| /* |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "jit.h" |
| |
| #include <dlfcn.h> |
| |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/file_utils.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/memfd.h" |
| #include "base/memory_tool.h" |
| #include "base/runtime_debug.h" |
| #include "base/scoped_flock.h" |
| #include "base/utils.h" |
| #include "class_root-inl.h" |
| #include "compilation_kind.h" |
| #include "debugger.h" |
| #include "dex/type_lookup_table.h" |
| #include "gc/space/image_space.h" |
| #include "entrypoints/entrypoint_utils-inl.h" |
| #include "entrypoints/runtime_asm_entrypoints.h" |
| #include "image-inl.h" |
| #include "interpreter/interpreter.h" |
| #include "jit-inl.h" |
| #include "jit_code_cache.h" |
| #include "jni/java_vm_ext.h" |
| #include "mirror/method_handle_impl.h" |
| #include "mirror/var_handle.h" |
| #include "oat_file.h" |
| #include "oat_file_manager.h" |
| #include "oat_quick_method_header.h" |
| #include "profile/profile_boot_info.h" |
| #include "profile/profile_compilation_info.h" |
| #include "profile_saver.h" |
| #include "runtime.h" |
| #include "runtime_options.h" |
| #include "stack.h" |
| #include "stack_map.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| |
| using android::base::unique_fd; |
| |
| namespace art { |
| namespace jit { |
| |
| static constexpr bool kEnableOnStackReplacement = true; |
| |
| // Maximum permitted threshold value. |
| static constexpr uint32_t kJitMaxThreshold = std::numeric_limits<uint16_t>::max(); |
| |
| // Different compilation threshold constants. These can be overridden on the command line. |
| |
| // Non-debug default |
| static constexpr uint32_t kJitDefaultCompileThreshold = 20 * kJitSamplesBatchSize; |
| // Fast-debug build. |
| static constexpr uint32_t kJitStressDefaultCompileThreshold = 2 * kJitSamplesBatchSize; |
| // Slow-debug build. |
| static constexpr uint32_t kJitSlowStressDefaultCompileThreshold = 2; |
| |
| // Different warm-up threshold constants. These default to the equivalent compile thresholds divided |
| // by 2, but can be overridden at the command-line. |
| static constexpr uint32_t kJitDefaultWarmUpThreshold = kJitDefaultCompileThreshold / 2; |
| static constexpr uint32_t kJitStressDefaultWarmUpThreshold = kJitStressDefaultCompileThreshold / 2; |
| static constexpr uint32_t kJitSlowStressDefaultWarmUpThreshold = |
| kJitSlowStressDefaultCompileThreshold / 2; |
| |
| DEFINE_RUNTIME_DEBUG_FLAG(Jit, kSlowMode); |
| |
| // JIT compiler |
| void* Jit::jit_library_handle_ = nullptr; |
| JitCompilerInterface* Jit::jit_compiler_ = nullptr; |
| JitCompilerInterface* (*Jit::jit_load_)(void) = nullptr; |
| |
| JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) { |
| auto* jit_options = new JitOptions; |
| jit_options->use_jit_compilation_ = options.GetOrDefault(RuntimeArgumentMap::UseJitCompilation); |
| |
| jit_options->code_cache_initial_capacity_ = |
| options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity); |
| jit_options->code_cache_max_capacity_ = |
| options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity); |
| jit_options->dump_info_on_shutdown_ = |
| options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown); |
| jit_options->profile_saver_options_ = |
| options.GetOrDefault(RuntimeArgumentMap::ProfileSaverOpts); |
| jit_options->thread_pool_pthread_priority_ = |
| options.GetOrDefault(RuntimeArgumentMap::JITPoolThreadPthreadPriority); |
| |
| // Set default compile threshold to aid with checking defaults. |
| jit_options->compile_threshold_ = |
| kIsDebugBuild |
| ? (Jit::kSlowMode |
| ? kJitSlowStressDefaultCompileThreshold |
| : kJitStressDefaultCompileThreshold) |
| : kJitDefaultCompileThreshold; |
| |
| // When not running in slow-mode, thresholds are quantized to kJitSamplesbatchsize. |
| const uint32_t kJitThresholdStep = Jit::kSlowMode ? 1u : kJitSamplesBatchSize; |
| |
| // Set default warm-up threshold to aid with checking defaults. |
| jit_options->warmup_threshold_ = |
| kIsDebugBuild ? (Jit::kSlowMode |
| ? kJitSlowStressDefaultWarmUpThreshold |
| : kJitStressDefaultWarmUpThreshold) |
| : kJitDefaultWarmUpThreshold; |
| |
| // Warmup threshold should be less than compile threshold (so long as compile threshold is not |
| // zero == JIT-on-first-use). |
| DCHECK_LT(jit_options->warmup_threshold_, jit_options->compile_threshold_); |
| DCHECK_EQ(RoundUp(jit_options->warmup_threshold_, kJitThresholdStep), |
| jit_options->warmup_threshold_); |
| |
| if (options.Exists(RuntimeArgumentMap::JITCompileThreshold)) { |
| jit_options->compile_threshold_ = *options.Get(RuntimeArgumentMap::JITCompileThreshold); |
| } |
| jit_options->compile_threshold_ = RoundUp(jit_options->compile_threshold_, kJitThresholdStep); |
| |
| if (options.Exists(RuntimeArgumentMap::JITWarmupThreshold)) { |
| jit_options->warmup_threshold_ = *options.Get(RuntimeArgumentMap::JITWarmupThreshold); |
| } |
| jit_options->warmup_threshold_ = RoundUp(jit_options->warmup_threshold_, kJitThresholdStep); |
| |
| if (options.Exists(RuntimeArgumentMap::JITOsrThreshold)) { |
| jit_options->osr_threshold_ = *options.Get(RuntimeArgumentMap::JITOsrThreshold); |
| } else { |
| jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2; |
| if (jit_options->osr_threshold_ > kJitMaxThreshold) { |
| jit_options->osr_threshold_ = |
| RoundDown(kJitMaxThreshold, kJitThresholdStep); |
| } |
| } |
| jit_options->osr_threshold_ = RoundUp(jit_options->osr_threshold_, kJitThresholdStep); |
| |
| // Enforce ordering constraints between thresholds if not jit-on-first-use (when the compile |
| // threshold is 0). |
| if (jit_options->compile_threshold_ != 0) { |
| // Clamp thresholds such that OSR > compile > warm-up (see Jit::MaybeCompileMethod). |
| jit_options->osr_threshold_ = std::clamp(jit_options->osr_threshold_, |
| 2u * kJitThresholdStep, |
| RoundDown(kJitMaxThreshold, kJitThresholdStep)); |
| jit_options->compile_threshold_ = std::clamp(jit_options->compile_threshold_, |
| kJitThresholdStep, |
| jit_options->osr_threshold_ - kJitThresholdStep); |
| jit_options->warmup_threshold_ = |
| std::clamp(jit_options->warmup_threshold_, |
| 0u, |
| jit_options->compile_threshold_ - kJitThresholdStep); |
| } |
| |
| if (options.Exists(RuntimeArgumentMap::JITPriorityThreadWeight)) { |
| jit_options->priority_thread_weight_ = |
| *options.Get(RuntimeArgumentMap::JITPriorityThreadWeight); |
| if (jit_options->priority_thread_weight_ > jit_options->warmup_threshold_) { |
| LOG(FATAL) << "Priority thread weight is above the warmup threshold."; |
| } else if (jit_options->priority_thread_weight_ == 0) { |
| LOG(FATAL) << "Priority thread weight cannot be 0."; |
| } |
| } else { |
| jit_options->priority_thread_weight_ = std::max( |
| jit_options->warmup_threshold_ / Jit::kDefaultPriorityThreadWeightRatio, |
| static_cast<size_t>(1)); |
| } |
| |
| if (options.Exists(RuntimeArgumentMap::JITInvokeTransitionWeight)) { |
| jit_options->invoke_transition_weight_ = |
| *options.Get(RuntimeArgumentMap::JITInvokeTransitionWeight); |
| if (jit_options->invoke_transition_weight_ > jit_options->warmup_threshold_) { |
| LOG(FATAL) << "Invoke transition weight is above the warmup threshold."; |
| } else if (jit_options->invoke_transition_weight_ == 0) { |
| LOG(FATAL) << "Invoke transition weight cannot be 0."; |
| } |
| } else { |
| jit_options->invoke_transition_weight_ = std::max( |
| jit_options->warmup_threshold_ / Jit::kDefaultInvokeTransitionWeightRatio, |
| static_cast<size_t>(1)); |
| } |
| |
| return jit_options; |
| } |
| |
| void Jit::DumpInfo(std::ostream& os) { |
| code_cache_->Dump(os); |
| cumulative_timings_.Dump(os); |
| MutexLock mu(Thread::Current(), lock_); |
| memory_use_.PrintMemoryUse(os); |
| } |
| |
| void Jit::DumpForSigQuit(std::ostream& os) { |
| DumpInfo(os); |
| ProfileSaver::DumpInstanceInfo(os); |
| } |
| |
| void Jit::AddTimingLogger(const TimingLogger& logger) { |
| cumulative_timings_.AddLogger(logger); |
| } |
| |
| Jit::Jit(JitCodeCache* code_cache, JitOptions* options) |
| : code_cache_(code_cache), |
| options_(options), |
