpReg(kOpRev, r_dest_src1); |
| return OpRegImm(kOpAsr, r_dest_src1, 16); |
| // X86 binary opcodes |
| case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break; |
| case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break; |
| case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break; |
| case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break; |
| case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break; |
| case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break; |
| case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break; |
| case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break; |
| case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break; |
| case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break; |
| case kOpOr: opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break; |
| case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break; |
| case kOp2Byte: |
| // TODO: there are several instances of this check. A utility function perhaps? |
| // TODO: Similar to Arm's reg < 8 check. Perhaps add attribute checks to RegStorage? |
| // Use shifts instead of a byte operand if the source can't be byte accessed. |
| if (r_src2.GetRegNum() >= rs_rX86_SP_32.GetRegNum()) { |
| NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg()); |
| NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24); |
| return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(), |
| is64Bit ? 56 : 24); |
| } else { |
| opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR; |
| } |
| break; |
| case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break; |
| case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break; |
| case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break; |
| default: |
| LOG(FATAL) << "Bad case in OpRegReg " << op; |
| break; |
| } |
| CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg()); |
| return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg()); |
| } |
| |
| LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) { |
| DCHECK(!r_base.IsFloat()); |
| X86OpCode opcode = kX86Nop; |
| int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg(); |
| switch (move_type) { |
| case kMov8GP: |
| CHECK(!r_dest.IsFloat()); |
| opcode = kX86Mov8RM; |
| break; |
| case kMov16GP: |
| CHECK(!r_dest.IsFloat()); |
| opcode = kX86Mov16RM; |
| break; |
| case kMov32GP: |
| CHECK(!r_dest.IsFloat()); |
| opcode = kX86Mov32RM; |
| break; |
| case kMov32FP: |
| CHECK(r_dest.IsFloat()); |
| opcode = kX86MovssRM; |
| break; |
| case kMov64FP: |
| CHECK(r_dest.IsFloat()); |
| opcode = kX86MovsdRM; |
| break; |
| case kMovU128FP: |
| CHECK(r_dest.IsFloat()); |
| opcode = kX86MovupsRM; |
| break; |
| case kMovA128FP: |
| CHECK(r_dest.IsFloat()); |
| opcode = kX86MovapsRM; |
| break; |
| case kMovLo128FP: |
| CHECK(r_dest.IsFloat()); |
| opcode = kX86MovlpsRM; |
| break; |
| case kMovHi128FP: |
| CHECK(r_dest.IsFloat()); |
| opcode = kX86MovhpsRM; |
| break; |
| case kMov64GP: |
| case kMovLo64FP: |
| case kMovHi64FP: |
| default: |
| LOG(FATAL) << "Bad case in OpMovRegMem"; |
| break; |
| } |
| |
| return NewLIR3(opcode, dest, r_base.GetReg(), offset); |
| } |
| |
| LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) { |
| DCHECK(!r_base.IsFloat()); |
| int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg(); |
| |
| X86OpCode opcode = kX86Nop; |
| switch (move_type) { |
| case kMov8GP: |
| CHECK(!r_src.IsFloat()); |
| opcode = kX86Mov8MR; |
| break; |
| case kMov16GP: |
| CHECK(!r_src.IsFloat()); |
| opcode = kX86Mov16MR; |
| break; |
| case kMov32GP: |
| CHECK(!r_src.IsFloat()); |
| opcode = kX86Mov32MR; |
| break; |
| case kMov32FP: |
| CHECK(r_src.IsFloat()); |
| opcode = kX86MovssMR; |
| break; |
| case kMov64FP: |
| CHECK(r_src.IsFloat()); |
| opcode = kX86MovsdMR; |
| break; |
| case kMovU128FP: |
| CHECK(r_src.IsFloat()); |
