| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "parallel_move_resolver.h" |
| |
| #include "base/stl_util.h" |
| #include "nodes.h" |
| |
| namespace art { |
| |
| void ParallelMoveResolver::BuildInitialMoveList(HParallelMove* parallel_move) { |
| // Perform a linear sweep of the moves to add them to the initial list of |
| // moves to perform, ignoring any move that is redundant (the source is |
| // the same as the destination, the destination is ignored and |
| // unallocated, or the move was already eliminated). |
| for (size_t i = 0; i < parallel_move->NumMoves(); ++i) { |
| MoveOperands* move = parallel_move->MoveOperandsAt(i); |
| if (!move->IsRedundant()) { |
| moves_.push_back(move); |
| } |
| } |
| } |
| |
| void ParallelMoveResolverWithSwap::EmitNativeCode(HParallelMove* parallel_move) { |
| DCHECK(moves_.empty()); |
| // Build up a worklist of moves. |
| BuildInitialMoveList(parallel_move); |
| |
| // Move stack/stack slot to take advantage of a free register on constrained machines. |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| const MoveOperands& move = *moves_[i]; |
| // Ignore constants and moves already eliminated. |
| if (move.IsEliminated() || move.GetSource().IsConstant()) { |
| continue; |
| } |
| |
| if ((move.GetSource().IsStackSlot() || move.GetSource().IsDoubleStackSlot()) && |
| (move.GetDestination().IsStackSlot() || move.GetDestination().IsDoubleStackSlot())) { |
| PerformMove(i); |
| } |
| } |
| |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| const MoveOperands& move = *moves_[i]; |
| // Skip constants to perform them last. They don't block other moves |
| // and skipping such moves with register destinations keeps those |
| // registers free for the whole algorithm. |
| if (!move.IsEliminated() && !move.GetSource().IsConstant()) { |
| PerformMove(i); |
| } |
| } |
| |
| // Perform the moves with constant sources. |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| MoveOperands* move = moves_[i]; |
| if (!move->IsEliminated()) { |
| DCHECK(move->GetSource().IsConstant()); |
| EmitMove(i); |
| // Eliminate the move, in case following moves need a scratch register. |
| move->Eliminate(); |
| } |
| } |
| |
| moves_.clear(); |
| } |
| |
| Location LowOf(Location location) { |
| if (location.IsRegisterPair()) { |
| return Location::RegisterLocation(location.low()); |
| } else if (location.IsFpuRegisterPair()) { |
| return Location::FpuRegisterLocation(location.low()); |
| } else if (location.IsDoubleStackSlot()) { |
| return Location::StackSlot(location.GetStackIndex()); |
| } else { |
| return Location::NoLocation(); |
| } |
| } |
| |
| Location HighOf(Location location) { |
| if (location.IsRegisterPair()) { |
| return Location::RegisterLocation(location.high()); |
| } else if (location.IsFpuRegisterPair()) { |
| return Location::FpuRegisterLocation(location.high()); |
| } else if (location.IsDoubleStackSlot()) { |
| return Location::StackSlot(location.GetHighStackIndex(4)); |
| } else { |
| return Location::NoLocation(); |
| } |
| } |
| |
| // Update the source of `move`, knowing that `updated_location` has been swapped |
| // with `new_source`. Note that `updated_location` can be a pair, therefore if |
| // `move` is non-pair, we need to extract which register to use. |
| static void UpdateSourceOf(MoveOperands* move, Location updated_location, Location new_source) { |
| Location source = move->GetSource(); |
| if (LowOf(updated_location).Equals(source)) { |
| move->SetSource(LowOf(new_source)); |
| } else if (HighOf(updated_location).Equals(source)) { |
| move->SetSource(HighOf(new_source)); |
| } else { |
| DCHECK(updated_location.Equals(source)) << updated_location << " " << source; |
| move->SetSource(new_source); |
| } |
| } |
| |
| MoveOperands* ParallelMoveResolverWithSwap::PerformMove(size_t index) { |
| // Each call to this function performs a move and deletes it from the move |
| // graph. We first recursively perform any move blocking this one. We |
| // mark a move as "pending" on entry to PerformMove in order to detect |