| boot_completed_lock_("Jit::boot_completed_lock_"), |
| cumulative_timings_("JIT timings"), |
| memory_use_("Memory used for compilation", 16), |
| lock_("JIT memory use lock"), |
| zygote_mapping_methods_(), |
| fd_methods_(-1), |
| fd_methods_size_(0) {} |
| |
| Jit* Jit::Create(JitCodeCache* code_cache, JitOptions* options) { |
| if (jit_load_ == nullptr) { |
| LOG(WARNING) << "Not creating JIT: library not loaded"; |
| return nullptr; |
| } |
| jit_compiler_ = (jit_load_)(); |
| if (jit_compiler_ == nullptr) { |
| LOG(WARNING) << "Not creating JIT: failed to allocate a compiler"; |
| return nullptr; |
| } |
| std::unique_ptr<Jit> jit(new Jit(code_cache, options)); |
| |
| // If the code collector is enabled, check if that still holds: |
| // With 'perf', we want a 1-1 mapping between an address and a method. |
| // We aren't able to keep method pointers live during the instrumentation method entry trampoline |
| // so we will just disable jit-gc if we are doing that. |
| if (code_cache->GetGarbageCollectCode()) { |
| code_cache->SetGarbageCollectCode(!jit_compiler_->GenerateDebugInfo() && |
| !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()); |
| } |
| |
| VLOG(jit) << "JIT created with initial_capacity=" |
| << PrettySize(options->GetCodeCacheInitialCapacity()) |
| << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity()) |
| << ", compile_threshold=" << options->GetCompileThreshold() |
| << ", profile_saver_options=" << options->GetProfileSaverOptions(); |
| |
| // We want to know whether the compiler is compiling baseline, as this |
| // affects how we GC ProfilingInfos. |
| for (const std::string& option : Runtime::Current()->GetCompilerOptions()) { |
| if (option == "--baseline") { |
| options->SetUseBaselineCompiler(); |
| break; |
| } |
| } |
| |
| // Notify native debugger about the classes already loaded before the creation of the jit. |
| jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker()); |
| return jit.release(); |
| } |
| |
| template <typename T> |
| bool Jit::LoadSymbol(T* address, const char* name, std::string* error_msg) { |
| *address = reinterpret_cast<T>(dlsym(jit_library_handle_, name)); |
| if (*address == nullptr) { |
| *error_msg = std::string("JIT couldn't find ") + name + std::string(" entry point"); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Jit::LoadCompilerLibrary(std::string* error_msg) { |
| jit_library_handle_ = dlopen( |
| kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW); |
| if (jit_library_handle_ == nullptr) { |
| std::ostringstream oss; |
| oss << "JIT could not load libart-compiler.so: " << dlerror(); |
| *error_msg = oss.str(); |
| return false; |
| } |
| if (!LoadSymbol(&jit_load_, "jit_load", error_msg)) { |
| dlclose(jit_library_handle_); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Jit::CompileMethod(ArtMethod* method, |
| Thread* self, |
| CompilationKind compilation_kind, |
| bool prejit) { |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| DCHECK(!method->IsRuntimeMethod()); |
| |
| RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks(); |
| // Don't compile the method if it has breakpoints. |
| if (cb->IsMethodBeingInspected(method) && !cb->IsMethodSafeToJit(method)) { |
| VLOG(jit) << "JIT not compiling " << method->PrettyMethod() |
| << " due to not being safe to jit according to runtime-callbacks. For example, there" |
| << " could be breakpoints in this method."; |
| return false; |
| } |
| |
| if (!method->IsCompilable()) { |
| DCHECK(method->GetDeclaringClass()->IsObsoleteObject() || |
| method->IsProxyMethod()) << method->PrettyMethod(); |
| VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to method being made " |
| << "obsolete while waiting for JIT task to run. This probably happened due to " |
| << "concurrent structural class redefinition."; |
| return false; |
| } |
| |
| // Don't compile the method if we are supposed to be deoptimized. |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) { |
| VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization"; |
| return false; |
| } |
| |
| JitMemoryRegion* region = GetCodeCache()->GetCurrentRegion(); |
| if ((compilation_kind == CompilationKind::kOsr) && GetCodeCache()->IsSharedRegion(*region)) { |
| VLOG(jit) << "JIT not osr compiling " |
| << method->PrettyMethod() |
| << " due to using shared region"; |
| return false; |
| } |
| |
| // If we get a request to compile a proxy method, we pass the actual Java method |
| // of that proxy method, as the compiler does not expect a proxy method. |
| ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| if (!code_cache_->NotifyCompilationOf(method_to_compile, self, compilation_kind, prejit)) { |
| return false; |
| } |
| |
| VLOG(jit) << "Compiling method " |
| << ArtMethod::PrettyMethod(method_to_compile) |
| << " kind=" << compilation_kind; |
| bool success = jit_compiler_->CompileMethod(self, region, method_to_compile, compilation_kind); |
| code_cache_->DoneCompiling(method_to_compile, self, compilation_kind); |
| if (!success) { |
| VLOG(jit) << "Failed to compile method " |
| << ArtMethod::PrettyMethod(method_to_compile) |
| << " kind=" << compilation_kind; |
| } |
| if (kIsDebugBuild) { |
| if (self->IsExceptionPending()) { |
| mirror::Throwable* exception = self->GetException(); |
| LOG(FATAL) << "No pending exception expected after compiling " |
| << ArtMethod::PrettyMethod(method) |
| << ": " |
| << exception->Dump(); |
| } |
| } |
| return success; |
| } |
| |
| void Jit::WaitForWorkersToBeCreated() { |
| if (thread_pool_ != nullptr) { |
| thread_pool_->WaitForWorkersToBeCreated(); |
| } |
| } |
| |
| void Jit::DeleteThreadPool() { |
| Thread* self = Thread::Current(); |
| if (thread_pool_ != nullptr) { |
| std::unique_ptr<ThreadPool> pool; |
| { |
| ScopedSuspendAll ssa(__FUNCTION__); |
| // Clear thread_pool_ field while the threads are suspended. |
| // A mutator in the 'AddSamples' method will check against it. |
| pool = std::move(thread_pool_); |
| } |
| |
| // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue. |
| if (!kRunningOnMemoryTool) { |
| pool->StopWorkers(self); |
| pool->RemoveAllTasks(self); |
| } |
| // We could just suspend all threads, but we know those threads |
| // will finish in a short period, so it's not worth adding a suspend logic |
| // here. Besides, this is only done for shutdown. |
| pool->Wait(self, false, false); |
| } |
| } |
| |
| void Jit::StartProfileSaver(const std::string& filename, |
| const std::vector<std::string>& code_paths) { |
| if (options_->GetSaveProfilingInfo()) { |
| ProfileSaver::Start(options_->GetProfileSaverOptions(), filename, code_cache_, code_paths); |
| } |
| } |
| |
| void Jit::StopProfileSaver() { |
| if (options_->GetSaveProfilingInfo() && ProfileSaver::IsStarted()) { |
| ProfileSaver::Stop(options_->DumpJitInfoOnShutdown()); |
| } |
| } |
| |
| bool Jit::JitAtFirstUse() { |
| return HotMethodThreshold() == 0; |
| } |
| |
| bool Jit::CanInvokeCompiledCode(ArtMethod* method) { |
| return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode()); |
| } |
| |
| Jit::~Jit() { |
| DCHECK(!options_->GetSaveProfilingInfo() || !ProfileSaver::IsStarted()); |
| if (options_->DumpJitInfoOnShutdown()) { |
| DumpInfo(LOG_STREAM(INFO)); |
| Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO)); |
| } |
| DeleteThreadPool(); |
| if (jit_compiler_ != nullptr) { |
| delete jit_compiler_; |
| jit_compiler_ = nullptr; |
| } |
| if (jit_library_handle_ != nullptr) { |
| dlclose(jit_library_handle_); |
| jit_library_handle_ = nullptr; |
| } |
| } |
| |
| void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) { |
| if (!Runtime::Current()->UseJitCompilation()) { |
| // No need to notify if we only use the JIT to save profiles. |
| return; |
| } |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| if (jit->jit_compiler_->GenerateDebugInfo()) { |
| jit_compiler_->TypesLoaded(&type, 1); |
| } |
| } |
| |
| void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) { |
| struct CollectClasses : public ClassVisitor { |
| bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { |
| classes_.push_back(klass.Ptr()); |
