blob: 78e00fdbde3eda78c962825a8a1c20858acd4d52 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime.h"
// sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
#include <sys/mount.h>
#ifdef __linux__
#include <linux/fs.h>
#include <sys/prctl.h>
#endif
#include <signal.h>
#include <sys/syscall.h>
#include "base/memory_tool.h"
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <memory_representation.h>
#include <vector>
#include <fcntl.h>
#include "JniConstants.h"
#include "ScopedLocalRef.h"
#include "arch/arm/quick_method_frame_info_arm.h"
#include "arch/arm/registers_arm.h"
#include "arch/arm64/quick_method_frame_info_arm64.h"
#include "arch/arm64/registers_arm64.h"
#include "arch/instruction_set_features.h"
#include "arch/mips/quick_method_frame_info_mips.h"
#include "arch/mips/registers_mips.h"
#include "arch/mips64/quick_method_frame_info_mips64.h"
#include "arch/mips64/registers_mips64.h"
#include "arch/x86/quick_method_frame_info_x86.h"
#include "arch/x86/registers_x86.h"
#include "arch/x86_64/quick_method_frame_info_x86_64.h"
#include "arch/x86_64/registers_x86_64.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "asm_support.h"
#include "atomic.h"
#include "base/arena_allocator.h"
#include "base/dumpable.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/unix_file/fd_file.h"
#include "class_linker-inl.h"
#include "compiler_callbacks.h"
#include "debugger.h"
#include "elf_file.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "experimental_flags.h"
#include "fault_handler.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/heap.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "handle_scope-inl.h"
#include "image-inl.h"
#include "instrumentation.h"
#include "intern_table.h"
#include "interpreter/interpreter.h"
#include "jit/jit.h"
#include "jni_internal.h"
#include "linear_alloc.h"
#include "lambda/box_table.h"
#include "mirror/array.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/field.h"
#include "mirror/method.h"
#include "mirror/stack_trace_element.h"
#include "mirror/throwable.h"
#include "monitor.h"
#include "native/dalvik_system_DexFile.h"
#include "native/dalvik_system_VMDebug.h"
#include "native/dalvik_system_VMRuntime.h"
#include "native/dalvik_system_VMStack.h"
#include "native/dalvik_system_ZygoteHooks.h"
#include "native/java_lang_Class.h"
#include "native/java_lang_DexCache.h"
#include "native/java_lang_Object.h"
#include "native/java_lang_String.h"
#include "native/java_lang_StringFactory.h"
#include "native/java_lang_System.h"
#include "native/java_lang_Thread.h"
#include "native/java_lang_Throwable.h"
#include "native/java_lang_VMClassLoader.h"
#include "native/java_lang_ref_FinalizerReference.h"
#include "native/java_lang_ref_Reference.h"
#include "native/java_lang_reflect_Array.h"
#include "native/java_lang_reflect_Constructor.h"
#include "native/java_lang_reflect_Field.h"
#include "native/java_lang_reflect_Method.h"
#include "native/java_lang_reflect_Proxy.h"
#include "native/java_util_concurrent_atomic_AtomicLong.h"
#include "native/libcore_util_CharsetUtils.h"
#include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
#include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
#include "native/sun_misc_Unsafe.h"
#include "native_bridge_art_interface.h"
#include "oat_file.h"
#include "oat_file_manager.h"
#include "os.h"
#include "parsed_options.h"
#include "profiler.h"
#include "jit/profile_saver.h"
#include "quick/quick_method_frame_info.h"
#include "reflection.h"
#include "runtime_options.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "sigchain.h"
#include "signal_catcher.h"
#include "signal_set.h"
#include "thread.h"
#include "thread_list.h"
#include "trace.h"
#include "transaction.h"
#include "utils.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
namespace art {
// If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
static constexpr bool kEnableJavaStackTraceHandler = false;
// Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
// linking.
static constexpr double kLowMemoryMinLoadFactor = 0.5;
static constexpr double kLowMemoryMaxLoadFactor = 0.8;
static constexpr double kNormalMinLoadFactor = 0.4;
static constexpr double kNormalMaxLoadFactor = 0.7;
Runtime* Runtime::instance_ = nullptr;
struct TraceConfig {
Trace::TraceMode trace_mode;
Trace::TraceOutputMode trace_output_mode;
std::string trace_file;
size_t trace_file_size;
};
Runtime::Runtime()
: resolution_method_(nullptr),
imt_conflict_method_(nullptr),
imt_unimplemented_method_(nullptr),
instruction_set_(kNone),
compiler_callbacks_(nullptr),
is_zygote_(false),
must_relocate_(false),
is_concurrent_gc_enabled_(true),
is_explicit_gc_disabled_(false),
dex2oat_enabled_(true),
image_dex2oat_enabled_(true),
default_stack_size_(0),
heap_(nullptr),
max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
monitor_list_(nullptr),
monitor_pool_(nullptr),
thread_list_(nullptr),
intern_table_(nullptr),
class_linker_(nullptr),
signal_catcher_(nullptr),
java_vm_(nullptr),
fault_message_lock_("Fault message lock"),
fault_message_(""),
threads_being_born_(0),
shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
shutting_down_(false),
shutting_down_started_(false),
started_(false),
finished_starting_(false),
vfprintf_(nullptr),
exit_(nullptr),
abort_(nullptr),
stats_enabled_(false),
is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
instrumentation_(),
main_thread_group_(nullptr),
system_thread_group_(nullptr),
system_class_loader_(nullptr),
dump_gc_performance_on_shutdown_(false),
preinitialization_transaction_(nullptr),
verify_(verifier::VerifyMode::kNone),
allow_dex_file_fallback_(true),
target_sdk_version_(0),
implicit_null_checks_(false),
implicit_so_checks_(false),
implicit_suspend_checks_(false),
no_sig_chain_(false),
is_native_bridge_loaded_(false),
is_native_debuggable_(false),
zygote_max_failed_boots_(0),
experimental_flags_(ExperimentalFlags::kNone),
oat_file_manager_(nullptr),
is_low_memory_mode_(false),
safe_mode_(false) {
CheckAsmSupportOffsetsAndSizes();
std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
interpreter::CheckInterpreterAsmConstants();
}
Runtime::~Runtime() {
ScopedTrace trace("Runtime shutdown");
if (is_native_bridge_loaded_) {
UnloadNativeBridge();
}
if (dump_gc_performance_on_shutdown_) {
// This can't be called from the Heap destructor below because it
// could call RosAlloc::InspectAll() which needs the thread_list
// to be still alive.
heap_->DumpGcPerformanceInfo(LOG(INFO));
}
Thread* self = Thread::Current();
const bool attach_shutdown_thread = self == nullptr;
if (attach_shutdown_thread) {
CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false));
self = Thread::Current();
} else {
LOG(WARNING) << "Current thread not detached in Runtime shutdown";
}
{
ScopedTrace trace2("Wait for shutdown cond");
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
shutting_down_started_ = true;
while (threads_being_born_ > 0) {
shutdown_cond_->Wait(self);
}
shutting_down_ = true;
}
// Shutdown and wait for the daemons.