| opcode = kX86MovupsMR; |
| break; |
| case kMovA128FP: |
| CHECK(r_src.IsFloat()); |
| opcode = kX86MovapsMR; |
| break; |
| case kMovLo128FP: |
| CHECK(r_src.IsFloat()); |
| opcode = kX86MovlpsMR; |
| break; |
| case kMovHi128FP: |
| CHECK(r_src.IsFloat()); |
| opcode = kX86MovhpsMR; |
| break; |
| case kMov64GP: |
| case kMovLo64FP: |
| case kMovHi64FP: |
| default: |
| LOG(FATAL) << "Bad case in OpMovMemReg"; |
| break; |
| } |
| |
| return NewLIR3(opcode, r_base.GetReg(), offset, src); |
| } |
| |
| LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) { |
| // The only conditional reg to reg operation supported is Cmov |
| DCHECK_EQ(op, kOpCmov); |
| DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit()); |
| return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(), |
| r_src.GetReg(), X86ConditionEncoding(cc)); |
| } |
| |
| LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) { |
| bool is64Bit = r_dest.Is64Bit(); |
| X86OpCode opcode = kX86Nop; |
| switch (op) { |
| // X86 binary opcodes |
| case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break; |
| case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break; |
| case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break; |
| case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break; |
| case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break; |
| case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break; |
| case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break; |
| case kOp2Byte: opcode = kX86Movsx8RM; break; |
| case kOp2Short: opcode = kX86Movsx16RM; break; |
| case kOp2Char: opcode = kX86Movzx16RM; break; |
| case kOpMul: |
| default: |
| LOG(FATAL) << "Bad case in OpRegMem " << op; |
| break; |
| } |
| LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset); |
| if (mem_ref_type_ == ResourceMask::kDalvikReg) { |
| DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32); |
| AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */); |
| } |
| return l; |
| } |
| |
| LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) { |
| DCHECK_NE(rl_dest.location, kLocPhysReg); |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| bool is64Bit = rl_dest.wide != 0; |
| X86OpCode opcode = kX86Nop; |
| switch (op) { |
| case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break; |
| case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break; |
| case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break; |
| case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break; |
| case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break; |
| case kOpOr: opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break; |
| case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break; |
| case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break; |
| case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break; |
| case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break; |
| default: |
| LOG(FATAL) << "Bad case in OpMemReg " << op; |
| break; |
| } |
| LIR *l = NewLIR3(opcode, rs_rX86_SP_32.GetReg(), displacement, r_value); |
| if (mem_ref_type_ == ResourceMask::kDalvikReg) { |
| AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */); |
| AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */); |
| } |
| return l; |
| } |
| |
| LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) { |
| DCHECK_NE(rl_value.location, kLocPhysReg); |
| bool is64Bit = r_dest.Is64Bit(); |
| int displacement = SRegOffset(rl_value.s_reg_low); |
| X86OpCode opcode = kX86Nop; |
| switch (op) { |
| case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break; |
| case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break; |
| case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break; |
| case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break; |