| return true; |
| } |
| std::vector<mirror::Class*> classes_; |
| }; |
| |
| if (jit_compiler_->GenerateDebugInfo()) { |
| ScopedObjectAccess so(Thread::Current()); |
| |
| CollectClasses visitor; |
| linker->VisitClasses(&visitor); |
| jit_compiler_->TypesLoaded(visitor.classes_.data(), visitor.classes_.size()); |
| } |
| } |
| |
| extern "C" void art_quick_osr_stub(void** stack, |
| size_t stack_size_in_bytes, |
| const uint8_t* native_pc, |
| JValue* result, |
| const char* shorty, |
| Thread* self); |
| |
| OsrData* Jit::PrepareForOsr(ArtMethod* method, uint32_t dex_pc, uint32_t* vregs) { |
| if (!kEnableOnStackReplacement) { |
| return nullptr; |
| } |
| |
| // Cheap check if the method has been compiled already. That's an indicator that we should |
| // osr into it. |
| if (!GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| return nullptr; |
| } |
| |
| // Fetch some data before looking up for an OSR method. We don't want thread |
| // suspension once we hold an OSR method, as the JIT code cache could delete the OSR |
| // method while we are being suspended. |
| CodeItemDataAccessor accessor(method->DexInstructionData()); |
| const size_t number_of_vregs = accessor.RegistersSize(); |
| std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : ""); |
| OsrData* osr_data = nullptr; |
| |
| { |
| ScopedAssertNoThreadSuspension sts("Holding OSR method"); |
| const OatQuickMethodHeader* osr_method = GetCodeCache()->LookupOsrMethodHeader(method); |
| if (osr_method == nullptr) { |
| // No osr method yet, just return to the interpreter. |
| return nullptr; |
| } |
| |
| CodeInfo code_info(osr_method); |
| |
| // Find stack map starting at the target dex_pc. |
| StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc); |
| if (!stack_map.IsValid()) { |
| // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the |
| // hope that the next branch has one. |
| return nullptr; |
| } |
| |
| // We found a stack map, now fill the frame with dex register values from the interpreter's |
| // shadow frame. |
| DexRegisterMap vreg_map = code_info.GetDexRegisterMapOf(stack_map); |
| DCHECK_EQ(vreg_map.size(), number_of_vregs); |
| |
| size_t frame_size = osr_method->GetFrameSizeInBytes(); |
| |
| // Allocate memory to put shadow frame values. The osr stub will copy that memory to |
| // stack. |
| // Note that we could pass the shadow frame to the stub, and let it copy the values there, |
| // but that is engineering complexity not worth the effort for something like OSR. |
| osr_data = reinterpret_cast<OsrData*>(malloc(sizeof(OsrData) + frame_size)); |
| if (osr_data == nullptr) { |
| return nullptr; |
| } |
| memset(osr_data, 0, sizeof(OsrData) + frame_size); |
| osr_data->frame_size = frame_size; |
| |
| // Art ABI: ArtMethod is at the bottom of the stack. |
| osr_data->memory[0] = method; |
| |
| if (vreg_map.empty()) { |
| // If we don't have a dex register map, then there are no live dex registers at |
| // this dex pc. |
| } else { |
| for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) { |
| DexRegisterLocation::Kind location = vreg_map[vreg].GetKind(); |
| if (location == DexRegisterLocation::Kind::kNone) { |
| // Dex register is dead or uninitialized. |
| continue; |
| } |
| |
| if (location == DexRegisterLocation::Kind::kConstant) { |
| // We skip constants because the compiled code knows how to handle them. |
| continue; |
| } |
| |
| DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack); |
| |
| int32_t vreg_value = vregs[vreg]; |
| int32_t slot_offset = vreg_map[vreg].GetStackOffsetInBytes(); |
| DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size)); |
| DCHECK_GT(slot_offset, 0); |
| (reinterpret_cast<int32_t*>(osr_data->memory))[slot_offset / sizeof(int32_t)] = vreg_value; |
| } |
| } |
| |
| osr_data->native_pc = stack_map.GetNativePcOffset(kRuntimeISA) + |
| osr_method->GetEntryPoint(); |
| VLOG(jit) << "Jumping to " |
| << method_name |
| << "@" |
| << std::hex << reinterpret_cast<uintptr_t>(osr_data->native_pc); |
| } |
| return osr_data; |
| } |
| |
| bool Jit::MaybeDoOnStackReplacement(Thread* thread, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| int32_t dex_pc_offset, |
| JValue* result) { |
| Jit* jit = Runtime::Current()->GetJit(); |
| if (jit == nullptr) { |
| return false; |
| } |
| |
| if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) { |
| // Don't attempt to do an OSR if we are close to the stack limit. Since |
| // the interpreter frames are still on stack, OSR has the potential |
| // to stack overflow even for a simple loop. |
| // b/27094810. |
| return false; |
| } |
| |
| // Get the actual Java method if this method is from a proxy class. The compiler |
| // and the JIT code cache do not expect methods from proxy classes. |
| method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| |
| // Before allowing the jump, make sure no code is actively inspecting the method to avoid |
| // jumping from interpreter to OSR while e.g. single stepping. Note that we could selectively |
| // disable OSR when single stepping, but that's currently hard to know at this point. |
| if (Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method)) { |
| return false; |
| } |
| |
| ShadowFrame* shadow_frame = thread->GetManagedStack()->GetTopShadowFrame(); |
| OsrData* osr_data = jit->PrepareForOsr(method, |
| dex_pc + dex_pc_offset, |
| shadow_frame->GetVRegArgs(0)); |
| |
| if (osr_data == nullptr) { |
| return false; |
| } |
| |
| { |
| thread->PopShadowFrame(); |
| ManagedStack fragment; |
| thread->PushManagedStackFragment(&fragment); |
| (*art_quick_osr_stub)(osr_data->memory, |
| osr_data->frame_size, |
| osr_data->native_pc, |
| result, |
| method->GetShorty(), |
| thread); |
| |
| if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) { |
| thread->DeoptimizeWithDeoptimizationException(result); |
| } |
| thread->PopManagedStackFragment(fragment); |
| } |
| free(osr_data); |
| thread->PushShadowFrame(shadow_frame); |
| VLOG(jit) << "Done running OSR code for " << method->PrettyMethod(); |
| return true; |
| } |
| |
| void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) { |
| if (bytes > 4 * MB) { |
| LOG(INFO) << "Compiler allocated " |
| << PrettySize(bytes) |
| << " to compile " |
| << ArtMethod::PrettyMethod(method); |
| } |
| MutexLock mu(Thread::Current(), lock_); |
| memory_use_.AddValue(bytes); |
| } |
| |
| void Jit::NotifyZygoteCompilationDone() { |
| if (fd_methods_ == -1) { |
| return; |
| } |
| |
| size_t offset = 0; |
| for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) { |
| const ImageHeader& header = space->GetImageHeader(); |
| const ImageSection& section = header.GetMethodsSection(); |
| // Because mremap works at page boundaries, we can only handle methods |
| // within a page range. For methods that falls above or below the range, |
| // the child processes will copy their contents to their private mapping |
| // in `child_mapping_methods`. See `MapBootImageMethods`. |
| uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize); |
| uint8_t* page_end = |
| AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize); |
| if (page_end > page_start) { |
| uint64_t capacity = page_end - page_start; |
| memcpy(zygote_mapping_methods_.Begin() + offset, page_start, capacity); |
| offset += capacity; |
| } |
| } |
| |
| // Do an msync to ensure we are not affected by writes still being in caches. |
| if (msync(zygote_mapping_methods_.Begin(), fd_methods_size_, MS_SYNC) != 0) { |
| PLOG(WARNING) << "Failed to sync boot image methods memory"; |
| code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure); |
| return; |
| } |
| |
| // We don't need the shared mapping anymore, and we need to drop it in case |
| // the file hasn't been sealed writable. |
| zygote_mapping_methods_ = MemMap::Invalid(); |
| |
| // Seal writes now. Zygote and children will map the memory private in order |
| // to write to it. |
| if (fcntl(fd_methods_, F_ADD_SEALS, F_SEAL_SEAL | F_SEAL_WRITE) == -1) { |
| PLOG(WARNING) << "Failed to seal boot image methods file descriptor"; |