CHECK(self != nullptr);
if (IsFinishedStarting()) {
ScopedTrace trace2("Waiting for Daemons");
self->ClearException();
self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
WellKnownClasses::java_lang_Daemons_stop);
}
Trace::Shutdown();
if (attach_shutdown_thread) {
DetachCurrentThread();
self = nullptr;
}
// Make sure to let the GC complete if it is running.
heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
heap_->DeleteThreadPool();
if (jit_ != nullptr) {
ScopedTrace trace2("Delete jit");
VLOG(jit) << "Deleting jit thread pool";
// Delete thread pool before the thread list since we don't want to wait forever on the
// JIT compiler threads.
jit_->DeleteThreadPool();
// Similarly, stop the profile saver thread before deleting the thread list.
jit_->StopProfileSaver();
}
// Make sure our internal threads are dead before we start tearing down things they're using.
Dbg::StopJdwp();
delete signal_catcher_;
// Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
{
ScopedTrace trace2("Delete thread list");
delete thread_list_;
}
// Delete the JIT after thread list to ensure that there is no remaining threads which could be
// accessing the instrumentation when we delete it.
if (jit_ != nullptr) {
VLOG(jit) << "Deleting jit";
jit_.reset(nullptr);
}
// Shutdown the fault manager if it was initialized.
fault_manager.Shutdown();
ScopedTrace trace2("Delete state");
delete monitor_list_;
delete monitor_pool_;
delete class_linker_;
delete heap_;
delete intern_table_;
delete java_vm_;
delete oat_file_manager_;
Thread::Shutdown();
QuasiAtomic::Shutdown();
verifier::MethodVerifier::Shutdown();
// Destroy allocators before shutting down the MemMap because they may use it.
linear_alloc_.reset();
low_4gb_arena_pool_.reset();
arena_pool_.reset();
jit_arena_pool_.reset();
MemMap::Shutdown();
// TODO: acquire a static mutex on Runtime to avoid racing.
CHECK(instance_ == nullptr || instance_ == this);
instance_ = nullptr;
}
struct AbortState {
void Dump(std::ostream& os) const {
if (gAborting > 1) {
os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
return;
}
gAborting++;
os << "Runtime aborting...\n";
if (Runtime::Current() == nullptr) {
os << "(Runtime does not yet exist!)\n";
DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
return;
}
Thread* self = Thread::Current();
if (self == nullptr) {
os << "(Aborting thread was not attached to runtime!)\n";
DumpKernelStack(os, GetTid(), " kernel: ", false);
DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
} else {
os << "Aborting thread:\n";
if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
DumpThread(os, self);
} else {
if (Locks::mutator_lock_->SharedTryLock(self)) {
DumpThread(os, self);
Locks::mutator_lock_->SharedUnlock(self);
}
}
}
DumpAllThreads(os, self);
}
// No thread-safety analysis as we do explicitly test for holding the mutator lock.
void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
self->Dump(os);
if (self->IsExceptionPending()) {
mirror::Throwable* exception = self->GetException();
os << "Pending exception " << exception->Dump();
}
}
void DumpAllThreads(std::ostream& os, Thread* self) const {
Runtime* runtime = Runtime::Current();
if (runtime != nullptr) {
ThreadList* thread_list = runtime->GetThreadList();
if (thread_list != nullptr) {
bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
if (!tll_already_held || !ml_already_held) {
os << "Dumping all threads without appropriate locks held:"
<< (!tll_already_held ? " thread list lock" : "")
<< (!ml_already_held ? " mutator lock" : "")
<< "\n";
}
os << "All threads:\n";
thread_list->Dump(os);
}
}
}
};
void Runtime::Abort() {
gAborting++; // set before taking any locks
// Ensure that we don't have multiple threads trying to abort at once,
// which would result in significantly worse diagnostics.
MutexLock mu(Thread::Current(), *Locks::abort_lock_);
// Get any pending output out of the way.
fflush(nullptr);
// Many people have difficulty distinguish aborts from crashes,
// so be explicit.
AbortState state;
LOG(INTERNAL_FATAL) << Dumpable<AbortState>(state);
// Call the abort hook if we have one.
if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
LOG(INTERNAL_FATAL) << "Calling abort hook...";
Runtime::Current()->abort_();
// notreached
LOG(INTERNAL_FATAL) << "Unexpectedly returned from abort hook!";
}
#if defined(__GLIBC__)
// TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
// which POSIX defines in terms of raise(3), which POSIX defines in terms
// of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
// libpthread, which means the stacks we dump would be useless. Calling
// tgkill(2) directly avoids that.
syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
// TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
// If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
exit(1);
#else
abort();
#endif
// notreached
}
void Runtime::PreZygoteFork() {
heap_->PreZygoteFork();
}
void Runtime::CallExitHook(jint status) {
if (exit_ != nullptr) {
ScopedThreadStateChange tsc(Thread::Current(), kNative);
exit_(status);
LOG(WARNING) << "Exit hook returned instead of exiting!";
}
}
void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
GetInternTable()->SweepInternTableWeaks(visitor);
GetMonitorList()->SweepMonitorList(visitor);
GetJavaVM()->SweepJniWeakGlobals(visitor);
GetHeap()->SweepAllocationRecords(visitor);
GetLambdaBoxTable()->SweepWeakBoxedLambdas(visitor);
}
bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
bool ignore_unrecognized,
RuntimeArgumentMap* runtime_options) {
InitLogging(/* argv */ nullptr); // Calls Locks::Init() as a side effect.
bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
if (!parsed) {
LOG(ERROR) << "Failed to parse options";
return false;
}
return true;
}
bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
// TODO: acquire a static mutex on Runtime to avoid racing.
if (Runtime::instance_ != nullptr) {
return false;
}
instance_ = new Runtime;
if (!instance_->Init(std::move(runtime_options))) {
// TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
// leak memory, instead. Fix the destructor. b/19100793.