| // cycles in the move graph. We use operand swaps to resolve cycles, |
| // which means that a call to PerformMove could change any source operand |
| // in the move graph. |
| |
| MoveOperands* move = moves_[index]; |
| DCHECK(!move->IsPending()); |
| if (move->IsRedundant()) { |
| // Because we swap register pairs first, following, un-pending |
| // moves may become redundant. |
| move->Eliminate(); |
| return nullptr; |
| } |
| |
| // Clear this move's destination to indicate a pending move. The actual |
| // destination is saved in a stack-allocated local. Recursion may allow |
| // multiple moves to be pending. |
| DCHECK(!move->GetSource().IsInvalid()); |
| Location destination = move->MarkPending(); |
| |
| // Perform a depth-first traversal of the move graph to resolve |
| // dependencies. Any unperformed, unpending move with a source the same |
| // as this one's destination blocks this one so recursively perform all |
| // such moves. |
| MoveOperands* required_swap = nullptr; |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| const MoveOperands& other_move = *moves_[i]; |
| if (other_move.Blocks(destination) && !other_move.IsPending()) { |
| // Though PerformMove can change any source operand in the move graph, |
| // calling `PerformMove` cannot create a blocking move via a swap |
| // (this loop does not miss any). |
| // For example, assume there is a non-blocking move with source A |
| // and this move is blocked on source B and there is a swap of A and |
| // B. Then A and B must be involved in the same cycle (or they would |
| // not be swapped). Since this move's destination is B and there is |
| // only a single incoming edge to an operand, this move must also be |
| // involved in the same cycle. In that case, the blocking move will |
| // be created but will be "pending" when we return from PerformMove. |
| required_swap = PerformMove(i); |
| |
| if (required_swap == move) { |
| // If this move is required to swap, we do so without looking |
| // at the next moves. Swapping is not blocked by anything, it just |
| // updates other moves's source. |
| break; |
| } else if (required_swap == moves_[i]) { |
| // If `other_move` was swapped, we iterate again to find a new |
| // potential cycle. |
| required_swap = nullptr; |
| i = -1; |
| } else if (required_swap != nullptr) { |
| // A move is required to swap. We walk back the cycle to find the |
| // move by just returning from this `PerformMove`. |
| moves_[index]->ClearPending(destination); |
| return required_swap; |
| } |
| } |
| } |
| |
| // We are about to resolve this move and don't need it marked as |
| // pending, so restore its destination. |
| move->ClearPending(destination); |
| |
| // This move's source may have changed due to swaps to resolve cycles and |
| // so it may now be the last move in the cycle. If so remove it. |
| if (move->GetSource().Equals(destination)) { |
| move->Eliminate(); |
| DCHECK(required_swap == nullptr); |
| return nullptr; |
| } |
| |
| // The move may be blocked on a (at most one) pending move, in which case |
| // we have a cycle. Search for such a blocking move and perform a swap to |
| // resolve it. |
| bool do_swap = false; |
| if (required_swap != nullptr) { |
| DCHECK_EQ(required_swap, move); |
| do_swap = true; |
| } else { |
| for (MoveOperands* other_move : moves_) { |
| if (other_move->Blocks(destination)) { |
| DCHECK(other_move->IsPending()) << "move=" << *move << " other_move=" << *other_move; |
| if (!move->Is64BitMove() && other_move->Is64BitMove()) { |
| // We swap 64bits moves before swapping 32bits moves. Go back from the |
| // cycle by returning the move that must be swapped. |
| return other_move; |
| } |
| do_swap = true; |
| break; |
| } |
| } |
| } |
| |
| if (do_swap) { |
| EmitSwap(index); |
| // Any unperformed (including pending) move with a source of either |
| // this move's source or destination needs to have their source |
| // changed to reflect the state of affairs after the swap. |
| Location source = move->GetSource(); |
| Location swap_destination = move->GetDestination(); |
| move->Eliminate(); |
