| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "bounds_check_elimination.h" | 
 |  | 
 | #include <limits> | 
 |  | 
 | #include "base/scoped_arena_allocator.h" | 
 | #include "base/scoped_arena_containers.h" | 
 | #include "induction_var_range.h" | 
 | #include "nodes.h" | 
 | #include "side_effects_analysis.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | class MonotonicValueRange; | 
 |  | 
 | /** | 
 |  * A value bound is represented as a pair of value and constant, | 
 |  * e.g. array.length - 1. | 
 |  */ | 
 | class ValueBound : public ValueObject { | 
 |  public: | 
 |   ValueBound(HInstruction* instruction, int32_t constant) { | 
 |     if (instruction != nullptr && instruction->IsIntConstant()) { | 
 |       // Normalize ValueBound with constant instruction. | 
 |       int32_t instr_const = instruction->AsIntConstant()->GetValue(); | 
 |       if (!WouldAddOverflowOrUnderflow(instr_const, constant)) { | 
 |         instruction_ = nullptr; | 
 |         constant_ = instr_const + constant; | 
 |         return; | 
 |       } | 
 |     } | 
 |     instruction_ = instruction; | 
 |     constant_ = constant; | 
 |   } | 
 |  | 
 |   // Return whether (left + right) overflows or underflows. | 
 |   static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) { | 
 |     if (right == 0) { | 
 |       return false; | 
 |     } | 
 |     if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) { | 
 |       // No overflow. | 
 |       return false; | 
 |     } | 
 |     if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) { | 
 |       // No underflow. | 
 |       return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Return true if instruction can be expressed as "left_instruction + right_constant". | 
 |   static bool IsAddOrSubAConstant(HInstruction* instruction, | 
 |                                   /* out */ HInstruction** left_instruction, | 
 |                                   /* out */ int32_t* right_constant) { | 
 |     HInstruction* left_so_far = nullptr; | 
 |     int32_t right_so_far = 0; | 
 |     while (instruction->IsAdd() || instruction->IsSub()) { | 
 |       HBinaryOperation* bin_op = instruction->AsBinaryOperation(); | 
 |       HInstruction* left = bin_op->GetLeft(); | 
 |       HInstruction* right = bin_op->GetRight(); | 
 |       if (right->IsIntConstant()) { | 
 |         int32_t v = right->AsIntConstant()->GetValue(); | 
 |         int32_t c = instruction->IsAdd() ? v : -v; | 
 |         if (!WouldAddOverflowOrUnderflow(right_so_far, c)) { | 
 |           instruction = left; | 
 |           left_so_far = left; | 
 |           right_so_far += c; | 
 |           continue; | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     // Return result: either false and "null+0" or true and "instr+constant". | 
 |     *left_instruction = left_so_far; | 
 |     *right_constant = right_so_far; | 
 |     return left_so_far != nullptr; | 
 |   } | 
 |  | 
 |   // Expresses any instruction as a value bound. | 
 |   static ValueBound AsValueBound(HInstruction* instruction) { | 
 |     if (instruction->IsIntConstant()) { | 
 |       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); | 
 |     } | 
 |     HInstruction *left; | 
 |     int32_t right; | 
 |     if (IsAddOrSubAConstant(instruction, &left, &right)) { | 
 |       return ValueBound(left, right); | 
 |     } | 
 |     return ValueBound(instruction, 0); | 
 |   } | 
 |  | 
 |   // Try to detect useful value bound format from an instruction, e.g. | 
 |   // a constant or array length related value. | 
 |   static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) { | 
 |     DCHECK(instruction != nullptr); | 
 |     if (instruction->IsIntConstant()) { | 
 |       *found = true; | 
 |       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); | 
 |     } | 
 |  | 
 |     if (instruction->IsArrayLength()) { | 
 |       *found = true; | 
 |       return ValueBound(instruction, 0); | 
 |     } | 
 |     // Try to detect (array.length + c) format. | 
 |     HInstruction *left; | 
 |     int32_t right; | 
 |     if (IsAddOrSubAConstant(instruction, &left, &right)) { | 
 |       if (left->IsArrayLength()) { | 
 |         *found = true; | 
 |         return ValueBound(left, right); | 
 |       } | 
 |     } | 
 |  | 
 |     // No useful bound detected. | 
 |     *found = false; | 
 |     return ValueBound::Max(); | 
 |   } | 
 |  | 
 |   HInstruction* GetInstruction() const { return instruction_; } | 
 |   int32_t GetConstant() const { return constant_; } | 
 |  | 
 |   bool IsRelatedToArrayLength() const { | 
 |     // Some bounds are created with HNewArray* as the instruction instead | 
 |     // of HArrayLength*. They are treated the same. | 
 |     return (instruction_ != nullptr) && | 
 |            (instruction_->IsArrayLength() || instruction_->IsNewArray()); | 
 |   } | 
 |  | 
 |   bool IsConstant() const { | 
 |     return instruction_ == nullptr; | 
 |   } | 
 |  | 
 |   static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); } | 
 |   static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); } | 
 |  | 
 |   bool Equals(ValueBound bound) const { | 
 |     return instruction_ == bound.instruction_ && constant_ == bound.constant_; | 
 |   } | 
 |  | 
 |   static bool Equal(HInstruction* instruction1, HInstruction* instruction2) { | 
 |     if (instruction1 == instruction2) { | 
 |       return true; | 
 |     } | 
 |     if (instruction1 == nullptr || instruction2 == nullptr) { | 
 |       return false; | 
 |     } | 
 |     instruction1 = HuntForDeclaration(instruction1); | 
 |     instruction2 = HuntForDeclaration(instruction2); | 
 |     return instruction1 == instruction2; | 
 |   } | 
 |  | 
 |   // Returns if it's certain this->bound >= `bound`. | 
 |   bool GreaterThanOrEqualTo(ValueBound bound) const { | 
 |     if (Equal(instruction_, bound.instruction_)) { | 
 |       return constant_ >= bound.constant_; | 
 |     } | 
 |     // Not comparable. Just return false. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Returns if it's certain this->bound <= `bound`. | 
 |   bool LessThanOrEqualTo(ValueBound bound) const { | 
 |     if (Equal(instruction_, bound.instruction_)) { | 
 |       return constant_ <= bound.constant_; | 
 |     } | 
 |     // Not comparable. Just return false. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Returns if it's certain this->bound > `bound`. | 
 |   bool GreaterThan(ValueBound bound) const { | 
 |     if (Equal(instruction_, bound.instruction_)) { | 
 |       return constant_ > bound.constant_; | 
 |     } | 
 |     // Not comparable. Just return false. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Returns if it's certain this->bound < `bound`. | 
 |   bool LessThan(ValueBound bound) const { | 
 |     if (Equal(instruction_, bound.instruction_)) { | 
 |       return constant_ < bound.constant_; | 
 |     } | 
 |     // Not comparable. Just return false. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Try to narrow lower bound. Returns the greatest of the two if possible. | 
 |   // Pick one if they are not comparable. | 
 |   static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) { | 
 |     if (bound1.GreaterThanOrEqualTo(bound2)) { | 
 |       return bound1; | 
 |     } | 
 |     if (bound2.GreaterThanOrEqualTo(bound1)) { | 
 |       return bound2; | 
 |     } | 
 |  | 
 |     // Not comparable. Just pick one. We may lose some info, but that's ok. | 
 |     // Favor constant as lower bound. | 
 |     return bound1.IsConstant() ? bound1 : bound2; | 
 |   } | 
 |  | 
 |   // Try to narrow upper bound. Returns the lowest of the two if possible. | 
 |   // Pick one if they are not comparable. | 
 |   static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) { | 
 |     if (bound1.LessThanOrEqualTo(bound2)) { | 
 |       return bound1; | 
 |     } | 
 |     if (bound2.LessThanOrEqualTo(bound1)) { | 
 |       return bound2; | 
 |     } | 
 |  | 
 |     // Not comparable. Just pick one. We may lose some info, but that's ok. | 
 |     // Favor array length as upper bound. | 
 |     return bound1.IsRelatedToArrayLength() ? bound1 : bound2; | 
 |   } | 
 |  | 
 |   // Add a constant to a ValueBound. | 
 |   // `overflow` or `underflow` will return whether the resulting bound may | 
 |   // overflow or underflow an int. | 
 |   ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const { | 
 |     *overflow = *underflow = false; | 
 |     if (c == 0) { | 
 |       return *this; | 
 |     } | 
 |  | 
 |     int32_t new_constant; | 
 |     if (c > 0) { | 
 |       if (constant_ > (std::numeric_limits<int32_t>::max() - c)) { | 
 |         *overflow = true; | 
 |         return Max(); | 
 |       } | 
 |  | 
 |       new_constant = constant_ + c; | 
 |       // (array.length + non-positive-constant) won't overflow an int. | 
 |       if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) { | 
 |         return ValueBound(instruction_, new_constant); | 
 |       } | 
 |       // Be conservative. | 
 |       *overflow = true; | 
 |       return Max(); | 
 |     } else { | 
 |       if (constant_ < (std::numeric_limits<int32_t>::min() - c)) { | 
 |         *underflow = true; | 
 |         return Min(); | 
 |       } | 
 |  | 
 |       new_constant = constant_ + c; | 
 |       // Regardless of the value new_constant, (array.length+new_constant) will | 
 |       // never underflow since array.length is no less than 0. | 
 |       if (IsConstant() || IsRelatedToArrayLength()) { | 
 |         return ValueBound(instruction_, new_constant); | 
 |       } | 
 |       // Be conservative. | 
 |       *underflow = true; | 
 |       return Min(); | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   HInstruction* instruction_; | 
 |   int32_t constant_; | 
 | }; | 
 |  | 
 | /** | 
 |  * Represent a range of lower bound and upper bound, both being inclusive. | 
 |  * Currently a ValueRange may be generated as a result of the following: | 
 |  * comparisons related to array bounds, array bounds check, add/sub on top | 
 |  * of an existing value range, NewArray or a loop phi corresponding to an | 
 |  * incrementing/decrementing array index (MonotonicValueRange). | 
 |  */ | 
 | class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> { | 
 |  public: | 
 |   ValueRange(ScopedArenaAllocator* allocator, ValueBound lower, ValueBound upper) | 
 |       : allocator_(allocator), lower_(lower), upper_(upper) {} | 
 |  | 
 |   virtual ~ValueRange() {} | 
 |  | 
 |   virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; } | 
 |   bool IsMonotonicValueRange() { | 
 |     return AsMonotonicValueRange() != nullptr; | 
 |   } | 
 |  | 
 |   ScopedArenaAllocator* GetAllocator() const { return allocator_; } | 
 |   ValueBound GetLower() const { return lower_; } | 
 |   ValueBound GetUpper() const { return upper_; } | 
 |  | 
 |   bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); } | 
 |  | 
 |   // If it's certain that this value range fits in other_range. | 
 |   virtual bool FitsIn(ValueRange* other_range) const { | 
 |     if (other_range == nullptr) { | 
 |       return true; | 
 |     } | 
 |     DCHECK(!other_range->IsMonotonicValueRange()); | 