| case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break; |
| case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break; |
| case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break; |
| case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break; |
| default: |
| LOG(FATAL) << "Bad case in OpRegMem " << op; |
| break; |
| } |
| LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP_32.GetReg(), displacement); |
| if (mem_ref_type_ == ResourceMask::kDalvikReg) { |
| AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */); |
| } |
| return l; |
| } |
| |
| LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, |
| RegStorage r_src2) { |
| bool is64Bit = r_dest.Is64Bit(); |
| if (r_dest != r_src1 && r_dest != r_src2) { |
| if (op == kOpAdd) { // lea special case, except can't encode rbp as base |
| if (r_src1 == r_src2) { |
| OpRegCopy(r_dest, r_src1); |
| return OpRegImm(kOpLsl, r_dest, 1); |
| } else if (r_src1 != rs_rBP) { |
| return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(), |
| r_src1.GetReg() /* base */, r_src2.GetReg() /* index */, |
| 0 /* scale */, 0 /* disp */); |
| } else { |
| return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(), |
| r_src2.GetReg() /* base */, r_src1.GetReg() /* index */, |
| 0 /* scale */, 0 /* disp */); |
| } |
| } else { |
| OpRegCopy(r_dest, r_src1); |
| return OpRegReg(op, r_dest, r_src2); |
| } |
| } else if (r_dest == r_src1) { |
| return OpRegReg(op, r_dest, r_src2); |
| } else { // r_dest == r_src2 |
| switch (op) { |
| case kOpSub: // non-commutative |
| OpReg(kOpNeg, r_dest); |
| op = kOpAdd; |
| break; |
| case kOpSbc: |
| case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: { |
| RegStorage t_reg = AllocTemp(); |
| OpRegCopy(t_reg, r_src1); |
| OpRegReg(op, t_reg, r_src2); |
| LIR* res = OpRegCopyNoInsert(r_dest, t_reg); |
| AppendLIR(res); |
| FreeTemp(t_reg); |
| return res; |
| } |
| case kOpAdd: // commutative |
| case kOpOr: |
| case kOpAdc: |
| case kOpAnd: |
| case kOpXor: |
| case kOpMul: |
| break; |
| default: |
| LOG(FATAL) << "Bad case in OpRegRegReg " << op; |
| } |
| return OpRegReg(op, r_dest, r_src1); |
| } |
| } |
| |
| LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) { |
| if (op == kOpMul && !cu_->target64) { |
| X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI; |
| return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value); |
| } else if (op == kOpAnd && !cu_->target64) { |
| if (value == 0xFF && r_src.Low4()) { |
| return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg()); |
| } else if (value == 0xFFFF) { |
| return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg()); |
| } |
| } |
| if (r_dest != r_src) { |
| if ((false) && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case |
| // TODO: fix bug in LEA encoding when disp == 0 |
| return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r5sib_no_base /* base */, |
| r_src.GetReg() /* index */, value /* scale */, 0 /* disp */); |
| } else if (op == kOpAdd) { // lea add special case |
| return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(), |
| r_src.GetReg() /* base */, rs_rX86_SP_32.GetReg()/*r4sib_no_index*/ /* index */, |
| 0 /* scale */, value /* disp */); |
| } |
| OpRegCopy(r_dest, r_src); |
| } |
| return OpRegImm(op, r_dest, value); |
| } |
| |
| LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) { |
| DCHECK_EQ(kX86, cu_->instruction_set); |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpBlx: opcode = kX86CallT; break; |
| case kOpBx: opcode = kX86JmpT; break; |
| default: |
| LOG(FATAL) << "Bad opcode: " << op; |
| break; |
| } |
| return NewLIR1(opcode, thread_offset.Int32Value()); |
| } |
| |
| LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) { |
| DCHECK_EQ(kX86_64, cu_->instruction_set); |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpBlx: opcode = kX86CallT; break; |