// delete instance_;
instance_ = nullptr;
return false;
}
return true;
}
bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
RuntimeArgumentMap runtime_options;
return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
Create(std::move(runtime_options));
}
static jobject CreateSystemClassLoader(Runtime* runtime) {
if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
return nullptr;
}
ScopedObjectAccess soa(Thread::Current());
ClassLinker* cl = Runtime::Current()->GetClassLinker();
auto pointer_size = cl->GetImagePointerSize();
StackHandleScope<2> hs(soa.Self());
Handle<mirror::Class> class_loader_class(
hs.NewHandle(soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ClassLoader)));
CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
ArtMethod* getSystemClassLoader = class_loader_class->FindDirectMethod(
"getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
CHECK(getSystemClassLoader != nullptr);
JValue result = InvokeWithJValues(soa, nullptr, soa.EncodeMethod(getSystemClassLoader), nullptr);
JNIEnv* env = soa.Self()->GetJniEnv();
ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
CHECK(system_class_loader.get() != nullptr);
soa.Self()->SetClassLoaderOverride(system_class_loader.get());
Handle<mirror::Class> thread_class(
hs.NewHandle(soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread)));
CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
ArtField* contextClassLoader =
thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
CHECK(contextClassLoader != nullptr);
// We can't run in a transaction yet.
contextClassLoader->SetObject<false>(soa.Self()->GetPeer(),
soa.Decode<mirror::ClassLoader*>(system_class_loader.get()));
return env->NewGlobalRef(system_class_loader.get());
}
std::string Runtime::GetPatchoatExecutable() const {
if (!patchoat_executable_.empty()) {
return patchoat_executable_;
}
std::string patchoat_executable(GetAndroidRoot());
patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
return patchoat_executable;
}
std::string Runtime::GetCompilerExecutable() const {
if (!compiler_executable_.empty()) {
return compiler_executable_;
}
std::string compiler_executable(GetAndroidRoot());
compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
return compiler_executable;
}
bool Runtime::Start() {
VLOG(startup) << "Runtime::Start entering";
CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
// If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
// Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
#if defined(__linux__) && !defined(__ANDROID__) && defined(__x86_64__)
if (kIsDebugBuild) {
CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
}
#endif
// Restore main thread state to kNative as expected by native code.
Thread* self = Thread::Current();
self->TransitionFromRunnableToSuspended(kNative);
started_ = true;
// Use !IsAotCompiler so that we get test coverage, tests are never the zygote.
if (!IsAotCompiler()) {
ScopedObjectAccess soa(self);
{
ScopedTrace trace2("AddImageStringsToTable");
GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
}
{
ScopedTrace trace2("MoveImageClassesToClassTable");
GetClassLinker()->AddBootImageClassesToClassTable();
}
}
// If we are the zygote then we need to wait until after forking to create the code cache
// due to SELinux restrictions on r/w/x memory regions.
if (!IsZygote() && jit_options_->UseJIT()) {
CreateJit();
}
if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
ScopedObjectAccess soa(self);
StackHandleScope<1> hs(soa.Self());
auto klass(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
class_linker_->EnsureInitialized(soa.Self(), klass, true, true);
}
// InitNativeMethods needs to be after started_ so that the classes
// it touches will have methods linked to the oat file if necessary.
{
ScopedTrace trace2("InitNativeMethods");
InitNativeMethods();
}
// Initialize well known thread group values that may be accessed threads while attaching.
InitThreadGroups(self);
Thread::FinishStartup();
system_class_loader_ = CreateSystemClassLoader(this);
if (is_zygote_) {
if (!InitZygote()) {
return false;
}
} else {
if (is_native_bridge_loaded_) {
PreInitializeNativeBridge(".");
}
NativeBridgeAction action = force_native_bridge_
? NativeBridgeAction::kInitialize
: NativeBridgeAction::kUnload;
InitNonZygoteOrPostFork(self->GetJniEnv(),
/* is_system_server */ false,
action,
GetInstructionSetString(kRuntimeISA));
}
StartDaemonThreads();
{
ScopedObjectAccess soa(self);
self->GetJniEnv()->locals.AssertEmpty();
}
VLOG(startup) << "Runtime::Start exiting";
finished_starting_ = true;
if (profiler_options_.IsEnabled() && !profile_output_filename_.empty()) {
// User has asked for a profile using -Xenable-profiler.
// Create the profile file if it doesn't exist.
int fd = open(profile_output_filename_.c_str(), O_RDWR|O_CREAT|O_EXCL, 0660);
if (fd >= 0) {
close(fd);
} else if (errno != EEXIST) {
LOG(WARNING) << "Failed to access the profile file. Profiler disabled.";
}
}
if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
Trace::Start(trace_config_->trace_file.c_str(),
-1,
static_cast<int>(trace_config_->trace_file_size),
0,
trace_config_->trace_output_mode,
trace_config_->trace_mode,
0);
}
return true;
}
void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
DCHECK_GT(threads_being_born_, 0U);
threads_being_born_--;
if (shutting_down_started_ && threads_being_born_ == 0) {
shutdown_cond_->Broadcast(Thread::Current());
}
}
// Do zygote-mode-only initialization.
bool Runtime::InitZygote() {
#ifdef __linux__
// zygote goes into its own process group
setpgid(0, 0);
// See storage config details at http://source.android.com/tech/storage/
// Create private mount namespace shared by all children
if (unshare(CLONE_NEWNS) == -1) {
PLOG(ERROR) << "Failed to unshare()";
return false;
}
// Mark rootfs as being a slave so that changes from default
// namespace only flow into our children.
if (mount("rootfs", "/", nullptr, (MS_SLAVE | MS_REC), nullptr) == -1) {
PLOG(ERROR) << "Failed to mount() rootfs as MS_SLAVE";
return false;
}
// Create a staging tmpfs that is shared by our children; they will
// bind mount storage into their respective private namespaces, which
// are isolated from each other.
const char* target_base = getenv("EMULATED_STORAGE_TARGET");
if (target_base != nullptr) {
if (mount("tmpfs", target_base, "tmpfs", MS_NOSUID | MS_NODEV,
"uid=0,gid=1028,mode=0751") == -1) {
PLOG(ERROR) << "Failed to mount tmpfs to " << target_base;
return false;
}
}
return true;
#else
UNIMPLEMENTED(FATAL);
return false;
#endif
}
void Runtime::InitNonZygoteOrPostFork(
JNIEnv* env, bool is_system_server, NativeBridgeAction action, const char* isa) {
is_zygote_ = false;
if (is_native_bridge_loaded_) {
switch (action) {
case NativeBridgeAction::kUnload:
UnloadNativeBridge();
is_native_bridge_loaded_ = false;
break;
case NativeBridgeAction::kInitialize:
InitializeNativeBridge(env, isa);
break;
}
}
// Create the thread pools.
heap_->CreateThreadPool();
// Reset the gc performance data at zygote fork so that the GCs
// before fork aren't attributed to an app.
heap_->ResetGcPerformanceInfo();
if (!is_system_server && !safe_mode_ && jit_options_->UseJIT() && jit_.get() == nullptr) {
// Note that when running ART standalone (not zygote, nor zygote fork),
// the jit may have already been created.