 |     return lower_.GreaterThanOrEqualTo(other_range->lower_) && | 
 |            upper_.LessThanOrEqualTo(other_range->upper_); | 
 |   } | 
 |  | 
 |   // Returns the intersection of this and range. | 
 |   // If it's not possible to do intersection because some | 
 |   // bounds are not comparable, it's ok to pick either bound. | 
 |   virtual ValueRange* Narrow(ValueRange* range) { | 
 |     if (range == nullptr) { | 
 |       return this; | 
 |     } | 
 |  | 
 |     if (range->IsMonotonicValueRange()) { | 
 |       return this; | 
 |     } | 
 |  | 
 |     return new (allocator_) ValueRange( | 
 |         allocator_, | 
 |         ValueBound::NarrowLowerBound(lower_, range->lower_), | 
 |         ValueBound::NarrowUpperBound(upper_, range->upper_)); | 
 |   } | 
 |  | 
 |   // Shift a range by a constant. | 
 |   ValueRange* Add(int32_t constant) const { | 
 |     bool overflow, underflow; | 
 |     ValueBound lower = lower_.Add(constant, &overflow, &underflow); | 
 |     if (underflow) { | 
 |       // Lower bound underflow will wrap around to positive values | 
 |       // and invalidate the upper bound. | 
 |       return nullptr; | 
 |     } | 
 |     ValueBound upper = upper_.Add(constant, &overflow, &underflow); | 
 |     if (overflow) { | 
 |       // Upper bound overflow will wrap around to negative values | 
 |       // and invalidate the lower bound. | 
 |       return nullptr; | 
 |     } | 
 |     return new (allocator_) ValueRange(allocator_, lower, upper); | 
 |   } | 
 |  | 
 |  private: | 
 |   ScopedArenaAllocator* const allocator_; | 
 |   const ValueBound lower_;  // inclusive | 
 |   const ValueBound upper_;  // inclusive | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ValueRange); | 
 | }; | 
 |  | 
 | /** | 
 |  * A monotonically incrementing/decrementing value range, e.g. | 
 |  * the variable i in "for (int i=0; i<array.length; i++)". | 
 |  * Special care needs to be taken to account for overflow/underflow | 
 |  * of such value ranges. | 
 |  */ | 
 | class MonotonicValueRange : public ValueRange { | 
 |  public: | 
 |   MonotonicValueRange(ScopedArenaAllocator* allocator, | 
 |                       HPhi* induction_variable, | 
 |                       HInstruction* initial, | 
 |                       int32_t increment, | 
 |                       ValueBound bound) | 
 |       // To be conservative, give it full range [Min(), Max()] in case it's | 
 |       // used as a regular value range, due to possible overflow/underflow. | 
 |       : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()), | 
 |         induction_variable_(induction_variable), | 
 |         initial_(initial), | 
 |         increment_(increment), | 
 |         bound_(bound) {} | 
 |  | 
 |   virtual ~MonotonicValueRange() {} | 
 |  | 
 |   int32_t GetIncrement() const { return increment_; } | 
 |   ValueBound GetBound() const { return bound_; } | 
 |   HBasicBlock* GetLoopHeader() const { | 
 |     DCHECK(induction_variable_->GetBlock()->IsLoopHeader()); | 
 |     return induction_variable_->GetBlock(); | 
 |   } | 
 |  | 
 |   MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; } | 
 |  | 
 |   // If it's certain that this value range fits in other_range. | 
 |   bool FitsIn(ValueRange* other_range) const OVERRIDE { | 
 |     if (other_range == nullptr) { | 
 |       return true; | 
 |     } | 
 |     DCHECK(!other_range->IsMonotonicValueRange()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Try to narrow this MonotonicValueRange given another range. | 
 |   // Ideally it will return a normal ValueRange. But due to | 
 |   // possible overflow/underflow, that may not be possible. | 
 |   ValueRange* Narrow(ValueRange* range) OVERRIDE { | 
 |     if (range == nullptr) { | 
 |       return this; | 
 |     } | 
 |     DCHECK(!range->IsMonotonicValueRange()); | 
 |  | 
 |     if (increment_ > 0) { | 
 |       // Monotonically increasing. | 
 |       ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower()); | 
 |       if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) { | 
 |         // Lower bound isn't useful. Leave it to deoptimization. | 
 |         return this; | 
 |       } | 
 |  | 
 |       // We currently conservatively assume max array length is Max(). | 
 |       // If we can make assumptions about the max array length, e.g. due to the max heap size, | 
 |       // divided by the element size (such as 4 bytes for each integer array), we can | 
 |       // lower this number and rule out some possible overflows. | 
 |       int32_t max_array_len = std::numeric_limits<int32_t>::max(); | 
 |  | 
 |       // max possible integer value of range's upper value. | 
 |       int32_t upper = std::numeric_limits<int32_t>::max(); | 
 |       // Try to lower upper. | 
 |       ValueBound upper_bound = range->GetUpper(); | 
 |       if (upper_bound.IsConstant()) { | 
 |         upper = upper_bound.GetConstant(); | 
 |       } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) { | 
 |         // Normal case. e.g. <= array.length - 1. | 
 |         upper = max_array_len + upper_bound.GetConstant(); | 
 |       } | 
 |  | 
 |       // If we can prove for the last number in sequence of initial_, | 
 |       // initial_ + increment_, initial_ + 2 x increment_, ... | 
 |       // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow, | 
 |       // then this MonoticValueRange is narrowed to a normal value range. | 
 |  | 
 |       // Be conservative first, assume last number in the sequence hits upper. | 
 |       int32_t last_num_in_sequence = upper; | 
 |       if (initial_->IsIntConstant()) { | 
 |         int32_t initial_constant = initial_->AsIntConstant()->GetValue(); | 
 |         if (upper <= initial_constant) { | 
 |           last_num_in_sequence = upper; | 
 |         } else { | 
 |           // Cast to int64_t for the substraction part to avoid int32_t overflow. | 
 |           last_num_in_sequence = initial_constant + | 
 |               ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_; | 
 |         } | 
 |       } | 
 |       if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) { | 
 |         // No overflow. The sequence will be stopped by the upper bound test as expected. | 
 |         return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper()); | 
 |       } | 
 |  | 
 |       // There might be overflow. Give up narrowing. | 
 |       return this; | 
 |     } else { | 
 |       DCHECK_NE(increment_, 0); | 
 |       // Monotonically decreasing. | 
 |       ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper()); | 
 |       if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) && | 
 |           !upper.IsRelatedToArrayLength()) { | 
 |         // Upper bound isn't useful. Leave it to deoptimization. | 
 |         return this; | 
 |       } | 
 |  | 
 |       // Need to take care of underflow. Try to prove underflow won't happen | 
 |       // for common cases. | 
 |       if (range->GetLower().IsConstant()) { | 
 |         int32_t constant = range->GetLower().GetConstant(); | 
 |         if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) { | 
 |           return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper); | 
 |         } | 
 |       } | 
 |  | 
 |       // For non-constant lower bound, just assume might be underflow. Give up narrowing. | 
 |       return this; | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   HPhi* const induction_variable_;  // Induction variable for this monotonic value range. | 
 |   HInstruction* const initial_;     // Initial value. | 
 |   const int32_t increment_;         // Increment for each loop iteration. | 
 |   const ValueBound bound_;          // Additional value bound info for initial_. | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange); | 
 | }; | 
 |  | 
 | class BCEVisitor : public HGraphVisitor { | 
 |  public: | 
 |   // The least number of bounds checks that should be eliminated by triggering | 
 |   // the deoptimization technique. | 
 |   static constexpr size_t kThresholdForAddingDeoptimize = 2; | 
 |  | 
 |   // Very large lengths are considered an anomaly. This is a threshold beyond which we don't | 
 |   // bother to apply the deoptimization technique since it's likely, or sometimes certain, | 
 |   // an AIOOBE will be thrown. | 
 |   static constexpr uint32_t kMaxLengthForAddingDeoptimize = | 
 |       std::numeric_limits<int32_t>::max() - 1024 * 1024; | 
 |  | 
 |   // Added blocks for loop body entry test. | 
 |   bool IsAddedBlock(HBasicBlock* block) const { | 
 |     return block->GetBlockId() >= initial_block_size_; | 
 |   } | 
 |  | 
 |   BCEVisitor(HGraph* graph, | 
 |              const SideEffectsAnalysis& side_effects, | 
 |              HInductionVarAnalysis* induction_analysis) | 
 |       : HGraphVisitor(graph), | 
 |         allocator_(graph->GetArenaStack()), | 
 |         maps_(graph->GetBlocks().size(), | 
 |               ScopedArenaSafeMap<int, ValueRange*>( | 
 |                   std::less<int>(), | 
 |                   allocator_.Adapter(kArenaAllocBoundsCheckElimination)), | 
 |               allocator_.Adapter(kArenaAllocBoundsCheckElimination)), | 
 |         first_index_bounds_check_map_(std::less<int>(), | 
 |                                       allocator_.Adapter(kArenaAllocBoundsCheckElimination)), | 
 |         early_exit_loop_(std::less<uint32_t>(), | 
 |                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)), | 
 |         taken_test_loop_(std::less<uint32_t>(), | 
 |                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)), | 
 |         finite_loop_(allocator_.Adapter(kArenaAllocBoundsCheckElimination)), | 
 |         has_dom_based_dynamic_bce_(false), | 
 |         initial_block_size_(graph->GetBlocks().size()), | 
 |         side_effects_(side_effects), | 
 |         induction_range_(induction_analysis), | 
 |         next_(nullptr) {} | 
 |  | 
 |   void VisitBasicBlock(HBasicBlock* block) OVERRIDE { | 
 |     DCHECK(!IsAddedBlock(block)); | 
 |     first_index_bounds_check_map_.clear(); | 
 |     // Visit phis and instructions using a safe iterator. The iteration protects | 
 |     // against deleting the current instruction during iteration. However, it | 
 |     // must advance next_ if that instruction is deleted during iteration. | 
 |     for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) { | 
 |       DCHECK(instruction->IsInBlock()); | 
 |       next_ = instruction->GetNext(); | 
 |       instruction->Accept(this); | 
 |       instruction = next_; | 
 |     } | 
 |     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { | 
 |       DCHECK(instruction->IsInBlock()); | 
 |       next_ = instruction->GetNext(); | 
 |       instruction->Accept(this); | 
 |       instruction = next_; | 
 |     } | 
 |     // We should never deoptimize from an osr method, otherwise we might wrongly optimize | 
 |     // code dominated by the deoptimization. | 
 |     if (!GetGraph()->IsCompilingOsr()) { | 
 |       AddComparesWithDeoptimization(block); | 
 |     } | 
 |   } | 
 |  | 
 |   void Finish() { | 
 |     // Preserve SSA structure which may have been broken by adding one or more | 