| case kOpBx: opcode = kX86JmpT; break; |
| default: |
| LOG(FATAL) << "Bad opcode: " << op; |
| break; |
| } |
| return NewLIR1(opcode, thread_offset.Int32Value()); |
| } |
| |
| LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) { |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpBlx: opcode = kX86CallM; break; |
| default: |
| LOG(FATAL) << "Bad opcode: " << op; |
| break; |
| } |
| return NewLIR2(opcode, r_base.GetReg(), disp); |
| } |
| |
| LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) { |
| int32_t val_lo = Low32Bits(value); |
| int32_t val_hi = High32Bits(value); |
| int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg(); |
| LIR *res; |
| bool is_fp = r_dest.IsFloat(); |
| // TODO: clean this up once we fully recognize 64-bit storage containers. |
| if (is_fp) { |
| DCHECK(r_dest.IsDouble()); |
| if (value == 0) { |
| return NewLIR2(kX86XorpdRR, low_reg_val, low_reg_val); |
| } else if (pc_rel_base_reg_.Valid() || cu_->target64) { |
| // We will load the value from the literal area. |
| LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi); |
| if (data_target == NULL) { |
| data_target = AddWideData(&literal_list_, val_lo, val_hi); |
| } |
| |
| // Load the proper value from the literal area. |
| // We don't know the proper offset for the value, so pick one that |
| // will force 4 byte offset. We will fix this up in the assembler |
| // later to have the right value. |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); |
| if (cu_->target64) { |
| res = NewLIR3(kX86MovsdRM, low_reg_val, kRIPReg, 256 /* bogus */); |
| } else { |
| // Get the PC to a register and get the anchor. |
| LIR* anchor; |
| RegStorage r_pc = GetPcAndAnchor(&anchor); |
| |
| res = LoadBaseDisp(r_pc, kDummy32BitOffset, RegStorage::FloatSolo64(low_reg_val), |
| kDouble, kNotVolatile); |
| res->operands[4] = WrapPointer(anchor); |
| if (IsTemp(r_pc)) { |
| FreeTemp(r_pc); |
| } |
| } |
| res->target = data_target; |
| res->flags.fixup = kFixupLoad; |
| } else { |
| if (r_dest.IsPair()) { |
| if (val_lo == 0) { |
| res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val); |
| } else { |
| res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo); |
| } |
| if (val_hi != 0) { |
| RegStorage r_dest_hi = AllocTempDouble(); |
| LoadConstantNoClobber(r_dest_hi, val_hi); |
| NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg()); |
| FreeTemp(r_dest_hi); |
| } |
| } else { |
| RegStorage r_temp = AllocTypedTempWide(false, kCoreReg); |
| res = LoadConstantWide(r_temp, value); |
| OpRegCopyWide(r_dest, r_temp); |
| FreeTemp(r_temp); |
| } |
| } |
| } else { |
| if (r_dest.IsPair()) { |
| res = LoadConstantNoClobber(r_dest.GetLow(), val_lo); |
| LoadConstantNoClobber(r_dest.GetHigh(), val_hi); |
| } else { |
| if (value == 0) { |
| res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg()); |
| } else if (value >= INT_MIN && value <= INT_MAX) { |
| res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo); |
| } else { |
| res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo); |
| } |
| } |
| } |
| return res; |
| } |
| |
| LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, |
| int displacement, RegStorage r_dest, OpSize size) { |
| LIR *load = NULL; |
| LIR *load2 = NULL; |
| bool is_array = r_index.Valid(); |
| bool pair = r_dest.IsPair(); |
| bool is64bit = ((size == k64) || (size == kDouble)); |
| X86OpCode opcode = kX86Nop; |
| switch (size) { |
| case k64: |
| case kDouble: |
| if (r_dest.IsFloat()) { |
| opcode = is_array ? kX86MovsdRA : kX86MovsdRM; |
| } else if (!pair) { |
| opcode = is_array ? kX86Mov64RA : kX86Mov64RM; |
| } else { |
| opcode = is_array ? kX86Mov32RA : kX86Mov32RM; |
| } |
| // TODO: double store is to unaligned address |
| DCHECK_EQ((displacement & 0x3), 0); |
| break; |
| case kWord: |
| if (cu_->target64) { |
| opcode = is_array ? kX86Mov64RA : kX86Mov64RM; |
