blob: fd34cc614333ab68abd48804d43c8ae7668a1e7e [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_ATOMIC_H_
#define ART_LIBARTBASE_BASE_ATOMIC_H_
#include <stdint.h>
#include <atomic>
#include <limits>
#include <vector>
#include <android-base/logging.h>
#include "base/macros.h"
namespace art {
template<typename T>
class PACKED(sizeof(T)) Atomic : public std::atomic<T> {
public:
Atomic<T>() : std::atomic<T>(T()) { }
explicit Atomic<T>(T value) : std::atomic<T>(value) { }
// Load from memory without ordering or synchronization constraints.
T LoadRelaxed() const {
return this->load(std::memory_order_relaxed);
}
// Load from memory with acquire ordering.
T LoadAcquire() const {
return this->load(std::memory_order_acquire);
}
// Word tearing allowed, but may race.
// TODO: Optimize?
// There has been some discussion of eventually disallowing word
// tearing for Java data loads.
T LoadJavaData() const {
return this->load(std::memory_order_relaxed);
}
// Load from memory with a total ordering.
// Corresponds exactly to a Java volatile load.
T LoadSequentiallyConsistent() const {
return this->load(std::memory_order_seq_cst);
}
// Store to memory without ordering or synchronization constraints.
void StoreRelaxed(T desired_value) {
this->store(desired_value, std::memory_order_relaxed);
}
// Word tearing allowed, but may race.
void StoreJavaData(T desired_value) {
this->store(desired_value, std::memory_order_relaxed);
}
// Store to memory with release ordering.
void StoreRelease(T desired_value) {
this->store(desired_value, std::memory_order_release);
}
// Store to memory with a total ordering.
void StoreSequentiallyConsistent(T desired_value) {
this->store(desired_value, std::memory_order_seq_cst);
}
// Atomically replace the value with desired_value.
T ExchangeRelaxed(T desired_value) {
return this->exchange(desired_value, std::memory_order_relaxed);
}
// Atomically replace the value with desired_value.
T ExchangeSequentiallyConsistent(T desired_value) {
return this->exchange(desired_value, std::memory_order_seq_cst);
}
// Atomically replace the value with desired_value.
T ExchangeAcquire(T desired_value) {
return this->exchange(desired_value, std::memory_order_acquire);
}
// Atomically replace the value with desired_value.
T ExchangeRelease(T desired_value) {
return this->exchange(desired_value, std::memory_order_release);
}
// Atomically replace the value with desired_value if it matches the expected_value.
// Participates in total ordering of atomic operations. Returns true on success, false otherwise.
// If the value does not match, updates the expected_value argument with the value that was
// atomically read for the failed comparison.
bool CompareAndExchangeStrongSequentiallyConsistent(T* expected_value, T desired_value) {
return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_seq_cst);
}
// Atomically replace the value with desired_value if it matches the expected_value.
// Participates in total ordering of atomic operations. Returns true on success, false otherwise.
// If the value does not match, updates the expected_value argument with the value that was
// atomically read for the failed comparison.
bool CompareAndExchangeStrongAcquire(T* expected_value, T desired_value) {
return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_acquire);
}
// Atomically replace the value with desired_value if it matches the expected_value.
// Participates in total ordering of atomic operations. Returns true on success, false otherwise.
// If the value does not match, updates the expected_value argument with the value that was
// atomically read for the failed comparison.
bool CompareAndExchangeStrongRelease(T* expected_value, T desired_value) {
return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_release);
}
// Atomically replace the value with desired_value if it matches the expected_value.