 |     // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()). | 
 |     InsertPhiNodes(); | 
 |  | 
 |     // Clear the loop data structures. | 
 |     early_exit_loop_.clear(); | 
 |     taken_test_loop_.clear(); | 
 |     finite_loop_.clear(); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Return the map of proven value ranges at the beginning of a basic block. | 
 |   ScopedArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) { | 
 |     if (IsAddedBlock(basic_block)) { | 
 |       // Added blocks don't keep value ranges. | 
 |       return nullptr; | 
 |     } | 
 |     return &maps_[basic_block->GetBlockId()]; | 
 |   } | 
 |  | 
 |   // Traverse up the dominator tree to look for value range info. | 
 |   ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) { | 
 |     while (basic_block != nullptr) { | 
 |       ScopedArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block); | 
 |       if (map != nullptr) { | 
 |         if (map->find(instruction->GetId()) != map->end()) { | 
 |           return map->Get(instruction->GetId()); | 
 |         } | 
 |       } else { | 
 |         DCHECK(IsAddedBlock(basic_block)); | 
 |       } | 
 |       basic_block = basic_block->GetDominator(); | 
 |     } | 
 |     // Didn't find any. | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Helper method to assign a new range to an instruction in given basic block. | 
 |   void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) { | 
 |     DCHECK(!range->IsMonotonicValueRange() || instruction->IsLoopHeaderPhi()); | 
 |     GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range); | 
 |   } | 
 |  | 
 |   // Narrow the value range of `instruction` at the end of `basic_block` with `range`, | 
 |   // and push the narrowed value range to `successor`. | 
 |   void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block, | 
 |                                 HBasicBlock* successor, ValueRange* range) { | 
 |     ValueRange* existing_range = LookupValueRange(instruction, basic_block); | 
 |     if (existing_range == nullptr) { | 
 |       if (range != nullptr) { | 
 |         AssignRange(successor, instruction, range); | 
 |       } | 
 |       return; | 
 |     } | 
 |     if (existing_range->IsMonotonicValueRange()) { | 
 |       DCHECK(instruction->IsLoopHeaderPhi()); | 
 |       // Make sure the comparison is in the loop header so each increment is | 
 |       // checked with a comparison. | 
 |       if (instruction->GetBlock() != basic_block) { | 
 |         return; | 
 |       } | 
 |     } | 
 |     AssignRange(successor, instruction, existing_range->Narrow(range)); | 
 |   } | 
 |  | 
 |   // Special case that we may simultaneously narrow two MonotonicValueRange's to | 
 |   // regular value ranges. | 
 |   void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction, | 
 |                                               HInstruction* left, | 
 |                                               HInstruction* right, | 
 |                                               IfCondition cond, | 
 |                                               MonotonicValueRange* left_range, | 
 |                                               MonotonicValueRange* right_range) { | 
 |     DCHECK(left->IsLoopHeaderPhi()); | 
 |     DCHECK(right->IsLoopHeaderPhi()); | 
 |     if (instruction->GetBlock() != left->GetBlock()) { | 
 |       // Comparison needs to be in loop header to make sure it's done after each | 
 |       // increment/decrement. | 
 |       return; | 
 |     } | 
 |  | 
 |     // Handle common cases which also don't have overflow/underflow concerns. | 
 |     if (left_range->GetIncrement() == 1 && | 
 |         left_range->GetBound().IsConstant() && | 
 |         right_range->GetIncrement() == -1 && | 
 |         right_range->GetBound().IsRelatedToArrayLength() && | 
 |         right_range->GetBound().GetConstant() < 0) { | 
 |       HBasicBlock* successor = nullptr; | 
 |       int32_t left_compensation = 0; | 
 |       int32_t right_compensation = 0; | 
 |       if (cond == kCondLT) { | 
 |         left_compensation = -1; | 
 |         right_compensation = 1; | 
 |         successor = instruction->IfTrueSuccessor(); | 
 |       } else if (cond == kCondLE) { | 
 |         successor = instruction->IfTrueSuccessor(); | 
 |       } else if (cond == kCondGT) { | 
 |         successor = instruction->IfFalseSuccessor(); | 
 |       } else if (cond == kCondGE) { | 
 |         left_compensation = -1; | 
 |         right_compensation = 1; | 
 |         successor = instruction->IfFalseSuccessor(); | 
 |       } else { | 
 |         // We don't handle '=='/'!=' test in case left and right can cross and | 
 |         // miss each other. | 
 |         return; | 
 |       } | 
 |  | 
 |       if (successor != nullptr) { | 
 |         bool overflow; | 
 |         bool underflow; | 
 |         ValueRange* new_left_range = new (&allocator_) ValueRange( | 
 |             &allocator_, | 
 |             left_range->GetBound(), | 
 |             right_range->GetBound().Add(left_compensation, &overflow, &underflow)); | 
 |         if (!overflow && !underflow) { | 
 |           ApplyRangeFromComparison(left, instruction->GetBlock(), successor, | 
 |                                    new_left_range); | 
 |         } | 
 |  | 
 |         ValueRange* new_right_range = new (&allocator_) ValueRange( | 
 |             &allocator_, | 
 |             left_range->GetBound().Add(right_compensation, &overflow, &underflow), | 
 |             right_range->GetBound()); | 
 |         if (!overflow && !underflow) { | 
 |           ApplyRangeFromComparison(right, instruction->GetBlock(), successor, | 
 |                                    new_right_range); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle "if (left cmp_cond right)". | 
 |   void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) { | 
 |     HBasicBlock* block = instruction->GetBlock(); | 
 |  | 
 |     HBasicBlock* true_successor = instruction->IfTrueSuccessor(); | 
 |     // There should be no critical edge at this point. | 
 |     DCHECK_EQ(true_successor->GetPredecessors().size(), 1u); | 
 |  | 
 |     HBasicBlock* false_successor = instruction->IfFalseSuccessor(); | 
 |     // There should be no critical edge at this point. | 
 |     DCHECK_EQ(false_successor->GetPredecessors().size(), 1u); | 
 |  | 
 |     ValueRange* left_range = LookupValueRange(left, block); | 
 |     MonotonicValueRange* left_monotonic_range = nullptr; | 
 |     if (left_range != nullptr) { | 
 |       left_monotonic_range = left_range->AsMonotonicValueRange(); | 
 |       if (left_monotonic_range != nullptr) { | 
 |         HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader(); | 
 |         if (instruction->GetBlock() != loop_head) { | 
 |           // For monotonic value range, don't handle `instruction` | 
 |           // if it's not defined in the loop header. | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     bool found; | 
 |     ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found); | 
 |     // Each comparison can establish a lower bound and an upper bound | 
 |     // for the left hand side. | 
 |     ValueBound lower = bound; | 
 |     ValueBound upper = bound; | 
 |     if (!found) { | 
 |       // No constant or array.length+c format bound found. | 
 |       // For i<j, we can still use j's upper bound as i's upper bound. Same for lower. | 
 |       ValueRange* right_range = LookupValueRange(right, block); | 
 |       if (right_range != nullptr) { | 
 |         if (right_range->IsMonotonicValueRange()) { | 
 |           if (left_range != nullptr && left_range->IsMonotonicValueRange()) { | 
 |             HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond, | 
 |                                                    left_range->AsMonotonicValueRange(), | 
 |                                                    right_range->AsMonotonicValueRange()); | 
 |             return; | 
 |           } | 
 |         } | 
 |         lower = right_range->GetLower(); | 
 |         upper = right_range->GetUpper(); | 
 |       } else { | 
 |         lower = ValueBound::Min(); | 
 |         upper = ValueBound::Max(); | 
 |       } | 
 |     } | 
 |  | 
 |     bool overflow, underflow; | 
 |     if (cond == kCondLT || cond == kCondLE) { | 
 |       if (!upper.Equals(ValueBound::Max())) { | 
 |         int32_t compensation = (cond == kCondLT) ? -1 : 0;  // upper bound is inclusive | 
 |         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); | 
 |         if (overflow || underflow) { | 
 |           return; | 
 |         } | 
 |         ValueRange* new_range = new (&allocator_) ValueRange( | 
 |             &allocator_, ValueBound::Min(), new_upper); | 
 |         ApplyRangeFromComparison(left, block, true_successor, new_range); | 
 |       } | 
 |  | 
 |       // array.length as a lower bound isn't considered useful. | 
 |       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { | 
 |         int32_t compensation = (cond == kCondLE) ? 1 : 0;  // lower bound is inclusive | 
 |         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); | 
 |         if (overflow || underflow) { | 
 |           return; | 
 |         } | 
 |         ValueRange* new_range = new (&allocator_) ValueRange( | 
 |             &allocator_, new_lower, ValueBound::Max()); | 
 |         ApplyRangeFromComparison(left, block, false_successor, new_range); | 
 |       } | 
 |     } else if (cond == kCondGT || cond == kCondGE) { | 
 |       // array.length as a lower bound isn't considered useful. | 
 |       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { | 
 |         int32_t compensation = (cond == kCondGT) ? 1 : 0;  // lower bound is inclusive | 
 |         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); | 
 |         if (overflow || underflow) { | 
 |           return; | 
 |         } | 
 |         ValueRange* new_range = new (&allocator_) ValueRange( | 
 |             &allocator_, new_lower, ValueBound::Max()); | 
 |         ApplyRangeFromComparison(left, block, true_successor, new_range); | 
 |       } | 
 |  | 
 |       if (!upper.Equals(ValueBound::Max())) { | 
 |         int32_t compensation = (cond == kCondGE) ? -1 : 0;  // upper bound is inclusive | 
 |         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); | 
 |         if (overflow || underflow) { | 
 |           return; | 
 |         } | 
 |         ValueRange* new_range = new (&allocator_) ValueRange( | 
 |             &allocator_, ValueBound::Min(), new_upper); | 
 |         ApplyRangeFromComparison(left, block, false_successor, new_range); | 
 |       } | 
 |     } else if (cond == kCondNE || cond == kCondEQ) { | 
 |       if (left->IsArrayLength() && lower.IsConstant() && upper.IsConstant()) { | 
 |         // Special case: | 
 |         //   length == [c,d] yields [c, d] along true | 
 |         //   length != [c,d] yields [c, d] along false | 
 |         if (!lower.Equals(ValueBound::Min()) || !upper.Equals(ValueBound::Max())) { | 
 |           ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper); | 
 |           ApplyRangeFromComparison( | 