| code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure); |
| return; |
| } |
| |
| std::string error_str; |
| MemMap child_mapping_methods = MemMap::MapFile( |
| fd_methods_size_, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE, |
| fd_methods_, |
| /* start= */ 0, |
| /* low_4gb= */ false, |
| "boot-image-methods", |
| &error_str); |
| |
| if (!child_mapping_methods.IsValid()) { |
| LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str; |
| code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure); |
| return; |
| } |
| |
| // Ensure the contents are the same as before: there was a window between |
| // the memcpy and the sealing where other processes could have changed the |
| // contents. |
| // Note this would not be needed if we could have used F_SEAL_FUTURE_WRITE, |
| // see b/143833776. |
| offset = 0; |
| for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) { |
| const ImageHeader& header = space->GetImageHeader(); |
| const ImageSection& section = header.GetMethodsSection(); |
| // Because mremap works at page boundaries, we can only handle methods |
| // within a page range. For methods that falls above or below the range, |
| // the child processes will copy their contents to their private mapping |
| // in `child_mapping_methods`. See `MapBootImageMethods`. |
| uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize); |
| uint8_t* page_end = |
| AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize); |
| if (page_end > page_start) { |
| uint64_t capacity = page_end - page_start; |
| if (memcmp(child_mapping_methods.Begin() + offset, page_start, capacity) != 0) { |
| LOG(WARNING) << "Contents differ in boot image methods data"; |
| code_cache_->GetZygoteMap()->SetCompilationState( |
| ZygoteCompilationState::kNotifiedFailure); |
| return; |
| } |
| offset += capacity; |
| } |
| } |
| |
| // Future spawned processes don't need the fd anymore. |
| fd_methods_.reset(); |
| |
| // In order to have the zygote and children share the memory, we also remap |
| // the memory into the zygote process. |
| offset = 0; |
| for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) { |
| const ImageHeader& header = space->GetImageHeader(); |
| const ImageSection& section = header.GetMethodsSection(); |
| // Because mremap works at page boundaries, we can only handle methods |
| // within a page range. For methods that falls above or below the range, |
| // the child processes will copy their contents to their private mapping |
| // in `child_mapping_methods`. See `MapBootImageMethods`. |
| uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize); |
| uint8_t* page_end = |
| AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize); |
| if (page_end > page_start) { |
| uint64_t capacity = page_end - page_start; |
| if (mremap(child_mapping_methods.Begin() + offset, |
| capacity, |
| capacity, |
| MREMAP_FIXED | MREMAP_MAYMOVE, |
| page_start) == MAP_FAILED) { |
| // Failing to remap is safe as the process will just use the old |
| // contents. |
| PLOG(WARNING) << "Failed mremap of boot image methods of " << space->GetImageFilename(); |
| } |
| offset += capacity; |
| } |
| } |
| |
| LOG(INFO) << "Successfully notified child processes on sharing boot image methods"; |
| |
| // Mark that compilation of boot classpath is done, and memory can now be |
| // shared. Other processes will pick up this information. |
| code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedOk); |
| |
| // The private mapping created for this process has been mremaped. We can |
| // reset it. |
| child_mapping_methods.Reset(); |
| } |
| |
| class JitCompileTask final : public Task { |
| public: |
| enum class TaskKind { |
| kCompile, |
| kPreCompile, |
| }; |
| |
| JitCompileTask(ArtMethod* method, TaskKind task_kind, CompilationKind compilation_kind) |
| : method_(method), kind_(task_kind), compilation_kind_(compilation_kind), klass_(nullptr) { |
| ScopedObjectAccess soa(Thread::Current()); |
| // For a non-bootclasspath class, add a global ref to the class to prevent class unloading |
| // until compilation is done. |
| // When we precompile, this is either with boot classpath methods, or main |
| // class loader methods, so we don't need to keep a global reference. |
| if (method->GetDeclaringClass()->GetClassLoader() != nullptr && |
| kind_ != TaskKind::kPreCompile) { |
| klass_ = soa.Vm()->AddGlobalRef(soa.Self(), method_->GetDeclaringClass()); |
| CHECK(klass_ != nullptr); |
| } |
| } |
| |
| ~JitCompileTask() { |
| if (klass_ != nullptr) { |
| ScopedObjectAccess soa(Thread::Current()); |
| soa.Vm()->DeleteGlobalRef(soa.Self(), klass_); |
| } |
| } |
| |
| void Run(Thread* self) override { |
| { |
| ScopedObjectAccess soa(self); |
| switch (kind_) { |
| case TaskKind::kCompile: |
| case TaskKind::kPreCompile: { |
| Runtime::Current()->GetJit()->CompileMethod( |
| method_, |
| self, |
| compilation_kind_, |
| /* prejit= */ (kind_ == TaskKind::kPreCompile)); |
| break; |
| } |
| } |
| } |
| ProfileSaver::NotifyJitActivity(); |
| } |
| |
| void Finalize() override { |
| delete this; |
| } |
| |
| private: |
| ArtMethod* const method_; |
| const TaskKind kind_; |
| const CompilationKind compilation_kind_; |
| jobject klass_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask); |
| }; |
| |
| static std::string GetProfileFile(const std::string& dex_location) { |
| // Hardcoded assumption where the profile file is. |
| // TODO(ngeoffray): this is brittle and we would need to change change if we |
| // wanted to do more eager JITting of methods in a profile. This is |
| // currently only for system server. |
| return dex_location + ".prof"; |
| } |
| |
| static std::string GetBootProfileFile(const std::string& profile) { |
| // The boot profile can be found next to the compilation profile, with a |
| // different extension. |
| return ReplaceFileExtension(profile, "bprof"); |
| } |
| |
| /** |
| * A JIT task to run after all profile compilation is done. |
| */ |
| class JitDoneCompilingProfileTask final : public SelfDeletingTask { |
| public: |
| explicit JitDoneCompilingProfileTask(const std::vector<const DexFile*>& dex_files) |
| : dex_files_(dex_files) {} |
| |
| void Run(Thread* self ATTRIBUTE_UNUSED) override { |
| // Madvise DONTNEED dex files now that we're done compiling methods. |
| for (const DexFile* dex_file : dex_files_) { |
| if (IsAddressKnownBackedByFileOrShared(dex_file->Begin())) { |
| int result = madvise(const_cast<uint8_t*>(AlignDown(dex_file->Begin(), kPageSize)), |
| RoundUp(dex_file->Size(), kPageSize), |
| MADV_DONTNEED); |
| if (result == -1) { |
| PLOG(WARNING) << "Madvise failed"; |
| } |
| } |
| } |
| |
| if (Runtime::Current()->IsZygote()) { |
| // Record that we are done compiling the profile. |
| Runtime::Current()->GetJit()->GetCodeCache()->GetZygoteMap()->SetCompilationState( |
| ZygoteCompilationState::kDone); |
| } |
| } |
| |
| private: |
| std::vector<const DexFile*> dex_files_; |
| |
| DISALLOW_COPY_AND_ASSIGN(JitDoneCompilingProfileTask); |
| }; |
| |
| /** |
| * A JIT task to run Java verification of boot classpath classes that were not |
| * verified at compile-time. |
| */ |
| class ZygoteVerificationTask final : public Task { |
| public: |
| ZygoteVerificationTask() {} |
| |
| void Run(Thread* self) override { |
| // We are going to load class and run verification, which may also need to load |
| // classes. If the thread cannot load classes (typically when the runtime is |
| // debuggable), then just return. |
| if (!self->CanLoadClasses()) { |
| return; |
| } |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* linker = runtime->GetClassLinker(); |
| const std::vector<const DexFile*>& boot_class_path = |
| runtime->GetClassLinker()->GetBootClassPath(); |
| ScopedObjectAccess soa(self); |
| StackHandleScope<1> hs(self); |
| MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr); |
| uint64_t start_ns = ThreadCpuNanoTime(); |
| uint64_t number_of_classes = 0; |
| for (const DexFile* dex_file : boot_class_path) { |
| if (dex_file->GetOatDexFile() != nullptr && |
| dex_file->GetOatDexFile()->GetOatFile() != nullptr) { |