| for (MoveOperands* other_move : moves_) { |
| if (other_move->Blocks(source)) { |
| UpdateSourceOf(other_move, source, swap_destination); |
| } else if (other_move->Blocks(swap_destination)) { |
| UpdateSourceOf(other_move, swap_destination, source); |
| } |
| } |
| // If the swap was required because of a 64bits move in the middle of a cycle, |
| // we return the swapped move, so that the caller knows it needs to re-iterate |
| // its dependency loop. |
| return required_swap; |
| } else { |
| // This move is not blocked. |
| EmitMove(index); |
| move->Eliminate(); |
| DCHECK(required_swap == nullptr); |
| return nullptr; |
| } |
| } |
| |
| bool ParallelMoveResolverWithSwap::IsScratchLocation(Location loc) { |
| for (MoveOperands* move : moves_) { |
| if (move->Blocks(loc)) { |
| return false; |
| } |
| } |
| |
| for (MoveOperands* move : moves_) { |
| if (move->GetDestination().Equals(loc)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| int ParallelMoveResolverWithSwap::AllocateScratchRegister(int blocked, |
| int register_count, |
| int if_scratch, |
| bool* spilled) { |
| DCHECK_NE(blocked, if_scratch); |
| int scratch = -1; |
| for (int reg = 0; reg < register_count; ++reg) { |
| if ((blocked != reg) && IsScratchLocation(Location::RegisterLocation(reg))) { |
| scratch = reg; |
| break; |
| } |
| } |
| |
| if (scratch == -1) { |
| *spilled = true; |
| scratch = if_scratch; |
| } else { |
| *spilled = false; |
| } |
| |
| return scratch; |
| } |
| |
| |
| ParallelMoveResolverWithSwap::ScratchRegisterScope::ScratchRegisterScope( |
| ParallelMoveResolverWithSwap* resolver, int blocked, int if_scratch, int number_of_registers) |
| : resolver_(resolver), |
| reg_(kNoRegister), |
| spilled_(false) { |
| reg_ = resolver_->AllocateScratchRegister(blocked, number_of_registers, if_scratch, &spilled_); |
| |
| if (spilled_) { |
| resolver->SpillScratch(reg_); |
| } |
| } |
| |
| |
| ParallelMoveResolverWithSwap::ScratchRegisterScope::~ScratchRegisterScope() { |
| if (spilled_) { |
| resolver_->RestoreScratch(reg_); |
| } |
| } |
| |
| void ParallelMoveResolverNoSwap::EmitNativeCode(HParallelMove* parallel_move) { |
| DCHECK_EQ(GetNumberOfPendingMoves(), 0u); |
| DCHECK(moves_.empty()); |
| DCHECK(scratches_.empty()); |
| |
| // Backend dependent initialization. |
| PrepareForEmitNativeCode(); |
| |
| // Build up a worklist of moves. |
| BuildInitialMoveList(parallel_move); |
| |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| const MoveOperands& move = *moves_[i]; |
| // Skip constants to perform them last. They don't block other moves and |
| // skipping such moves with register destinations keeps those registers |
| // free for the whole algorithm. |
| if (!move.IsEliminated() && !move.GetSource().IsConstant()) { |
| PerformMove(i); |
| } |
| } |
| |
| // Perform the moves with constant sources and register destinations with UpdateMoveSource() |
| // to reduce the number of literal loads. Stack destinations are skipped since we won't be benefit |
| // from changing the constant sources to stack locations. |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| MoveOperands* move = moves_[i]; |
| Location destination = move->GetDestination(); |
| if (!move->IsEliminated() && !destination.IsStackSlot() && !destination.IsDoubleStackSlot()) { |
| Location source = move->GetSource(); |
| EmitMove(i); |
| move->Eliminate(); |
| // This may introduce additional instruction dependency, but reduce number |
| // of moves and possible literal loads. For example, |
| // Original moves: |
| // 1234.5678 -> D0 |
| // 1234.5678 -> D1 |
| // Updated moves: |
| // 1234.5678 -> D0 |
| // D0 -> D1 |
| UpdateMoveSource(source, destination); |
| } |
| } |
| |
| // Perform the rest of the moves. |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| MoveOperands* move = moves_[i]; |
| if (!move->IsEliminated()) { |
| EmitMove(i); |
| move->Eliminate(); |
| } |
| } |
| |
| // All pending moves that we have added for resolve cycles should be performed. |
| DCHECK_EQ(GetNumberOfPendingMoves(), 0u); |
| |
| // Backend dependent cleanup. |