CreateJit();
}
StartSignalCatcher();
// Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
// this will pause the runtime, so we probably want this to come last.
Dbg::StartJdwp();
}
void Runtime::StartSignalCatcher() {
if (!is_zygote_) {
signal_catcher_ = new SignalCatcher(stack_trace_file_);
}
}
bool Runtime::IsShuttingDown(Thread* self) {
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
return IsShuttingDownLocked();
}
bool Runtime::IsDebuggable() const {
const OatFile* oat_file = GetOatFileManager().GetPrimaryOatFile();
return oat_file != nullptr && oat_file->IsDebuggable();
}
void Runtime::StartDaemonThreads() {
ScopedTrace trace(__FUNCTION__);
VLOG(startup) << "Runtime::StartDaemonThreads entering";
Thread* self = Thread::Current();
// Must be in the kNative state for calling native methods.
CHECK_EQ(self->GetState(), kNative);
JNIEnv* env = self->GetJniEnv();
env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
WellKnownClasses::java_lang_Daemons_start);
if (env->ExceptionCheck()) {
env->ExceptionDescribe();
LOG(FATAL) << "Error starting java.lang.Daemons";
}
VLOG(startup) << "Runtime::StartDaemonThreads exiting";
}
// Attempts to open dex files from image(s). Given the image location, try to find the oat file
// and open it to get the stored dex file. If the image is the first for a multi-image boot
// classpath, go on and also open the other images.
static bool OpenDexFilesFromImage(const std::string& image_location,
std::vector<std::unique_ptr<const DexFile>>* dex_files,
size_t* failures) {
DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
// Use a work-list approach, so that we can easily reuse the opening code.
std::vector<std::string> image_locations;
image_locations.push_back(image_location);
for (size_t index = 0; index < image_locations.size(); ++index) {
std::string system_filename;
bool has_system = false;
std::string cache_filename_unused;
bool dalvik_cache_exists_unused;
bool has_cache_unused;
bool is_global_cache_unused;
bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
kRuntimeISA,
&system_filename,
&has_system,
&cache_filename_unused,
&dalvik_cache_exists_unused,
&has_cache_unused,
&is_global_cache_unused);
if (!found_image || !has_system) {
return false;
}
// We are falling back to non-executable use of the oat file because patching failed, presumably
// due to lack of space.
std::string oat_filename =
ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
std::string oat_location =
ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
// Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
// that here.
if (EndsWith(oat_location, ".jar")) {
oat_location.replace(oat_location.length() - 3, 3, "oat");
}
std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
if (file.get() == nullptr) {
return false;
}
std::string error_msg;
std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.release(),
false,
false,
/*low_4gb*/false,
&error_msg));
if (elf_file.get() == nullptr) {
return false;
}
std::unique_ptr<const OatFile> oat_file(
OatFile::OpenWithElfFile(elf_file.release(), oat_location, nullptr, &error_msg));
if (oat_file == nullptr) {
LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
return false;
}
for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
if (oat_dex_file == nullptr) {
*failures += 1;
continue;
}
std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
if (dex_file.get() == nullptr) {
*failures += 1;
} else {
dex_files->push_back(std::move(dex_file));
}
}
if (index == 0) {
// First file. See if this is a multi-image environment, and if so, enqueue the other images.
const OatHeader& boot_oat_header = oat_file->GetOatHeader();
const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPath);
if (boot_cp != nullptr) {
gc::space::ImageSpace::CreateMultiImageLocations(image_locations[0],
boot_cp,
&image_locations);
}
}
Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
}
return true;
}
static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
const std::vector<std::string>& dex_locations,
const std::string& image_location,
std::vector<std::unique_ptr<const DexFile>>* dex_files) {
DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
size_t failure_count = 0;
if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
return failure_count;
}
failure_count = 0;
for (size_t i = 0; i < dex_filenames.size(); i++) {
const char* dex_filename = dex_filenames[i].c_str();
const char* dex_location = dex_locations[i].c_str();
std::string error_msg;
if (!OS::FileExists(dex_filename)) {
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
continue;
}
if (!DexFile::Open(dex_filename, dex_location, &error_msg, dex_files)) {
LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
++failure_count;
}
}
return failure_count;
}
void Runtime::SetSentinel(mirror::Object* sentinel) {
CHECK(sentinel_.Read() == nullptr);
CHECK(sentinel != nullptr);
CHECK(!heap_->IsMovableObject(sentinel));
sentinel_ = GcRoot<mirror::Object>(sentinel);
}
bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
RuntimeArgumentMap runtime_options(std::move(runtime_options_in));
ScopedTrace trace(__FUNCTION__);
CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
MemMap::Init();
using Opt = RuntimeArgumentMap;
VLOG(startup) << "Runtime::Init -verbose:startup enabled";
QuasiAtomic::Startup();
oat_file_manager_ = new OatFileManager;
Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
is_zygote_ = runtime_options.Exists(Opt::Zygote);
is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
exit_ = runtime_options.GetOrDefault(Opt::HookExit);
abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
image_location_ = runtime_options.GetOrDefault(Opt::Image);
max_spins_before_thin_lock_inflation_ =
runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
monitor_list_ = new MonitorList;
monitor_pool_ = MonitorPool::Create();
thread_list_ = new ThreadList;
intern_table_ = new InternTable;
verify_ = runtime_options.GetOrDefault(Opt::Verify);
allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
if (runtime_options.GetOrDefault(Opt::Interpret)) {
GetInstrumentation()->ForceInterpretOnly();
}
zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
runtime_options.GetOrDefault(Opt::HeapMinFree),
runtime_options.GetOrDefault(Opt::HeapMaxFree),
runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier),
runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
runtime_options.GetOrDefault(Opt::Image),
runtime_options.GetOrDefault(Opt::ImageInstructionSet),
xgc_option.collector_type_,
runtime_options.GetOrDefault(Opt::BackgroundGc),
runtime_options.GetOrDefault(Opt::LargeObjectSpace),
runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
runtime_options.GetOrDefault(Opt::ParallelGCThreads),
runtime_options.GetOrDefault(Opt::ConcGCThreads),
runtime_options.Exists(Opt::LowMemoryMode),
runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
runtime_options.Exists(Opt::IgnoreMaxFootprint),
runtime_options.GetOrDefault(Opt::UseTLAB),
xgc_option.verify_pre_gc_heap_,
xgc_option.verify_pre_sweeping_heap_,
xgc_option.verify_post_gc_heap_,
xgc_option.verify_pre_gc_rosalloc_,
xgc_option.verify_pre_sweeping_rosalloc_,
xgc_option.verify_post_gc_rosalloc_,
xgc_option.gcstress_,
runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
return false;
}
dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
if (runtime_options.Exists(Opt::JdwpOptions)) {
Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions));
}
jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
if (IsAotCompiler()) {
// If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
// this case.