 |               left, block, cond == kCondEQ ? true_successor : false_successor, new_range); | 
 |         } | 
 |         // In addition: | 
 |         //   length == 0 yields [1, max] along false | 
 |         //   length != 0 yields [1, max] along true | 
 |         if (lower.GetConstant() == 0 && upper.GetConstant() == 0) { | 
 |           ValueRange* new_range = new (&allocator_) ValueRange( | 
 |               &allocator_, ValueBound(nullptr, 1), ValueBound::Max()); | 
 |           ApplyRangeFromComparison( | 
 |               left, block, cond == kCondEQ ? false_successor : true_successor, new_range); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE { | 
 |     HBasicBlock* block = bounds_check->GetBlock(); | 
 |     HInstruction* index = bounds_check->InputAt(0); | 
 |     HInstruction* array_length = bounds_check->InputAt(1); | 
 |     DCHECK(array_length->IsIntConstant() || | 
 |            array_length->IsArrayLength() || | 
 |            array_length->IsPhi()); | 
 |     bool try_dynamic_bce = true; | 
 |     // Analyze index range. | 
 |     if (!index->IsIntConstant()) { | 
 |       // Non-constant index. | 
 |       ValueBound lower = ValueBound(nullptr, 0);        // constant 0 | 
 |       ValueBound upper = ValueBound(array_length, -1);  // array_length - 1 | 
 |       ValueRange array_range(&allocator_, lower, upper); | 
 |       // Try index range obtained by dominator-based analysis. | 
 |       ValueRange* index_range = LookupValueRange(index, block); | 
 |       if (index_range != nullptr && index_range->FitsIn(&array_range)) { | 
 |         ReplaceInstruction(bounds_check, index); | 
 |         return; | 
 |       } | 
 |       // Try index range obtained by induction variable analysis. | 
 |       // Disables dynamic bce if OOB is certain. | 
 |       if (InductionRangeFitsIn(&array_range, bounds_check, &try_dynamic_bce)) { | 
 |         ReplaceInstruction(bounds_check, index); | 
 |         return; | 
 |       } | 
 |     } else { | 
 |       // Constant index. | 
 |       int32_t constant = index->AsIntConstant()->GetValue(); | 
 |       if (constant < 0) { | 
 |         // Will always throw exception. | 
 |         return; | 
 |       } else if (array_length->IsIntConstant()) { | 
 |         if (constant < array_length->AsIntConstant()->GetValue()) { | 
 |           ReplaceInstruction(bounds_check, index); | 
 |         } | 
 |         return; | 
 |       } | 
 |       // Analyze array length range. | 
 |       DCHECK(array_length->IsArrayLength()); | 
 |       ValueRange* existing_range = LookupValueRange(array_length, block); | 
 |       if (existing_range != nullptr) { | 
 |         ValueBound lower = existing_range->GetLower(); | 
 |         DCHECK(lower.IsConstant()); | 
 |         if (constant < lower.GetConstant()) { | 
 |           ReplaceInstruction(bounds_check, index); | 
 |           return; | 
 |         } else { | 
 |           // Existing range isn't strong enough to eliminate the bounds check. | 
 |           // Fall through to update the array_length range with info from this | 
 |           // bounds check. | 
 |         } | 
 |       } | 
 |       // Once we have an array access like 'array[5] = 1', we record array.length >= 6. | 
 |       // We currently don't do it for non-constant index since a valid array[i] can't prove | 
 |       // a valid array[i-1] yet due to the lower bound side. | 
 |       if (constant == std::numeric_limits<int32_t>::max()) { | 
 |         // Max() as an index will definitely throw AIOOBE. | 
 |         return; | 
 |       } else { | 
 |         ValueBound lower = ValueBound(nullptr, constant + 1); | 
 |         ValueBound upper = ValueBound::Max(); | 
 |         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper); | 
 |         AssignRange(block, array_length, range); | 
 |       } | 
 |     } | 
 |  | 
 |     // If static analysis fails, and OOB is not certain, try dynamic elimination. | 
 |     if (try_dynamic_bce) { | 
 |       // Try loop-based dynamic elimination. | 
 |       HLoopInformation* loop = bounds_check->GetBlock()->GetLoopInformation(); | 
 |       bool needs_finite_test = false; | 
 |       bool needs_taken_test = false; | 
 |       if (DynamicBCESeemsProfitable(loop, bounds_check->GetBlock()) && | 
 |           induction_range_.CanGenerateRange( | 
 |               bounds_check, index, &needs_finite_test, &needs_taken_test) && | 
 |           CanHandleInfiniteLoop(loop, index, needs_finite_test) && | 
 |           // Do this test last, since it may generate code. | 
 |           CanHandleLength(loop, array_length, needs_taken_test)) { | 
 |         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); | 
 |         TransformLoopForDynamicBCE(loop, bounds_check); | 
 |         return; | 
 |       } | 
 |       // Otherwise, prepare dominator-based dynamic elimination. | 
 |       if (first_index_bounds_check_map_.find(array_length->GetId()) == | 
 |           first_index_bounds_check_map_.end()) { | 
 |         // Remember the first bounds check against each array_length. That bounds check | 
 |         // instruction has an associated HEnvironment where we may add an HDeoptimize | 
 |         // to eliminate subsequent bounds checks against the same array_length. | 
 |         first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   static bool HasSameInputAtBackEdges(HPhi* phi) { | 
 |     DCHECK(phi->IsLoopHeaderPhi()); | 
 |     HConstInputsRef inputs = phi->GetInputs(); | 
 |     // Start with input 1. Input 0 is from the incoming block. | 
 |     const HInstruction* input1 = inputs[1]; | 
 |     DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( | 
 |         *phi->GetBlock()->GetPredecessors()[1])); | 
 |     for (size_t i = 2; i < inputs.size(); ++i) { | 
 |       DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( | 
 |           *phi->GetBlock()->GetPredecessors()[i])); | 
 |       if (input1 != inputs[i]) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   void VisitPhi(HPhi* phi) OVERRIDE { | 
 |     if (phi->IsLoopHeaderPhi() | 
 |         && (phi->GetType() == DataType::Type::kInt32) | 
 |         && HasSameInputAtBackEdges(phi)) { | 
 |       HInstruction* instruction = phi->InputAt(1); | 
 |       HInstruction *left; | 
 |       int32_t increment; | 
 |       if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) { | 
 |         if (left == phi) { | 
 |           HInstruction* initial_value = phi->InputAt(0); | 
 |           ValueRange* range = nullptr; | 
 |           if (increment == 0) { | 
 |             // Add constant 0. It's really a fixed value. | 
 |             range = new (&allocator_) ValueRange( | 
 |                 &allocator_, | 
 |                 ValueBound(initial_value, 0), | 
 |                 ValueBound(initial_value, 0)); | 
 |           } else { | 
 |             // Monotonically increasing/decreasing. | 
 |             bool found; | 
 |             ValueBound bound = ValueBound::DetectValueBoundFromValue( | 
 |                 initial_value, &found); | 
 |             if (!found) { | 
 |               // No constant or array.length+c bound found. | 
 |               // For i=j, we can still use j's upper bound as i's upper bound. | 
 |               // Same for lower. | 
 |               ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock()); | 
 |               if (initial_range != nullptr) { | 
 |                 bound = increment > 0 ? initial_range->GetLower() : | 
 |                                         initial_range->GetUpper(); | 
 |               } else { | 
 |                 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max(); | 
 |               } | 
 |             } | 
 |             range = new (&allocator_) MonotonicValueRange( | 
 |                 &allocator_, | 
 |                 phi, | 
 |                 initial_value, | 
 |                 increment, | 
 |                 bound); | 
 |           } | 
 |           AssignRange(phi->GetBlock(), phi, range); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void VisitIf(HIf* instruction) OVERRIDE { | 
 |     if (instruction->InputAt(0)->IsCondition()) { | 
 |       HCondition* cond = instruction->InputAt(0)->AsCondition(); | 
 |       HandleIf(instruction, cond->GetLeft(), cond->GetRight(), cond->GetCondition()); | 
 |     } | 
 |   } | 
 |  | 
 |   void VisitAdd(HAdd* add) OVERRIDE { | 
 |     HInstruction* right = add->GetRight(); | 
 |     if (right->IsIntConstant()) { | 
 |       ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock()); | 
 |       if (left_range == nullptr) { | 
 |         return; | 
 |       } | 
 |       ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue()); | 
 |       if (range != nullptr) { | 
 |         AssignRange(add->GetBlock(), add, range); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void VisitSub(HSub* sub) OVERRIDE { | 
 |     HInstruction* left = sub->GetLeft(); | 
 |     HInstruction* right = sub->GetRight(); | 
 |     if (right->IsIntConstant()) { | 
 |       ValueRange* left_range = LookupValueRange(left, sub->GetBlock()); | 
 |       if (left_range == nullptr) { | 
 |         return; | 
 |       } | 
 |       ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue()); | 
 |       if (range != nullptr) { | 
 |         AssignRange(sub->GetBlock(), sub, range); | 
 |         return; | 
 |       } | 
 |     } | 
 |  | 
 |     // Here we are interested in the typical triangular case of nested loops, | 
 |     // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i | 
 |     // is the index for outer loop. In this case, we know j is bounded by array.length-1. | 
 |  | 
 |     // Try to handle (array.length - i) or (array.length + c - i) format. | 
 |     HInstruction* left_of_left;  // left input of left. | 
 |     int32_t right_const = 0; | 
 |     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) { | 
 |       left = left_of_left; | 
 |     } | 
 |     // The value of left input of the sub equals (left + right_const). | 
 |  | 
 |     if (left->IsArrayLength()) { | 
 |       HInstruction* array_length = left->AsArrayLength(); | 
 |       ValueRange* right_range = LookupValueRange(right, sub->GetBlock()); | 
 |       if (right_range != nullptr) { | 
 |         ValueBound lower = right_range->GetLower(); | 
 |         ValueBound upper = right_range->GetUpper(); | 
 |         if (lower.IsConstant() && upper.IsRelatedToArrayLength()) { | 
 |           HInstruction* upper_inst = upper.GetInstruction(); | 
 |           // Make sure it's the same array. | 
 |           if (ValueBound::Equal(array_length, upper_inst)) { | 
 |             int32_t c0 = right_const; | 
 |             int32_t c1 = lower.GetConstant(); | 
 |             int32_t c2 = upper.GetConstant(); | 
 |             // (array.length + c0 - v) where v is in [c1, array.length + c2] | 
 |             // gets [c0 - c2, array.length + c0 - c1] as its value range. | 
 |             if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) && | 
 |                 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) { | 
 |               if ((c0 - c1) <= 0) { | 
 |                 // array.length + (c0 - c1) won't overflow/underflow. | 