| FinishEmitNativeCode(); |
| |
| moves_.clear(); |
| scratches_.clear(); |
| } |
| |
| Location ParallelMoveResolverNoSwap::GetScratchLocation(Location::Kind kind) { |
| for (Location loc : scratches_) { |
| if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) { |
| return loc; |
| } |
| } |
| for (MoveOperands* move : moves_) { |
| Location loc = move->GetDestination(); |
| if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) { |
| return loc; |
| } |
| } |
| return Location::NoLocation(); |
| } |
| |
| void ParallelMoveResolverNoSwap::AddScratchLocation(Location loc) { |
| if (kIsDebugBuild) { |
| for (Location scratch : scratches_) { |
| CHECK(!loc.Equals(scratch)); |
| } |
| } |
| scratches_.push_back(loc); |
| } |
| |
| void ParallelMoveResolverNoSwap::RemoveScratchLocation(Location loc) { |
| DCHECK(!IsBlockedByMoves(loc)); |
| for (auto it = scratches_.begin(), end = scratches_.end(); it != end; ++it) { |
| if (loc.Equals(*it)) { |
| scratches_.erase(it); |
| break; |
| } |
| } |
| } |
| |
| void ParallelMoveResolverNoSwap::PerformMove(size_t index) { |
| // Each call to this function performs a move and deletes it from the move |
| // graph. We first recursively perform any move blocking this one. We mark |
| // a move as "pending" on entry to PerformMove in order to detect cycles |
| // in the move graph. We use scratch location to resolve cycles, also |
| // additional pending moves might be added. After move has been performed, |
| // we will update source operand in the move graph to reduce dependencies in |
| // the graph. |
| |
| MoveOperands* move = moves_[index]; |
| DCHECK(!move->IsPending()); |
| DCHECK(!move->IsEliminated()); |
| if (move->IsRedundant()) { |
| // Previous operations on the list of moves have caused this particular move |
| // to become a no-op, so we can safely eliminate it. Consider for example |
| // (0 -> 1) (1 -> 0) (1 -> 2). There is a cycle (0 -> 1) (1 -> 0), that we will |
| // resolve as (1 -> scratch) (0 -> 1) (scratch -> 0). If, by chance, '2' is |
| // used as the scratch location, the move (1 -> 2) will occur while resolving |
| // the cycle. When that move is emitted, the code will update moves with a '1' |
| // as their source to use '2' instead (see `UpdateMoveSource()`. In our example |
| // the initial move (1 -> 2) would then become the no-op (2 -> 2) that can be |
| // eliminated here. |
| move->Eliminate(); |
| return; |
| } |
| |
| // Clear this move's destination to indicate a pending move. The actual |
| // destination is saved in a stack-allocated local. Recursion may allow |
| // multiple moves to be pending. |
| DCHECK(!move->GetSource().IsInvalid()); |
| Location destination = move->MarkPending(); |
| |
| // Perform a depth-first traversal of the move graph to resolve |
| // dependencies. Any unperformed, unpending move with a source the same |
| // as this one's destination blocks this one so recursively perform all |
| // such moves. |
| for (size_t i = 0; i < moves_.size(); ++i) { |
| const MoveOperands& other_move = *moves_[i]; |
| if (other_move.Blocks(destination) && !other_move.IsPending()) { |
| PerformMove(i); |
| } |
| } |
| |
| // We are about to resolve this move and don't need it marked as |
| // pending, so restore its destination. |
| move->ClearPending(destination); |
| |
| // No one else should write to the move destination when the it is pending. |
| DCHECK(!move->IsRedundant()); |
| |
| Location source = move->GetSource(); |
| // The move may be blocked on several pending moves, in case we have a cycle. |
| if (IsBlockedByMoves(destination)) { |
| // For a cycle like: (A -> B) (B -> C) (C -> A), we change it to following |
| // sequence: |
| // (C -> scratch) # Emit right now. |
| // (A -> B) (B -> C) # Unblocked. |
| // (scratch -> A) # Add to pending_moves_, blocked by (A -> B). |
| Location::Kind kind = source.GetKind(); |
| DCHECK_NE(kind, Location::kConstant); |
| Location scratch = AllocateScratchLocationFor(kind); |
| // We only care about the move size. |
| DataType::Type type = move->Is64BitMove() ? DataType::Type::kInt64 : DataType::Type::kInt32; |