// If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
// null and we don't create the jit.
jit_options_->SetUseJIT(false);
}
// Allocate a global table of boxed lambda objects <-> closures.
lambda_box_table_ = MakeUnique<lambda::BoxTable>();
// Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
// can't be trimmed as easily.
const bool use_malloc = IsAotCompiler();
arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
jit_arena_pool_.reset(
new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
// 4gb, no malloc. Explanation in header.
low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
}
linear_alloc_.reset(CreateLinearAlloc());
BlockSignals();
InitPlatformSignalHandlers();
// Change the implicit checks flags based on runtime architecture.
switch (kRuntimeISA) {
case kArm:
case kThumb2:
case kX86:
case kArm64:
case kX86_64:
case kMips:
case kMips64:
implicit_null_checks_ = true;
// Installing stack protection does not play well with valgrind.
implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
break;
default:
// Keep the defaults.
break;
}
if (!no_sig_chain_) {
// Dex2Oat's Runtime does not need the signal chain or the fault handler.
// Initialize the signal chain so that any calls to sigaction get
// correctly routed to the next in the chain regardless of whether we
// have claimed the signal or not.
InitializeSignalChain();
if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
fault_manager.Init();
// These need to be in a specific order. The null point check handler must be
// after the suspend check and stack overflow check handlers.
//
// Note: the instances attach themselves to the fault manager and are handled by it. The manager
// will delete the instance on Shutdown().
if (implicit_suspend_checks_) {
new SuspensionHandler(&fault_manager);
}
if (implicit_so_checks_) {
new StackOverflowHandler(&fault_manager);
}
if (implicit_null_checks_) {
new NullPointerHandler(&fault_manager);
}
if (kEnableJavaStackTraceHandler) {
new JavaStackTraceHandler(&fault_manager);
}
}
}
java_vm_ = new JavaVMExt(this, runtime_options);
Thread::Startup();
// ClassLinker needs an attached thread, but we can't fully attach a thread without creating
// objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
// thread, we do not get a java peer.
Thread* self = Thread::Attach("main", false, nullptr, false);
CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
CHECK(self != nullptr);
// Set us to runnable so tools using a runtime can allocate and GC by default
self->TransitionFromSuspendedToRunnable();
// Now we're attached, we can take the heap locks and validate the heap.
GetHeap()->EnableObjectValidation();
CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
class_linker_ = new ClassLinker(intern_table_);
if (GetHeap()->HasBootImageSpace()) {
std::string error_msg;
bool result = class_linker_->InitFromBootImage(&error_msg);
if (!result) {
LOG(ERROR) << "Could not initialize from image: " << error_msg;
return false;
}
if (kIsDebugBuild) {
for (auto image_space : GetHeap()->GetBootImageSpaces()) {
image_space->VerifyImageAllocations();
}
}
if (boot_class_path_string_.empty()) {
// The bootclasspath is not explicitly specified: construct it from the loaded dex files.
const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
std::vector<std::string> dex_locations;
dex_locations.reserve(boot_class_path.size());
for (const DexFile* dex_file : boot_class_path) {
dex_locations.push_back(dex_file->GetLocation());
}
boot_class_path_string_ = Join(dex_locations, ':');
}
} else {
std::vector<std::string> dex_filenames;
Split(boot_class_path_string_, ':', &dex_filenames);
std::vector<std::string> dex_locations;
if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
dex_locations = dex_filenames;
} else {
dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
CHECK_EQ(dex_filenames.size(), dex_locations.size());
}
std::vector<std::unique_ptr<const DexFile>> boot_class_path;
if (runtime_options.Exists(Opt::BootClassPathDexList)) {
boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
} else {
OpenDexFiles(dex_filenames,
dex_locations,
runtime_options.GetOrDefault(Opt::Image),
&boot_class_path);
}
instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
std::string error_msg;
if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
LOG(ERROR) << "Could not initialize without image: " << error_msg;
return false;
}
// TODO: Should we move the following to InitWithoutImage?
SetInstructionSet(instruction_set_);
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
if (!HasCalleeSaveMethod(type)) {
SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
}
}
}
CHECK(class_linker_ != nullptr);
verifier::MethodVerifier::Init();
if (runtime_options.Exists(Opt::MethodTrace)) {
trace_config_.reset(new TraceConfig());
trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
Trace::TraceOutputMode::kStreaming :
Trace::TraceOutputMode::kFile;
}
{
auto&& profiler_options = runtime_options.ReleaseOrDefault(Opt::ProfilerOpts);
profile_output_filename_ = profiler_options.output_file_name_;
// TODO: Don't do this, just change ProfilerOptions to include the output file name?
ProfilerOptions other_options(
profiler_options.enabled_,
profiler_options.period_s_,
profiler_options.duration_s_,
profiler_options.interval_us_,
profiler_options.backoff_coefficient_,
profiler_options.start_immediately_,
profiler_options.top_k_threshold_,
profiler_options.top_k_change_threshold_,
profiler_options.profile_type_,
profiler_options.max_stack_depth_);
profiler_options_ = other_options;
}
// TODO: move this to just be an Trace::Start argument
Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
// Pre-allocate an OutOfMemoryError for the double-OOME case.
self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
"OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
"no stack trace available");
pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
self->ClearException();
// Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
// ahead of checking the application's class loader.
self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
"Class not found using the boot class loader; no stack trace available");
pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
self->ClearException();
// Look for a native bridge.
