blob: de66c1e4e9d685ad87f80ed85e5ea98eb7d8a06b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_to_dex_compiler.h"
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/logging.h" // For VLOG
#include "base/macros.h"
#include "base/mutex.h"
#include "compiled_method.h"
#include "dex/bytecode_utils.h"
#include "dex/class_accessor-inl.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_instruction-inl.h"
#include "dex_to_dex_decompiler.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "mirror/dex_cache.h"
#include "quicken_info.h"
#include "thread-current-inl.h"
namespace art {
namespace optimizer {
using android::base::StringPrintf;
// Controls quickening activation.
const bool kEnableQuickening = true;
// Control check-cast elision.
const bool kEnableCheckCastEllision = true;
// Holds the state for compiling a single method.
struct DexToDexCompiler::CompilationState {
struct QuickenedInfo {
QuickenedInfo(uint32_t pc, uint16_t index) : dex_pc(pc), dex_member_index(index) {}
uint32_t dex_pc;
uint16_t dex_member_index;
};
CompilationState(DexToDexCompiler* compiler,
const DexCompilationUnit& unit,
const CompilationLevel compilation_level,
const std::vector<uint8_t>* quicken_data);
const std::vector<QuickenedInfo>& GetQuickenedInfo() const {
return quickened_info_;
}
// Returns the quickening info, or an empty array if it was not quickened.
// If already_quickened is true, then don't change anything but still return what the quicken
// data would have been.
std::vector<uint8_t> Compile();
const DexFile& GetDexFile() const;
// Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where
// a barrier is required.
void CompileReturnVoid(Instruction* inst, uint32_t dex_pc);
// Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In
// this case, returns the second NOP instruction pointer. Otherwise, returns
// the given "inst".
Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc);
// Compiles a field access into a quick field access.
// The field index is replaced by an offset within an Object where we can read
// from / write to this field. Therefore, this does not involve any resolution
// at runtime.
// Since the field index is encoded with 16 bits, we can replace it only if the
// field offset can be encoded with 16 bits too.
void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc,
Instruction::Code new_opcode, bool is_put);
// Compiles a virtual method invocation into a quick virtual method invocation.
// The method index is replaced by the vtable index where the corresponding
// executable can be found. Therefore, this does not involve any resolution
// at runtime.
// Since the method index is encoded with 16 bits, we can replace it only if the
// vtable index can be encoded with 16 bits too.
void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc,
Instruction::Code new_opcode, bool is_range);
// Return the next index.
uint16_t NextIndex();
// Returns the dequickened index if an instruction is quickened, otherwise return index.
uint16_t GetIndexForInstruction(const Instruction* inst, uint32_t index);
DexToDexCompiler* const compiler_;
CompilerDriver& driver_;
const DexCompilationUnit& unit_;
const CompilationLevel compilation_level_;
// Filled by the compiler when quickening, in order to encode that information
// in the .oat file. The runtime will use that information to get to the original
// opcodes.
std::vector<QuickenedInfo> quickened_info_;
// True if we optimized a return void to a return void no barrier.
bool optimized_return_void_ = false;
// If the code item was already quickened previously.