 |                 ValueRange* range = new (&allocator_) ValueRange( | 
 |                     &allocator_, | 
 |                     ValueBound(nullptr, right_const - upper.GetConstant()), | 
 |                     ValueBound(array_length, right_const - lower.GetConstant())); | 
 |                 AssignRange(sub->GetBlock(), sub, range); | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) { | 
 |     DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr()); | 
 |     HInstruction* right = instruction->GetRight(); | 
 |     int32_t right_const; | 
 |     if (right->IsIntConstant()) { | 
 |       right_const = right->AsIntConstant()->GetValue(); | 
 |       // Detect division by two or more. | 
 |       if ((instruction->IsDiv() && right_const <= 1) || | 
 |           (instruction->IsShr() && right_const < 1) || | 
 |           (instruction->IsUShr() && right_const < 1)) { | 
 |         return; | 
 |       } | 
 |     } else { | 
 |       return; | 
 |     } | 
 |  | 
 |     // Try to handle array.length/2 or (array.length-1)/2 format. | 
 |     HInstruction* left = instruction->GetLeft(); | 
 |     HInstruction* left_of_left;  // left input of left. | 
 |     int32_t c = 0; | 
 |     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) { | 
 |       left = left_of_left; | 
 |     } | 
 |     // The value of left input of instruction equals (left + c). | 
 |  | 
 |     // (array_length + 1) or smaller divided by two or more | 
 |     // always generate a value in [Min(), array_length]. | 
 |     // This is true even if array_length is Max(). | 
 |     if (left->IsArrayLength() && c <= 1) { | 
 |       if (instruction->IsUShr() && c < 0) { | 
 |         // Make sure for unsigned shift, left side is not negative. | 
 |         // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger | 
 |         // than array_length. | 
 |         return; | 
 |       } | 
 |       ValueRange* range = new (&allocator_) ValueRange( | 
 |           &allocator_, | 
 |           ValueBound(nullptr, std::numeric_limits<int32_t>::min()), | 
 |           ValueBound(left, 0)); | 
 |       AssignRange(instruction->GetBlock(), instruction, range); | 
 |     } | 
 |   } | 
 |  | 
 |   void VisitDiv(HDiv* div) OVERRIDE { | 
 |     FindAndHandlePartialArrayLength(div); | 
 |   } | 
 |  | 
 |   void VisitShr(HShr* shr) OVERRIDE { | 
 |     FindAndHandlePartialArrayLength(shr); | 
 |   } | 
 |  | 
 |   void VisitUShr(HUShr* ushr) OVERRIDE { | 
 |     FindAndHandlePartialArrayLength(ushr); | 
 |   } | 
 |  | 
 |   void VisitAnd(HAnd* instruction) OVERRIDE { | 
 |     if (instruction->GetRight()->IsIntConstant()) { | 
 |       int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue(); | 
 |       if (constant > 0) { | 
 |         // constant serves as a mask so any number masked with it | 
 |         // gets a [0, constant] value range. | 
 |         ValueRange* range = new (&allocator_) ValueRange( | 
 |             &allocator_, | 
 |             ValueBound(nullptr, 0), | 
 |             ValueBound(nullptr, constant)); | 
 |         AssignRange(instruction->GetBlock(), instruction, range); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void VisitRem(HRem* instruction) OVERRIDE { | 
 |     HInstruction* left = instruction->GetLeft(); | 
 |     HInstruction* right = instruction->GetRight(); | 
 |  | 
 |     // Handle 'i % CONST' format expression in array index, e.g: | 
 |     //   array[i % 20]; | 
 |     if (right->IsIntConstant()) { | 
 |       int32_t right_const = std::abs(right->AsIntConstant()->GetValue()); | 
 |       if (right_const == 0) { | 
 |         return; | 
 |       } | 
 |       // The sign of divisor CONST doesn't affect the sign final value range. | 
 |       // For example: | 
 |       // if (i > 0) { | 
 |       //   array[i % 10];  // index value range [0, 9] | 
 |       //   array[i % -10]; // index value range [0, 9] | 
 |       // } | 
 |       ValueRange* right_range = new (&allocator_) ValueRange( | 
 |           &allocator_, | 
 |           ValueBound(nullptr, 1 - right_const), | 
 |           ValueBound(nullptr, right_const - 1)); | 
 |  | 
 |       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock()); | 
 |       if (left_range != nullptr) { | 
 |         right_range = right_range->Narrow(left_range); | 
 |       } | 
 |       AssignRange(instruction->GetBlock(), instruction, right_range); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Handle following pattern: | 
 |     // i0 NullCheck | 
 |     // i1 ArrayLength[i0] | 
 |     // i2 DivByZeroCheck [i1]  <-- right | 
 |     // i3 Rem [i5, i2]         <-- we are here. | 
 |     // i4 BoundsCheck [i3,i1] | 
 |     if (right->IsDivZeroCheck()) { | 
 |       // if array_length can pass div-by-zero check, | 
 |       // array_length must be > 0. | 
 |       right = right->AsDivZeroCheck()->InputAt(0); | 
 |     } | 
 |  | 
 |     // Handle 'i % array.length' format expression in array index, e.g: | 
 |     //   array[(i+7) % array.length]; | 
 |     if (right->IsArrayLength()) { | 
 |       ValueBound lower = ValueBound::Min();  // ideally, lower should be '1-array_length'. | 
 |       ValueBound upper = ValueBound(right, -1);  // array_length - 1 | 
 |       ValueRange* right_range = new (&allocator_) ValueRange( | 
 |           &allocator_, | 
 |           lower, | 
 |           upper); | 
 |       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock()); | 
 |       if (left_range != nullptr) { | 
 |         right_range = right_range->Narrow(left_range); | 
 |       } | 
 |       AssignRange(instruction->GetBlock(), instruction, right_range); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   void VisitNewArray(HNewArray* new_array) OVERRIDE { | 
 |     HInstruction* len = new_array->GetLength(); | 
 |     if (!len->IsIntConstant()) { | 
 |       HInstruction *left; | 
 |       int32_t right_const; | 
 |       if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) { | 
 |         // (left + right_const) is used as size to new the array. | 
 |         // We record "-right_const <= left <= new_array - right_const"; | 
 |         ValueBound lower = ValueBound(nullptr, -right_const); | 
 |         // We use new_array for the bound instead of new_array.length, | 
 |         // which isn't available as an instruction yet. new_array will | 
 |         // be treated the same as new_array.length when it's used in a ValueBound. | 
 |         ValueBound upper = ValueBound(new_array, -right_const); | 
 |         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper); | 
 |         ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock()); | 
 |         if (existing_range != nullptr) { | 
 |           range = existing_range->Narrow(range); | 
 |         } | 
 |         AssignRange(new_array->GetBlock(), left, range); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /** | 
 |     * After null/bounds checks are eliminated, some invariant array references | 
 |     * may be exposed underneath which can be hoisted out of the loop to the | 
 |     * preheader or, in combination with dynamic bce, the deoptimization block. | 
 |     * | 
 |     * for (int i = 0; i < n; i++) { | 
 |     *                                <-------+ | 
 |     *   for (int j = 0; j < n; j++)          | | 
 |     *     a[i][j] = 0;               --a[i]--+ | 
 |     * } | 
 |     * | 
 |     * Note: this optimization is no longer applied after dominator-based dynamic deoptimization | 
 |     * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be | 
 |     * unsafe to hoist array references across their deoptimization instruction inside a loop. | 
 |     */ | 
 |   void VisitArrayGet(HArrayGet* array_get) OVERRIDE { | 
 |     if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) { | 
 |       HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation(); | 
 |       if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) && | 
 |           loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) { | 
 |         SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader()); | 
 |         if (!array_get->GetSideEffects().MayDependOn(loop_effects)) { | 
 |           // We can hoist ArrayGet only if its execution is guaranteed on every iteration. | 
 |           // In other words only if array_get_bb dominates all back branches. | 
 |           if (loop->DominatesAllBackEdges(array_get->GetBlock())) { | 
 |             HoistToPreHeaderOrDeoptBlock(loop, array_get); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /** Performs dominator-based dynamic elimination on suitable set of bounds checks. */ | 
 |   void AddCompareWithDeoptimization(HBasicBlock* block, | 
 |                                     HInstruction* array_length, | 
 |                                     HInstruction* base, | 
 |                                     int32_t min_c, int32_t max_c) { | 
 |     HBoundsCheck* bounds_check = | 
 |         first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck(); | 
 |     // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c], | 
 |     // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1 | 
 |     // and base+3, since we made the assumption any in between value may occur too. | 
 |     // In code, using unsigned comparisons: | 
 |     // (1) constants only | 
 |     //       if (max_c >= a.length) deoptimize; | 
 |     // (2) general case | 
 |     //       if (base-min_c >  base+max_c) deoptimize; | 
 |     //       if (base+max_c >= a.length  ) deoptimize; | 
 |     static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(), | 
 |                   "Incorrect max length may be subject to arithmetic wrap-around"); | 
 |     HInstruction* upper = GetGraph()->GetIntConstant(max_c); | 
 |     if (base == nullptr) { | 
 |       DCHECK_GE(min_c, 0); | 
 |     } else { | 
 |       HInstruction* lower = new (GetGraph()->GetAllocator()) | 
 |           HAdd(DataType::Type::kInt32, base, GetGraph()->GetIntConstant(min_c)); | 
 |       upper = new (GetGraph()->GetAllocator()) HAdd(DataType::Type::kInt32, base, upper); | 
 |       block->InsertInstructionBefore(lower, bounds_check); | 
 |       block->InsertInstructionBefore(upper, bounds_check); | 
 |       InsertDeoptInBlock(bounds_check, new (GetGraph()->GetAllocator()) HAbove(lower, upper)); | 
 |     } | 
 |     InsertDeoptInBlock( | 
 |         bounds_check, new (GetGraph()->GetAllocator()) HAboveOrEqual(upper, array_length)); | 
 |     // Flag that this kind of deoptimization has occurred. | 
 |     has_dom_based_dynamic_bce_ = true; | 
 |   } | 
 |  | 
 |   /** Attempts dominator-based dynamic elimination on remaining candidates. */ | 
 |   void AddComparesWithDeoptimization(HBasicBlock* block) { | 
 |     for (const auto& entry : first_index_bounds_check_map_) { | 
 |       HBoundsCheck* bounds_check = entry.second; | 
 |       HInstruction* index = bounds_check->InputAt(0); | 
 |       HInstruction* array_length = bounds_check->InputAt(1); | 
 |       if (!array_length->IsArrayLength()) { | 
 |         continue;  // disregard phis and constants | 
 |       } | 
 |       // Collect all bounds checks that are still there and that are related as "a[base + constant]" | 