| // If backed by an .oat file, we have already run verification at |
| // compile-time. Note that some classes may still have failed |
| // verification there if they reference updatable mainline module |
| // classes. |
| continue; |
| } |
| for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) { |
| const dex::ClassDef& class_def = dex_file->GetClassDef(i); |
| const char* descriptor = dex_file->GetClassDescriptor(class_def); |
| ScopedNullHandle<mirror::ClassLoader> null_loader; |
| klass.Assign(linker->FindClass(self, descriptor, null_loader)); |
| if (klass == nullptr) { |
| self->ClearException(); |
| LOG(WARNING) << "Could not find " << descriptor; |
| continue; |
| } |
| ++number_of_classes; |
| if (linker->VerifyClass(self, klass) == verifier::FailureKind::kHardFailure) { |
| DCHECK(self->IsExceptionPending()); |
| LOG(FATAL) << "Methods in the boot classpath failed to verify: " |
| << self->GetException()->Dump(); |
| } |
| CHECK(!self->IsExceptionPending()); |
| } |
| } |
| LOG(INFO) << "Verified " |
| << number_of_classes |
| << " classes from mainline modules in " |
| << PrettyDuration(ThreadCpuNanoTime() - start_ns); |
| } |
| }; |
| |
| class ZygoteTask final : public Task { |
| public: |
| ZygoteTask() {} |
| |
| void Run(Thread* self) override { |
| Runtime* runtime = Runtime::Current(); |
| uint32_t added_to_queue = 0; |
| for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) { |
| const std::string& profile_file = space->GetProfileFile(); |
| if (profile_file.empty()) { |
| continue; |
| } |
| LOG(INFO) << "JIT Zygote looking at profile " << profile_file; |
| |
| const std::vector<const DexFile*>& boot_class_path = |
| runtime->GetClassLinker()->GetBootClassPath(); |
| ScopedNullHandle<mirror::ClassLoader> null_handle; |
| // We add to the queue for zygote so that we can fork processes in-between |
| // compilations. |
| if (Runtime::Current()->IsPrimaryZygote()) { |
| std::string boot_profile = GetBootProfileFile(profile_file); |
| // We avoid doing compilation at boot for the secondary zygote, as apps |
| // forked from it are not critical for boot. |
| added_to_queue += runtime->GetJit()->CompileMethodsFromBootProfile( |
| self, boot_class_path, boot_profile, null_handle, /* add_to_queue= */ true); |
| } |
| added_to_queue += runtime->GetJit()->CompileMethodsFromProfile( |
| self, boot_class_path, profile_file, null_handle, /* add_to_queue= */ true); |
| } |
| |
| JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache(); |
| code_cache->GetZygoteMap()->Initialize(added_to_queue); |
| } |
| |
| void Finalize() override { |
| delete this; |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ZygoteTask); |
| }; |
| |
| class JitProfileTask final : public Task { |
| public: |
| JitProfileTask(const std::vector<std::unique_ptr<const DexFile>>& dex_files, |
| jobject class_loader) { |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<1> hs(soa.Self()); |
| Handle<mirror::ClassLoader> h_loader(hs.NewHandle( |
| soa.Decode<mirror::ClassLoader>(class_loader))); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| for (const auto& dex_file : dex_files) { |
| dex_files_.push_back(dex_file.get()); |
| // Register the dex file so that we can guarantee it doesn't get deleted |
| // while reading it during the task. |
| class_linker->RegisterDexFile(*dex_file.get(), h_loader.Get()); |
| } |
| // We also create our own global ref to use this class loader later. |
| class_loader_ = soa.Vm()->AddGlobalRef(soa.Self(), h_loader.Get()); |
| } |
| |
| void Run(Thread* self) override { |
| ScopedObjectAccess soa(self); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::ClassLoader> loader = hs.NewHandle<mirror::ClassLoader>( |
| soa.Decode<mirror::ClassLoader>(class_loader_)); |
| |
| std::string profile = GetProfileFile(dex_files_[0]->GetLocation()); |
| std::string boot_profile = GetBootProfileFile(profile); |
| |
| Jit* jit = Runtime::Current()->GetJit(); |
| |
| jit->CompileMethodsFromBootProfile( |
| self, |
| dex_files_, |
| boot_profile, |
| loader, |
| /* add_to_queue= */ false); |
| |
| jit->CompileMethodsFromProfile( |
| self, |
| dex_files_, |
| profile, |
| loader, |
| /* add_to_queue= */ true); |
| } |
| |
| void Finalize() override { |
| delete this; |
| } |
| |
| ~JitProfileTask() { |
| ScopedObjectAccess soa(Thread::Current()); |
| soa.Vm()->DeleteGlobalRef(soa.Self(), class_loader_); |
| } |
| |
| private: |
| std::vector<const DexFile*> dex_files_; |
| jobject class_loader_; |
| |
| DISALLOW_COPY_AND_ASSIGN(JitProfileTask); |
| }; |
| |
| static void CopyIfDifferent(void* s1, const void* s2, size_t n) { |
| if (memcmp(s1, s2, n) != 0) { |
| memcpy(s1, s2, n); |
| } |
| } |
| |
| void Jit::MapBootImageMethods() { |
| if (Runtime::Current()->IsJavaDebuggable()) { |
| LOG(INFO) << "Not mapping boot image methods due to process being debuggable"; |
| return; |
| } |
| CHECK_NE(fd_methods_.get(), -1); |
| if (!code_cache_->GetZygoteMap()->CanMapBootImageMethods()) { |
| LOG(WARNING) << "Not mapping boot image methods due to error from zygote"; |
| // We don't need the fd anymore. |
| fd_methods_.reset(); |
| return; |
| } |
| |
| std::string error_str; |
| MemMap child_mapping_methods = MemMap::MapFile( |
| fd_methods_size_, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE, |
| fd_methods_, |
| /* start= */ 0, |
| /* low_4gb= */ false, |
| "boot-image-methods", |
| &error_str); |
| |
| // We don't need the fd anymore. |
| fd_methods_.reset(); |
| |
| if (!child_mapping_methods.IsValid()) { |
| LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str; |
| return; |
| } |
| size_t offset = 0; |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) { |
| const ImageHeader& header = space->GetImageHeader(); |
| const ImageSection& section = header.GetMethodsSection(); |
| uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize); |
| uint8_t* page_end = |
| AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize); |
| if (page_end <= page_start) { |
| // Section doesn't contain one aligned entire page. |
| continue; |
| } |
| uint64_t capacity = page_end - page_start; |
| // Walk over methods in the boot image, and check for ones whose class is |
| // not initialized in the process, but are in the zygote process. For |
| // such methods, we need their entrypoints to be stubs that do the |
| // initialization check. |
| header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS { |
| // Methods in the boot image should never have their single |
| // implementation flag set (and therefore never have a `data_` pointing |
| // to an ArtMethod for single implementation). |
| CHECK(method.IsIntrinsic() || !method.HasSingleImplementationFlag()); |
| if (method.IsRuntimeMethod()) { |
| return; |
| } |
| if (method.GetDeclaringClassUnchecked()->IsVisiblyInitialized() || |
| !method.IsStatic() || |
| method.IsConstructor()) { |
| // Method does not need any stub. |
| return; |
| } |
| |
| // We are going to mremap the child mapping into the image: |
| // |
| // ImageSection ChildMappingMethods |
| // |
| // section start --> ----------- |
| // | | |
| // | | |
| // page_start --> | | <----- ----------- |
| // | | | | |
| // | | | | |
| // | | | | |
| // | | | | |
| // | | | | |
| // | | | | |
| // | | | | |
| // page_end --> | | <----- ----------- |
| // | | |
| // section end --> ----------- |
| |
| |
| uint8_t* pointer = reinterpret_cast<uint8_t*>(&method); |
| // Note: We could refactor this to only check if the ArtMethod entrypoint is inside the |
| // page region. This would remove the need for the edge case handling below. |
| if (pointer >= page_start && pointer + sizeof(ArtMethod) < page_end) { |
| // For all the methods in the mapping, put the entrypoint to the |
| // resolution stub. |
| ArtMethod* new_method = reinterpret_cast<ArtMethod*>( |
| child_mapping_methods.Begin() + offset + (pointer - page_start)); |
| const void* code = new_method->GetEntryPointFromQuickCompiledCode(); |
| if (!class_linker->IsQuickGenericJniStub(code) && |
| !class_linker->IsQuickToInterpreterBridge(code) && |
| !class_linker->IsQuickResolutionStub(code)) { |