| CHECK_EQ(is_array, false); |
| CHECK_EQ(r_dest.IsFloat(), false); |
| break; |
| } |
| FALLTHROUGH_INTENDED; // else fall-through to k32 case |
| case k32: |
| case kSingle: |
| case kReference: // TODO: update for reference decompression on 64-bit targets. |
| opcode = is_array ? kX86Mov32RA : kX86Mov32RM; |
| if (r_dest.IsFloat()) { |
| opcode = is_array ? kX86MovssRA : kX86MovssRM; |
| DCHECK(r_dest.IsFloat()); |
| } |
| DCHECK_EQ((displacement & 0x3), 0); |
| break; |
| case kUnsignedHalf: |
| opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM; |
| DCHECK_EQ((displacement & 0x1), 0); |
| break; |
| case kSignedHalf: |
| opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM; |
| DCHECK_EQ((displacement & 0x1), 0); |
| break; |
| case kUnsignedByte: |
| opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM; |
| break; |
| case kSignedByte: |
| opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM; |
| break; |
| default: |
| LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody"; |
| } |
| |
| if (!is_array) { |
| if (!pair) { |
| load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET); |
| } else { |
| DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here. |
| if (r_base == r_dest.GetLow()) { |
| load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(), |
| displacement + HIWORD_OFFSET); |
| load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET); |
| } else { |
| load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET); |
| load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(), |
| displacement + HIWORD_OFFSET); |
| } |
| } |
| if (mem_ref_type_ == ResourceMask::kDalvikReg) { |
| DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32); |
| AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2, |
| true /* is_load */, is64bit); |
| if (pair) { |
| AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2, |
| true /* is_load */, is64bit); |
| } |
| } |
| } else { |
| if (!pair) { |
| load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + LOWORD_OFFSET); |
| } else { |
| DCHECK(!r_dest.IsFloat()); // Make sure we're not still using a pair here. |
| if (r_base == r_dest.GetLow()) { |
| if (r_dest.GetHigh() == r_index) { |
| // We can't use either register for the first load. |
| RegStorage temp = AllocTemp(); |
| load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + HIWORD_OFFSET); |
| load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + LOWORD_OFFSET); |
| OpRegCopy(r_dest.GetHigh(), temp); |
| FreeTemp(temp); |
| } else { |
| load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + HIWORD_OFFSET); |
| load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + LOWORD_OFFSET); |
| } |
| } else { |
| if (r_dest.GetLow() == r_index) { |
| // We can't use either register for the first load. |
| RegStorage temp = AllocTemp(); |
| load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + LOWORD_OFFSET); |
| load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + HIWORD_OFFSET); |
| OpRegCopy(r_dest.GetLow(), temp); |
| FreeTemp(temp); |
| } else { |
| load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + LOWORD_OFFSET); |
| load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + HIWORD_OFFSET); |
| } |
| } |
| } |
| } |
| |
| // Always return first load generated as this might cause a fault if base is nullptr. |
| return load; |
| } |
| |
| /* Load value from base + scaled index. */ |
| LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, |
| int scale, OpSize size) { |
| return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size); |
| } |
| |
| LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, |
| OpSize size, VolatileKind is_volatile) { |
| // LoadBaseDisp() will emit correct insn for atomic load on x86 |
| // assuming r_dest is correctly prepared using RegClassForFieldLoadStore(). |
| |
| LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest, |