 |       // for a base instruction (possibly absent) and various constants. Note that no attempt | 
 |       // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and | 
 |       // a[base+2] are considered as one set). | 
 |       // TODO: would such a partitioning be worthwhile? | 
 |       ValueBound value = ValueBound::AsValueBound(index); | 
 |       HInstruction* base = value.GetInstruction(); | 
 |       int32_t min_c = base == nullptr ? 0 : value.GetConstant(); | 
 |       int32_t max_c = value.GetConstant(); | 
 |       ScopedArenaVector<HBoundsCheck*> candidates( | 
 |           allocator_.Adapter(kArenaAllocBoundsCheckElimination)); | 
 |       ScopedArenaVector<HBoundsCheck*> standby( | 
 |           allocator_.Adapter(kArenaAllocBoundsCheckElimination)); | 
 |       for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) { | 
 |         // Another bounds check in same or dominated block? | 
 |         HInstruction* user = use.GetUser(); | 
 |         HBasicBlock* other_block = user->GetBlock(); | 
 |         if (user->IsBoundsCheck() && block->Dominates(other_block)) { | 
 |           HBoundsCheck* other_bounds_check = user->AsBoundsCheck(); | 
 |           HInstruction* other_index = other_bounds_check->InputAt(0); | 
 |           HInstruction* other_array_length = other_bounds_check->InputAt(1); | 
 |           ValueBound other_value = ValueBound::AsValueBound(other_index); | 
 |           if (array_length == other_array_length && base == other_value.GetInstruction()) { | 
 |             // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset. | 
 |             if (array_length == other_index) { | 
 |               candidates.clear(); | 
 |               standby.clear(); | 
 |               break; | 
 |             } | 
 |             // Since a subsequent dominated block could be under a conditional, only accept | 
 |             // the other bounds check if it is in same block or both blocks dominate the exit. | 
 |             // TODO: we could improve this by testing proper post-dominance, or even if this | 
 |             //       constant is seen along *all* conditional paths that follow. | 
 |             HBasicBlock* exit = GetGraph()->GetExitBlock(); | 
 |             if (block == user->GetBlock() || | 
 |                 (block->Dominates(exit) && other_block->Dominates(exit))) { | 
 |               int32_t other_c = other_value.GetConstant(); | 
 |               min_c = std::min(min_c, other_c); | 
 |               max_c = std::max(max_c, other_c); | 
 |               candidates.push_back(other_bounds_check); | 
 |             } else { | 
 |               // Add this candidate later only if it falls into the range. | 
 |               standby.push_back(other_bounds_check); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |       // Add standby candidates that fall in selected range. | 
 |       for (HBoundsCheck* other_bounds_check : standby) { | 
 |         HInstruction* other_index = other_bounds_check->InputAt(0); | 
 |         int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); | 
 |         if (min_c <= other_c && other_c <= max_c) { | 
 |           candidates.push_back(other_bounds_check); | 
 |         } | 
 |       } | 
 |       // Perform dominator-based deoptimization if it seems profitable, where we eliminate | 
 |       // bounds checks and replace these with deopt checks that guard against any possible | 
 |       // OOB. Note that we reject cases where the distance min_c:max_c range gets close to | 
 |       // the maximum possible array length, since those cases are likely to always deopt | 
 |       // (such situations do not necessarily go OOB, though, since the array could be really | 
 |       // large, or the programmer could rely on arithmetic wrap-around from max to min). | 
 |       size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1);  // extra test? | 
 |       uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c); | 
 |       if (candidates.size() >= threshold && | 
 |           (base != nullptr || min_c >= 0) &&  // reject certain OOB | 
 |            distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt | 
 |         AddCompareWithDeoptimization(block, array_length, base, min_c, max_c); | 
 |         for (HBoundsCheck* other_bounds_check : candidates) { | 
 |           // Only replace if still in the graph. This avoids visiting the same | 
 |           // bounds check twice if it occurred multiple times in the use list. | 
 |           if (other_bounds_check->IsInBlock()) { | 
 |             ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0)); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /** | 
 |    * Returns true if static range analysis based on induction variables can determine the bounds | 
 |    * check on the given array range is always satisfied with the computed index range. The output | 
 |    * parameter try_dynamic_bce is set to false if OOB is certain. | 
 |    */ | 
 |   bool InductionRangeFitsIn(ValueRange* array_range, | 
 |                             HBoundsCheck* context, | 
 |                             bool* try_dynamic_bce) { | 
 |     InductionVarRange::Value v1; | 
 |     InductionVarRange::Value v2; | 
 |     bool needs_finite_test = false; | 
 |     HInstruction* index = context->InputAt(0); | 
 |     HInstruction* hint = HuntForDeclaration(context->InputAt(1)); | 
 |     if (induction_range_.GetInductionRange(context, index, hint, &v1, &v2, &needs_finite_test)) { | 
 |       if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) && | 
 |           v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) { | 
 |         DCHECK(v1.a_constant == 1 || v1.instruction == nullptr); | 
 |         DCHECK(v2.a_constant == 1 || v2.instruction == nullptr); | 
 |         ValueRange index_range(&allocator_, | 
 |                                ValueBound(v1.instruction, v1.b_constant), | 
 |                                ValueBound(v2.instruction, v2.b_constant)); | 
 |         // If analysis reveals a certain OOB, disable dynamic BCE. Otherwise, | 
 |         // use analysis for static bce only if loop is finite. | 
 |         if (index_range.GetLower().LessThan(array_range->GetLower()) || | 
 |             index_range.GetUpper().GreaterThan(array_range->GetUpper())) { | 
 |           *try_dynamic_bce = false; | 
 |         } else if (!needs_finite_test && index_range.FitsIn(array_range)) { | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   /** | 
 |    * Performs loop-based dynamic elimination on a bounds check. In order to minimize the | 
 |    * number of eventually generated tests, related bounds checks with tests that can be | 
 |    * combined with tests for the given bounds check are collected first. | 
 |    */ | 
 |   void TransformLoopForDynamicBCE(HLoopInformation* loop, HBoundsCheck* bounds_check) { | 
 |     HInstruction* index = bounds_check->InputAt(0); | 
 |     HInstruction* array_length = bounds_check->InputAt(1); | 
 |     DCHECK(loop->IsDefinedOutOfTheLoop(array_length));  // pre-checked | 
 |     DCHECK(loop->DominatesAllBackEdges(bounds_check->GetBlock())); | 
 |     // Collect all bounds checks in the same loop that are related as "a[base + constant]" | 
 |     // for a base instruction (possibly absent) and various constants. | 
 |     ValueBound value = ValueBound::AsValueBound(index); | 
 |     HInstruction* base = value.GetInstruction(); | 
 |     int32_t min_c = base == nullptr ? 0 : value.GetConstant(); | 
 |     int32_t max_c = value.GetConstant(); | 
 |     ScopedArenaVector<HBoundsCheck*> candidates( | 
 |         allocator_.Adapter(kArenaAllocBoundsCheckElimination)); | 
 |     ScopedArenaVector<HBoundsCheck*> standby( | 
 |         allocator_.Adapter(kArenaAllocBoundsCheckElimination)); | 
 |     for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) { | 
 |       HInstruction* user = use.GetUser(); | 
 |       if (user->IsBoundsCheck() && loop == user->GetBlock()->GetLoopInformation()) { | 
 |         HBoundsCheck* other_bounds_check = user->AsBoundsCheck(); | 
 |         HInstruction* other_index = other_bounds_check->InputAt(0); | 
 |         HInstruction* other_array_length = other_bounds_check->InputAt(1); | 
 |         ValueBound other_value = ValueBound::AsValueBound(other_index); | 
 |         int32_t other_c = other_value.GetConstant(); | 
 |         if (array_length == other_array_length && base == other_value.GetInstruction()) { | 
 |           // Ensure every candidate could be picked for code generation. | 
 |           bool b1 = false, b2 = false; | 
 |           if (!induction_range_.CanGenerateRange(other_bounds_check, other_index, &b1, &b2)) { | 
 |             continue; | 
 |           } | 
 |           // Does the current basic block dominate all back edges? If not, | 
 |           // add this candidate later only if it falls into the range. | 
 |           if (!loop->DominatesAllBackEdges(user->GetBlock())) { | 
 |             standby.push_back(other_bounds_check); | 
 |             continue; | 
 |           } | 
 |           min_c = std::min(min_c, other_c); | 
 |           max_c = std::max(max_c, other_c); | 
 |           candidates.push_back(other_bounds_check); | 
 |         } | 
 |       } | 
 |     } | 
 |     // Add standby candidates that fall in selected range. | 
 |     for (HBoundsCheck* other_bounds_check : standby) { | 
 |       HInstruction* other_index = other_bounds_check->InputAt(0); | 
 |       int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); | 
 |       if (min_c <= other_c && other_c <= max_c) { | 
 |         candidates.push_back(other_bounds_check); | 
 |       } | 
 |     } | 
 |     // Perform loop-based deoptimization if it seems profitable, where we eliminate bounds | 
 |     // checks and replace these with deopt checks that guard against any possible OOB. | 
 |     DCHECK_LT(0u, candidates.size()); | 
 |     uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c); | 
 |     if ((base != nullptr || min_c >= 0) &&  // reject certain OOB | 
 |         distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt | 
 |       HBasicBlock* block = GetPreHeader(loop, bounds_check); | 
 |       HInstruction* min_lower = nullptr; | 
 |       HInstruction* min_upper = nullptr; | 
 |       HInstruction* max_lower = nullptr; | 
 |       HInstruction* max_upper = nullptr; | 
 |       // Iterate over all bounds checks. | 
 |       for (HBoundsCheck* other_bounds_check : candidates) { | 
 |         // Only handle if still in the graph. This avoids visiting the same | 
 |         // bounds check twice if it occurred multiple times in the use list. | 
 |         if (other_bounds_check->IsInBlock()) { | 
 |           HInstruction* other_index = other_bounds_check->InputAt(0); | 
 |           int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); | 
 |           // Generate code for either the maximum or minimum. Range analysis already was queried | 
 |           // whether code generation on the original and, thus, related bounds check was possible. | 
 |           // It handles either loop invariants (lower is not set) or unit strides. | 
 |           if (other_c == max_c) { | 