const bool already_quickened_;
const QuickenInfoTable existing_quicken_info_;
uint32_t quicken_index_ = 0u;
DISALLOW_COPY_AND_ASSIGN(CompilationState);
};
DexToDexCompiler::DexToDexCompiler(CompilerDriver* driver)
: driver_(driver),
lock_("Quicken lock", kDexToDexCompilerLock) {
DCHECK(driver != nullptr);
}
void DexToDexCompiler::ClearState() {
MutexLock lock(Thread::Current(), lock_);
active_dex_file_ = nullptr;
active_bit_vector_ = nullptr;
should_quicken_.clear();
shared_code_item_quicken_info_.clear();
}
size_t DexToDexCompiler::NumCodeItemsToQuicken(Thread* self) const {
MutexLock lock(self, lock_);
return num_code_items_;
}
BitVector* DexToDexCompiler::GetOrAddBitVectorForDex(const DexFile* dex_file) {
if (active_dex_file_ != dex_file) {
active_dex_file_ = dex_file;
auto inserted = should_quicken_.emplace(dex_file,
BitVector(dex_file->NumMethodIds(),
/*expandable*/ false,
Allocator::GetMallocAllocator()));
active_bit_vector_ = &inserted.first->second;
}
return active_bit_vector_;
}
void DexToDexCompiler::MarkForCompilation(Thread* self,
const MethodReference& method_ref) {
MutexLock lock(self, lock_);
BitVector* const bitmap = GetOrAddBitVectorForDex(method_ref.dex_file);
DCHECK(bitmap != nullptr);
DCHECK(!bitmap->IsBitSet(method_ref.index));
bitmap->SetBit(method_ref.index);
++num_code_items_;
}
DexToDexCompiler::CompilationState::CompilationState(DexToDexCompiler* compiler,
const DexCompilationUnit& unit,
const CompilationLevel compilation_level,
const std::vector<uint8_t>* quicken_data)
: compiler_(compiler),
driver_(*compiler->GetDriver()),
unit_(unit),
compilation_level_(compilation_level),
already_quickened_(quicken_data != nullptr),
existing_quicken_info_(already_quickened_
? ArrayRef<const uint8_t>(*quicken_data) : ArrayRef<const uint8_t>()) {}
uint16_t DexToDexCompiler::CompilationState::NextIndex() {
DCHECK(already_quickened_);
if (kIsDebugBuild && quicken_index_ >= existing_quicken_info_.NumIndices()) {
for (const DexInstructionPcPair& pair : unit_.GetCodeItemAccessor()) {
LOG(ERROR) << pair->DumpString(nullptr);
}
LOG(FATAL) << "Mismatched number of quicken slots.";
}
const uint16_t ret = existing_quicken_info_.GetData(quicken_index_);
quicken_index_++;
return ret;
}
uint16_t DexToDexCompiler::CompilationState::GetIndexForInstruction(const Instruction* inst,
uint32_t index) {
if (UNLIKELY(already_quickened_)) {
return inst->IsQuickened() ? NextIndex() : index;
}
DCHECK(!inst->IsQuickened());
return index;
}
bool DexToDexCompiler::ShouldCompileMethod(const MethodReference& ref) {
// TODO: It's probably safe to avoid the lock here if the active_dex_file_ matches since we only
// only call ShouldCompileMethod on one dex at a time.
MutexLock lock(Thread::Current(), lock_);
return GetOrAddBitVectorForDex(ref.dex_file)->IsBitSet(ref.index);
}
std::vector<uint8_t> DexToDexCompiler::CompilationState::Compile() {
DCHECK_EQ(compilation_level_, CompilationLevel::kOptimize);
const CodeItemDataAccessor& instructions = unit_.GetCodeItemAccessor();
for (DexInstructionIterator it = instructions.begin(); it != instructions.end(); ++it) {
const uint32_t dex_pc = it.DexPc();
Instruction* inst = const_cast<Instruction*>(&it.Inst());
if (!already_quickened_) {
DCHECK(!inst->IsQuickened());
}
switch (inst->Opcode()) {
case Instruction::RETURN_VOID:
CompileReturnVoid(inst, dex_pc);
break;
case Instruction::CHECK_CAST:
inst = CompileCheckCast(inst, dex_pc);
if (inst->Opcode() == Instruction::NOP) {
// We turned the CHECK_CAST into two NOPs, avoid visiting the second NOP twice since this
// would add 2 quickening info entries.
++it;
}
break;
case Instruction::IGET:
case Instruction::IGET_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false);
break;
case Instruction::IGET_WIDE:
case Instruction::IGET_WIDE_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false);
break;
case Instruction::IGET_OBJECT:
case Instruction::IGET_OBJECT_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false);
break;
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BOOLEAN_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BOOLEAN_QUICK, false);
break;
case Instruction::IGET_BYTE:
case Instruction::IGET_BYTE_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BYTE_QUICK, false);
break;
case Instruction::IGET_CHAR:
case Instruction::IGET_CHAR_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_CHAR_QUICK, false);
break;
case Instruction::IGET_SHORT:
case Instruction::IGET_SHORT_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_SHORT_QUICK, false);
break;
case Instruction::IPUT:
case Instruction::IPUT_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true);
break;
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BOOLEAN_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BOOLEAN_QUICK, true);
break;
case Instruction::IPUT_BYTE:
case Instruction::IPUT_BYTE_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BYTE_QUICK, true);
break;
case Instruction::IPUT_CHAR:
case Instruction::IPUT_CHAR_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_CHAR_QUICK, true);
break;
case Instruction::IPUT_SHORT:
case Instruction::IPUT_SHORT_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_SHORT_QUICK, true);
break;
case Instruction::IPUT_WIDE:
case Instruction::IPUT_WIDE_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true);
break;
case Instruction::IPUT_OBJECT:
case Instruction::IPUT_OBJECT_QUICK:
CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true);
break;
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_VIRTUAL_QUICK:
CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false);
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true);
break;
case Instruction::NOP:
if (already_quickened_) {
const uint16_t reference_index = NextIndex();
quickened_info_.push_back(QuickenedInfo(dex_pc, reference_index));
if (reference_index == DexFile::kDexNoIndex16) {
// This means it was a normal nop and not a check-cast.