| LOG(INFO) << "Putting back the resolution stub to an ArtMethod"; |
| new_method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); |
| } |
| } else if (pointer < page_start && (pointer + sizeof(ArtMethod)) > page_start) { |
| LOG(INFO) << "Copying parts of the contents of an ArtMethod spanning page_start"; |
| // If the method spans `page_start`, copy the contents of the child |
| // into the pages we are going to remap into the image. |
| // |
| // section start --> ----------- |
| // | | |
| // | | |
| // page_start --> |/////////| ----------- |
| // |/////////| -> copy -> |/////////| |
| // | | | | |
| // |
| CopyIfDifferent(child_mapping_methods.Begin() + offset, |
| page_start, |
| pointer + sizeof(ArtMethod) - page_start); |
| } else if (pointer < page_end && (pointer + sizeof(ArtMethod)) > page_end) { |
| LOG(INFO) << "Copying parts of the contents of an ArtMethod spanning page_end"; |
| // If the method spans `page_end`, copy the contents of the child |
| // into the pages we are going to remap into the image. |
| // |
| // | | | | |
| // |/////////| -> copy -> |/////////| |
| // page_end --> |/////////| ----------- |
| // | | |
| // section end --> ----------- |
| // |
| size_t bytes_to_copy = (page_end - pointer); |
| CopyIfDifferent(child_mapping_methods.Begin() + offset + capacity - bytes_to_copy, |
| page_end - bytes_to_copy, |
| bytes_to_copy); |
| } |
| }, space->Begin(), kRuntimePointerSize); |
| |
| // Map the memory in the boot image range. |
| if (mremap(child_mapping_methods.Begin() + offset, |
| capacity, |
| capacity, |
| MREMAP_FIXED | MREMAP_MAYMOVE, |
| page_start) == MAP_FAILED) { |
| PLOG(WARNING) << "Fail to mremap boot image methods for " << space->GetImageFilename(); |
| } |
| offset += capacity; |
| } |
| |
| // The private mapping created for this process has been mremaped. We can |
| // reset it. |
| child_mapping_methods.Reset(); |
| LOG(INFO) << "Successfully mapped boot image methods"; |
| } |
| |
| // Return whether a boot image has a profile. This means we'll need to pre-JIT |
| // methods in that profile for performance. |
| static bool HasImageWithProfile() { |
| for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) { |
| if (!space->GetProfileFile().empty()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void Jit::CreateThreadPool() { |
| // There is a DCHECK in the 'AddSamples' method to ensure the tread pool |
| // is not null when we instrument. |
| |
| // We need peers as we may report the JIT thread, e.g., in the debugger. |
| constexpr bool kJitPoolNeedsPeers = true; |
| thread_pool_.reset(new ThreadPool("Jit thread pool", 1, kJitPoolNeedsPeers)); |
| |
| thread_pool_->SetPthreadPriority(options_->GetThreadPoolPthreadPriority()); |
| Start(); |
| |
| Runtime* runtime = Runtime::Current(); |
| if (runtime->IsZygote()) { |
| // To speed up class lookups, generate a type lookup table for |
| // dex files not backed by oat file. |
| for (const DexFile* dex_file : runtime->GetClassLinker()->GetBootClassPath()) { |
| if (dex_file->GetOatDexFile() == nullptr) { |
| TypeLookupTable type_lookup_table = TypeLookupTable::Create(*dex_file); |
| type_lookup_tables_.push_back( |
| std::make_unique<art::OatDexFile>(std::move(type_lookup_table))); |
| dex_file->SetOatDexFile(type_lookup_tables_.back().get()); |
| } |
| } |
| |
| // Add a task that will verify boot classpath jars that were not |
| // pre-compiled. |
| thread_pool_->AddTask(Thread::Current(), new ZygoteVerificationTask()); |
| } |
| |
| if (runtime->IsZygote() && HasImageWithProfile() && UseJitCompilation()) { |
| // If we have an image with a profile, request a JIT task to |
| // compile all methods in that profile. |
| thread_pool_->AddTask(Thread::Current(), new ZygoteTask()); |
| |
| // And create mappings to share boot image methods memory from the zygote to |
| // child processes. |
| |
| // Compute the total capacity required for the boot image methods. |
| uint64_t total_capacity = 0; |
| for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) { |
| const ImageHeader& header = space->GetImageHeader(); |
| const ImageSection& section = header.GetMethodsSection(); |
| // Mappings need to be at the page level. |
| uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize); |
| uint8_t* page_end = |
| AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize); |
| if (page_end > page_start) { |
| total_capacity += (page_end - page_start); |
| } |
| } |
| |
| // Create the child and zygote mappings to the boot image methods. |
| if (total_capacity > 0) { |
| // Start with '/boot' and end with '.art' to match the pattern recognized |
| // by android_os_Debug.cpp for boot images. |
| const char* name = "/boot-image-methods.art"; |
| unique_fd mem_fd = unique_fd(art::memfd_create(name, /* flags= */ MFD_ALLOW_SEALING)); |
| if (mem_fd.get() == -1) { |
| PLOG(WARNING) << "Could not create boot image methods file descriptor"; |
| return; |
| } |
| if (ftruncate(mem_fd.get(), total_capacity) != 0) { |
| PLOG(WARNING) << "Failed to truncate boot image methods file to " << total_capacity; |
| return; |
| } |
| std::string error_str; |
| |
| // Create the shared mapping eagerly, as this prevents other processes |
| // from adding the writable seal. |
| zygote_mapping_methods_ = MemMap::MapFile( |
| total_capacity, |
| PROT_READ | PROT_WRITE, |
| MAP_SHARED, |
| mem_fd, |
| /* start= */ 0, |
| /* low_4gb= */ false, |
| "boot-image-methods", |
| &error_str); |
| |
| if (!zygote_mapping_methods_.IsValid()) { |
| LOG(WARNING) << "Failed to create zygote mapping of boot image methods: " << error_str; |
| return; |
| } |
| if (zygote_mapping_methods_.MadviseDontFork() != 0) { |
| LOG(WARNING) << "Failed to madvise dont fork boot image methods"; |
| zygote_mapping_methods_ = MemMap(); |
| return; |
| } |
| |
| // We should use the F_SEAL_FUTURE_WRITE flag, but this has unexpected |
| // behavior on private mappings after fork (the mapping becomes shared between |
| // parent and children), see b/143833776. |
| // We will seal the write once we are done writing to the shared mapping. |
| if (fcntl(mem_fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW) == -1) { |
| PLOG(WARNING) << "Failed to seal boot image methods file descriptor"; |
| zygote_mapping_methods_ = MemMap(); |
| return; |
| } |
| fd_methods_ = unique_fd(mem_fd.release()); |
| fd_methods_size_ = total_capacity; |
| } |
| } |
| } |
| |
| void Jit::RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>>& dex_files, |
| jobject class_loader) { |
| if (dex_files.empty()) { |
| return; |
| } |
| Runtime* runtime = Runtime::Current(); |
| // If the runtime is debuggable, no need to precompile methods. |
| if (runtime->IsSystemServer() && |
| UseJitCompilation() && HasImageWithProfile() && |
| !runtime->IsJavaDebuggable()) { |
| thread_pool_->AddTask(Thread::Current(), new JitProfileTask(dex_files, class_loader)); |
| } |
| } |
| |
| bool Jit::CompileMethodFromProfile(Thread* self, |
| ClassLinker* class_linker, |
| uint32_t method_idx, |
| Handle<mirror::DexCache> dex_cache, |
| Handle<mirror::ClassLoader> class_loader, |
| bool add_to_queue, |
| bool compile_after_boot) { |
| ArtMethod* method = class_linker->ResolveMethodWithoutInvokeType( |
| method_idx, dex_cache, class_loader); |
| if (method == nullptr) { |
| self->ClearException(); |
| return false; |
| } |
| if (!method->IsCompilable() || !method->IsInvokable()) { |
| return false; |
| } |
| if (method->IsPreCompiled()) { |
| // Already seen by another profile. |
| return false; |
| } |
| const void* entry_point = method->GetEntryPointFromQuickCompiledCode(); |
| if (class_linker->IsQuickToInterpreterBridge(entry_point) || |
| class_linker->IsQuickGenericJniStub(entry_point) || |
| // We explicitly check for the stub. The trampoline is for methods backed by |
| // a .oat file that has a compiled version of the method. |
| (entry_point == GetQuickResolutionStub())) { |
| method->SetPreCompiled(); |
| if (!add_to_queue) { |
| CompileMethod(method, self, CompilationKind::kOptimized, /* prejit= */ true); |
| } else { |
| Task* task = new JitCompileTask( |