 |             induction_range_.GenerateRange( | 
 |                 other_bounds_check, other_index, GetGraph(), block, &max_lower, &max_upper); | 
 |           } else if (other_c == min_c && base != nullptr) { | 
 |             induction_range_.GenerateRange( | 
 |                 other_bounds_check, other_index, GetGraph(), block, &min_lower, &min_upper); | 
 |           } | 
 |           ReplaceInstruction(other_bounds_check, other_index); | 
 |         } | 
 |       } | 
 |       // In code, using unsigned comparisons: | 
 |       // (1) constants only | 
 |       //       if (max_upper >= a.length ) deoptimize; | 
 |       // (2) two symbolic invariants | 
 |       //       if (min_upper >  max_upper) deoptimize;   unless min_c == max_c | 
 |       //       if (max_upper >= a.length ) deoptimize; | 
 |       // (3) general case, unit strides (where lower would exceed upper for arithmetic wrap-around) | 
 |       //       if (min_lower >  max_lower) deoptimize;   unless min_c == max_c | 
 |       //       if (max_lower >  max_upper) deoptimize; | 
 |       //       if (max_upper >= a.length ) deoptimize; | 
 |       if (base == nullptr) { | 
 |         // Constants only. | 
 |         DCHECK_GE(min_c, 0); | 
 |         DCHECK(min_lower == nullptr && min_upper == nullptr && | 
 |                max_lower == nullptr && max_upper != nullptr); | 
 |       } else if (max_lower == nullptr) { | 
 |         // Two symbolic invariants. | 
 |         if (min_c != max_c) { | 
 |           DCHECK(min_lower == nullptr && min_upper != nullptr && | 
 |                  max_lower == nullptr && max_upper != nullptr); | 
 |           InsertDeoptInLoop( | 
 |               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_upper, max_upper)); | 
 |         } else { | 
 |           DCHECK(min_lower == nullptr && min_upper == nullptr && | 
 |                  max_lower == nullptr && max_upper != nullptr); | 
 |         } | 
 |       } else { | 
 |         // General case, unit strides. | 
 |         if (min_c != max_c) { | 
 |           DCHECK(min_lower != nullptr && min_upper != nullptr && | 
 |                  max_lower != nullptr && max_upper != nullptr); | 
 |           InsertDeoptInLoop( | 
 |               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_lower, max_lower)); | 
 |         } else { | 
 |           DCHECK(min_lower == nullptr && min_upper == nullptr && | 
 |                  max_lower != nullptr && max_upper != nullptr); | 
 |         } | 
 |         InsertDeoptInLoop( | 
 |             loop, block, new (GetGraph()->GetAllocator()) HAbove(max_lower, max_upper)); | 
 |       } | 
 |       InsertDeoptInLoop( | 
 |           loop, block, new (GetGraph()->GetAllocator()) HAboveOrEqual(max_upper, array_length)); | 
 |     } else { | 
 |       // TODO: if rejected, avoid doing this again for subsequent instructions in this set? | 
 |     } | 
 |   } | 
 |  | 
 |   /** | 
 |    * Returns true if heuristics indicate that dynamic bce may be profitable. | 
 |    */ | 
 |   bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) { | 
 |     if (loop != nullptr) { | 
 |       // The loop preheader of an irreducible loop does not dominate all the blocks in | 
 |       // the loop. We would need to find the common dominator of all blocks in the loop. | 
 |       if (loop->IsIrreducible()) { | 
 |         return false; | 
 |       } | 
 |       // We should never deoptimize from an osr method, otherwise we might wrongly optimize | 
 |       // code dominated by the deoptimization. | 
 |       if (GetGraph()->IsCompilingOsr()) { | 
 |         return false; | 
 |       } | 
 |       // A try boundary preheader is hard to handle. | 
 |       // TODO: remove this restriction. | 
 |       if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) { | 
 |         return false; | 
 |       } | 
 |       // Does loop have early-exits? If so, the full range may not be covered by the loop | 
 |       // at runtime and testing the range may apply deoptimization unnecessarily. | 
 |       if (IsEarlyExitLoop(loop)) { | 
 |         return false; | 
 |       } | 
 |       // Does the current basic block dominate all back edges? If not, | 
 |       // don't apply dynamic bce to something that may not be executed. | 
 |       return loop->DominatesAllBackEdges(block); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   /** | 
 |    * Returns true if the loop has early exits, which implies it may not cover | 
 |    * the full range computed by range analysis based on induction variables. | 
 |    */ | 
 |   bool IsEarlyExitLoop(HLoopInformation* loop) { | 
 |     const uint32_t loop_id = loop->GetHeader()->GetBlockId(); | 
 |     // If loop has been analyzed earlier for early-exit, don't repeat the analysis. | 
 |     auto it = early_exit_loop_.find(loop_id); | 
 |     if (it != early_exit_loop_.end()) { | 
 |       return it->second; | 
 |     } | 
 |     // First time early-exit analysis for this loop. Since analysis requires scanning | 
 |     // the full loop-body, results of the analysis is stored for subsequent queries. | 
 |     HBlocksInLoopReversePostOrderIterator it_loop(*loop); | 
 |     for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) { | 
 |       for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) { | 
 |         if (!loop->Contains(*successor)) { | 
 |           early_exit_loop_.Put(loop_id, true); | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |     early_exit_loop_.Put(loop_id, false); | 
 |     return false; | 
 |   } | 
 |  | 
 |   /** | 
 |    * Returns true if the array length is already loop invariant, or can be made so | 
 |    * by handling the null check under the hood of the array length operation. | 
 |    */ | 
 |   bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) { | 
 |     if (loop->IsDefinedOutOfTheLoop(length)) { | 
 |       return true; | 
 |     } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) { | 
 |       if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) { | 
 |         HoistToPreHeaderOrDeoptBlock(loop, length); | 
 |         return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   /** | 
 |    * Returns true if the null check is already loop invariant, or can be made so | 
 |    * by generating a deoptimization test. | 
 |    */ | 
 |   bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) { | 
 |     if (loop->IsDefinedOutOfTheLoop(check)) { | 
 |       return true; | 
 |     } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) { | 
 |       HInstruction* array = check->InputAt(0); | 
 |       if (loop->IsDefinedOutOfTheLoop(array)) { | 
 |         // Generate: if (array == null) deoptimize; | 
 |         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); | 
 |         HBasicBlock* block = GetPreHeader(loop, check); | 
 |         HInstruction* cond = | 
 |             new (GetGraph()->GetAllocator()) HEqual(array, GetGraph()->GetNullConstant()); | 
 |         InsertDeoptInLoop(loop, block, cond, /* is_null_check */ true); | 
 |         ReplaceInstruction(check, array); | 
 |         return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   /** | 
 |    * Returns true if compiler can apply dynamic bce to loops that may be infinite | 
 |    * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate | 
 |    * the range analysis evaluation code by "overshooting" the computed range. | 
 |    * Since deoptimization would be a bad choice, and there is no other version | 
 |    * of the loop to use, dynamic bce in such cases is only allowed if other tests | 
 |    * ensure the loop is finite. | 
 |    */ | 
 |   bool CanHandleInfiniteLoop(HLoopInformation* loop, HInstruction* index, bool needs_infinite_test) { | 
 |     if (needs_infinite_test) { | 
 |       // If we already forced the loop to be finite, allow directly. | 
 |       const uint32_t loop_id = loop->GetHeader()->GetBlockId(); | 
 |       if (finite_loop_.find(loop_id) != finite_loop_.end()) { | 
 |         return true; | 
 |       } | 
 |       // Otherwise, allow dynamic bce if the index (which is necessarily an induction at | 
 |       // this point) is the direct loop index (viz. a[i]), since then the runtime tests | 
 |       // ensure upper bound cannot cause an infinite loop. | 
 |       HInstruction* control = loop->GetHeader()->GetLastInstruction(); | 
 |       if (control->IsIf()) { | 
 |         HInstruction* if_expr = control->AsIf()->InputAt(0); | 
 |         if (if_expr->IsCondition()) { | 
 |           HCondition* condition = if_expr->AsCondition(); | 
 |           if (index == condition->InputAt(0) || | 
 |               index == condition->InputAt(1)) { | 
 |             finite_loop_.insert(loop_id); | 
 |             return true; | 
 |           } | 
 |         } | 
 |       } | 
 |       return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   /** | 
 |    * Returns appropriate preheader for the loop, depending on whether the | 
 |    * instruction appears in the loop header or proper loop-body. | 
 |    */ | 
 |   HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) { | 
 |     // Use preheader unless there is an earlier generated deoptimization block since | 
 |     // hoisted expressions may depend on and/or used by the deoptimization tests. | 
 |     HBasicBlock* header = loop->GetHeader(); | 
 |     const uint32_t loop_id = header->GetBlockId(); | 
 |     auto it = taken_test_loop_.find(loop_id); | 
 |     if (it != taken_test_loop_.end()) { | 
 |       HBasicBlock* block = it->second; | 
 |       // If always taken, keep it that way by returning the original preheader, | 
 |       // which can be found by following the predecessor of the true-block twice. | 
 |       if (instruction->GetBlock() == header) { | 
 |         return block->GetSinglePredecessor()->GetSinglePredecessor(); | 
 |       } | 
 |       return block; | 
 |     } | 
 |     return loop->GetPreHeader(); | 
 |   } | 
 |  | 
 |   /** Inserts a deoptimization test in a loop preheader. */ | 
 |   void InsertDeoptInLoop(HLoopInformation* loop, | 
 |                          HBasicBlock* block, | 
 |                          HInstruction* condition, | 
 |                          bool is_null_check = false) { | 
 |     HInstruction* suspend = loop->GetSuspendCheck(); | 
 |     block->InsertInstructionBefore(condition, block->GetLastInstruction()); | 
 |     DeoptimizationKind kind = | 
 |         is_null_check ? DeoptimizationKind::kLoopNullBCE : DeoptimizationKind::kLoopBoundsBCE; | 
 |     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize( | 
 |         GetGraph()->GetAllocator(), condition, kind, suspend->GetDexPc()); | 
 |     block->InsertInstructionBefore(deoptimize, block->GetLastInstruction()); | 
 |     if (suspend->HasEnvironment()) { | 
 |       deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( | 
 |           suspend->GetEnvironment(), loop->GetHeader()); | 
 |     } | 
 |   } | 
 |  | 
 |   /** Inserts a deoptimization test right before a bounds check. */ | 
 |   void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) { | 
 |     HBasicBlock* block = bounds_check->GetBlock(); | 
 |     block->InsertInstructionBefore(condition, bounds_check); | 
