blob: 4d2db11ac2206bffb6d211b91a35b096c70e392b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
#include <stdint.h>
#include <memory>
#include "common_runtime_test.h"
#include "globals.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "scoped_thread_state_change.h"
#include "zygote_space.h"
namespace art {
namespace gc {
namespace space {
class SpaceTest : public CommonRuntimeTest {
public:
jobject byte_array_class_;
SpaceTest() : byte_array_class_(nullptr) {
}
void AddSpace(ContinuousSpace* space, bool revoke = true) {
Heap* heap = Runtime::Current()->GetHeap();
if (revoke) {
heap->RevokeAllThreadLocalBuffers();
}
heap->AddSpace(space);
heap->SetSpaceAsDefault(space);
}
mirror::Class* GetByteArrayClass(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
if (byte_array_class_ == nullptr) {
mirror::Class* byte_array_class =
Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
EXPECT_TRUE(byte_array_class != nullptr);
byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
EXPECT_TRUE(byte_array_class_ != nullptr);
}
return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
}
mirror::Object* Alloc(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
size_t* bytes_allocated, size_t* usable_size,
size_t* bytes_tl_bulk_allocated)
SHARED_REQUIRES(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
mirror::Object* obj = alloc_space->Alloc(self, bytes, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
if (obj != nullptr) {
InstallClass(obj, byte_array_class.Get(), bytes);
}
return obj;
}
mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
size_t* bytes_allocated, size_t* usable_size,
size_t* bytes_tl_bulk_allocated)
SHARED_REQUIRES(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
if (obj != nullptr) {
InstallClass(obj, byte_array_class.Get(), bytes);
}
return obj;
}
void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
SHARED_REQUIRES(Locks::mutator_lock_) {
// Note the minimum size, which is the size of a zero-length byte array.
EXPECT_GE(size, SizeOfZeroLengthByteArray());
EXPECT_TRUE(byte_array_class != nullptr);
o->SetClass(byte_array_class);
if (kUseBakerOrBrooksReadBarrier) {
// Like the proper heap object allocation, install and verify
// the correct read barrier pointer.
if (kUseBrooksReadBarrier) {
o->SetReadBarrierPointer(o);
}
o->AssertReadBarrierPointer();
}
mirror::Array* arr = o->AsArray<kVerifyNone>();
size_t header_size = SizeOfZeroLengthByteArray();
int32_t length = size - header_size;
arr->SetLength(length);
EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
}
static size_t SizeOfZeroLengthByteArray() {
return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
}
typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
size_t capacity, uint8_t* requested_begin);
void InitTestBody(CreateSpaceFn create_space);
void ZygoteSpaceTestBody(CreateSpaceFn create_space);
void AllocAndFreeTestBody(CreateSpaceFn create_space);
void AllocAndFreeListTestBody(CreateSpaceFn create_space);
void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
int round, size_t growth_limit);
void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
};
static inline size_t test_rand(size_t* seed) {
*seed = *seed * 1103515245 + 12345;
return *seed;
}
void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
// This will lead to error messages in the log.
ScopedLogSeverity sls(LogSeverity::FATAL);
{
// Init < max == growth
std::unique_ptr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space.get() != nullptr);
}
{
// Init == max == growth
std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
EXPECT_TRUE(space.get() != nullptr);
}
{
// Init > max == growth
std::unique_ptr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
EXPECT_TRUE(space.get() == nullptr);
}
{
// Growth == init < max
std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space.get() != nullptr);
}
{
// Growth < init < max
std::unique_ptr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space.get() == nullptr);
}
{
// Init < growth < max
std::unique_ptr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
EXPECT_TRUE(space.get() != nullptr);
}
{
// Init < max < growth
std::unique_ptr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
EXPECT_TRUE(space.get() == nullptr);
}
}
// TODO: This test is not very good, we should improve it.