//
// The intended flow here is, in the case of a running system:
//
// Runtime::Init() (zygote):
// LoadNativeBridge -> dlopen from cmd line parameter.
// |
// V
// Runtime::Start() (zygote):
// No-op wrt native bridge.
// |
// | start app
// V
// DidForkFromZygote(action)
// action = kUnload -> dlclose native bridge.
// action = kInitialize -> initialize library
//
//
// The intended flow here is, in the case of a simple dalvikvm call:
//
// Runtime::Init():
// LoadNativeBridge -> dlopen from cmd line parameter.
// |
// V
// Runtime::Start():
// DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
// No-op wrt native bridge.
{
std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
}
VLOG(startup) << "Runtime::Init exiting";
return true;
}
void Runtime::InitNativeMethods() {
VLOG(startup) << "Runtime::InitNativeMethods entering";
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
// Must be in the kNative state for calling native methods (JNI_OnLoad code).
CHECK_EQ(self->GetState(), kNative);
// First set up JniConstants, which is used by both the runtime's built-in native
// methods and libcore.
JniConstants::init(env);
// Then set up the native methods provided by the runtime itself.
RegisterRuntimeNativeMethods(env);
// Initialize classes used in JNI. The initialization requires runtime native
// methods to be loaded first.
WellKnownClasses::Init(env);
// Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
// a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
// libcore can't because it's the library that implements System.loadLibrary!
{
std::string error_msg;
if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, nullptr, &error_msg)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
}
}
{
constexpr const char* kOpenJdkLibrary = kIsDebugBuild
? "libopenjdkd.so"
: "libopenjdk.so";
std::string error_msg;
if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, nullptr, &error_msg)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
}
}
// Initialize well known classes that may invoke runtime native methods.
WellKnownClasses::LateInit(env);
VLOG(startup) << "Runtime::InitNativeMethods exiting";
}
void Runtime::ReclaimArenaPoolMemory() {
arena_pool_->LockReclaimMemory();
}
void Runtime::InitThreadGroups(Thread* self) {
JNIEnvExt* env = self->GetJniEnv();
ScopedJniEnvLocalRefState env_state(env);
main_thread_group_ =
env->NewGlobalRef(env->GetStaticObjectField(
WellKnownClasses::java_lang_ThreadGroup,
WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
CHECK(main_thread_group_ != nullptr || IsAotCompiler());
system_thread_group_ =
env->NewGlobalRef(env->GetStaticObjectField(
WellKnownClasses::java_lang_ThreadGroup,
WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
CHECK(system_thread_group_ != nullptr || IsAotCompiler());
}
jobject Runtime::GetMainThreadGroup() const {
CHECK(main_thread_group_ != nullptr || IsAotCompiler());
return main_thread_group_;
}
jobject Runtime::GetSystemThreadGroup() const {
CHECK(system_thread_group_ != nullptr || IsAotCompiler());
return system_thread_group_;
}
jobject Runtime::GetSystemClassLoader() const {
CHECK(system_class_loader_ != nullptr || IsAotCompiler());
return system_class_loader_;
}
void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
register_dalvik_system_DexFile(env);
register_dalvik_system_VMDebug(env);
register_dalvik_system_VMRuntime(env);
register_dalvik_system_VMStack(env);
register_dalvik_system_ZygoteHooks(env);
register_java_lang_Class(env);
register_java_lang_DexCache(env);
register_java_lang_Object(env);
register_java_lang_ref_FinalizerReference(env);
register_java_lang_reflect_Array(env);
register_java_lang_reflect_Constructor(env);
register_java_lang_reflect_Field(env);
register_java_lang_reflect_Method(env);
register_java_lang_reflect_Proxy(env);
register_java_lang_ref_Reference(env);
register_java_lang_String(env);
register_java_lang_StringFactory(env);
register_java_lang_System(env);
register_java_lang_Thread(env);
register_java_lang_Throwable(env);
register_java_lang_VMClassLoader(env);
register_java_util_concurrent_atomic_AtomicLong(env);
register_libcore_util_CharsetUtils(env);
register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
register_sun_misc_Unsafe(env);
}
void Runtime::DumpForSigQuit(std::ostream& os) {
// Dumping for SIGQIT may cause deadlocks if the the debugger is active. b/26118154
if (Dbg::IsDebuggerActive()) {
LOG(INFO) << "Skipping DumpForSigQuit due to active debugger";
return;
}
GetClassLinker()->DumpForSigQuit(os);
GetInternTable()->DumpForSigQuit(os);
GetJavaVM()->DumpForSigQuit(os);
GetHeap()->DumpForSigQuit(os);
if (GetJit() != nullptr) {
GetJit()->DumpForSigQuit(os);
} else {
os << "Running non JIT\n";
}
TrackedAllocators::Dump(os);
os << "\n";
thread_list_->DumpForSigQuit(os);
BaseMutex::DumpAll(os);
}
void Runtime::DumpLockHolders(std::ostream& os) {
uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
<< "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
<< "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
<< "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
}
}
void Runtime::SetStatsEnabled(bool new_state) {
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
if (new_state == true) {
GetStats()->Clear(~0);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
self->GetStats()->Clear(~0);
if (stats_enabled_ != new_state) {
GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
}
} else if (stats_enabled_ != new_state) {
GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
}
stats_enabled_ = new_state;
}
void Runtime::ResetStats(int kinds) {
GetStats()->Clear(kinds & 0xffff);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
Thread::Current()->GetStats()->Clear(kinds >> 16);
}
int32_t Runtime::GetStat(int kind) {
RuntimeStats* stats;
if (kind < (1<<16)) {
stats = GetStats();
} else {
stats = Thread::Current()->GetStats();
kind >>= 16;
}
switch (kind) {
case KIND_ALLOCATED_OBJECTS:
return stats->allocated_objects;
case KIND_ALLOCATED_BYTES:
return stats->allocated_bytes;
case KIND_FREED_OBJECTS:
return stats->freed_objects;
case KIND_FREED_BYTES:
return stats->freed_bytes;
case KIND_GC_INVOCATIONS:
return stats->gc_for_alloc_count;
case KIND_CLASS_INIT_COUNT:
return stats->class_init_count;
case KIND_CLASS_INIT_TIME:
// Convert ns to us, reduce to 32 bits.