| method, JitCompileTask::TaskKind::kPreCompile, CompilationKind::kOptimized); |
| if (compile_after_boot) { |
| MutexLock mu(Thread::Current(), boot_completed_lock_); |
| if (!boot_completed_) { |
| tasks_after_boot_.push_back(task); |
| return true; |
| } |
| DCHECK(tasks_after_boot_.empty()); |
| } |
| thread_pool_->AddTask(self, task); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| uint32_t Jit::CompileMethodsFromBootProfile( |
| Thread* self, |
| const std::vector<const DexFile*>& dex_files, |
| const std::string& profile_file, |
| Handle<mirror::ClassLoader> class_loader, |
| bool add_to_queue) { |
| unix_file::FdFile profile(profile_file.c_str(), O_RDONLY, true); |
| |
| if (profile.Fd() == -1) { |
| PLOG(WARNING) << "No boot profile: " << profile_file; |
| return 0u; |
| } |
| |
| ProfileBootInfo profile_info; |
| if (!profile_info.Load(profile.Fd(), dex_files)) { |
| LOG(ERROR) << "Could not load profile file: " << profile_file; |
| return 0u; |
| } |
| |
| ScopedObjectAccess soa(self); |
| VariableSizedHandleScope handles(self); |
| std::vector<Handle<mirror::DexCache>> dex_caches; |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| for (const DexFile* dex_file : profile_info.GetDexFiles()) { |
| dex_caches.push_back(handles.NewHandle(class_linker->FindDexCache(self, *dex_file))); |
| } |
| |
| uint32_t added_to_queue = 0; |
| for (const std::pair<uint32_t, uint32_t>& pair : profile_info.GetMethods()) { |
| if (CompileMethodFromProfile(self, |
| class_linker, |
| pair.second, |
| dex_caches[pair.first], |
| class_loader, |
| add_to_queue, |
| /*compile_after_boot=*/false)) { |
| ++added_to_queue; |
| } |
| } |
| return added_to_queue; |
| } |
| |
| uint32_t Jit::CompileMethodsFromProfile( |
| Thread* self, |
| const std::vector<const DexFile*>& dex_files, |
| const std::string& profile_file, |
| Handle<mirror::ClassLoader> class_loader, |
| bool add_to_queue) { |
| |
| if (profile_file.empty()) { |
| LOG(WARNING) << "Expected a profile file in JIT zygote mode"; |
| return 0u; |
| } |
| |
| // We don't generate boot profiles on device, therefore we don't |
| // need to lock the file. |
| unix_file::FdFile profile(profile_file.c_str(), O_RDONLY, true); |
| |
| if (profile.Fd() == -1) { |
| PLOG(WARNING) << "No profile: " << profile_file; |
| return 0u; |
| } |
| |
| ProfileCompilationInfo profile_info; |
| if (!profile_info.Load(profile.Fd())) { |
| LOG(ERROR) << "Could not load profile file"; |
| return 0u; |
| } |
| ScopedObjectAccess soa(self); |
| StackHandleScope<1> hs(self); |
| MutableHandle<mirror::DexCache> dex_cache = hs.NewHandle<mirror::DexCache>(nullptr); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| uint32_t added_to_queue = 0u; |
| for (const DexFile* dex_file : dex_files) { |
| if (LocationIsOnArtModule(dex_file->GetLocation().c_str())) { |
| // The ART module jars are already preopted. |
| continue; |
| } |
| |
| std::set<dex::TypeIndex> class_types; |
| std::set<uint16_t> all_methods; |
| if (!profile_info.GetClassesAndMethods(*dex_file, |
| &class_types, |
| &all_methods, |
| &all_methods, |
| &all_methods)) { |
| // This means the profile file did not reference the dex file, which is the case |
| // if there's no classes and methods of that dex file in the profile. |
| continue; |
| } |
| dex_cache.Assign(class_linker->FindDexCache(self, *dex_file)); |
| CHECK(dex_cache != nullptr) << "Could not find dex cache for " << dex_file->GetLocation(); |
| |
| for (uint16_t method_idx : all_methods) { |
| if (CompileMethodFromProfile(self, |
| class_linker, |
| method_idx, |
| dex_cache, |
| class_loader, |
| add_to_queue, |
| /*compile_after_boot=*/true)) { |
| ++added_to_queue; |
| } |
| } |
| } |
| |
| // Add a task to run when all compilation is done. |
| JitDoneCompilingProfileTask* task = new JitDoneCompilingProfileTask(dex_files); |
| MutexLock mu(Thread::Current(), boot_completed_lock_); |
| if (!boot_completed_) { |
| tasks_after_boot_.push_back(task); |
| } else { |
| DCHECK(tasks_after_boot_.empty()); |
| thread_pool_->AddTask(self, task); |
| } |
| return added_to_queue; |
| } |
| |
| bool Jit::IgnoreSamplesForMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (method->IsClassInitializer() || !method->IsCompilable() || method->IsPreCompiled()) { |
| // We do not want to compile such methods. |
| return true; |
| } |
| if (method->IsNative()) { |
| ObjPtr<mirror::Class> klass = method->GetDeclaringClass(); |
| if (klass == GetClassRoot<mirror::MethodHandle>() || |
| klass == GetClassRoot<mirror::VarHandle>()) { |
| // MethodHandle and VarHandle invocation methods are required to throw an |
| // UnsupportedOperationException if invoked reflectively. We achieve this by having native |
| // implementations that raise the exception. We need to disable JIT compilation of these JNI |
| // methods as it can lead to transitioning between JIT compiled JNI stubs and generic JNI |
| // stubs. Since these stubs have different stack representations we can then crash in stack |
| // walking (b/78151261). |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Jit::MaybeCompileMethod(Thread* self, |
| ArtMethod* method, |
| uint32_t old_count, |
| uint32_t new_count, |
| bool with_backedges) { |
| if (thread_pool_ == nullptr) { |
| return false; |
| } |
| if (UNLIKELY(method->IsPreCompiled()) && !with_backedges /* don't check for OSR */) { |
| if (!NeedsClinitCheckBeforeCall(method) || |
| method->GetDeclaringClass()->IsVisiblyInitialized()) { |
| const void* entry_point = code_cache_->GetSavedEntryPointOfPreCompiledMethod(method); |
| if (entry_point != nullptr) { |
| Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(method, entry_point); |
| return true; |
| } |
| } |
| } |
| |
| if (IgnoreSamplesForMethod(method)) { |
| return false; |
| } |
| if (HotMethodThreshold() == 0) { |
| // Tests might request JIT on first use (compiled synchronously in the interpreter). |
| return false; |
| } |
| DCHECK_GT(WarmMethodThreshold(), 0); |
| DCHECK_GT(HotMethodThreshold(), WarmMethodThreshold()); |
| DCHECK_GT(OSRMethodThreshold(), HotMethodThreshold()); |
| DCHECK_GE(PriorityThreadWeight(), 1); |
| DCHECK_LE(PriorityThreadWeight(), HotMethodThreshold()); |
| |
| if (UseJitCompilation()) { |
| if (old_count < HotMethodThreshold() && new_count >= HotMethodThreshold()) { |
| if (!code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| DCHECK(thread_pool_ != nullptr); |
| thread_pool_->AddTask( |
| self, |
| new JitCompileTask( |
| method, JitCompileTask::TaskKind::kCompile, CompilationKind::kBaseline)); |
| } |
| } |
| if (old_count < OSRMethodThreshold() && new_count >= OSRMethodThreshold()) { |
| if (!with_backedges) { |
| return false; |
| } |
| DCHECK(!method->IsNative()); // No back edges reported for native methods. |
| if (!code_cache_->IsOsrCompiled(method)) { |
| DCHECK(thread_pool_ != nullptr); |
| thread_pool_->AddTask( |
| self, |
| new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, CompilationKind::kOsr)); |
| } |
| } |
| } |
| return true; |
| } |
| |
| void Jit::EnqueueOptimizedCompilation(ArtMethod* method, Thread* self) { |
| if (thread_pool_ == nullptr) { |
| return; |
| } |
| // We arrive here after a baseline compiled code has reached its baseline |
| // hotness threshold. If we're not only using the baseline compiler, enqueue a compilation |
| // task that will compile optimize the method. |
| if (!options_->UseBaselineCompiler()) { |
| thread_pool_->AddTask( |
| self, |
| new JitCompileTask(method, |
| JitCompileTask::TaskKind::kCompile, |
| CompilationKind::kOptimized)); |
| } |
| } |
| |
| class ScopedSetRuntimeThread { |
| public: |
| explicit ScopedSetRuntimeThread(Thread* self) |
| : self_(self), was_runtime_thread_(self_->IsRuntimeThread()) { |
| self_->SetIsRuntimeThread(true); |
| } |
| |
| ~ScopedSetRuntimeThread() { |
| self_->SetIsRuntimeThread(was_runtime_thread_); |
| } |
| |
| private: |
| Thread* self_; |
| bool was_runtime_thread_; |
| }; |
| |
| void Jit::MethodEntered(Thread* thread, ArtMethod* method) { |
| Runtime* runtime = Runtime::Current(); |
| if (UNLIKELY(runtime->UseJitCompilation() && JitAtFirstUse())) { |