// The test should do more allocations before the creation of the ZygoteSpace, and then do
// allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
// the GC works with the ZygoteSpace.
void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
size_t dummy;
MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
ASSERT_TRUE(space != nullptr);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
// Succeeds, fits without adjusting the footprint limit.
size_t ptr1_bytes_allocated, ptr1_usable_size, ptr1_bytes_tl_bulk_allocated;
StackHandleScope<3> hs(soa.Self());
MutableHandle<mirror::Object> ptr1(
hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size,
&ptr1_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr1.Get() != nullptr);
EXPECT_LE(1U * MB, ptr1_bytes_allocated);
EXPECT_LE(1U * MB, ptr1_usable_size);
EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr2 == nullptr);
// Succeeds, adjusts the footprint.
size_t ptr3_bytes_allocated, ptr3_usable_size, ptr3_bytes_tl_bulk_allocated;
MutableHandle<mirror::Object> ptr3(
hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size,
&ptr3_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr3.Get() != nullptr);
EXPECT_LE(8U * MB, ptr3_bytes_allocated);
EXPECT_LE(8U * MB, ptr3_usable_size);
EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr4 == nullptr);
// Also fails, requires a higher allowed footprint.
mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr5 == nullptr);
// Release some memory.
size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
EXPECT_EQ(free3, ptr3_bytes_allocated);
EXPECT_EQ(free3, space->Free(self, ptr3.Assign(nullptr)));
EXPECT_LE(8U * MB, free3);
// Succeeds, now that memory has been freed.
size_t ptr6_bytes_allocated, ptr6_usable_size, ptr6_bytes_tl_bulk_allocated;
Handle<mirror::Object> ptr6(
hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size,
&ptr6_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr6.Get() != nullptr);
EXPECT_LE(9U * MB, ptr6_bytes_allocated);
EXPECT_LE(9U * MB, ptr6_usable_size);
EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
EXPECT_EQ(ptr6_bytes_tl_bulk_allocated, ptr6_bytes_allocated);
// Final clean up.
size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
space->Free(self, ptr1.Assign(nullptr));
EXPECT_LE(1U * MB, free1);
// Make sure that the zygote space isn't directly at the start of the space.
EXPECT_TRUE(space->Alloc(self, 1U * MB, &dummy, nullptr, &dummy) != nullptr);
gc::Heap* heap = Runtime::Current()->GetHeap();
space::Space* old_space = space;
heap->RemoveSpace(old_space);
heap->RevokeAllThreadLocalBuffers();
space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
heap->IsLowMemoryMode(),
&space);
delete old_space;
// Add the zygote space.
AddSpace(zygote_space, false);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space, false);
// Succeeds, fits without adjusting the footprint limit.
ptr1.Assign(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size,
&ptr1_bytes_tl_bulk_allocated));
EXPECT_TRUE(ptr1.Get() != nullptr);
EXPECT_LE(1U * MB, ptr1_bytes_allocated);
EXPECT_LE(1U * MB, ptr1_usable_size);
EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
// Fails, requires a higher footprint limit.
ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr2 == nullptr);
// Succeeds, adjusts the footprint.
ptr3.Assign(AllocWithGrowth(space, self, 2 * MB, &ptr3_bytes_allocated, &ptr3_usable_size,
&ptr3_bytes_tl_bulk_allocated));
EXPECT_TRUE(ptr3.Get() != nullptr);
EXPECT_LE(2U * MB, ptr3_bytes_allocated);
EXPECT_LE(2U * MB, ptr3_usable_size);
EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
space->Free(self, ptr3.Assign(nullptr));
// Final clean up.
free1 = space->AllocationSize(ptr1.Get(), nullptr);
space->Free(self, ptr1.Assign(nullptr));
EXPECT_LE(1U * MB, free1);
}
void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
size_t dummy = 0;
MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
ASSERT_TRUE(space != nullptr);
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
// Succeeds, fits without adjusting the footprint limit.
size_t ptr1_bytes_allocated, ptr1_usable_size, ptr1_bytes_tl_bulk_allocated;
StackHandleScope<3> hs(soa.Self());
MutableHandle<mirror::Object> ptr1(
hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size,
&ptr1_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr1.Get() != nullptr);
EXPECT_LE(1U * MB, ptr1_bytes_allocated);
EXPECT_LE(1U * MB, ptr1_usable_size);
EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr2 == nullptr);
// Succeeds, adjusts the footprint.
size_t ptr3_bytes_allocated, ptr3_usable_size, ptr3_bytes_tl_bulk_allocated;
MutableHandle<mirror::Object> ptr3(
hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size,
&ptr3_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr3.Get() != nullptr);
EXPECT_LE(8U * MB, ptr3_bytes_allocated);
EXPECT_LE(8U * MB, ptr3_usable_size);
EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
// Fails, requires a higher footprint limit.
mirror::Object* ptr4 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr4 == nullptr);
// Also fails, requires a higher allowed footprint.