return static_cast<int>(stats->class_init_time_ns / 1000);
case KIND_EXT_ALLOCATED_OBJECTS:
case KIND_EXT_ALLOCATED_BYTES:
case KIND_EXT_FREED_OBJECTS:
case KIND_EXT_FREED_BYTES:
return 0; // backward compatibility
default:
LOG(FATAL) << "Unknown statistic " << kind;
return -1; // unreachable
}
}
void Runtime::BlockSignals() {
SignalSet signals;
signals.Add(SIGPIPE);
// SIGQUIT is used to dump the runtime's state (including stack traces).
signals.Add(SIGQUIT);
// SIGUSR1 is used to initiate a GC.
signals.Add(SIGUSR1);
signals.Block();
}
bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
bool create_peer) {
ScopedTrace trace(__FUNCTION__);
return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr;
}
void Runtime::DetachCurrentThread() {
ScopedTrace trace(__FUNCTION__);
Thread* self = Thread::Current();
if (self == nullptr) {
LOG(FATAL) << "attempting to detach thread that is not attached";
}
if (self->HasManagedStack()) {
LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
}
thread_list_->Unregister(self);
}
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
if (oome == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated OOME";
}
return oome;
}
mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
if (ncdfe == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
}
return ncdfe;
}
void Runtime::VisitConstantRoots(RootVisitor* visitor) {
// Visit the classes held as static in mirror classes, these can be visited concurrently and only
// need to be visited once per GC since they never change.
mirror::Class::VisitRoots(visitor);
mirror::Constructor::VisitRoots(visitor);
mirror::Reference::VisitRoots(visitor);
mirror::Method::VisitRoots(visitor);
mirror::StackTraceElement::VisitRoots(visitor);
mirror::String::VisitRoots(visitor);
mirror::Throwable::VisitRoots(visitor);
mirror::Field::VisitRoots(visitor);
// Visit all the primitive array types classes.
mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor); // BooleanArray
mirror::PrimitiveArray<int8_t>::VisitRoots(visitor); // ByteArray
mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor); // CharArray
mirror::PrimitiveArray<double>::VisitRoots(visitor); // DoubleArray
mirror::PrimitiveArray<float>::VisitRoots(visitor); // FloatArray
mirror::PrimitiveArray<int32_t>::VisitRoots(visitor); // IntArray
mirror::PrimitiveArray<int64_t>::VisitRoots(visitor); // LongArray
mirror::PrimitiveArray<int16_t>::VisitRoots(visitor); // ShortArray
// Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
// null.
BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
const size_t pointer_size = GetClassLinker()->GetImagePointerSize();
if (HasResolutionMethod()) {
resolution_method_->VisitRoots(buffered_visitor, pointer_size);
}
if (HasImtConflictMethod()) {
imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
}
if (imt_unimplemented_method_ != nullptr) {
imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
}
for (size_t i = 0; i < kLastCalleeSaveType; ++i) {
auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
if (m != nullptr) {
m->VisitRoots(buffered_visitor, pointer_size);
}
}
}
void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
intern_table_->VisitRoots(visitor, flags);
class_linker_->VisitRoots(visitor, flags);
heap_->VisitAllocationRecords(visitor);
if ((flags & kVisitRootFlagNewRoots) == 0) {
// Guaranteed to have no new roots in the constant roots.
VisitConstantRoots(visitor);
}
Dbg::VisitRoots(visitor);
}
void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
if (preinitialization_transaction_ != nullptr) {
preinitialization_transaction_->VisitRoots(visitor);
}
}
void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
java_vm_->VisitRoots(visitor);
sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
verifier::MethodVerifier::VisitStaticRoots(visitor);
VisitTransactionRoots(visitor);
}
void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor) {
thread_list_->VisitRoots(visitor);
VisitNonThreadRoots(visitor);
}
void Runtime::VisitThreadRoots(RootVisitor* visitor) {
thread_list_->VisitRoots(visitor);
}
size_t Runtime::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback,
gc::collector::GarbageCollector* collector) {
return thread_list_->FlipThreadRoots(thread_flip_visitor, flip_callback, collector);
}
void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
VisitNonConcurrentRoots(visitor);
VisitConcurrentRoots(visitor, flags);
}
void Runtime::VisitImageRoots(RootVisitor* visitor) {
for (auto* space : GetHeap()->GetContinuousSpaces()) {
if (space->IsImageSpace()) {
auto* image_space = space->AsImageSpace();
const auto& image_header = image_space->GetImageHeader();
for (size_t i = 0; i < ImageHeader::kImageRootsMax; ++i) {
auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
if (obj != nullptr) {
auto* after_obj = obj;
visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
CHECK_EQ(after_obj, obj);
}
}
}
}
}
ArtMethod* Runtime::CreateImtConflictMethod() {
auto* method = Runtime::Current()->GetClassLinker()->CreateRuntimeMethod();
// When compiling, the code pointer will get set later when the image is loaded.
if (IsAotCompiler()) {
size_t pointer_size = GetInstructionSetPointerSize(instruction_set_);
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
} else {
method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
}
return method;
}
void Runtime::SetImtConflictMethod(ArtMethod* method) {
CHECK(method != nullptr);
CHECK(method->IsRuntimeMethod());
imt_conflict_method_ = method;
}
ArtMethod* Runtime::CreateResolutionMethod() {
auto* method = Runtime::Current()->GetClassLinker()->CreateRuntimeMethod();
// When compiling, the code pointer will get set later when the image is loaded.
if (IsAotCompiler()) {
size_t pointer_size = GetInstructionSetPointerSize(instruction_set_);
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
} else {
method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
}
return method;
}
ArtMethod* Runtime::CreateCalleeSaveMethod() {
auto* method = Runtime::Current()->GetClassLinker()->CreateRuntimeMethod();
size_t pointer_size = GetInstructionSetPointerSize(instruction_set_);
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
DCHECK_NE(instruction_set_, kNone);
DCHECK(method->IsRuntimeMethod());
return method;
}
void Runtime::DisallowNewSystemWeaks() {
CHECK(!kUseReadBarrier);
monitor_list_->DisallowNewMonitors();
intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
java_vm_->DisallowNewWeakGlobals();
heap_->DisallowNewAllocationRecords();
lambda_box_table_->DisallowNewWeakBoxedLambdas();
}
void Runtime::AllowNewSystemWeaks() {
CHECK(!kUseReadBarrier);
monitor_list_->AllowNewMonitors();
intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
java_vm_->AllowNewWeakGlobals();
heap_->AllowNewAllocationRecords();
lambda_box_table_->AllowNewWeakBoxedLambdas();
}
void Runtime::BroadcastForNewSystemWeaks() {
// This is used for the read barrier case that uses the thread-local
// Thread::GetWeakRefAccessEnabled() flag.