break;
}
const uint16_t type_index = NextIndex();
if (driver_.IsSafeCast(&unit_, dex_pc)) {
quickened_info_.push_back(QuickenedInfo(dex_pc, type_index));
}
++it;
} else {
// We need to differentiate between check cast inserted NOP and normal NOP, put an invalid
// index in the map for normal nops. This should be rare in real code.
quickened_info_.push_back(QuickenedInfo(dex_pc, DexFile::kDexNoIndex16));
}
break;
default:
// Nothing to do.
break;
}
}
if (already_quickened_) {
DCHECK_EQ(quicken_index_, existing_quicken_info_.NumIndices());
}
// Even if there are no indices, generate an empty quicken info so that we know the method was
// quickened.
std::vector<uint8_t> quicken_data;
if (kIsDebugBuild) {
// Double check that the counts line up with the size of the quicken info.
size_t quicken_count = 0;
for (const DexInstructionPcPair& pair : instructions) {
if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) {
++quicken_count;
}
}
CHECK_EQ(quicken_count, GetQuickenedInfo().size());
}
QuickenInfoTable::Builder builder(&quicken_data, GetQuickenedInfo().size());
// Length is encoded by the constructor.
for (const CompilationState::QuickenedInfo& info : GetQuickenedInfo()) {
// Dex pc is not serialized, only used for checking the instructions. Since we access the
// array based on the index of the quickened instruction, the indexes must line up perfectly.
// The reader side uses the NeedsIndexForInstruction function too.
const Instruction& inst = instructions.InstructionAt(info.dex_pc);
CHECK(QuickenInfoTable::NeedsIndexForInstruction(&inst)) << inst.Opcode();
builder.AddIndex(info.dex_member_index);
}
DCHECK(!quicken_data.empty());
return quicken_data;
}
void DexToDexCompiler::CompilationState::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) {
DCHECK_EQ(inst->Opcode(), Instruction::RETURN_VOID);
if (unit_.IsConstructor()) {
// Are we compiling a non clinit constructor which needs a barrier ?
if (!unit_.IsStatic() && unit_.RequiresConstructorBarrier()) {
return;
}
}
// Replace RETURN_VOID by RETURN_VOID_NO_BARRIER.
VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode())
<< " by " << Instruction::Name(Instruction::RETURN_VOID_NO_BARRIER)
<< " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
<< GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true);
inst->SetOpcode(Instruction::RETURN_VOID_NO_BARRIER);
optimized_return_void_ = true;
}
Instruction* DexToDexCompiler::CompilationState::CompileCheckCast(Instruction* inst,
uint32_t dex_pc) {
if (!kEnableCheckCastEllision) {
return inst;
}
if (!driver_.IsSafeCast(&unit_, dex_pc)) {
return inst;
}
// Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code
// units and a "nop" instruction size is 1 code unit, we need to replace it by
// 2 consecutive NOP instructions.
// Because the caller loops over instructions by calling Instruction::Next onto
// the current instruction, we need to return the 2nd NOP instruction. Indeed,
// its next instruction is the former check-cast's next instruction.
VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode())
<< " by replacing it with 2 NOPs at dex pc "
<< StringPrintf("0x%x", dex_pc) << " in method "
<< GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true);
if (!already_quickened_) {
quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegA_21c()));
quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegB_21c()));
// We are modifying 4 consecutive bytes.
inst->SetOpcode(Instruction::NOP);
inst->SetVRegA_10x(0u); // keep compliant with verifier.
// Get to next instruction which is the second half of check-cast and replace
// it by a NOP.
inst = const_cast<Instruction*>(inst->Next());
inst->SetOpcode(Instruction::NOP);
inst->SetVRegA_10x(0u); // keep compliant with verifier.