| ArtMethod* np_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| if (np_method->IsCompilable()) { |
| // TODO(ngeoffray): For JIT at first use, use kPreCompile. Currently we don't due to |
| // conflicts with jitzygote optimizations. |
| JitCompileTask compile_task( |
| method, JitCompileTask::TaskKind::kCompile, CompilationKind::kOptimized); |
| // Fake being in a runtime thread so that class-load behavior will be the same as normal jit. |
| ScopedSetRuntimeThread ssrt(thread); |
| compile_task.Run(thread); |
| } |
| return; |
| } |
| |
| AddSamples(thread, method, 1, /* with_backedges= */false); |
| } |
| |
| void Jit::WaitForCompilationToFinish(Thread* self) { |
| if (thread_pool_ != nullptr) { |
| thread_pool_->Wait(self, false, false); |
| } |
| } |
| |
| void Jit::Stop() { |
| Thread* self = Thread::Current(); |
| // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice. |
| WaitForCompilationToFinish(self); |
| GetThreadPool()->StopWorkers(self); |
| WaitForCompilationToFinish(self); |
| } |
| |
| void Jit::Start() { |
| GetThreadPool()->StartWorkers(Thread::Current()); |
| } |
| |
| ScopedJitSuspend::ScopedJitSuspend() { |
| jit::Jit* jit = Runtime::Current()->GetJit(); |
| was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr); |
| if (was_on_) { |
| jit->Stop(); |
| } |
| } |
| |
| ScopedJitSuspend::~ScopedJitSuspend() { |
| if (was_on_) { |
| DCHECK(Runtime::Current()->GetJit() != nullptr); |
| DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr); |
| Runtime::Current()->GetJit()->Start(); |
| } |
| } |
| |
| static void* RunPollingThread(void* arg) { |
| Jit* jit = reinterpret_cast<Jit*>(arg); |
| do { |
| sleep(10); |
| } while (!jit->GetCodeCache()->GetZygoteMap()->IsCompilationNotified()); |
| |
| // We will suspend other threads: we can only do that if we're attached to the |
| // runtime. |
| Runtime* runtime = Runtime::Current(); |
| bool thread_attached = runtime->AttachCurrentThread( |
| "BootImagePollingThread", |
| /* as_daemon= */ true, |
| /* thread_group= */ nullptr, |
| /* create_peer= */ false); |
| CHECK(thread_attached); |
| |
| { |
| // Prevent other threads from running while we are remapping the boot image |
| // ArtMethod's. Native threads might still be running, but they cannot |
| // change the contents of ArtMethod's. |
| ScopedSuspendAll ssa(__FUNCTION__); |
| runtime->GetJit()->MapBootImageMethods(); |
| } |
| |
| Runtime::Current()->DetachCurrentThread(); |
| return nullptr; |
| } |
| |
| void Jit::PostForkChildAction(bool is_system_server, bool is_zygote) { |
| // Clear the potential boot tasks inherited from the zygote. |
| { |
| MutexLock mu(Thread::Current(), boot_completed_lock_); |
| tasks_after_boot_.clear(); |
| } |
| |
| Runtime* const runtime = Runtime::Current(); |
| // Check if we'll need to remap the boot image methods. |
| if (!is_zygote && fd_methods_ != -1) { |
| // Create a thread that will poll the status of zygote compilation, and map |
| // the private mapping of boot image methods. |
| // For child zygote, we instead query IsCompilationNotified() post zygote fork. |
| zygote_mapping_methods_.ResetInForkedProcess(); |
| pthread_t polling_thread; |
| pthread_attr_t attr; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); |
| CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), |
| "PTHREAD_CREATE_DETACHED"); |
| CHECK_PTHREAD_CALL( |
| pthread_create, |
| (&polling_thread, &attr, RunPollingThread, reinterpret_cast<void*>(this)), |
| "Methods maps thread"); |
| } |
| |
| if (is_zygote || runtime->IsSafeMode()) { |
| // Delete the thread pool, we are not going to JIT. |
| thread_pool_.reset(nullptr); |
| return; |
| } |
| // At this point, the compiler options have been adjusted to the particular configuration |
| // of the forked child. Parse them again. |
| jit_compiler_->ParseCompilerOptions(); |
| |
| // Adjust the status of code cache collection: the status from zygote was to not collect. |
| code_cache_->SetGarbageCollectCode(!jit_compiler_->GenerateDebugInfo() && |
| !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()); |
| |
| if (is_system_server && HasImageWithProfile()) { |
| // Disable garbage collection: we don't want it to delete methods we're compiling |
| // through boot and system server profiles. |
| // TODO(ngeoffray): Fix this so we still collect deoptimized and unused code. |
| code_cache_->SetGarbageCollectCode(false); |
| } |
| |
| // We do this here instead of PostZygoteFork, as NativeDebugInfoPostFork only |
| // applies to a child. |
| NativeDebugInfoPostFork(); |
| } |
| |
| void Jit::PreZygoteFork() { |
| if (thread_pool_ == nullptr) { |
| return; |
| } |
| thread_pool_->DeleteThreads(); |
| |
| NativeDebugInfoPreFork(); |
| } |
| |
| void Jit::PostZygoteFork() { |
| if (thread_pool_ == nullptr) { |
| // If this is a child zygote, check if we need to remap the boot image |
| // methods. |
| if (Runtime::Current()->IsZygote() && |
| fd_methods_ != -1 && |
| code_cache_->GetZygoteMap()->IsCompilationNotified()) { |
| ScopedSuspendAll ssa(__FUNCTION__); |
| MapBootImageMethods(); |
| } |
| return; |
| } |
| if (Runtime::Current()->IsZygote() && |
| code_cache_->GetZygoteMap()->IsCompilationDoneButNotNotified()) { |
| // Copy the boot image methods data to the mappings we created to share |
| // with the children. We do this here as we are the only thread running and |
| // we don't risk other threads concurrently updating the ArtMethod's. |
| CHECK_EQ(GetTaskCount(), 1); |
| NotifyZygoteCompilationDone(); |
| CHECK(code_cache_->GetZygoteMap()->IsCompilationNotified()); |
| } |
| thread_pool_->CreateThreads(); |
| thread_pool_->SetPthreadPriority(options_->GetThreadPoolPthreadPriority()); |
| } |
| |
| void Jit::BootCompleted() { |
| Thread* self = Thread::Current(); |
| std::deque<Task*> tasks; |
| { |
| MutexLock mu(self, boot_completed_lock_); |
| tasks = std::move(tasks_after_boot_); |
| boot_completed_ = true; |
| } |
| for (Task* task : tasks) { |
| thread_pool_->AddTask(self, task); |
| } |
| } |
| |
| bool Jit::CanEncodeMethod(ArtMethod* method, bool is_for_shared_region) const { |
| return !is_for_shared_region || |
| Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(method->GetDeclaringClass()); |
| } |
| |
| bool Jit::CanEncodeClass(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const { |
| return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls); |
| } |
| |
| bool Jit::CanEncodeString(ObjPtr<mirror::String> string, bool is_for_shared_region) const { |
| return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(string); |
| } |
| |
| bool Jit::CanAssumeInitialized(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const { |
| if (!is_for_shared_region) { |
| return cls->IsInitialized(); |
| } else { |
| // Look up the class status in the oat file. |
| const DexFile& dex_file = *cls->GetDexCache()->GetDexFile(); |
| const OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); |
| // In case we run without an image there won't be a backing oat file. |
| if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) { |
| return false; |
| } |
| uint16_t class_def_index = cls->GetDexClassDefIndex(); |
| return oat_dex_file->GetOatClass(class_def_index).GetStatus() >= ClassStatus::kInitialized; |
| } |
| } |
| |
| void Jit::EnqueueCompilationFromNterp(ArtMethod* method, Thread* self) { |
| if (thread_pool_ == nullptr) { |
| return; |
| } |
| if (GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| // If we already have compiled code for it, nterp may be stuck in a loop. |
| // Compile OSR. |
| thread_pool_->AddTask( |
| self, |
| new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, CompilationKind::kOsr)); |
| return; |
| } |
| if (GetCodeCache()->CanAllocateProfilingInfo()) { |
| thread_pool_->AddTask( |
| self, |
| new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, CompilationKind::kBaseline)); |
| } else { |
| thread_pool_->AddTask( |
| self, |
| new JitCompileTask(method, |
| JitCompileTask::TaskKind::kCompile, |
| CompilationKind::kOptimized)); |
| } |
| } |
| |
| } // namespace jit |
| } // namespace art |