| size); |
| |
| if (UNLIKELY(is_volatile == kVolatile)) { |
| GenMemBarrier(kLoadAny); // Only a scheduling barrier. |
| } |
| |
| return load; |
| } |
| |
| LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, |
| int displacement, RegStorage r_src, OpSize size, |
| int opt_flags) { |
| LIR *store = NULL; |
| LIR *store2 = NULL; |
| bool is_array = r_index.Valid(); |
| bool pair = r_src.IsPair(); |
| bool is64bit = (size == k64) || (size == kDouble); |
| bool consider_non_temporal = false; |
| |
| X86OpCode opcode = kX86Nop; |
| switch (size) { |
| case k64: |
| consider_non_temporal = true; |
| FALLTHROUGH_INTENDED; |
| case kDouble: |
| if (r_src.IsFloat()) { |
| opcode = is_array ? kX86MovsdAR : kX86MovsdMR; |
| } else if (!pair) { |
| opcode = is_array ? kX86Mov64AR : kX86Mov64MR; |
| } else { |
| opcode = is_array ? kX86Mov32AR : kX86Mov32MR; |
| } |
| // TODO: double store is to unaligned address |
| DCHECK_EQ((displacement & 0x3), 0); |
| break; |
| case kWord: |
| if (cu_->target64) { |
| opcode = is_array ? kX86Mov64AR : kX86Mov64MR; |
| CHECK_EQ(is_array, false); |
| CHECK_EQ(r_src.IsFloat(), false); |
| consider_non_temporal = true; |
| break; |
| } |
| FALLTHROUGH_INTENDED; // else fall-through to k32 case |
| case k32: |
| case kSingle: |
| case kReference: |
| opcode = is_array ? kX86Mov32AR : kX86Mov32MR; |
| if (r_src.IsFloat()) { |
| opcode = is_array ? kX86MovssAR : kX86MovssMR; |
| DCHECK(r_src.IsSingle()); |
| } |
| DCHECK_EQ((displacement & 0x3), 0); |
| consider_non_temporal = true; |
| break; |
| case kUnsignedHalf: |
| case kSignedHalf: |
| opcode = is_array ? kX86Mov16AR : kX86Mov16MR; |
| DCHECK_EQ((displacement & 0x1), 0); |
| break; |
| case kUnsignedByte: |
| case kSignedByte: |
| opcode = is_array ? kX86Mov8AR : kX86Mov8MR; |
| break; |
| default: |
| LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody"; |
| } |
| |
| // Handle non temporal hint here. |
| if (consider_non_temporal && ((opt_flags & MIR_STORE_NON_TEMPORAL) != 0)) { |
| switch (opcode) { |
| // We currently only handle 32/64 bit moves here. |
| case kX86Mov64AR: |
| opcode = kX86Movnti64AR; |
| break; |
| case kX86Mov64MR: |
| opcode = kX86Movnti64MR; |
| break; |
| case kX86Mov32AR: |
| opcode = kX86Movnti32AR; |
| break; |
| case kX86Mov32MR: |
| opcode = kX86Movnti32MR; |
| break; |
| default: |
| // Do nothing here. |
| break; |
| } |
| } |
| |
| if (!is_array) { |
| if (!pair) { |
| store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg()); |
| } else { |
| DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here. |
| store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg()); |
| store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg()); |
| } |
| if (mem_ref_type_ == ResourceMask::kDalvikReg) { |
| DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32); |
| AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2, |
| false /* is_load */, is64bit); |
| if (pair) { |
| AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2, |
| false /* is_load */, is64bit); |
| } |
| } |
| } else { |
| if (!pair) { |
| store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + LOWORD_OFFSET, r_src.GetReg()); |
| } else { |
| DCHECK(!r_src.IsFloat()); // Make sure we're not still using a pair here. |
| store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + LOWORD_OFFSET, r_src.GetLowReg()); |
| store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale, |
| displacement + HIWORD_OFFSET, r_src.GetHighReg()); |
| } |
| } |
| return store; |
| } |
| |
| /* store value base base + scaled index. */ |
| LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, |
| int scale, OpSize size) { |
| return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size); |
| } |
| |
| LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size, |
| VolatileKind is_volatile) { |