mirror::Object* ptr5 = AllocWithGrowth(space, self, 8 * MB, &dummy, nullptr, &dummy);
EXPECT_TRUE(ptr5 == nullptr);
// Release some memory.
size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
EXPECT_EQ(free3, ptr3_bytes_allocated);
space->Free(self, ptr3.Assign(nullptr));
EXPECT_LE(8U * MB, free3);
// Succeeds, now that memory has been freed.
size_t ptr6_bytes_allocated, ptr6_usable_size, ptr6_bytes_tl_bulk_allocated;
Handle<mirror::Object> ptr6(
hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size,
&ptr6_bytes_tl_bulk_allocated)));
EXPECT_TRUE(ptr6.Get() != nullptr);
EXPECT_LE(9U * MB, ptr6_bytes_allocated);
EXPECT_LE(9U * MB, ptr6_usable_size);
EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
EXPECT_EQ(ptr6_bytes_tl_bulk_allocated, ptr6_bytes_allocated);
// Final clean up.
size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
space->Free(self, ptr1.Assign(nullptr));
EXPECT_LE(1U * MB, free1);
}
void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
ASSERT_TRUE(space != nullptr);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
// Succeeds, fits without adjusting the max allowed footprint.
mirror::Object* lots_of_objects[1024];
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
size_t allocation_size, usable_size, bytes_tl_bulk_allocated;
size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
lots_of_objects[i] = Alloc(space, self, size_of_zero_length_byte_array, &allocation_size,
&usable_size, &bytes_tl_bulk_allocated);
EXPECT_TRUE(lots_of_objects[i] != nullptr);
size_t computed_usable_size;
EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
EXPECT_EQ(usable_size, computed_usable_size);
EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
bytes_tl_bulk_allocated >= allocation_size);
}
// Release memory.
space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
// Succeeds, fits by adjusting the max allowed footprint.
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
size_t allocation_size, usable_size, bytes_tl_bulk_allocated;
lots_of_objects[i] = AllocWithGrowth(space, self, 1024, &allocation_size, &usable_size,
&bytes_tl_bulk_allocated);
EXPECT_TRUE(lots_of_objects[i] != nullptr);
size_t computed_usable_size;
EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
EXPECT_EQ(usable_size, computed_usable_size);
EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
bytes_tl_bulk_allocated >= allocation_size);
}
// Release memory.
space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
}
void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
int round, size_t growth_limit) {
if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
// No allocation can succeed
return;
}
// The space's footprint equals amount of resources requested from system
size_t footprint = space->GetFootprint();
// The space must at least have its book keeping allocated
EXPECT_GT(footprint, 0u);
// But it shouldn't exceed the initial size
EXPECT_LE(footprint, growth_limit);
// space's size shouldn't exceed the initial size
EXPECT_LE(space->Size(), growth_limit);
// this invariant should always hold or else the space has grown to be larger than what the
// space believes its size is (which will break invariants)
EXPECT_GE(space->Size(), footprint);
// Fill the space with lots of small objects up to the growth limit
size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
size_t last_object = 0; // last object for which allocation succeeded
size_t amount_allocated = 0; // amount of space allocated
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
size_t rand_seed = 123456789;
for (size_t i = 0; i < max_objects; i++) {
size_t alloc_fails = 0; // number of failed allocations
size_t max_fails = 30; // number of times we fail allocation before giving up
for (; alloc_fails < max_fails; alloc_fails++) {
size_t alloc_size;
if (object_size > 0) {
alloc_size = object_size;
} else {
alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
// Note the minimum size, which is the size of a zero-length byte array.
size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
if (alloc_size < size_of_zero_length_byte_array) {
alloc_size = size_of_zero_length_byte_array;
}
}
StackHandleScope<1> hs(soa.Self());
auto object(hs.NewHandle<mirror::Object>(nullptr));
size_t bytes_allocated = 0;
size_t bytes_tl_bulk_allocated;
if (round <= 1) {
object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
&bytes_tl_bulk_allocated));
} else {
object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
&bytes_tl_bulk_allocated));
}
footprint = space->GetFootprint();
EXPECT_GE(space->Size(), footprint); // invariant
if (object.Get() != nullptr) { // allocation succeeded
lots_of_objects[i] = object.Get();
size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
EXPECT_EQ(bytes_allocated, allocation_size);
if (object_size > 0) {
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
} else {
EXPECT_GE(allocation_size, 8u);
}
EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
bytes_tl_bulk_allocated >= allocation_size);
amount_allocated += allocation_size;
break;
}
}
if (alloc_fails == max_fails) {
last_object = i;
break;
}
}
CHECK_NE(last_object, 0u); // we should have filled the space
EXPECT_GT(amount_allocated, 0u);
// We shouldn't have gone past the growth_limit
EXPECT_LE(amount_allocated, growth_limit);
EXPECT_LE(footprint, growth_limit);
EXPECT_LE(space->Size(), growth_limit);
// footprint and size should agree with amount allocated
EXPECT_GE(footprint, amount_allocated);
EXPECT_GE(space->Size(), amount_allocated);
// Release storage in a semi-adhoc manner
size_t free_increment = 96;
while (true) {
{
ScopedThreadStateChange tsc(self, kNative);
// Give the space a haircut.