}
return inst;
}
void DexToDexCompiler::CompilationState::CompileInstanceFieldAccess(Instruction* inst,
uint32_t dex_pc,
Instruction::Code new_opcode,
bool is_put) {
if (!kEnableQuickening) {
return;
}
uint32_t field_idx = GetIndexForInstruction(inst, inst->VRegC_22c());
MemberOffset field_offset(0u);
bool is_volatile;
bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, is_put,
&field_offset, &is_volatile);
if (fast_path && !is_volatile && IsUint<16>(field_offset.Int32Value())) {
VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
<< " to " << Instruction::Name(new_opcode)
<< " by replacing field index " << field_idx
<< " by field offset " << field_offset.Int32Value()
<< " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
<< GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true);
if (!already_quickened_) {
// We are modifying 4 consecutive bytes.
inst->SetOpcode(new_opcode);
// Replace field index by field offset.
inst->SetVRegC_22c(static_cast<uint16_t>(field_offset.Int32Value()));
}
quickened_info_.push_back(QuickenedInfo(dex_pc, field_idx));
}
}
const DexFile& DexToDexCompiler::CompilationState::GetDexFile() const {
return *unit_.GetDexFile();
}
void DexToDexCompiler::CompilationState::CompileInvokeVirtual(Instruction* inst,
uint32_t dex_pc,
Instruction::Code new_opcode,
bool is_range) {
if (!kEnableQuickening) {
return;
}
uint32_t method_idx = GetIndexForInstruction(inst,
is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
ScopedObjectAccess soa(Thread::Current());
ClassLinker* class_linker = unit_.GetClassLinker();
ArtMethod* resolved_method =
class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
method_idx,
unit_.GetDexCache(),
unit_.GetClassLoader(),
/* referrer= */ nullptr,
kVirtual);
if (UNLIKELY(resolved_method == nullptr)) {
// Clean up any exception left by type resolution.
soa.Self()->ClearException();
return;
}
uint32_t vtable_idx = resolved_method->GetMethodIndex();
DCHECK(IsUint<16>(vtable_idx));
VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
<< "(" << GetDexFile().PrettyMethod(method_idx, true) << ")"
<< " to " << Instruction::Name(new_opcode)
<< " by replacing method index " << method_idx
<< " by vtable index " << vtable_idx
<< " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
<< GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true);
if (!already_quickened_) {
// We are modifying 4 consecutive bytes.
inst->SetOpcode(new_opcode);
// Replace method index by vtable index.
if (is_range) {
inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx));
} else {
inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx));
}
}
quickened_info_.push_back(QuickenedInfo(dex_pc, method_idx));
}
CompiledMethod* DexToDexCompiler::CompileMethod(
const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type ATTRIBUTE_UNUSED,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
CompilationLevel compilation_level) {
if (compilation_level == CompilationLevel::kDontDexToDexCompile) {
return nullptr;
}
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
art::DexCompilationUnit unit(
class_loader,
class_linker,
dex_file,
code_item,
class_def_idx,
method_idx,
access_flags,
driver_->GetCompilerOptions().GetVerifiedMethod(&dex_file, method_idx),
hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file)));
std::vector<uint8_t> quicken_data;
// If the code item is shared with multiple different method ids, make sure that we quicken only
// once and verify that all the dequicken maps match.
if (UNLIKELY(shared_code_items_.find(code_item) != shared_code_items_.end())) {
// Avoid quickening the shared code items for now because the existing conflict detection logic
// does not currently handle cases where the code item is quickened in one place but
// compiled in another.
static constexpr bool kAvoidQuickeningSharedCodeItems = true;
if (kAvoidQuickeningSharedCodeItems) {
return nullptr;
}
// For shared code items, use a lock to prevent races.
MutexLock mu(soa.Self(), lock_);
auto existing = shared_code_item_quicken_info_.find(code_item);
QuickenState* existing_data = nullptr;
std::vector<uint8_t>* existing_quicken_data = nullptr;
if (existing != shared_code_item_quicken_info_.end()) {
existing_data = &existing->second;
if (existing_data->conflict_) {
return nullptr;
}
existing_quicken_data = &existing_data->quicken_data_;
}
bool optimized_return_void;
{
CompilationState state(this, unit, compilation_level, existing_quicken_data);
quicken_data = state.Compile();
optimized_return_void = state.optimized_return_void_;
}
// Already quickened, check that the data matches what was previously seen.