| if (UNLIKELY(is_volatile == kVolatile)) { |
| GenMemBarrier(kAnyStore); // Only a scheduling barrier. |
| } |
| |
| // StoreBaseDisp() will emit correct insn for atomic store on x86 |
| // assuming r_dest is correctly prepared using RegClassForFieldLoadStore(). |
| // x86 only allows registers EAX-EDX to be used as byte registers, if the input src is not |
| // valid, allocate a temp. |
| bool allocated_temp = false; |
| if (size == kUnsignedByte || size == kSignedByte) { |
| if (!cu_->target64 && !r_src.Low4()) { |
| RegStorage r_input = r_src; |
| r_src = AllocateByteRegister(); |
| OpRegCopy(r_src, r_input); |
| allocated_temp = true; |
| } |
| } |
| |
| LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size); |
| |
| if (UNLIKELY(is_volatile == kVolatile)) { |
| // A volatile load might follow the volatile store so insert a StoreLoad barrier. |
| // This does require a fence, even on x86. |
| GenMemBarrier(kAnyAny); |
| } |
| |
| if (allocated_temp) { |
| FreeTemp(r_src); |
| } |
| |
| return store; |
| } |
| |
| LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, |
| int offset, int check_value, LIR* target, LIR** compare) { |
| UNUSED(temp_reg); // Comparison performed directly with memory. |
| LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(), |
| offset, check_value); |
| if (compare != nullptr) { |
| *compare = inst; |
| } |
| LIR* branch = OpCondBranch(cond, target); |
| return branch; |
| } |
| |
| void X86Mir2Lir::AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) { |
| if (cu_->target64) { |
| Mir2Lir::AnalyzeMIR(core_counts, mir, weight); |
| return; |
| } |
| |
| int opcode = mir->dalvikInsn.opcode; |
| bool uses_pc_rel_load = false; |
| switch (opcode) { |
| // Instructions referencing doubles. |
| case Instruction::CMPL_DOUBLE: |
| case Instruction::CMPG_DOUBLE: |
| case Instruction::NEG_DOUBLE: |
| case Instruction::ADD_DOUBLE: |
| case Instruction::SUB_DOUBLE: |
| case Instruction::MUL_DOUBLE: |
| case Instruction::DIV_DOUBLE: |
| case Instruction::REM_DOUBLE: |
| case Instruction::ADD_DOUBLE_2ADDR: |
| case Instruction::SUB_DOUBLE_2ADDR: |
| case Instruction::MUL_DOUBLE_2ADDR: |
| case Instruction::DIV_DOUBLE_2ADDR: |
| case Instruction::REM_DOUBLE_2ADDR: |
| case kMirOpFusedCmplDouble: |
| case kMirOpFusedCmpgDouble: |
| uses_pc_rel_load = AnalyzeFPInstruction(opcode, mir); |
| break; |
| |
| // Packed switch needs the PC-relative pointer if it's large. |
| case Instruction::PACKED_SWITCH: |
| if (mir_graph_->GetTable(mir, mir->dalvikInsn.vB)[1] > kSmallSwitchThreshold) { |
| uses_pc_rel_load = true; |
| } |
| break; |
| |
| case kMirOpConstVector: |
| uses_pc_rel_load = true; |
| break; |
| case kMirOpPackedMultiply: |
| case kMirOpPackedShiftLeft: |
| case kMirOpPackedSignedShiftRight: |
| case kMirOpPackedUnsignedShiftRight: |
| { |
| // Byte emulation requires constants from the literal pool. |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16); |
| if (opsize == kSignedByte || opsize == kUnsignedByte) { |
| uses_pc_rel_load = true; |
| } |
| } |
| break; |
| |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| if (mir_graph_->GetMethodLoweringInfo(mir).IsIntrinsic()) { |
| uses_pc_rel_load = AnalyzeInvokeStaticIntrinsic(mir); |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| default: |
| Mir2Lir::AnalyzeMIR(core_counts, mir, weight); |
| break; |
| } |
| |
| if (uses_pc_rel_load) { |
| DCHECK(pc_rel_temp_ != nullptr); |
| core_counts[SRegToPMap(pc_rel_temp_->s_reg_low)].count += weight; |
| } |
| } |
| |
| bool X86Mir2Lir::AnalyzeFPInstruction(int opcode, MIR* mir) { |
| DCHECK(!cu_->target64); |
| // Look at all the uses, and see if they are double constants. |
| uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode)); |
| int next_sreg = 0; |
| if (attrs & DF_UA) { |
| if (attrs & DF_A_WIDE) { |
| if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) { |