CHECK(kUseReadBarrier);
monitor_list_->BroadcastForNewMonitors();
intern_table_->BroadcastForNewInterns();
java_vm_->BroadcastForNewWeakGlobals();
heap_->BroadcastForNewAllocationRecords();
lambda_box_table_->BroadcastForNewWeakBoxedLambdas();
}
void Runtime::SetInstructionSet(InstructionSet instruction_set) {
instruction_set_ = instruction_set;
if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kMips) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kMips64) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kX86) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kX86_64) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kArm64) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
}
} else {
UNIMPLEMENTED(FATAL) << instruction_set_;
}
}
void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
DCHECK_LT(static_cast<int>(type), static_cast<int>(kLastCalleeSaveType));
CHECK(method != nullptr);
callee_save_methods_[type] = reinterpret_cast<uintptr_t>(method);
}
void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
const std::string& profile_output_filename,
const std::string& foreign_dex_profile_path,
const std::string& app_dir) {
if (jit_.get() == nullptr) {
// We are not JITing. Nothing to do.
return;
}
VLOG(profiler) << "Register app with " << profile_output_filename
<< " " << Join(code_paths, ':');
if (profile_output_filename.empty()) {
LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
return;
}
if (!FileExists(profile_output_filename)) {
LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
return;
}
if (code_paths.empty()) {
LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
return;
}
profile_output_filename_ = profile_output_filename;
jit_->StartProfileSaver(profile_output_filename,
code_paths,
foreign_dex_profile_path,
app_dir);
}
void Runtime::NotifyDexLoaded(const std::string& dex_location) {
VLOG(profiler) << "Notify dex loaded: " << dex_location;
// We know that if the ProfileSaver is started then we can record profile information.
if (ProfileSaver::IsStarted()) {
ProfileSaver::NotifyDexUse(dex_location);
}
}
// Transaction support.
void Runtime::EnterTransactionMode(Transaction* transaction) {
DCHECK(IsAotCompiler());
DCHECK(transaction != nullptr);
DCHECK(!IsActiveTransaction());
preinitialization_transaction_ = transaction;
}
void Runtime::ExitTransactionMode() {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_ = nullptr;
}
bool Runtime::IsTransactionAborted() const {
if (!IsActiveTransaction()) {
return false;
} else {
DCHECK(IsAotCompiler());
return preinitialization_transaction_->IsAborted();
}
}
void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
// Throwing an exception may cause its class initialization. If we mark the transaction
// aborted before that, we may warn with a false alarm. Throwing the exception before
// marking the transaction aborted avoids that.
preinitialization_transaction_->ThrowAbortError(self, &abort_message);
preinitialization_transaction_->Abort(abort_message);
}
void Runtime::ThrowTransactionAbortError(Thread* self) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
// Passing nullptr means we rethrow an exception with the earlier transaction abort message.
preinitialization_transaction_->ThrowAbortError(self, nullptr);
}
void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
uint8_t value, bool is_volatile) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
int8_t value, bool is_volatile) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
uint16_t value, bool is_volatile) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
int16_t value, bool is_volatile) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
uint32_t value, bool is_volatile) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
uint64_t value, bool is_volatile) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldReference(mirror::Object* obj, MemberOffset field_offset,
mirror::Object* value, bool is_volatile) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldReference(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteArray(array, index, value);
}
void Runtime::RecordStrongStringInsertion(mirror::String* s) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordStrongStringInsertion(s);
}
void Runtime::RecordWeakStringInsertion(mirror::String* s) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWeakStringInsertion(s);
}
void Runtime::RecordStrongStringRemoval(mirror::String* s) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordStrongStringRemoval(s);
}
void Runtime::RecordWeakStringRemoval(mirror::String* s) const {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWeakStringRemoval(s);
}
void Runtime::SetFaultMessage(const std::string& message) {
MutexLock mu(Thread::Current(), fault_message_lock_);
fault_message_ = message;
}
void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
const {
if (GetInstrumentation()->InterpretOnly() || UseJit()) {
argv->push_back("--compiler-filter=interpret-only");
}
// Make the dex2oat instruction set match that of the launching runtime. If we have multiple
// architecture support, dex2oat may be compiled as a different instruction-set than that
// currently being executed.
std::string instruction_set("--instruction-set=");
instruction_set += GetInstructionSetString(kRuntimeISA);
argv->push_back(instruction_set);
std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
std::string feature_string("--instruction-set-features=");
feature_string += features->GetFeatureString();
argv->push_back(feature_string);
}
void Runtime::CreateJit() {
CHECK(!IsAotCompiler());
if (GetInstrumentation()->IsForcedInterpretOnly()) {
// Don't create JIT if forced interpret only.
return;
}
std::string error_msg;
jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
if (jit_.get() != nullptr) {
jit_->CreateInstrumentationCache(jit_options_->GetCompileThreshold(),
jit_options_->GetWarmupThreshold(),
jit_options_->GetOsrThreshold());
jit_->CreateThreadPool();
// Notify native debugger about the classes already loaded before the creation of the jit.
jit_->DumpTypeInfoForLoadedTypes(GetClassLinker());
} else {
LOG(WARNING) << "Failed to create JIT " << error_msg;
}
}
bool Runtime::CanRelocate() const {
return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
}
bool Runtime::IsCompilingBootImage() const {
return IsCompiler() && compiler_callbacks_->IsBootImage();
}
void Runtime::SetResolutionMethod(ArtMethod* method) {
CHECK(method != nullptr);
CHECK(method->IsRuntimeMethod()) << method;
resolution_method_ = method;
}
void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
CHECK(method != nullptr);
CHECK(method->IsRuntimeMethod());
imt_unimplemented_method_ = method;
}
bool Runtime::IsVerificationEnabled() const {
return verify_ == verifier::VerifyMode::kEnable ||
verify_ == verifier::VerifyMode::kSoftFail;
}
bool Runtime::IsVerificationSoftFail() const {
return verify_ == verifier::VerifyMode::kSoftFail;
}
LinearAlloc* Runtime::CreateLinearAlloc() {
// For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
// 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
// when we have 64 bit ArtMethod pointers.
return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
? new LinearAlloc(low_4gb_arena_pool_.get())
: new LinearAlloc(arena_pool_.get());
}
double Runtime::GetHashTableMinLoadFactor() const {
return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
}
double Runtime::GetHashTableMaxLoadFactor() const {
return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
}
} // namespace art