// Participates in total ordering of atomic operations.
bool CompareAndSetStrongSequentiallyConsistent(T expected_value, T desired_value) {
return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
}
// The same, except it may fail spuriously.
bool CompareAndSetWeakSequentiallyConsistent(T expected_value, T desired_value) {
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
}
// Atomically replace the value with desired_value if it matches the expected_value. Doesn't
// imply ordering or synchronization constraints.
bool CompareAndSetStrongRelaxed(T expected_value, T desired_value) {
return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
}
// Atomically replace the value with desired_value if it matches the expected_value. Prior writes
// to other memory locations become visible to the threads that do a consume or an acquire on the
// same location.
bool CompareAndSetStrongRelease(T expected_value, T desired_value) {
return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_release);
}
// The same, except it may fail spuriously.
bool CompareAndSetWeakRelaxed(T expected_value, T desired_value) {
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
}
// Atomically replace the value with desired_value if it matches the expected_value. Prior writes
// made to other memory locations by the thread that did the release become visible in this
// thread.
bool CompareAndSetWeakAcquire(T expected_value, T desired_value) {
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
}
// Atomically replace the value with desired_value if it matches the expected_value. Prior writes
// to other memory locations become visible to the threads that do a consume or an acquire on the
// same location.
bool CompareAndSetWeakRelease(T expected_value, T desired_value) {
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
}
T FetchAndAddSequentiallyConsistent(const T value) {
return this->fetch_add(value, std::memory_order_seq_cst); // Return old_value.
}
T FetchAndAddRelaxed(const T value) {
return this->fetch_add(value, std::memory_order_relaxed); // Return old_value.
}
T FetchAndAddAcquire(const T value) {
return this->fetch_add(value, std::memory_order_acquire); // Return old_value.
}
T FetchAndAddRelease(const T value) {
return this->fetch_add(value, std::memory_order_acquire); // Return old_value.
}
T FetchAndSubSequentiallyConsistent(const T value) {
return this->fetch_sub(value, std::memory_order_seq_cst); // Return old value.
}
T FetchAndSubRelaxed(const T value) {
return this->fetch_sub(value, std::memory_order_relaxed); // Return old value.
}
T FetchAndBitwiseAndSequentiallyConsistent(const T value) {
return this->fetch_and(value, std::memory_order_seq_cst); // Return old_value.
}
T FetchAndBitwiseAndAcquire(const T value) {
return this->fetch_and(value, std::memory_order_acquire); // Return old_value.
}
T FetchAndBitwiseAndRelease(const T value) {
return this->fetch_and(value, std::memory_order_release); // Return old_value.
}
T FetchAndBitwiseOrSequentiallyConsistent(const T value) {
return this->fetch_or(value, std::memory_order_seq_cst); // Return old_value.
}
T FetchAndBitwiseOrAcquire(const T value) {
return this->fetch_or(value, std::memory_order_acquire); // Return old_value.
}
T FetchAndBitwiseOrRelease(const T value) {
return this->fetch_or(value, std::memory_order_release); // Return old_value.
}
T FetchAndBitwiseXorSequentiallyConsistent(const T value) {
return this->fetch_xor(value, std::memory_order_seq_cst); // Return old_value.
}
T FetchAndBitwiseXorAcquire(const T value) {
return this->fetch_xor(value, std::memory_order_acquire); // Return old_value.
}
T FetchAndBitwiseXorRelease(const T value) {
return this->fetch_xor(value, std::memory_order_release); // Return old_value.
}
volatile T* Address() {
return reinterpret_cast<T*>(this);
}
static T MaxValue() {
return std::numeric_limits<T>::max();
}
};
typedef Atomic<int32_t> AtomicInteger;
static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size");
static_assert(alignof(AtomicInteger) == alignof(int32_t),
"AtomicInteger alignment differs from that of underlyingtype");
static_assert(sizeof(Atomic<int64_t>) == sizeof(int64_t), "Weird Atomic<int64> size");
// Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit
// architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte
// aligned.
#if defined(__LP64__)
static_assert(alignof(Atomic<int64_t>) == alignof(int64_t),
"Atomic<int64> alignment differs from that of underlying type");
#endif
} // namespace art
#endif // ART_LIBARTBASE_BASE_ATOMIC_H_