 |     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize( | 
 |         GetGraph()->GetAllocator(), | 
 |         condition, | 
 |         DeoptimizationKind::kBlockBCE, | 
 |         bounds_check->GetDexPc()); | 
 |     block->InsertInstructionBefore(deoptimize, bounds_check); | 
 |     deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment()); | 
 |   } | 
 |  | 
 |   /** Hoists instruction out of the loop to preheader or deoptimization block. */ | 
 |   void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) { | 
 |     HBasicBlock* block = GetPreHeader(loop, instruction); | 
 |     DCHECK(!instruction->HasEnvironment()); | 
 |     instruction->MoveBefore(block->GetLastInstruction()); | 
 |   } | 
 |  | 
 |   /** | 
 |    * Adds a new taken-test structure to a loop if needed and not already done. | 
 |    * The taken-test protects range analysis evaluation code to avoid any | 
 |    * deoptimization caused by incorrect trip-count evaluation in non-taken loops. | 
 |    * | 
 |    *          old_preheader | 
 |    *               | | 
 |    *            if_block          <- taken-test protects deoptimization block | 
 |    *            /      \ | 
 |    *     true_block  false_block  <- deoptimizations/invariants are placed in true_block | 
 |    *            \       / | 
 |    *          new_preheader       <- may require phi nodes to preserve SSA structure | 
 |    *                | | 
 |    *             header | 
 |    * | 
 |    * For example, this loop: | 
 |    * | 
 |    *   for (int i = lower; i < upper; i++) { | 
 |    *     array[i] = 0; | 
 |    *   } | 
 |    * | 
 |    * will be transformed to: | 
 |    * | 
 |    *   if (lower < upper) { | 
 |    *     if (array == null) deoptimize; | 
 |    *     array_length = array.length; | 
 |    *     if (lower > upper)         deoptimize;  // unsigned | 
 |    *     if (upper >= array_length) deoptimize;  // unsigned | 
 |    *   } else { | 
 |    *     array_length = 0; | 
 |    *   } | 
 |    *   for (int i = lower; i < upper; i++) { | 
 |    *     // Loop without null check and bounds check, and any array.length replaced with array_length. | 
 |    *     array[i] = 0; | 
 |    *   } | 
 |    */ | 
 |   void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) { | 
 |     // Not needed (can use preheader) or already done (can reuse)? | 
 |     const uint32_t loop_id = loop->GetHeader()->GetBlockId(); | 
 |     if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) { | 
 |       return; | 
 |     } | 
 |  | 
 |     // Generate top test structure. | 
 |     HBasicBlock* header = loop->GetHeader(); | 
 |     GetGraph()->TransformLoopHeaderForBCE(header); | 
 |     HBasicBlock* new_preheader = loop->GetPreHeader(); | 
 |     HBasicBlock* if_block = new_preheader->GetDominator(); | 
 |     HBasicBlock* true_block = if_block->GetSuccessors()[0];  // True successor. | 
 |     HBasicBlock* false_block = if_block->GetSuccessors()[1];  // False successor. | 
 |  | 
 |     // Goto instructions. | 
 |     true_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); | 
 |     false_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); | 
 |     new_preheader->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); | 
 |  | 
 |     // Insert the taken-test to see if the loop body is entered. If the | 
 |     // loop isn't entered at all, it jumps around the deoptimization block. | 
 |     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());  // placeholder | 
 |     HInstruction* condition = induction_range_.GenerateTakenTest( | 
 |         header->GetLastInstruction(), GetGraph(), if_block); | 
 |     DCHECK(condition != nullptr); | 
 |     if_block->RemoveInstruction(if_block->GetLastInstruction()); | 
 |     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HIf(condition)); | 
 |  | 
 |     taken_test_loop_.Put(loop_id, true_block); | 
 |   } | 
 |  | 
 |   /** | 
 |    * Inserts phi nodes that preserve SSA structure in generated top test structures. | 
 |    * All uses of instructions in the deoptimization block that reach the loop need | 
 |    * a phi node in the new loop preheader to fix the dominance relation. | 
 |    * | 
 |    * Example: | 
 |    *           if_block | 
 |    *            /      \ | 
 |    *         x_0 = ..  false_block | 
 |    *            \       / | 
 |    *           x_1 = phi(x_0, null)   <- synthetic phi | 
 |    *               | | 
 |    *          new_preheader | 
 |    */ | 
 |   void InsertPhiNodes() { | 
 |     // Scan all new deoptimization blocks. | 
 |     for (const auto& entry : taken_test_loop_) { | 
 |       HBasicBlock* true_block = entry.second; | 
 |       HBasicBlock* new_preheader = true_block->GetSingleSuccessor(); | 
 |       // Scan all instructions in a new deoptimization block. | 
 |       for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |         HInstruction* instruction = it.Current(); | 
 |         DataType::Type type = instruction->GetType(); | 
 |         HPhi* phi = nullptr; | 
 |         // Scan all uses of an instruction and replace each later use with a phi node. | 
 |         const HUseList<HInstruction*>& uses = instruction->GetUses(); | 
 |         for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) { | 
 |           HInstruction* user = it2->GetUser(); | 
 |           size_t index = it2->GetIndex(); | 
 |           // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput(). | 
 |           ++it2; | 
 |           if (user->GetBlock() != true_block) { | 
 |             if (phi == nullptr) { | 
 |               phi = NewPhi(new_preheader, instruction, type); | 
 |             } | 
 |             user->ReplaceInput(phi, index);  // Removes the use node from the list. | 
 |             induction_range_.Replace(user, instruction, phi);  // update induction | 
 |           } | 
 |         } | 
 |         // Scan all environment uses of an instruction and replace each later use with a phi node. | 
 |         const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses(); | 
 |         for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) { | 
 |           HEnvironment* user = it2->GetUser(); | 
 |           size_t index = it2->GetIndex(); | 
 |           // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput(). | 
 |           ++it2; | 
 |           if (user->GetHolder()->GetBlock() != true_block) { | 
 |             if (phi == nullptr) { | 
 |               phi = NewPhi(new_preheader, instruction, type); | 
 |             } | 
 |             user->RemoveAsUserOfInput(index); | 
 |             user->SetRawEnvAt(index, phi); | 
 |             phi->AddEnvUseAt(user, index); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /** | 
 |    * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation. | 
 |    * These are synthetic phi nodes without a virtual register. | 
 |    */ | 
 |   HPhi* NewPhi(HBasicBlock* new_preheader, | 
 |                HInstruction* instruction, | 
 |                DataType::Type type) { | 
 |     HGraph* graph = GetGraph(); | 
 |     HInstruction* zero; | 
 |     switch (type) { | 
 |       case DataType::Type::kReference: zero = graph->GetNullConstant(); break; | 
 |       case DataType::Type::kFloat32: zero = graph->GetFloatConstant(0); break; | 
 |       case DataType::Type::kFloat64: zero = graph->GetDoubleConstant(0); break; | 
 |       default: zero = graph->GetConstant(type, 0); break; | 
 |     } | 
 |     HPhi* phi = new (graph->GetAllocator()) | 
 |         HPhi(graph->GetAllocator(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type)); | 
 |     phi->SetRawInputAt(0, instruction); | 
 |     phi->SetRawInputAt(1, zero); | 
 |     if (type == DataType::Type::kReference) { | 
 |       phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo()); | 
 |     } | 
 |     new_preheader->AddPhi(phi); | 
 |     return phi; | 
 |   } | 
 |  | 
 |   /** Helper method to replace an instruction with another instruction. */ | 
 |   void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) { | 
 |     // Safe iteration. | 
 |     if (instruction == next_) { | 
 |       next_ = next_->GetNext(); | 
 |     } | 
 |     // Replace and remove. | 
 |     instruction->ReplaceWith(replacement); | 
 |     instruction->GetBlock()->RemoveInstruction(instruction); | 
 |   } | 
 |  | 
 |   // Use local allocator for allocating memory. | 
 |   ScopedArenaAllocator allocator_; | 
 |  | 
 |   // A set of maps, one per basic block, from instruction to range. | 
 |   ScopedArenaVector<ScopedArenaSafeMap<int, ValueRange*>> maps_; | 
 |  | 
 |   // Map an HArrayLength instruction's id to the first HBoundsCheck instruction | 
 |   // in a block that checks an index against that HArrayLength. | 
 |   ScopedArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_; | 
 |  | 
 |   // Early-exit loop bookkeeping. | 
 |   ScopedArenaSafeMap<uint32_t, bool> early_exit_loop_; | 
 |  | 
 |   // Taken-test loop bookkeeping. | 
 |   ScopedArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_; | 
 |  | 
 |   // Finite loop bookkeeping. | 
 |   ScopedArenaSet<uint32_t> finite_loop_; | 
 |  | 
 |   // Flag that denotes whether dominator-based dynamic elimination has occurred. | 
 |   bool has_dom_based_dynamic_bce_; | 
 |  | 
 |   // Initial number of blocks. | 
 |   uint32_t initial_block_size_; | 
 |  | 
 |   // Side effects. | 
 |   const SideEffectsAnalysis& side_effects_; | 
 |  | 
 |   // Range analysis based on induction variables. | 
 |   InductionVarRange induction_range_; | 
 |  | 
 |   // Safe iteration. | 
 |   HInstruction* next_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(BCEVisitor); | 
 | }; | 
 |  | 
 | void BoundsCheckElimination::Run() { | 
 |   if (!graph_->HasBoundsChecks()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Reverse post order guarantees a node's dominators are visited first. | 
 |   // We want to visit in the dominator-based order since if a value is known to | 
 |   // be bounded by a range at one instruction, it must be true that all uses of | 
 |   // that value dominated by that instruction fits in that range. Range of that | 
 |   // value can be narrowed further down in the dominator tree. | 
 |   BCEVisitor visitor(graph_, side_effects_, induction_analysis_); | 
 |   for (size_t i = 0, size = graph_->GetReversePostOrder().size(); i != size; ++i) { | 
 |     HBasicBlock* current = graph_->GetReversePostOrder()[i]; | 
 |     if (visitor.IsAddedBlock(current)) { | 
 |       // Skip added blocks. Their effects are already taken care of. | 
 |       continue; | 
 |     } | 
 |     visitor.VisitBasicBlock(current); | 
 |     // Skip forward to the current block in case new basic blocks were inserted | 
 |     // (which always appear earlier in reverse post order) to avoid visiting the | 
 |     // same basic block twice. | 
 |     size_t new_size = graph_->GetReversePostOrder().size(); | 
 |     DCHECK_GE(new_size, size); | 
 |     i += new_size - size; | 
 |     DCHECK_EQ(current, graph_->GetReversePostOrder()[i]); | 
 |     size = new_size; | 
 |   } | 
 |  | 
 |   // Perform cleanup. | 
 |   visitor.Finish(); | 
 | } | 
 |  | 
 | }  // namespace art |