| // Perform (C -> scratch) |
| move->SetDestination(scratch); |
| EmitMove(index); |
| move->Eliminate(); |
| UpdateMoveSource(source, scratch); |
| // Add (scratch -> A). |
| AddPendingMove(scratch, destination, type); |
| } else { |
| // This move is not blocked. |
| EmitMove(index); |
| move->Eliminate(); |
| UpdateMoveSource(source, destination); |
| } |
| |
| // Moves in the pending list should not block any other moves. But performing |
| // unblocked moves in the pending list can free scratch registers, so we do this |
| // as early as possible. |
| MoveOperands* pending_move; |
| while ((pending_move = GetUnblockedPendingMove(source)) != nullptr) { |
| Location pending_source = pending_move->GetSource(); |
| Location pending_destination = pending_move->GetDestination(); |
| // We do not depend on the pending move index. So just delete the move instead |
| // of eliminating it to make the pending list cleaner. |
| DeletePendingMove(pending_move); |
| move->SetSource(pending_source); |
| move->SetDestination(pending_destination); |
| EmitMove(index); |
| move->Eliminate(); |
| UpdateMoveSource(pending_source, pending_destination); |
| // Free any unblocked locations in the scratch location list. |
| // Note: Fetch size() on each iteration because scratches_ can be modified inside the loop. |
| // FIXME: If FreeScratchLocation() removes the location from scratches_, |
| // we skip the next location. This happens for arm64. |
| for (size_t i = 0; i < scratches_.size(); ++i) { |
| Location scratch = scratches_[i]; |
| // Only scratch overlapping with performed move source can be unblocked. |
| if (scratch.OverlapsWith(pending_source) && !IsBlockedByMoves(scratch)) { |
| FreeScratchLocation(pending_source); |
| } |
| } |
| } |
| } |
| |
| void ParallelMoveResolverNoSwap::UpdateMoveSource(Location from, Location to) { |
| // This function is used to reduce the dependencies in the graph after |
| // (from -> to) has been performed. Since we ensure there is no move with the same |
| // destination, (to -> X) cannot be blocked while (from -> X) might still be |
| // blocked. Consider for example the moves (0 -> 1) (1 -> 2) (1 -> 3). After |
| // (1 -> 2) has been performed, the moves left are (0 -> 1) and (1 -> 3). There is |
| // a dependency between the two. If we update the source location from 1 to 2, we |
| // will get (0 -> 1) and (2 -> 3). There is no dependency between the two. |
| // |
| // This is not something we must do, but we can use fewer scratch locations with |
| // this trick. For example, we can avoid using additional scratch locations for |
| // moves (0 -> 1), (1 -> 2), (1 -> 0). |
| for (MoveOperands* move : moves_) { |
| if (move->GetSource().Equals(from)) { |
| move->SetSource(to); |
| } |
| } |
| } |
| |
| void ParallelMoveResolverNoSwap::AddPendingMove(Location source, |
| Location destination, |
| DataType::Type type) { |
| pending_moves_.push_back(new (allocator_) MoveOperands(source, destination, type, nullptr)); |
| } |
| |
| void ParallelMoveResolverNoSwap::DeletePendingMove(MoveOperands* move) { |
| RemoveElement(pending_moves_, move); |
| } |
| |
| MoveOperands* ParallelMoveResolverNoSwap::GetUnblockedPendingMove(Location loc) { |
| for (MoveOperands* move : pending_moves_) { |
| Location destination = move->GetDestination(); |
| // Only moves with destination overlapping with input loc can be unblocked. |
| if (destination.OverlapsWith(loc) && !IsBlockedByMoves(destination)) { |
| return move; |
| } |
| } |
| return nullptr; |
| } |
| |
| bool ParallelMoveResolverNoSwap::IsBlockedByMoves(Location loc) { |
| for (MoveOperands* move : pending_moves_) { |
| if (move->Blocks(loc)) { |
| return true; |
| } |
| } |
| for (MoveOperands* move : moves_) { |
| if (move->Blocks(loc)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // So far it is only used for debugging purposes to make sure all pending moves |
| // have been performed. |
| size_t ParallelMoveResolverNoSwap::GetNumberOfPendingMoves() { |
| return pending_moves_.size(); |
| } |
| |
| } // namespace art |