| return true; |
| } |
| next_sreg += 2; |
| } else { |
| next_sreg++; |
| } |
| } |
| if (attrs & DF_UB) { |
| if (attrs & DF_B_WIDE) { |
| if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) { |
| return true; |
| } |
| next_sreg += 2; |
| } else { |
| next_sreg++; |
| } |
| } |
| if (attrs & DF_UC) { |
| if (attrs & DF_C_WIDE) { |
| if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| inline bool X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) { |
| // If this is a double literal, we will want it in the literal pool on 32b platforms. |
| DCHECK(!cu_->target64); |
| return use.is_const; |
| } |
| |
| bool X86Mir2Lir::AnalyzeInvokeStaticIntrinsic(MIR* mir) { |
| // 64 bit RIP addressing doesn't need this analysis. |
| DCHECK(!cu_->target64); |
| |
| // Retrieve the type of the intrinsic. |
| MethodReference method_ref = mir_graph_->GetMethodLoweringInfo(mir).GetTargetMethod(); |
| DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); |
| DexFileMethodInliner* method_inliner = |
| cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(method_ref.dex_file); |
| InlineMethod method; |
| bool is_intrinsic = method_inliner->IsIntrinsic(method_ref.dex_method_index, &method); |
| DCHECK(is_intrinsic); |
| |
| switch (method.opcode) { |
| case kIntrinsicAbsDouble: |
| case kIntrinsicMinMaxDouble: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc) { |
| loc = UpdateLoc(loc); |
| if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) { |
| if (GetRegInfo(loc.reg)->IsTemp()) { |
| Clobber(loc.reg); |
| FreeTemp(loc.reg); |
| loc.reg = RegStorage::InvalidReg(); |
| loc.location = kLocDalvikFrame; |
| } |
| } |
| DCHECK(CheckCorePoolSanity()); |
| return loc; |
| } |
| |
| RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc) { |
| loc = UpdateLocWide(loc); |
| if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) { |
| if (GetRegInfo(loc.reg)->IsTemp()) { |
| Clobber(loc.reg); |
| FreeTemp(loc.reg); |
| loc.reg = RegStorage::InvalidReg(); |
| loc.location = kLocDalvikFrame; |
| } |
| } |
| DCHECK(CheckCorePoolSanity()); |
| return loc; |
| } |
| |
| LIR* X86Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) { |
| UNUSED(r_tgt); // Call to absolute memory location doesn't need a temporary target register. |
| if (cu_->target64) { |
| return OpThreadMem(op, GetThreadOffset<8>(trampoline)); |
| } else { |
| return OpThreadMem(op, GetThreadOffset<4>(trampoline)); |
| } |
| } |
| |
| void X86Mir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) { |
| // Start with the default counts. |
| Mir2Lir::CountRefs(core_counts, fp_counts, num_regs); |
| |
| if (pc_rel_temp_ != nullptr) { |
| // Now, if the dex cache array base temp is used only once outside any loops (weight = 1), |
| // avoid the promotion, otherwise boost the weight by factor 2 because the full PC-relative |
| // load sequence is 3 instructions long and by promoting the PC base we save 2 instructions |
| // per use. |
| int p_map_idx = SRegToPMap(pc_rel_temp_->s_reg_low); |
| if (core_counts[p_map_idx].count == 1) { |
| core_counts[p_map_idx].count = 0; |
| } else { |
| core_counts[p_map_idx].count *= 2; |
| } |
| } |
| } |
| |
| void X86Mir2Lir::DoPromotion() { |
| if (!cu_->target64) { |
| pc_rel_temp_ = mir_graph_->GetNewCompilerTemp(kCompilerTempBackend, false); |
| } |
| |
| Mir2Lir::DoPromotion(); |
| |
| if (pc_rel_temp_ != nullptr) { |
| // Now, if the dex cache array base temp is promoted, remember the register but |
| // always remove the temp's stack location to avoid unnecessarily bloating the stack. |
| pc_rel_base_reg_ = mir_graph_->reg_location_[pc_rel_temp_->s_reg_low].reg; |
| DCHECK(!pc_rel_base_reg_.Valid() || !pc_rel_base_reg_.IsFloat()); |
| mir_graph_->RemoveLastCompilerTemp(kCompilerTempBackend, false, pc_rel_temp_); |
| pc_rel_temp_ = nullptr; |
| } |
| } |
| |
| } // namespace art |