MethodReference method_ref(&dex_file, method_idx);
if (existing_data != nullptr) {
if (*existing_quicken_data != quicken_data ||
existing_data->optimized_return_void_ != optimized_return_void) {
VLOG(compiler) << "Quicken data mismatch, for method "
<< dex_file.PrettyMethod(method_idx);
// Mark the method as a conflict to never attempt to quicken it in the future.
existing_data->conflict_ = true;
}
existing_data->methods_.push_back(method_ref);
} else {
QuickenState new_state;
new_state.methods_.push_back(method_ref);
new_state.quicken_data_ = quicken_data;
new_state.optimized_return_void_ = optimized_return_void;
bool inserted = shared_code_item_quicken_info_.emplace(code_item, new_state).second;
CHECK(inserted) << "Failed to insert " << dex_file.PrettyMethod(method_idx);
}
// Easy sanity check is to check that the existing stuff matches by re-quickening using the
// newly produced quicken data.
// Note that this needs to be behind the lock for this case since we may unquicken in another
// thread.
if (kIsDebugBuild) {
CompilationState state2(this, unit, compilation_level, &quicken_data);
std::vector<uint8_t> new_data = state2.Compile();
CHECK(new_data == quicken_data) << "Mismatch producing new quicken data";
}
} else {
CompilationState state(this, unit, compilation_level, /*quicken_data*/ nullptr);
quicken_data = state.Compile();
// Easy sanity check is to check that the existing stuff matches by re-quickening using the
// newly produced quicken data.
if (kIsDebugBuild) {
CompilationState state2(this, unit, compilation_level, &quicken_data);
std::vector<uint8_t> new_data = state2.Compile();
CHECK(new_data == quicken_data) << "Mismatch producing new quicken data";
}
}
if (quicken_data.empty()) {
return nullptr;
}
// Create a `CompiledMethod`, with the quickened information in the vmap table.
InstructionSet instruction_set = driver_->GetCompilerOptions().GetInstructionSet();
if (instruction_set == InstructionSet::kThumb2) {
// Don't use the thumb2 instruction set to avoid the one off code delta.
instruction_set = InstructionSet::kArm;
}
CompiledMethod* ret = CompiledMethod::SwapAllocCompiledMethod(
driver_->GetCompiledMethodStorage(),
instruction_set,
ArrayRef<const uint8_t>(), // no code
ArrayRef<const uint8_t>(quicken_data), // vmap_table
ArrayRef<const uint8_t>(), // cfi data
ArrayRef<const linker::LinkerPatch>());
DCHECK(ret != nullptr);
return ret;
}
void DexToDexCompiler::SetDexFiles(const std::vector<const DexFile*>& dex_files) {
// Record what code items are already seen to detect when multiple methods have the same code
// item.
std::unordered_set<const dex::CodeItem*> seen_code_items;
for (const DexFile* dex_file : dex_files) {
for (ClassAccessor accessor : dex_file->GetClasses()) {
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
const dex::CodeItem* code_item = method.GetCodeItem();
// Detect the shared code items.
if (!seen_code_items.insert(code_item).second) {
shared_code_items_.insert(code_item);
}
}
}
}
VLOG(compiler) << "Shared code items " << shared_code_items_.size();
}
void DexToDexCompiler::UnquickenConflictingMethods() {
MutexLock mu(Thread::Current(), lock_);
size_t unquicken_count = 0;
for (const auto& pair : shared_code_item_quicken_info_) {
const dex::CodeItem* code_item = pair.first;
const QuickenState& state = pair.second;
CHECK_GE(state.methods_.size(), 1u);
if (state.conflict_) {
// Unquicken using the existing quicken data.
// TODO: Do we really need to pass a dex file in?
optimizer::ArtDecompileDEX(*state.methods_[0].dex_file,
*code_item,
ArrayRef<const uint8_t>(state.quicken_data_),
/* decompile_return_instruction*/ true);
++unquicken_count;
// Go clear the vmaps for all the methods that were already quickened to avoid writing them
// out during oat writing.
for (const MethodReference& ref : state.methods_) {
CompiledMethod* method = driver_->RemoveCompiledMethod(ref);
if (method != nullptr) {
// There is up to one compiled method for each method ref. Releasing it leaves the
// deduped data intact, this means its safe to do even when other threads might be
// compiling.
CompiledMethod::ReleaseSwapAllocatedCompiledMethod(driver_->GetCompiledMethodStorage(),
method);
}
}
}
}
}
} // namespace optimizer
} // namespace art