space->Trim();
}
// Bounds sanity
footprint = space->GetFootprint();
EXPECT_LE(amount_allocated, growth_limit);
EXPECT_GE(footprint, amount_allocated);
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), amount_allocated);
EXPECT_LE(space->Size(), growth_limit);
if (free_increment == 0) {
break;
}
// Free some objects
for (size_t i = 0; i < last_object; i += free_increment) {
mirror::Object* object = lots_of_objects.get()[i];
if (object == nullptr) {
continue;
}
size_t allocation_size = space->AllocationSize(object, nullptr);
if (object_size > 0) {
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
} else {
EXPECT_GE(allocation_size, 8u);
}
space->Free(self, object);
lots_of_objects.get()[i] = nullptr;
amount_allocated -= allocation_size;
footprint = space->GetFootprint();
EXPECT_GE(space->Size(), footprint); // invariant
}
free_increment >>= 1;
}
// The space has become empty here before allocating a large object
// below. For RosAlloc, revoke thread-local runs, which are kept
// even when empty for a performance reason, so that they won't
// cause the following large object allocation to fail due to
// potential fragmentation. Note they are normally revoked at each
// GC (but no GC here.)
space->RevokeAllThreadLocalBuffers();
// All memory was released, try a large allocation to check freed memory is being coalesced
StackHandleScope<1> hs(soa.Self());
auto large_object(hs.NewHandle<mirror::Object>(nullptr));
size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
size_t bytes_allocated = 0;
size_t bytes_tl_bulk_allocated;
if (round <= 1) {
large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
&bytes_tl_bulk_allocated));
} else {
large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
nullptr, &bytes_tl_bulk_allocated));
}
EXPECT_TRUE(large_object.Get() != nullptr);
// Sanity check footprint
footprint = space->GetFootprint();
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), footprint);
EXPECT_LE(space->Size(), growth_limit);
// Clean up
space->Free(self, large_object.Assign(nullptr));
// Sanity check footprint
footprint = space->GetFootprint();
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), footprint);
EXPECT_LE(space->Size(), growth_limit);
}
void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
if (object_size < SizeOfZeroLengthByteArray()) {
// Too small for the object layout/model.
return;
}
size_t initial_size = 4 * MB;
size_t growth_limit = 8 * MB;
size_t capacity = 16 * MB;
MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
ASSERT_TRUE(space != nullptr);
// Basic sanity
EXPECT_EQ(space->Capacity(), growth_limit);
EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
// In this round we don't allocate with growth and therefore can't grow past the initial size.
// This effectively makes the growth_limit the initial_size, so assert this.
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
// Remove growth limit
space->ClearGrowthLimit();
EXPECT_EQ(space->Capacity(), capacity);
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
}
#define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
}
#define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
}
#define TEST_SPACE_CREATE_FN_BASE(spaceName, spaceFn) \
class spaceName##BaseTest : public SpaceTest { \
}; \
\
TEST_F(spaceName##BaseTest, Init) { \
InitTestBody(spaceFn); \
} \
TEST_F(spaceName##BaseTest, ZygoteSpace) { \
ZygoteSpaceTestBody(spaceFn); \
} \
TEST_F(spaceName##BaseTest, AllocAndFree) { \
AllocAndFreeTestBody(spaceFn); \
} \
TEST_F(spaceName##BaseTest, AllocAndFreeList) { \
AllocAndFreeListTestBody(spaceFn); \
}
#define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
class spaceName##StaticTest : public SpaceTest { \
}; \
\
TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
#define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
class spaceName##RandomTest : public SpaceTest { \
}; \
\
TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
} // namespace space
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_